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We discuss the weight of vacuum energy in various contexts. First, we compute the vacuum energy for
flat spacetimes of the form T3 x R, where T3 stands for a general 3-torus. We discover a quite simple

2
relationship between energy at radius R and energy at radius %. Then we consider quantum gravity effects

in the vacuum energy of a scalar field in M5 x S' where Mj is a general curved spacetime, and the circle S’
refers to a spacelike coordinate. We compute it for general relativity and generic transverse diffeo-
morphisms theories. In the particular case of unimodular gravity vacuum energy does not gravitate.
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I. INTRODUCTION

The existence of vacuum energy is a prediction of
quantum field theory (QFT), although explicit computations
usually yield a divergent value for this observable. This is
not a problem whenever the gravitational interaction can be
neglected, because then the zero-point energy is physically
irrelevant and some normal ordering can be imposed which
renormalizes the vacuum energy to zero. This situation
changes, however, once the effects of the gravitational field
are taken into account. Then the vacuum energy weighs, and
its renormalization is physically relevant.

There are different senses in which we can speak about
vacuum energy (cf. the seminal paper on the Casimir effect
[1] and related comments in [2]).1 These ambiguities are
not unrelated with recent concerns on how the said Casimir
energy falls in an external gravitational field; that is,
whether or not it violates the equivalence principle (see
[6,7] and references therein). The main issue follows from
the use of the energy-momentum tensor to infer the vacuum
energy via the following variational formula:

1
oW = =5 [ Vilararag,, )

Ambiguities arise because the computed energy-momentum
tensor is not conserved. This means that the above expression
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is not gauge invariant. In fact, in almost all treatments known
to us, the gravitational field is considered as a background
field and the Casimir effect is encapsulated in some energy-
momentum tensor (vacuum energy density). The treatment in
[8—12] is an exception as it is an example of how to compute
the gauge invariant Vilkovisky-DeWitt effective action of
quantum gravity.

It is worth pointing out the work of Jaffe and co-workers
[13,14] that claim (rightly so in our opinion) that the
experiments made up to now do not test the reality of the
vacuum energy, but rather of the Casimir force which can
be computed (as they do) using standard scattering tech-
niques. Nevertheless, these experiments by themselves do
not tell us anything about the weight (if any) of the vacuum
energy. Incidentally, one of the first persons to worry
about this subject, namely Pauli [15], denied the physical
relevance of the vacuum energy and claimed that it
should be subtracted from the total energy-momentum of
the system.

Our definition of vacuum energy stems from the back-
ground field approach in QFT. When the gravitational field
is treated as a gauge field then the effective action, when all
background matter fields are taken to be zero, contains a
leading term of the form

Wo = / VIgld'xEs. 2)

where & is the constant vacuum energy density, that is, the
cosmological constant, the field-independent piece of the
effective potential. With this definition, the engineering
dimension of & is n. Other definitions are often used in the
literature, and it is usually easy to relate them to our Wy, In
particular, we shall sometimes use the notation E, for one
such quantity with mass dimension one.
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It is also interesting to consider some modifications of
general relativity, namely transverse theories in which the
volume element is changed to

dr(vol) = f(g)d"x, (3)

where f(g) is an arbitrary function of the determinant of the
metric tensor. We shall eventually comment on the par-
ticular case of unimodular gravity, in which f(g) = 1, so
that the same term reads

W = / d"xE,. (4)

As a consequence, the vacuum energy density does not
weigh through a direct coupling with the gravitational field.
A similar coupling is indeed necessary owing to self-
consistency (i.e., Bianchi identity), but the point is that its
effect is not proportional to the constant &.

Let us now summarize the contents of this paper. After
reviewing the standard treatment of vacuum energy in flat
space in our language, we generalize it to more general (still
background; that is, neglecting backreaction) flat manifolds
of the type T3 x R, where the three-dimensional manifold
is a general torus. In this simple situation, we can unveil
some relationship between the vacuum energy at radius R
and at radius /2 /R, in a sense to be clarified later. Then we
proceed to study the quantum gravity effects. We assume
that the background spacetime remains of the form M5 x S!
(where Mj; is not necessarily flat) even after quantum
corrections. Our treatment is gauge invariant from the very
beginning, because when all interactions (including grav-
ity) are quantized and integrated upon in the path integral,
there is no other room for ambiguity than the renormaliza-
tion conditions to be imposed on finite parts once appro-
priate counterterms are included at each order in the loop
expansion.

