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In the context of fðRÞ generalizations to the Holst action, endowed with a dynamical Immirzi field, we
derive an analytic solution describing asymptotically anti–de Sitter black holes with hyperbolic horizon.
These exhibit a scalar hair of the second kind, which ultimately depends on the Immirzi field radial
behavior. In particular, we show how the Immirzi field modifies the usual entropy law associated to the
black hole. We also verify that the Immirzi field boils down to a constant value in the asymptotic region,
thus restoring the standard loop quantum gravity picture. We finally prove the violation of the reverse
isoperimetric inequality, resulting in the superentropic nature of the black hole, and we discuss in detail the
thermodynamic stability of the solution.
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I. INTRODUCTION

A consistent quantum description of the gravitational
interaction is maybe one of the most prominent challenges
in modern theoretical physics. Among candidate theories of
quantum gravity, loop quantum gravity (LQG) constitutes
an intriguing attempt to pursue a nonperturbative, canonical
quantization of general relativity (GR) [1,2]. The theory
can be formulated at the Lagrangian level by including the
Holst term [3] into the Palatini version of the GR action,
where the metric and the connection are treated a priori as
independent variables (first order formalism). This addi-
tional term is driven by the so called Immirzi parameter [4–
6], which turns out to play a fundamental part in con-
structing a viable gauge SUð2Þ representation of the theory,
by means of the Ashtekar variables [7–10]. Here, we do not
deal with the issues concerning its role in the quantizing
procedure, and we rather follow the idea in [11–13], where
it is promoted to a dynamical scalar field with the aim of
investigating its properties. In particular, we decided to
adopt a modified gravity perspective as in [14–18], by
considering a Palatini fðRÞ-like generalization [19] of the
Holst action in the presence of an Immirzi scalar field. The
resulting theory is equivalent to a nonminimally coupled

scalar-tensor theory with the scalar sector including both
the Immirzi field and the scalar field that encodes the
degree of freedom of the fðRÞ gravity in the Jordan frame
(often called the scalaron).
Two main features can be traced back to the first order

formulation characterizing the model. On one hand, torsion
is present in the theory [20], acquiring a dynamical
character from the scalar fields. This allows us to fully
solve connections in terms of metric and scalar fields, i.e.,
to work with an effective metric action (second order
formalism), obtained by solving the torsion components
in terms of the gradients of the scalar fields via standard
methods.
On the other hand, the scalaron is governed by the so

called structural equation, as in Palatini fðRÞ gravity [19].
However, while in standard Palatini fðRÞ gravity this
implies a constant scalar field in vacuum, in the case at
hand it actually depends algebraically on the Immirzi field,
which can in principle induce also nontrivial behaviors.
The Immirzi field has already been investigated in

cosmological models [11,13,21], in the presence of fermion
fields [22,23], and in connection with the propagation of
gravitational waves [24,25], revealing an interesting phe-
nomenology, such as the existence of bouncing solutions
and the presence of additional gravitational waves polar-
izations, together with implications at a more fundamental
level regarding the strong CP problem [26,27] and the
chiral anomaly [28]. However, investigations on the vac-
uum spherically symmetric sector of models featuring an
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Immirzi field are scarce in literature (see the Appendix of
[29]), the main reason for this being the no-hair theorems
[30]. The latter state that spherically symmetric solutions in
vacuum scalar-tensor theories are identical to those of GR,
provided we make the crucial assumptions of asymptotic
flatness and stationarity. In other words, these theorems
prevent the existence of black hole solutions with a non-
trivial radial profile for the scalar fields.
In spite of this, a growing number of hairy black hole

solutions have been found thanks to the fact that the no-hair
theorem can always be evaded violating some of the
hypothesis on which it stands (see e.g., [31–34]).
Adopting this strategy, we are forced to take into account
more involved solutions than the stationary and asymptoti-
cally flat template. In particular we will consider the case of
asymptotically anti–de Sitter (AdS) spacetimes. Although
less prone to a direct astrophysical connotation with respect
to the asymptotically flat or de Sitter solutions, AdS ones are
of interest in the context of the AdS/CFT correspondence,
especially in light of works oriented toward a connection
between different approaches to quantum gravity [35–38],
in which the role of the Immirzi parameter (field) is taken
into account. Besides, as it was firstly realized in [39,40],
asymptotically AdS black holes allow for a wider variety of
horizon topologies with respect to the usual spherical case.
These topological black holes possess a horizon of constant
curvature (positive, negative or vanishing), and they can
form as the result of a gravitational collapse (see [41]). We
observe, moreover, that the Palatini reformulation usually
enhances the appearance of nontrivial structures in compact
objects evolution, affecting their topology or the nature of
the singularity [42–45].
In this paper we report an analytical solution describing

an asymptotically anti–de Sitter and topological black hole
endowed with scalar hair provided by the Immirzi field.
The solution reduces to the one found in [32] in certain
limits of the model parameters. The event horizon is a
surface of constant negative curvature, i.e., it has a hyper-
bolic topology, which can be described as a compact
surface of genus g ≥ 2 via suitable identification of points
on the hyperbolic plane [41].
The black hole hair are realized by both the Immirzi field

and the scalaron, which interact via the modified structural
equation. The presence of the black hole is able to excite the
Immirzi field, which shows a nontrivial radial profile. In the
large radius limit, the Immirzi field becomes a constant
parameter and one recovers the standard LQG scenario.
Another interesting feature of black holes in AdS space-
times is that they have a well defined thermodynamics,
which we carefully analyze for our solution. Black hole
thermodynamics has been a prolific research field since its
first appearance [46,47]. It is now well established the
existence of laws of black hole thermodynamics describing
these objects in terms of thermodynamic variables such as
temperature and entropy (see [48] for a review).