In that sense, as we have already pointed out, for us the
vacuum energy is related to the constant term in the
effective Lagrangian, which in Einstein’s general relativity
couples directly to gravity only through the term \/H . This
means that its effect on the energy-momentum tensor is
proportional to the background spacetime metric

T;%w ~ f(x)g/w’ (5)
|

1 _ L1
si==z [ @nil® [y S e
=3 [ el [0+ (5

assuming there are no boundaries in the spacetime. This
procedure circumvents the nasty task of defining energy in
an arbitrary background spacetime, g,,, although it is true
that the name is only appropriate in some simple cases in
which the total energy can be properly defined.

A. Review of known results

Let us start with a brief review of known results in flat
space. The standard treatment in our language, as found in
[16] (and references therein) reads as follows. Consider the
heat kernel for a free scalar of mass m in R"~! x S'. Let us
denote coordinates as x* € R"~! where (4 =0,...,n —2)
and y=0R, € S'. We have denoted the radius of the
compact dimension by R, in order to avoid confusion with
the scalar curvature which we denote by R. With this, the
boundary conditions we need to impose are

d(x,y) = p(x,y +27Ry) = Pp(x,y + L). (6)

To implement this periodicity, we can expand the fields in
modes as

1 ; 1 :
¢ = ;\/—zfﬁk(x)e’z”kyﬂ = Ry gd’k(x)e’kym”- (7)

It should be remarked that whereas the dimension [¢] = 52
(thatis 1 in n = 4 dimensions), the dimension of [¢;] = %53
(1/2 in four dimensions).

Let us take the simple example of a massive scalar field
with a A¢* interaction in a four-dimensional space where
one of the coordinates is compactified on a circle.
Expanding the scalar field as a background value and a
perturbation, the quadratic piece in the perturbation reads

2
2

5= =5 [ dtvold(x.) @y + M)pxy). (9

where M? = m* 44 ¢* with 8,4 = 0.

The effective potential is defined as the approximation to
the effective action in which ¢ is constant. This is the first
term in an expansion of the background field in derivatives.
Going back to the spacetime decomposition we can write
the quadratic operator as

2k
L

2

)2 +M2} boi(x). )
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where we clearly see that the effect of integrating in the
compact dimension is a shift in the effective mass of the
scalar field. At this point, we are working with real scalar
fields so we have ¢_;(x) = ¢;(x).

Were it not for the fact that one of the dimensions is a
circle, we would have that the effective action reads

/d"x\/g/ (4rnt) /2 g=m’c
- - (4:)';/2 (m2) L (=n/2) (10)

which is divergent for n € 2N. Taking the precise case of
(9), the effective action corresponds to n — 1 dimensions
really, owing to the fact that one of the spatial dimensions is
compactified being thus equivalent to a Kaluza-Klein tower
of momentum states. Using the effective mass of (9) we get

Vn_ 1-n 1 > n=1
Wt () g 3 e e

I=—0
(11)

This is then the effective potential in our case, including
the quartic interaction in the effective potential approxi-
mation; that is, constant gZ In the massless case, for n = 4,
we obtain

Ey=—=——.
"7 v, 4508

(12)
This result corresponds to the usual Casimir energy per unit
volume computed in [16]. The remarkable fact is that it is
negative definite, not the most natural thing to be for an
energy density.