Although the physics of the microscopic degrees of
freedom at the origin of such macroscopic properties is still
not completely understood, it is likely rooted in some
theory of quantum gravity. Thus, the semiclassical
approach to black hole thermodynamics can shed light
on the matter, yielding interesting clues [49].
Since the first calculation performed by Hawking,

several semiclassical methods have been developed to
derive thermodynamic quantities of interest. Among them,
we mention the Euclidean path integral method [50] and
Wald’s entropy formula [51].
Here, we derive the thermodynamics of the black hole

solution at hand by following the Euclidean path integral
method. Particular attention has to be paid to the compu-
tation of the Euclidean action. Beside the appropriate
Gibbons-Hawking-York (GHY) boundary term [52], which
is necessary to render the variational principle well-posed, a
regularization procedure is needed to cure the divergence of
the action. We take care of this by following the counter-
terms method both in an implicit way, as in [32], and by
providing the explicit covariant expressions of the counter-
terms, generalizing the ones illustrated in [53,54] to the
case of a nonminimally coupled scalar field.
The expression for entropy obtained with this method

shows that the Immirzi hair are responsible for a modifi-
cation of the well-known area law S ¼ A=4, which shows a
correction due to the Immirzi field computed at the black
hole event horizon. We check our results by also applying
Wald’s formula, and the two procedures are consistent
despite the presence of torsion in the theory [55]. Recently,
it has been proposed a way to enlarge the thermodynamic
phase space by including a pressure term, related to the
cosmological constant, and its conjugate quantity, a
thermodynamic volume. This extended phase space
approach [56] has been widely examined revealing several
analogies between the thermodynamics of black holes and
the one of usual matter systems. In this context, the
thermodynamic volume has initially been conjectured to
satisfy the so called reverse isoperimetric inequality [57],
implying an upper bound on the amount of entropy a black
hole can have at a given volume, the maximum being
attained by the Schwarzschild-AdS black hole.
However, there are several black hole solutions, dubbed

superentropic black holes, that violate the reverse isoperi-
metric inequality [58–62]. Recently, the thermodynamic
stability of these solutions has been investigated, and
superentropic black holes have been conjectured to be
thermodynamically unstable [63,64]. In this framework, we
observe a violation of the reverse isoperimetric inequality,
implying that the black hole is superentropic. Its thermo-
dynamic stability has been explored computing the specific
heats at constant pressure and volume. We discuss the
results of these analysis in light of the conjecture on
superentropic black holes proposed in [63,64]. The paper
is structured as follows. In Sec. II the model is presented
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and the effective second order theory is derived. In Sec. III
we report the hairy black hole solution together with its
geometric characterization. Section IVA is devoted to the
black hole thermodynamics and the computation of the
Euclidean action, while the violation of the reverse iso-
perimetric inequality and the thermodynamic stability
analysis can be found in Sec. IV B. Finally, conclusions
are drown in Sec. V.

II. EFFECTIVE THEORY

Let us consider the following generalization of the Holst
action in vacuum1

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðRþHÞ −WðγÞ�; ð1Þ

where R ¼ gμνRρ
μρν is the Ricci scalar and the Riemann

tensor is defined in terms of the connection Γμ
νρ (inde-

pendent of the metric), as

Rμ
νρσ ¼ ∂ρΓμ

νσ − ∂σΓμ
νρ þ Γμ

λρΓλ
νσ − Γμ

λσΓλ
νρ: ð2Þ

The Holst term H is defined by

H ¼ −
γðxÞ
2

εμνρσRμνρσ; ð3Þ

and we promote the Immirzi parameter γ to a scalar field
with a potential term WðγÞ. Here, we do not discuss in
detail the effective mechanism able to generate such
interaction term,2 so we just include the function WðγÞ
in the action.
Now, by adopting a metric-affine formalism, we are

implicitly assuming that the independent connection could
be a priori characterized by nonvanishing torsion and
nonmetricity tensors, defined as, respectively:

Tλ
μν ≡ Γλ

μν − Γλ
νμ Qμνρ ≡ −Dμgνρ; ð4Þ

where Dμ stands for the general covariant derivative. In the
following, we will neglect nonmetricity and just retain the
anti-symmetric part of the connection. Even if this choice
can seem a bit arbitrary, we are actually taking advantage of
the invariance of the action (1) under the projective trans-
formation

Γρ
μν → Γρ

μν þ δρμξν; ð5Þ

which can be exploited for simplifying the form of the
connection, without affecting the dynamics [65–68]. This is

always attainable for the Lagrangian we are considering,
where only the vector modes of the connection can be
excited and 3-rank tensor states safely disregarded (see
below for details in connection decomposition). In other
words, (5) constitutes a truly gauge symmetry for this kind
of metric-affine models and in setting Qμνρ ¼ 0 we are just
selecting a specific representation of (1).
We then introduce the contorsion tensor

Kμ
νρ ¼

1

2
ðTμ

νρ − Tν
μ
ρ − Tρ

μ
νÞ; ð6Þ

which allows us to rewrite connection as

Γμ
νρ ¼ Γ̄μ

νρ þ Kμ
νρ; ð7Þ

where Γ̄μ
νρ is the usual torsionless Levi-Civita connection

for the metric gμν. Now, by standard methods (see e.g.,
[69]), it is possible to reformulate the theory in the Jordan
frame. This can be done introducing an auxiliary field χ and
rewriting the action as

I¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðχÞþfχðχÞðRþH−χÞ−WðγÞ�; ð8Þ

where a subscript denotes a derivative with respect to the
argument. Provided3 fχχ ≠ 0, variation with respect to χ
yields the condition χ ¼ RþH, which reinserted into the
action proves the equivalence with (1). Then, introducing
the scalaron field defined as ϕ≡ fχ , action (8) can be recast
in the equivalent scalar-tensor theory

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕðRþHÞ − VðϕÞ −WðγÞ�; ð9Þ

where the potential is given by VðϕÞ ¼ ϕχðϕÞ − fðχðϕÞÞ
and χðϕÞ is obtained inverting the definition of the scalaron.
To find analytical solutions it is convenient to solve first

the equations of motion for the independent connection.
This can be accomplished writing the torsion tensor in
terms of its independent components, i.e., the trace vector

Tμ ≡ Tν
μν; ð10Þ

the pseudotrace axial vector

Sμ ≡ εμνρσTνρσ ð11Þ

and an antisymmetric tensor qμνρ ¼ −qμρν, satisfying
qνμν ¼ 0 and ερνσμqνσμ ¼ 0. In terms of these quantities
the torsion tensor can be written as

1We work in geometric units in G ¼ c ¼ 1.
2This issue will be the object of a forthcoming work, along

with the possibility of endowing the Immirzi parameter of
dynamic from extended kinematical frameworks.

3Actually, the condition for the second derivative to be
nonvanishing is not strictly necessary. It is sufficient to assume
that f be continuous and one-to-one, as shown in [70].
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Tμνρ ¼
1

3
ðTνgμρ − TρgμνÞ þ

1

6
εμνρσSσ þ qμνρ: ð12Þ

Substituting this into (7), one can write the action in terms
of Tμ, Sμ and qμνρ, as well as the metric tensor and the
scalar fields. In particular, the Ricci scalar and the Holst
term can be decomposed as, respectively [12,22]:

R ¼ R̄þ 1

24
SμSμ −

2

3
TμTμ − 2∇μTμ þ 1

2
qμνρqμνρ ð13Þ

H ¼ −
γðxÞ
2

�
∇μSμ þ

2

3
TμSμ þ

1

2
εμνρσqλμνqλρσ

�
ð14Þ

where R̄ and ∇μ are built from the Levi-Civita connection.
Then, a straightforward computation of the equations of
motion for the components of the torsion shows that there
are solutions characterized by qμνρ ¼ 0 and

Tμ ¼
3

2ϕ
∇μϕþ 3γ

2ðγ2 þ 1Þ∇μγ; ð15Þ

Sμ ¼ −
6

ðγ2 þ 1Þ∇μγ: ð16Þ

Therefore, the torsion acquires an effective dynamics
sourced by the scalar field, and by plugging the above
expressions back into the action, we finally obtain a scalar-
tensor theory described by

I ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR̄þ 3

2ϕ
∇μϕ∇μϕ −

ϕ

2
∇μψ∇μψ

− VðϕÞ −WðψÞ
�
; ð17Þ

where we defined the scalar field ψ as

ψðxÞ≡ ffiffiffi
3

p
sinh−1 γðxÞ; ð18Þ

and the potentialW has to be understood as a function of ψ
via the inversion of (18). We note that the transition to the
Jordan frame results in the nonminimal coupling of the
scalaron ϕ, which turns out to multiply the Ricci scalar in
the action. This is a peculiar feature of fðRÞ-like theories
and it will have several implications in the thermodynamic
treatment of Sec. IVA. We emphasize that when the
Immirzi field relaxes to a constant γ0, the model (17) boils
down to the standard Palatini fðRÞ gravity in the presence
of the additional cosmological term, due to the potential
terms (see discussion in Sec. III). Furthermore, we stress
the fact that choosing from the very beginning models
of the type fðRÞ þH, with the Holst term outside the
argument of the function fð·Þ, does not really alter the form
of (17). In this case, indeed, it suffices to redefine the scalar
field ψ as ψ ¼ ffiffiffi

3
p

sinh−1ðγ=ϕÞ to find again (17), the only

difference consisting in the function W, which now also
depends on the field ϕ. Now, before dealing in detail with
the equations of motion stemming from (17), we observe
that the theory is safely devoid of ghost instabilities, even if
the kinetic term of the scalaron appears with the wrong
sign. In the event of nonminimal coupling, indeed, such a
sign is not sufficient to determine the presence of ghost
modes and, as discussed in [71], it has to be evaluated in the
so called Einstein frame, defined by the metric rescaling
g̃μν ¼ ϕgμν. In this case (17) is recast as

IE¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃−

1

2
g̃μν∇μψ∇νψ −Uðϕ;ψÞ

�
; ð19Þ

with Uðϕ;ψÞ≡ ðVðϕÞ þWðψÞÞ=ϕ2, and we see that the
only dynamical scalar field is the reparametrized Immirzi
field, whose kinetic term has the correct sign. The scalaron
ϕ is not dynamical and its evolution is entirely determined
by the field ψ , as it is evident by varying (19) with respect
to it, i.e.,

2VðϕÞ − ϕ
dV
dϕ

¼ −2WðψÞ; ð20Þ

which is nothing but a generalization of the so-called
structural equation of the standard Palatini fðRÞ theory in
vacuum, where it reads as [19]

2VðϕÞ − ϕ
dV
dϕ

¼ 0: ð21Þ

Now, coming back to the action (17), we report the missing
field equations for the metric and the scalar ψ, which read,
respectively

Gμν ¼
1

ϕ
ð∇μ∇νϕ − gμν□ϕÞ − 3

2ϕ2
KμνðϕÞ þ

1

2
KμνðψÞ

−
1

2ϕ
ðVðϕÞ þWðψÞÞ; ð22Þ

□ψ ¼ −∇μψ∇μ lnϕþ 1

ϕ

dW
dψ

; ð23Þ

where□ ¼ ∇μ∇μ is the d’Alambert operator built from the
Levi-Civita connection and

Kμνð·Þ≡∇μð·Þ∇νð·Þ −
1

2
gμν∇ρð·Þ∇ρð·Þ: ð24Þ

We point out that (20) can be still obtained from (17), with a
bit of additional effort, and we do not discuss it. We just
stress that, in contrast with (21), in our case (20) establishes
an algebraic relation between ϕ and ψ , and the scalaron can
acquire in vacuum a nontrivial profile, as opposed to (21)
where it is compelled to relax to a constant.
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III. TOPOLOGICAL HAIRY BLACK HOLE

No-hair theorems prevent the existence of black hole
solutions with hair, namely scalar fields with a nontrivial
functional form. These can be either of the primary or
secondary kind, depending on the presence or absence,
respectively, of a related independent charge (see [30] for
details). However, there are several ways to evade no-hair
theorems by violating some of the hypothesis on which
they stand, allowing the possibility of hairy black holes in
scalar-tensor theories. Among these, one may relax the
asymptotic flatness assumption. In this paper, we follow
this possibility to work out an analytical solution describing
a hairy, asymptotically anti–de Sitter, topological black
hole. The hair are of the secondary kind and the solution
generalizes the results of [32] to the case of nonminimal
coupling and reduces to it for appropriate values of the
parameters characterizing the model. This is chosen to be a
generalization of the Starobinsky model [72] with the
inclusion of a cosmological constant term4:

fðχÞ ¼ 1

1þ 8αΛ
ðχ þ αχ2 − 2ΛÞ; ð25Þ

for a general argument χ. The metric of the solution is
given by

ds2 ¼ ΩðrÞ½−hðrÞdt2 þ h−1ðrÞdr2 þ r2dσ2�; ð26Þ

where

hðrÞ ¼ −
�
1þm

r

�
2

þ r2

l2
; ð27Þ

with Λ ¼ −3=l2 < 0, and dσ is the line element of
a 2-surface of constant negative curvature Σ. It has hyper-
bolic topology5 and genus g ≥ 2, with area σ ¼ 4πðg − 1Þ
[39–41]. The Immirzi field surrounds it with a secondary
scalar hair, expressed by

ψðrÞ ¼ ψ0 þ
ffiffiffiffiffi
12

p
arctanh

�
m

rþm

�
; ð28Þ

where ψ0 is a constant. The conformal factor reads

ΩðrÞ ¼ rðrþ 2mÞ þ 48αm2=l2

ðrþmÞ2 ; ð29Þ

where the parameter α characterizes the Jordan frame
potential corresponding to model (25), given by

VðϕÞ ¼ ðϕ − 1Þ2
4α

þ 2Λϕ2: ð30Þ

Note that Λ does not enter the theory as a true cosmological
constant, namely a constant term added to the Jordan frame
action. Indeed, we see that the actual constant term in (17)
comes from (30) and reads 1=ð4αÞ. However, it is Λ that
rules the asymptotic behavior of the metric and, primarily,
of the Ricci scalar of the metric (26), given by