In the case of M # 0, we focus in the summation of (11)
defining the sum

Z [M2L2 +412”2](n—1)/2

[=—c0

= (ML)"~ 1+2Z(zzn )= 1[1+<ZL) ] ]. (13)

=1

S(M)E

Using the generalized binomial theorem” and the definition
of the zeta function the sum reads

2We have that

=3 G 14

k=0

where we need |x| > |y| and where (1), =A(A—1)...(A—k+ 1)
is the definition of Pochhammer’s symbol (falling factorial) and
(Ao = 1.

x+y

_1
S(M) = (ML)"~ 1+2Z 2K (ML (2k + 1 = n)
x (2712, (15)

Let us note that the k = 0 term reproduces the previous
massless case

$(0) = (22)"'¢(1 = n). (16)
To get the result for a complex scalar for Dirichlet boundary
conditions at y = 0 and y = 27R, we have to replace

L—2L. (17)

We would like to emphasize that we have not attempted to
compute the vacuum energy of the full flat space; rather our
renormalization condition is precisely

lim W, = 0. (18)

L—oo

That is, we define the vacuum energy of the full flat space
as zero and refer all other energies to it.

II. VACUUM ENERGY INDUCED
IN THREE-DIMENSIONAL TORI

The purpose of this section is to study the vacuum energy
of quantum field theory in a background space-time of the
form

|F3 X R, (19)

where [F5 is a flat 3-manifold and R represents time. There
are four-dimensional flat manifolds which fail to be in this
class, but we prefer to stick to (19) for simplicity. These
manifols have been completely classified by Wolf in [17].

Let us dwell in more detail in the particular case of
F =T = [R%B where I is a three-dimensional lattice and the
flat manifold corresponds to a general three-torus (compu-
tations on similar backgrounds have been carried out in
[18]). The mathematical definition of a lattice [19] is the set
of points in R3 of the form

r={zz,). (20)

The three dimensional vectors ¢, (a=1...3) are the
generators of the lattice. Accordingly, the dual lattice T'*
is the set of points w € R3 such that, w.v € Z, for all points
v € I'. Now we can define the metric in this space as

Jap =848y ab=1.3, (21)
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which we will assume to be nondegenerate and positive
definite. The dual lattice I'* is generated by the vectors &;;
such that

-,

ef,.é'b = 6ab' (22)

We shall define the volume of the lattice by Vol(I') =
detg,;, and dub the lattice as unimodular if Vol(T') = 1.
In a 3-torus T? = R3/T" points are identified under

a=3
xl=xl 4 Z n“2z R, el (23)

a=1

where the subindex in R, indicates a different radius for
each direction. We can now define some new coordinates
using (22), live in circles, z, = R,0,, and are defined as

- -
*

e*, =X.e, +2nn,R,, (24)

1
=1

2q
withe the periodicity property z, = z, + 2zn,R,. In these

coordinates, the corresponding spacetime metric will be

3
> gttdz,dz,.  (25)

a,b=1

ds® = Sfudxtdx” = dr* —

After describing the needed coordinates and metric for
the precise spacetime, let us introduce an interacting
quantum field in F; x R. The action we consider has the
following form:

1
§= / dx\/1f] {Efﬂ”aﬂqsam—imz

where the metric has been defined in (25). Taking again
the one-loop effective potential approximation, the piece
of the Lagrangian quadratic in the quantum fields would
read

S, =S+ / d*x\/|f| { f"”aﬂgbabqﬁ—%]l_/[zqﬁz}, (27)

452—%&454}, (26)

where the mass matrix is defined as M? = m? + 1%
Notice that we keep assuming that 8#‘;5 = 0. The heat
equation reads

gK(x—x’h') =

5 —[O, + MK (x—¥|7)  (28)

where x = (1, z,) as before and the (1 operator stands for
the Euclidean® version of the Laplacian associated with the
metric (25). Periodicity of the heat kernel in all the space of

‘We are working with the mostly minus signature so that

__ 0P
D = o T 02

the z coordinates is assured by construction as the solution
is related to Riemann’s theta function [20]

ZengQJern x—x) (29)

nez9

O(x—x'Q) =

where x € CY and Q is a g x g complex matrix such that
ImQ > 0. In our case we need g = 3, see Appendix C for
more details. In particular, we make the following ansatz
for the spatial part of the heat kernel:

Za— 24
27R,

K(z, - Z,|Q) = @( QT> . (30)

Note that the Riemann theta function is periodic, see
Appendix C 3. Taking the 7 derivative we get