R̄ ∼ −
12

l
þO

�
1

r2

�
; ð31Þ

which tells us that the spacetime is asymptotically anti–de
Sitter space with radius l. With the choice (25) the Immirzi
field potential is given by

WðψÞ ¼ 4Λ
csch2ðψ−ψ0ffiffiffiffi

12
p Þ − 16αΛ

: ð32Þ

It is characterized by the negative mass term d2W
dψ2 jψ0

¼
−2=l2, which satisfies the Breitenlohner-Freedman bound
for the stability in anti–de Sitter space [73,74]. The scalar
field ϕ is determined by the structural equation (20), which
yields

ϕ ¼ 1þ 4αWðψÞ: ð33Þ

For α ¼ 0 and ψ0 ¼ 0 the above solution reduces to the
solution found in [32]. Even if the potential VðϕÞ is
singular in α ¼ 0, the limit can be safely taken a priori
in (25), which reduces to fðχÞ ¼ χ − 2Λ, yielding V ¼ 2Λ.
Now, let us study the horizon structure of the black hole

and the behavior of the scalar fields. In addition to the
origin r ¼ 0, there are two other curvature singularities
rΩ� ¼ −m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ð1 − 48α=l2Þ

p
, corresponding to the roots

of the conformal factor ΩðrÞ, in which the scalars of
curvature diverge. The coordinate singularities, instead, are
located where the metric function hðrÞ vanishes. One of its
roots is always negative, while the others are

re ¼
l
2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m

l

r �
; ð34Þ

rþ ¼ l
2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m

l

r �
; ð35Þ

r− ¼ l
2

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m
l

r �
: ð36Þ

For m > 0, the only positive real root is re. For negative
mass parameter we distinguish two cases. For − l=4 <
m < 0 there are three positive real roots, namely
0 < r− < rþ < re, and for m < −l=4, the only positive

4The prefactor is chosen for later convenience.
5A solution with trivial spherical topology exists as well, but it

has no physical interpretation since the lapse function has no
roots, making the origin a naked singularity.
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real root is r−. The value of the parameters m and α
determine if the solution has a black hole interpretation or if
it consists of a naked singularity. In particular, it can be
shown that:

(i) For α ≥ l2=48 one has that rΩ� become complex and
the only curvature singularity is at the origin and it is
always hidden behind event horizons at re or r−. In
this case the spacetime is a black hole for every value
of m.

(ii) For 0 ≤ α < l2=48, the curvature singularities are
hidden only for m > −l=4.

(iii) For α < 0 the mass parameter must satisfy
m− < m < mþ, where

m− ¼ −
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 48α

p

2lð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 48α

p
þ lÞ − 48α

≥ −
l
4
; ð37Þ

mþ ¼ l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 48α

p

ðl −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 48α

p
Þ2
: ð38Þ

As we will see in the next section, m is related to the mass-
energy of the black hole. The existence of the upper bound
mþ implies that an increasing of the black hole mass would
result in developing a naked singularity. To exclude this
possibility we restrict in the following the parameter α to
positive values, ruling out models described by α < 0. In
the limiting case m ¼ mc ≡ −l=4, the metric function hðrÞ
has two positive roots, the greater one being r ¼ rc ≡ l=2.
This critical configuration will be important in the compu-
tation of the Euclidean action to which the next section is
dedicated. In the following, thermodynamic reasons will
constrain the mass parameter to obey m > mc, therefore, in
all cases, the outer event horizon is located at re. We now
come to the scalar fields. The scalar field ϕ has two poles
coincident with the roots of ΩðrÞ. If m is taken to be in the
above mentioned range, they are located at negative or
complex radius or hidden by the event horizon, depending
on the value of α. The field is regular on and outside the
event horizon, with a radial profile monotonically increas-
ing (decreasing) from ϕðreÞ to 1, which is reached
asymptotically as r → ∞, for α > 0 (α < 0). Taking into
account reparametrization (18), the Immirzi field profile is
given by

γðrÞ ¼ eψ0=
ffiffi
3

p
ðrþ 2mÞ2 − e−ψ0=

ffiffi
3

p
r2

2rðrþ 2mÞ : ð39Þ

It depends only on the mass parameter and on its asymp-
totic value γ0 ≡ sinhðψ0ffiffi

3
p Þ, which is reached as r → ∞.

Thus, in the asymptotic region the Immirzi field relaxes to a
constant value and ϕ → 1, together with W → 0 and
V → 2Λ, implying that, asymptotically, the theory reduces
to GR with a constant Immirzi parameter, namely to the
usual formulation of LQG with a cosmological constant Λ.

In this limit the bare cosmological constant present in (17)
cancels with the −1=ð4αÞ term coming from WðψÞ.

IV. BLACK HOLE THERMODYNAMICS

A. Computation of the Euclidean action

We study the thermodynamic properties of the black hole
solution of Sec. III via the Euclidean path integral methods.
The usual procedure [48,50] consists in starting from the
gravitational partition function and defining the thermo-
dynamic partition function ZðβÞ, via a Wick rotation to
imaginary time t → iτ and imposing periodic boundary
conditions on the Euclidean time. The period β can be
identified with the inverse temperature, and a saddle point
approximation around a classical solution allows to write
ZðβÞ ≈ e−IðβÞ, where IðβÞ is the on-shell action in
Euclidean signature. Then, usual thermodynamic relations
hold, as for instance

I ¼ S − βM; ð40Þ

which relates the Euclidean on-shell action with the mass-
energy M and entropy S of the black hole.
After the Wick rotation to imaginary time, the Euclidean

metric reads

ds2E ¼ ΩðrÞ½hðrÞdτ2 þ h−1ðrÞdr2 þ r2dσ2�: ð41Þ

As usual, the regularity of the metric at the horizon must be
required by fixing the Euclidean time periodicity. For
r ≈ re, the near horizon metric is

ds2E ¼ dr̃2 þ h0ðreÞ2
4

r̃2dτ2 þ ΩðreÞr2edσ2; ð42Þ

where a prime denotes derivatives with respect to r and we
have defined a new radial coordinate as

r̃ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðreÞðr − reÞ

h0ðreÞ

s
: ð43Þ

The r̃ − τ section of the metric is just flat space in polar
coordinates provided that the conical singularity at the
origin is removed by identifying the Euclidean time with an
angular coordinate of period β given by

β ¼ 4π

h0ðreÞ
¼ 2πl2

2re − l
: ð44Þ

The black hole temperature is identified with the inverse of
the period, namely

T ¼ 1

2πl

�
2re
l

− 1

�
: ð45Þ
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We see that, to ensure the positivity of the temperature, the
horizon radius must satisfy re > rc ≡ l=2, or, in terms of
the mass parameter, m > mc ≡ −l=4. The solution identi-
fied by mc and rc corresponds to the limiting case
mentioned in the previous section. An analogue configu-
ration was described in [39,40], where such a critical
configuration corresponds to the minimum value of the
mass parameter, which still allows a black hole interpre-
tation of the solution. For smaller masses, a naked
singularity develops. In the present case, the same holds
only if no restrictions on the model are imposed. Indeed,
the curvature singularities can always be concealed restrict-
ing α to be greater than l2=48, allowing for a black hole
interpretation for every value of m.
When studying black hole thermodynamics via the

computation of the Euclidean action one has to pay
particular attention to two problems: the first is that the
action does not generally yield a well-posed variational
principle and the second is that its on-shell value is usually
infinite. The first issue can be solved with the inclusion of a
GHY-like surface term [52], proportional to the extrinsic
curvature of the boundary and given by

IGHY ¼ 1

8π

Z
∂M

d3x
ffiffiffiffiffiffiffiffiffi
jð3Þgj

q
ϕK; ð46Þ

where ð3Þg is the determinant of the induced metric on the
boundary ∂M and K the trace of its extrinsic curvature.
The nonminimal coupling between ϕ and the Ricci scalar

in (17) is responsible for the discrepancy between (46) and
the usual GHY term, in which ϕ is absent. In this way, the
variation of (46) exactly cancels nonvanishing boundary
contributions arising from varying the first term of (17).
Note that the first order action (9) yields a well-posed

variational principle without the need of additional boun-
dary terms. However, the correct equivalent second order
action, namely the one yielding an equivalent set of field
equations via a well-posed variational principle, is not
simply (17), whose variation would give rise to unwanted
nonvanishing boundary terms arising from the ϕR̄ term in
the action, but should be instead completed with the
inclusion of (46).
We address the second issue via the counterterms method

[53,54] which consists in adding counterterms to the action
which are surface integrals depending on the induced
metric on the boundary and, possibly, on the scalar fields
of the theory. The method can also be applied without
specifying the explicit expression of the counterterms [32].
In this section we follow the latter approach, generalizing
the treatment of [32] to the case of nonminimal coupling.
The explicit covariant expression of the counterterms will
be nevertheless shown at end of this section.
Let us first rewrite the Euclidean metric as

ds2E ¼ N2ðrÞf2ðrÞdτ2 þ f−2ðrÞdr2 þ ρ2ðrÞdσ2; ð47Þ

where the new metric functions are related to the previous
ones by

N ¼ Ω; f2 ¼ h
Ω
; ρ2 ¼ Ωr2: ð48Þ

The Euclidean version of action (17) can be written in
Hamiltonian formalism as

I ¼ −
βσ

8π

Z
∞

re

drNH þ B; ð49Þ

having integrated over τ and the base manifold Σ. Here, B
represents an appropriate boundary term, whose role is
twofold: on one hand it makes the variational principle
well-posed and, on the other hand, it cures the divergence
of the on-shell action. The Hamiltonian reads

H ¼ ρ2
�
ϕ

�
f20ρ0

ρ
þ 2f2ρ00

ρ
þ ð1þ f2ρ02Þ

ρ2

�

−
3

4ϕ
f2ϕ02 þ ϕ

4
f2ψ 02 þ VðϕÞ þWðψÞ

2

þþ ρ20f2ϕ0

ρ2
þ f20ϕ0

2
þ f2ϕ00

�
: ð50Þ

The third line shows additional contributions arising from
the nonminimal coupling which are absent in [32].
In the expressions above the terms involving the

momenta and the shift vector are absent since the solution
is static and spherically symmetric. Moreover, one should
also include in the action an additional term proportional to
the structural equation which is known to manifest itself as
a secondary constraint in Hamiltonian formalism [19].
However, this term would not contain derivatives of the
fields with respect to r and thus it is irrelevant in the
following calculations.
Now, the Hamiltonian vanishes on shell, thus the only

contribution to the Euclidean action comes from the
boundary term. The latter can be computed varying the
action with respect to the metric functions and the scalar
fields as

δI ¼ −
βσ

8π

Z
∞

re

drNδH þ δB: ð51Þ

Then, one can choose δB to be such that it cancels the
boundary terms arising from the variation of the
Hamiltonian, that is

δB ¼ δBg þ δBϕ þ δBψ ; ð52Þ

where
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δBg ¼
βσ

8π

��
Nρϕρ0 þ 1

2
Nρ2ϕ0

�
δf2

−ð2N0ρϕf2 þ Nρϕf20Þδρþ 2Nρϕf2δρ0
�
∞

re

; ð53Þ

δBϕ ¼ βσ

8π

�
−
�

3

2ϕ
Nρ2f2ϕ0 þ N0ρ2f2 þ 1

2
Nρ2f20

�
δϕ

þ Nρ2f2δϕ0
�
∞

re

; ð54Þ

δBψ ¼ βσ

8π

�
1

2
ϕNρ2f2ψ 0δψ

�
∞

re

: ð55Þ

The variation of the fields at infinity are

δf2j∞ ¼
�
2mðl2 − 48αÞ

l4
þ 6m2ð48α − l2Þ − 2l4

l4r

þO

�
1

r2

��
δm; ð56Þ

δρj∞ ¼
�
mð48α − l2Þ

l2r
þ 3m2ðl2 − 48αÞ

l2r2

þO

�
1

r3

��
δm; ð57Þ

δϕj∞ ¼
�
−
96αm
l2r2

þ 288αm2

l2r3
þO

�
1

r4

��
δm; ð58Þ

δψ j∞ ¼
�
2

ffiffiffi
3

p

r
−
4

ffiffiffi
3

p
m

r2
þO

�
1

r3

��
δm: ð59Þ

Substituting in (52) yields

δBj∞ ¼ −
2βσ

8π
δmþO

�
1

r2

�
: ð60Þ

Therefore, the boundary term at infinity can be read off
to be

Bj∞ ¼ −
2βσ

8π
m: ð61Þ

To compute the boundary term at the horizon, let us
first notice that f2ðreÞ ¼ hðreÞ=ΩðreÞ ¼ 0, which implies
δBψ jre ¼ 0 and simpler expressions for (53) and (54) when
computed at re. Then, one can use the following relations