9 v
EK( —7,|Q1) = |:7TIZQ” n,n } 70— 24|Q7),  (31)

which has to be equal to the spatial part of the heat kernel

equation (28), namely, g?° dza 7 K (z4 — 7,,|Q7). This forces

=g, (32)

nR,R,

where the repeated indices do not indicate summation in
this case.
We can finally write the total heat kernel as

K(t—1,z,—7,|Qr)

/
_ 1 e_(t_‘:;)z_MZT@ <Za — 24
Varrt 2zR,

itd ) (33)

nR,R,
so that the effective potential energy reads

_ Z Wb Nany _ 2
e 4 ah(f RqR), -M?z

b [0

0 T \/4rt
1/2

[zgab it } | (34)

A. Duality property

After the preliminary computation of the induced vac-
uum energy on the three-dimensional tori, let us focus on
the relation between this potential for radius R and for

radius R = % (where at this point [, is just a constant with
dimensions of length), similar to the T-duality property in
string theory (cf. [21] and references therein). The key point
in finding this relation is the modular property of the theta
function, see Appendix C 3, which in the case of interest
takes the form

084032-4
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1 1
@(——Q‘lz ——Q‘1>
T T
= /det (-Qr) e 20 (z|Qx). (35)

Using (32) we have that for our case

Q) = —inR,R,g,. (36)
where again no summation is implicit. Taking the form of

the spatial coordinates appearing in (33) together with (36),
we find the following relation:

( ﬂzgﬂa(za - a
ngzﬂ ]Z (2 =2V g (27—2°
det _—— eﬂ po Tz ).q/m'(z Z )
@(i irg" ) -
27R )
u

TR,R,

This entails some relationship between theories com-
pactified on R, and those compactified on %-, as we can use
(37) to relate the spatial part of the heat kernel at each of the
radius as

TL'R R,,g,w>

e =
Varz 2zR,
z —M?(7-1) ng* 41 o202 900 (26— 26)
;[' 7R Rﬁ
/
K| Lt=*lQ 38
: (m,, ’) 6

where the tilde variables corresponding to the inverse
radius® read

2[4 5 12
5 — Tl , R” =5 ,
T R,
=k * I~ i”l% k
g 1224 = gﬂl/’ Zﬂ = T E gﬂ(lza' (40)

a

Here [ is a (at this point arbitrary) length scale that is
introduced to keep engineering dimensions right. Let us

*There is another possibility given by

D T ~k
R/l = 7[7 ’ g;w g/u/v

H

7=r,

2;4 =i E g;azu'
a

Nevertheless it is not clear whether the 7 dependence of R
interferes with its physical meaning.

note that for 7 € R this relations map z, € R into 7, € C,
but the coordinates z, remain real for z imaginary.

Finally, we can compute the effective potential energy,
which reads

Eo(Ry) = — / LK (x)

T

dr 1 ) itg?®

=—[ = R C) <0 “— ), (41

/ T 4t ﬂRaRb ( )

and we can invert (41) to write the theta function in terms of
the effective potential as

1 itg?® 1 >
Q] ) = dzE T 42
L ( ﬂRaR) o [ aPE(R)e. (@)

The circuit C is the one corresponding to Re u> = ¢ > 0
in the complex u? plane (c being an arbitrary positive
constant). .

In a similar way, we can compute the potential energy E,
corresponding to E , which is itself a function of R, and 7.
This potential energy then is going to depend on the normal

radius R, and we can write it as a function of Ey(R,) using
(38) as

— dt

Eu(R) = [ SuK(@)

d 3/2 /_*
/T M : g trK (7)
T R1R2R3
3/2
64 1 vV 9+ =
T R1R2R3

< [ dEo(R e (43)
C

M1}t

where we have used (40). This nonlocal integral relation-
ship between the potential and its dual is at variance with
the situation in string theory (see e.g., [21] and references
therein), where the relationship between the effective
potentials for dual tori is much simpler (they are actually
proportional).

III. THE EFFECT OF DYNAMICAL GRAVITY
ON THE VACUUM ENERGY

Let us now turn to the study of another aspect of vacuum
energy, namely, the quantum gravity corrections to the
Casimir effect (cf. [22] and references therein). We aim to
study the possible changes introduced by graviton fluctua-
tions. Once dynamical gravity is considered, there is no
ambiguity related to the energy-momentum tensor and the
effective action retains all of the gauge invariance.