δρjre ¼ δρðreÞ − ρ0jreδre; ð62Þ

δf2jre ¼ −f20jreδre; ð63Þ

δϕjre ¼ δϕðreÞ − ϕ0jreδre; ð64Þ

to compute the variation of the boundary term at the
horizon as

δBjre ¼ −
βσ

16π
½Nϕf20δρ2ðreÞ þ Nf20ρ2δϕðreÞ�

¼ −
βσ

16π
Nf20jreδðϕðreÞρ2ðreÞÞ: ð65Þ

Recalling the definition of the Euclidean time period,

Nf20jre ¼ h0jre ¼
4π

β
; ð66Þ

the result can be written as

δBjre ¼ −
σ

4
δðϕðreÞρ2ðreÞÞ; ð67Þ

which leads to the boundary term at the horizon

Bjre ¼ −
σ

4
ϕðreÞρ2ðreÞ: ð68Þ

The addition of the two contributions gives

I ¼ −
βσ

4π
mþ ϕðreÞ

σρ2ðreÞ
4

: ð69Þ

By comparing this with (40) one finds that the mass-energy
and entropy of the black hole are given, respectively, by

M ¼ σm
4π

; ð70Þ

S ¼ ϕðreÞ
A
4
; ð71Þ

where

A ¼ σρ2ðreÞ ¼ σΩðreÞr2e ð72Þ

is the horizon area.
Now, recalling that the only dynamical scalar field is ψ ,

and that this is algebraically related to ϕ by (33), one
concludes that the Immirzi field modifies the expression of
the entropy, from the standard expression A=4 to

S ¼ ½1þ 4αWðψeÞ�
A
4
; ð73Þ

where ψe is the Immirzi field computed at the black hole
event horizon. Note that for m ¼ 0 the black hole has zero
mass but nonvanishing entropy Sðm ¼ 0Þ ¼ σl2=4. This is
consistent with results regarding AdS topological black
holes with no hair [39,40].
Such a modification of entropy with respect to the

standard area law is expected since the presence of
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nonminimal coupling and it is consistent with other
derivations in similar contexts [75,76].
In the calculation performed in this section the explicit

definition of the boundary term B is never specified.
However, its covariant expression can also be derived
[53,54]. In our case we obtain that the above results are
reproduced starting from the following finite, well-posed,
action

I þ IGHY þ I1ct þ I2ct þ Iψct; ð74Þ

where we added the following counterterms to (17):

I1ct ¼ −
1

8π

Z
∂M

d3x
ffiffiffiffiffiffiffiffiffi
jð3Þgj

q
2

l
ϕ

ffiffiffiffi
ϕ

p
; ð75Þ

I2ct ¼ −
1

8π

Z
∂M

d3x
ffiffiffiffiffiffiffiffiffi
jð3Þgj

q
l
2

ffiffiffiffi
ϕ

p
3R; ð76Þ

Iψct ¼
1

16π

Z
∂M

d3x
ffiffiffiffiffiffiffiffiffi
jð3Þgj

q
ϕ

ffiffiffiffi
ϕ

p
6l

�
2lðψ − ψ0Þffiffiffiffi

ϕ
p nμ∂μψ

− ðψ − ψ0Þ2
�
; ð77Þ

as well as the surface term (46). In the expressions above 3R
is the three dimensional Ricci curvature of the boundary
metric and nμ the unit normal to the boundary. In the limit
ϕ → 1, these counterterms reduce to the ones reported in
[54] for a minimally coupled scalar field.
Contrary to what happens in the absence of additional

scalar fields or for localized distributions of matter [53]
with radial fall off ∼r−3=2þε at infinity, the counterterms
(75), (76) and (77) explicitly depend on the scalar fields.
The reason is the slower fall off of ψ ∼ ψ0 þ 2

ffiffiffi
3

p
mr−1 þ

Oðr−2Þwith respect to localized distributions of matter. The
resulting backreaction on the metric requires the counter-
terms to depend also on the scalar fields in order to properly
cancel divergences. A different asymptotic behavior of the
scalar fields would lead to different counterterms, as
pointed out in [54] (see also [77–79], where the same
issue is analysed in three and higher dimensions).
The boundary term B contains contributions coming

both from the surface term (46) and from the above
counter-terms. Moreover, being inserted in the
Hamiltonian version of the action, it actually contains also
boundary terms arising from the Gauss-Codazzi relation,
used in the spacetime splitting procedure. For this reason
one cannot directly compare (61) with the asymptotic
expansion of the above counterterms, which are inserted
at the Lagrangian level.
Finally, we note that expression (73) is consistent with

the one obtained applying Wald’s formula [51] for the
entropy to the original first order action (9), notwithstand-
ing the presence of torsion in the theory (see [55] for a
discussion on Wald’s entropy in models with torsion).

B. Reverse isoperimetric inequality violation

Black hole thermodynamics has been studied in the
context of the extended phase space approach [56], where
the cosmological constant is interpreted as a thermody-
namic pressure given by

P ¼ −
Λ
8π

; ð78Þ

which is positive for asymptotically AdS spacetimes.
The corresponding conjugate quantity, the thermody-

namic volume V, is computed via the first law of thermo-
dynamics, which reads

dM ¼ TdSþ VdP; ð79Þ

where M is interpreted as enthalpy rather than internal
energy. In the present case, substituting the expressions for
the other thermodynamic variables into the above relation
yields

V ¼ σl2

3
ðlþ 3mÞ ¼ σ

3
ð3lr2e − 3l2re þ l3Þ: ð80Þ

This thermodynamic volume does not coincide with the
geometric volume defined as V ¼ σðre

ffiffiffiffiffiffiffiffiffiffiffiffi
ΩðreÞ

p Þ3=3, as it
happens for solutions more complex than the
Schwarzschild-AdS case [61,80,81]. However, it has some
common properties: it is a positive definite increasing
monotonic function of re (for r > l=2) and it is propor-
tional to the genus g of the horizon. It attains its minimum
value Vmin ¼ σl3=12 at re ¼ rc. One can also verify that
the Smarr formula holds, i.e.,

M ¼ 2ðTS − PVÞ: ð81Þ

The physical meaning and properties of the thermodynamic
volume have been studied extensively in literature and in
[57] it was conjectured that for every asymptotically AdS
black hole, the reverse isoperimetric inequality (RII) holds,
namely that I ≥ 1, where

I ¼
�ðd − 1ÞV

ωðkÞ
d−2

� 1
d−1
�
ωðkÞ
d−2
A

� 1
d−2

; ð82Þ

for arbitrary dimension d and generalized unit volume ωðkÞ
d−2

of the d − 2 dimensional base manifold of constant
curvature k. The conjecture was originally motivated by
the observation that all known solutions seemed to satisfy
the inequality. However, an increasing number of counter-
examples have been found for which the conjecture is
violated. The lower bound I ¼ 1 is saturated by the
Schwarzschild–anti-de Sitter (SAdS) black hole implying
that, according to the conjecture, this would be the solution
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maximising the entropy for a given thermodynamic vol-
ume. For this reason solutions violating the conjecture have
been called superentropic black holes. For a given V they
allow for a greater area and therefore6 a greater entropy than
the SAdS case. Examples include black holes with non-
compact horizons, Lifshitz black holes, three-dimensional
black holes [58–61]. Violations for hairy black holes with
planar (k ¼ 0) horizons in four dimensions were also
observed in [62].
The black hole solution of Sec. III represents thus a new

kind of superentropic black hole. Indeed, in the present
case, i.e., for d ¼ 4, k ¼ −1 and ωð−1Þ