In order to analyze the changes in the Casimir energy
brought by dynamical gravitons, we start with the follow-
ing simple action:

084032-5
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/\/Ed4 { —R+= g""a DI, P — é qﬂ—%qf*}.

(44)

We are going to work on a manifold of the form
M, = M5 x S', where M5 represents an arbitrary three-
dimensional manifold with Minkowskian signature and the
remaining spatial dimension is compactified on a circle. In
order to compute the one-loop effective action and the
effective potential, we use the background field technique
[23]. We expand the fields in their background value and a
perturbation as

g;w = g/w + Kh/w’
O=¢+¢. (45)

Let us note that in order to be able to compare with the
usual Casimir effect in a nondynamical background, we
take the following form of the background metric:

2
Gudxdxt =" Gop(x)dx?dx’ + dy?, (46)
n=0

where dy? = R3d6. It is important to notice at this point
that we are giving up some of the background gauge
invariance. Instead of Diff(M,) we will have Diff(M3) x
SO(2) with linear generators

=) &x) —+3 (47)

i=0,1,2

This means that we are neglecting certain quantum fluc-
tuations to keep our background metric form invariant.
Nevertheless, we will stick to this type of background to
make the computations physically sensible.

With the expansion (45) and after gauge fixing, the
quadratic piece of the action takes the form

1 -
T R

where we have defined the generalized field

()

and the operator has the symbolic form given by
Dyp = =gap + Yag. (50)
The details of the computation can be found in Appendix A

(cf. also [24]). In a previous paper [25], we studied the
two possible viewpoints that can be considered when

renormalizing Kaluza-Klein theories. The first one consists
of renormalizing the higher dimensional theory first and
expanding the resulting higher dimensional effective theory
(including counterterms) in harmonics afterward. The other
viewpoint consists of first expanding in harmonics the
classical theory and renormalizing the resulting four-
dimensional theory. The two viewpoints are in agreement
for free theories [26], but not anymore when interactions
are considered.

We shall stick here to the lower dimensional point of
view, that is, the later alternative. We expand the fields in
modes as

ik2ﬂy/L’ (51)

= Zd)jj (x)e
x

where L = 2zR(. We can integrate the periodic coordinate
and get

1 _
Sugr =3 | @O @14,90). (52
k

where we have used (46) and @ = @4, .

For the Casimir energy, we need to compute the finite
part of the effective action. In order to do that, we are going
to separate the contribution coming from the compact
dimension, that is, the mode number dependence, as

- 2km\ 2

Ay = —gap0% - <T> 9a + Yap- (53)

Now, we know that using the heat kernel method the
effective action reads

— [exfiaon] | d—ZK<>} (54)

with
Kk(x7x/v7) (47” n/2 _Mk ZaP(A p. (55)

Note that we have defined the “mass matrix” as the part
containing the induced masses coming from the compacti-
fication of the fourth dimension. In Appendix B we show
the equivalence between different ways of treating the mass
term. In this case, we have

2km\ 2
M-, = <T> 9aB- (56)

It is a fact that given the simple form of the matrix, it is
possible to keep it in the exponential and treat it exactly
without having to use the small proper time expansion.
Nevertheless, the rest of the operator cannot be treated

084032-6
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exactly so that we use the small proper time approximation
for the remaining operator

Ak = =00 + V5. (57)

Integrating (54) over 7 yields

W= [ e/l
< 30 S (el (p-3). (59

We see that we need to multiply the matrix of the heat
kernel coefficients with the mass matrix. Before going on,
let us note that the mass matrix has a very simple form
when we raise one of the generalized indices A, this is done
using the internal metric defined in Appendix A, namely,

2km\?
ory = (35 ot (59)
so that any power of this matrix equals the identity matrix.