2 ¼ σ, one has

I ¼ ð3lr2e − 3l2re þ l3Þ13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2re − lÞ þ 48α

l2 ðre − lÞ2
q : ð83Þ

We observe a violation of the RII in almost all parameter
space. In particular, for α ≥ l2=ð24 ffiffiffi

23
p Þ the violation occurs

for every re > rc, namely for every T > 0 and V > Vmin.
Therefore, in this case, the black hole is always super-
entropic. For α ¼ 0, namely for the MTZ black hole [32],
the conjecture is satisfied and I ≥ 1, the inequality being
saturated for re ¼ l, which corresponds to pure AdS. For
the sake of clarity we postpone the analysis of the case
0 < α < l2=ð24 ffiffiffi

23
p Þ to the end of this section, but we

anticipate that all the conclusions reached in the following
remain valid. Now, whenever entropy and area are simply
proportional, as it occurs for S ¼ A=4, it is trivially true that
the inequality I < 1 implies that the entropy can be larger
than the bound saturated by SAdS. In our case instead, the
relation between S and A is given by (73). Does a violation
of the RII still imply that the black hole is superentropic?
When I < 1, and at fixed volume, the black hole can have a
larger area than the one of a SAdS black hole. Moreover,
solving (72) for reðAÞ (choosing the positive branch, for
which re > 0 for A > 0) and then substituting it in the
definition of the entropy, yields

SðAÞ ¼ σl2

96α

�
24α − l2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðl2 − 48αÞ þ 48α

σ
A

r �
; ð84Þ

which is a monotonically increasing function of A.
Therefore, a violation of the RII still implies that the black
hole is superentropic.
In [63] this superentropic behavior was shown to be

related to a thermodynamic instability expressed by a
negative specific heat at constant volume cV . Then, in
[64] exotic BTZ black holes were analyzed showing that
the RII can be violated even when cV > 0. However, the

authors proved also that, whenever cV > 0, the specific heat
at constant pressure cP becomes negative, still signalling a
thermodynamic instability.
The black hole presented in Sec. III is halfway between

the two since cP is always positive, as in [63], but there are
black hole configurations violating the RII for which
cV > 0. In spite of that, we concluded that superentropic
black holes are always thermodynamically unstable. To see
this, we first note that, comparing (45) and (73), the
following relation between entropy and temperature can
be derived:

S ¼ σπ

2

�
3

8πP

�3
2

T: ð85Þ

Then, cP can be computed as

cP ¼ T
∂S
∂T

				
P
¼ σπ

2

�
3

8πP

�3
2

T > 0; ð86Þ

which is manifestly positive. The computation of cV is
more involved and can be carried out using the following
relations:

cP − cV ¼ TVα2PkT; ð87Þ
cV
cP

¼ kTβS; ð88Þ

where the isobaric thermal expansion coefficient, the
isothermal bulk modulus and the adiabatic compressibility
are given by, respectively

αP ¼ 1

V
∂V
∂T

				
P
; ð89Þ

kT ¼ −V
∂P
∂V

				
T
; ð90Þ

βS ¼ −
1

V
∂V
∂P

				
S
: ð91Þ

Eliminating kT from (87) and (88) and using (86) yields

cV ¼ S2βS
SβS þ TVα2P

: ð92Þ

Now, the volume (80) can be express in terms of P and M
and then, by virtue of the Smarr formula (81), one can write

V ¼ σ

12

�
3

8πP

�3
2

�
1þ 9πT2

2P

�
; ð93Þ

which easily yields βS and αP. Substituting them in (92)
and using (85) results in

6This implication is trivially true when the entropy is given by
S ¼ A=4. However, for more complex cases, as the one consid-
ered here, it should be verified explicitly as we do in the
following.
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cV ¼
3

ffiffiffiffi
3π
2

q
Tð2P − 3πT2Þ

8P3=2ð2Pþ 15πT2Þ ; ð94Þ

which is independent on the parameter α. To properly study
the T dependence of this function at fixed volume, pressure
must be expressed in terms of T and V inverting (93). This
can be done numerically for different values of T and V
yielding the results presented in Fig. 1. We choose positive
values of T and, for every value of V, we checked that
V > Vmin. We see that to any given value of the volume it
corresponds a temperature T� below which the specific heat
becomes positive. Since for α ≥ l2=ð24 ffiffiffi

23
p Þ the black hole

is always superentropic, it is possible to simultaneously
have I < 1 and cV > 0. The situation is similar to the one
observed in [64], where the behavior of cV is opposite,
being positive at large temperatures. However, the crucial
difference is that here cP is always positive. This could
suggest that superentropic black holes can be in thermo-
dynamic equilibrium since there are configurations in
which both specific heats are positive. However, for every
value of V there is always a temperature above which cV
becomes negative. This region could be excluded if there
existed two separate branches of black hole solutions, as it
happens for the SAdS case. However, such separation does
not occur here as there is only one connected branch. As
argued in [64], it is sufficient to have cV < 0 for at least
some part of the branch to make the whole branch
thermodynamically unstable. Therefore, we conclude that
the black hole solution we found satisfies the broader
conjecture, proposed in [64], that black holes violating the
reverse isoperimetric inequality are thermodynamically
unstable. We conclude this section with the case 0 < α <
l2=ð24 ffiffiffi

23
p Þ. In this sector, the inequality is violated if

re > r̄, where r̄ is the root of a fourth order polynomial.7 It
satisfies r̄ > rc and corresponds to a temperature T̄ via
(45). In this case there will be superentropicity only for
T > T̄. The value T̄ can be either above or below the
turning point T� where cV changes sign, depending on the
specific value of α. We found that for every α there is
always a thermodynamic configuration, namely values of V
and T, such that T̄ < T�. Therefore, in all cases there are
superentropic black holes with positive cV . Since the
behavior of cV is independent on α the above discussion
is valid also in this case.

V. CONCLUSIONS

In this paper we investigated the role of the Immirzi
parameter, by promoting it to a dynamical scalar field in the
framework of fðRÞ gravity. In particular, we searched
vacuum solutions with spherical symmetry, studying their
properties both at a classical and semiclassical level. The
inclusion of the Holst term in the action requires dealing
with the Palatini formulation of fðRÞ theories, consistently
with the role played by connections in standard formulation
of LQG. In addition to the Immirzi field γ, the resulting
model features a scalar field ϕ, that is the scalaron of fðRÞ
theories in the Jordan frame. Both are responsible for a
nonvanishing torsion tensor, whose components are
uniquely determined by the gradient of the scalar fields.
Exploiting this dependence, we derive a metric theory,
dynamically equivalent, where the torsion degrees of
freedom are reabsorbed in the nonstandard kinetic terms
of the scalar fields. The structural equation governing the
dynamics of ϕ turns out to be modified with respect to the
standard case, and it acquires an additional term, which
depends on the Immirzi field potential. This can sustain a
nontrivial profile for ϕ, as opposed to ordinary Palatini
fðRÞ models, where it must boil down to a constant when
the vacuum case is considered. We then specialized to the
vacuum spherically symmetric sector of the theory and,
after selecting a Starobinsky-like fðRÞ model and a
potential for the Immirzi field, we found an analytical
solution generalizing the one reported in [32]. It describes a
locally asymptotic AdS black hole, whose event horizon
has the peculiar topology of a genus g ≥ 2 compact surface
of constant negative curvature, with a horizon structure
similar to [33]. Beside the origin, there are curvature
singularities at the roots of the conformal factor multiplying
the metric tensor. Restricting the model parameter α to
positive values, these are always hidden behind the black
hole event horizon. The black hole is endowed with
secondary hair provided by the Immirzi field, which in
turn implies a nontrivial radial profile also for the scalaron

FIG. 1. Specific heat at constant volume cV as a function of T
for different values of V.

7Explicitly, r̄ is the only positive real root of

PðrÞ ¼ 110592α3r4 þ ð13824α2l3 − 442368α3lÞr3
þ ð−9l8 þ 576αl6 − 34560α2l4 þ 663552α3l2Þr2
þ ð8l9 − 576αl7 þ 27648α2l5 − 442368α3l3Þr − 2l10

þ 144αl8 − 6912α2l6 þ 110592α3l4:
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via the modified structural equation. The scalar fields are
regular everywhere on and outside the horizon, and they
relax asymptotically, reducing to constant values γ → γ0 ≡
sinhðψ0=

ffiffiffi
3

p Þ and ϕ → 1. Therefore, in the asymptotic
region the standard picture of LQG with a constant
Immirzi parameter and a cosmological constant is recov-
ered. On the other hand, their effect becomes evident near
the event horizon, especially regarding the thermodynamic
properties of the black hole, which we investigated follow-
ing the Euclidean path integral method and regularizing the
action with the counterterms method. The counterterms
suited for GR with a minimally coupled scalar field in
asymptotically AdS spacetimes were derived in [54]. Here,
we use instead a generalized version, suitable for the
nonminimally coupled case at hand. We also computed
the black hole entropy applying Wald’s method [51],
obtaining equivalent results. This is not a trivial outcome
since in [55] it was shown that Wald’s entropy formula is
not affected by the presence of torsion which, however, the
authors assumed to be nondynamical, while here we deal
with propagating torsional degrees of freedom. Instead, if
we had started adopting the standard view of a constant
Immirzi parameter γðxÞ≡ γ0, this would have implied a
constant scalaron too, ϕðxÞ≡ ϕ0, via (20). The resulting
absence of torsion would have not affected the entropy
computed via Wald’s formula which would have given an
expression satisfying the usual area law (ϕ0 ¼ 1), regard-
less of the specific expression of the metric functions. The
results emerging from this analysis allow discerning
between an Immirzi parameter and an Immirzi field. We
demonstrated, indeed, that the Immirzi field affect the
entropy of the black hole via Eq. (73), producing a
modification with respect to the standard area law. On
the other hand, a signature for the Immirzi field is expected
to arise already in a classical scenario, namely in tidal
forces experienced by infalling bodies. These are due to the
geodesic deviation equation which is known to acquire
corrections from nonvanishing torsion components [82–
84], ultimately sourced by the Immirzi field via (15). This
draws attention to the definite mechanisms able to induce a
dynamics for the Immirzi parameter, circumventing the
unpleasant choice of promoting it to an additional degree of
freedom by hand. In this sense, future investigations have to
be devoted to the research of a unified kinematic setting,
which could offer an elegant way for generating an Immirzi
field, equipped with a potential term as well. We empha-
size, moreover, that according a Palatini perspective, the
inclusion of the Holst term in the Einstein action is not
completely satisfactory, since in the presence of an Immirzi
parameter GR is recovered only on half-shell, i.e., once
Levi-Civita solution for the connection is obtained. It seems
more reasonable, therefore, to enlarge our analysis to the
Nieh-Yan term, which for an Immirzi parameter is

genuinely topological even off-shell [85,86]. The presence
of a negative cosmological constant allows to extend the
thermodynamic phase space in line with [56], including a
pressure term in the first law of thermodynamics, together
with its conjugate quantity, the thermodynamic volume.
The study of asymptotically AdS black holes in this
extended thermodynamic phase space led to the proposition
of a series of subsequent conjectures, each substituting the
previous one whenever a new solution appeared to violate
it. The solution under study violates each of these con-
jectures except the last, which seems to be supported by the
black hole analysed in this paper, although in a slightly
different way with respect to the other two previously
known examples (see discussion in Sec. IV B). To see this,
we first studied the thermodynamic volume and its relation
with the horizon area encoded in the reverse isoperimetric
inequality. We observed a violation of the inequality in
almost all parameter space, implying the possibility of
superentropic black hole thermodynamic configurations.
This constitutes another example in contrast with the
conjecture, initially proposed in [57], that the thermody-
namic volume satisfies the reverse isoperimetric inequality.
We note that violations of the RII never appeared in
literature in solutions sharing the same properties of the
one under consideration in this paper, namely the hyper-
bolic topology of the horizon and the presence of scalar hair
surrounding it (superentropic hairy black holes where
found in [62] for planar horizons). In this regard we
observe that the superentropic behavior of asymptotically
AdS black holes seems to be a general feature independent
on the specific peculiarities of each solution. Moreover,
being our solution characterized by a compact horizon, it is
also in contrast with the broader conjecture proposed in [80]
that superentropic black holes must have noncompact
horizons. Finally, we investigated the thermodynamic sta-
bility of such superentropic configurations, computing the
specific heats at constant pressure cP and volume cV . As it
emerges from Fig. 1, a distinctive feature of the cV profile is
the presence of Schottky-like peaks, which have already
been suggested in [49] to be the evidence of finite energy
windows at disposal for the excitation of underlying micro-
scopic degrees of freedom.Regarding their sign, cP turns out
to be always positive but cV becomes negative at high
enough temperatures, signaling a thermodynamic instabil-
ity. We conclude that the black hole solution studied in this
paper supports the conjecture proposed in [63,64] that
superentropic black holes are thermodynamically unstable.
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