Taking this into account and taking the sum of the first three
heat kernel coefficients we get

- / @/ @::W
o S ()

k=—o0

o
+r<1) (2112 > (A)ﬁ]. (60)

In order to extract the finite part of the mode sums,
we use here the zeta function regularization given near
s=1by

N~ 2
_;E_S—l_FYE nls=1)+0(s-1)%  (61)

so that we take the y; as the finite part of {(1) (the details of
the regularization can be found in Appendix D). We also
need the values of {(—1) and {(—3) which are well known.
With all of this, the effective action finally reads

5 o
3./ 2.2 2 2,74 2 v
/d 17|® {15L3+24L [Zm + (10m*k> + 1)@ + = K)tgl) 11«*V ¢V ¢]

. m* n 13
4712]/E 4 6 mt

KA 2.2
——(19m>k> + 52)° —

80 1920

11
+ <ﬂ m2k* — —K2/1> ¢2V IV P + —K4/1¢4V IV P + K2

40 24 160

Taking ¥ = 0 in our result does not yield directly the
purely scalar part of it. Instead, we get the sum of the
contributions of the scalar field in a fixed background and
the purely gravitational part. This result can be understood
by noticing that the x — 0 limit is equivalent to the
decoupling limit of gravity. In this limit, there is no
interaction between the gravitons and the scalar field and
the result is the independent sum of the contributions of the
different fields.

For massless scalars, in flat space, the well-known result
is given in Eq. (12). Taking the 1/L? contribution in (62),
and splitting it as the sum of the pure gravitational piece
(which contains the contribution of the ghost Lagrangian)

4/124)8 2 (277’1

2
2+ —l) P+ (— 7 mtit — > m2?A + /1—) P*

|
and the piece coming from the scalar field in the gravita-
tional background, we have

7> 1 272 V3

1503V, (Wy+Wy) = 4513 4513
The purely scalar part matches the Casimir energy found in
(12). It is worth highlighting the fact that the contribution of
gravitons to the vacuum energy is exactly fwice the one
of a single scalar. This is what happens in flat spacetime
(for an incomplete list of references see [27-32]), but we
see here that it stays true even in our quite general
spacetime backgrounds. We can now compute the one-
loop “energy-momentum tensor” given by

2

£y = (63)

084032-7
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™ =

2 oW
Via® O

1
B 15L3gﬂ 121 { [

<5m21<2 + >¢2

k2Pt — K2vi¢v*¢} 7Y+ 11K2vﬂg}sv%])}

L ([m* 1 - 57 55 i
[ — 4 (=26m*K2 2 2 ot 44 2 2

8n2y{[2+6( 6m'<+3m’1)¢+< 20" K TR >¢’

KA 2.2 26 19 4-g 209 3927 L 2 4 2N TS TS T
—E(l9m K=+ 52)¢ ~ 560~ A +F k*V,pV ¢—|——(171m k* = 55k%2)p*V V' ¢
+£K4z(}4%$v%+2ﬁ@$ b+ —K2vp¢v0¢vg¢v0¢] 7 — 13 R
—$<171m — 5520 PPV PV 4z¢4v"¢vv¢ ZWWWW
48T ws}. (64)

Taking ¢ constant, the result for massless scalars with no
interaction reduces to

2

1513

THY — _

7v (65)

which is in agreement with the classical Refs. [6,33] to the
extent that they can be compared. They are mainly
interested in the parallel plates situation; whereas we are
computing the change in vacuum energy due to compacti-
fication in a circle.

IV. DYNAMICAL TRANSVERSE GRAVITY

When we functionally integrate over unimodular metrics
only (which is of course not the same thing as GR in the
gauge |g| = 1) then the background-field-independent term
in the effective action does not couple at all to the graviton
(just because \/@ = 1). Nevertheless in this case a curious

thing happens. Namely, the invariance under transverse
diffeomorphisms (TDiff) with generators that obey

0,6 =0 (66)

is not enough to imply conservation of the energy-
momentum tensor corresponding to the background fields,
but only guarantees the existence of some spacetime
function T'(x) such that

N

Va
agaﬂ

= T(x). (67)

As is well known, Bianchi identities allow now for an
arbitrary cosmological constant, which appears here as an
integration constant in the background equations of motion.
But the role of this integration constant seems to be

[
somewhat mysterious in the sense that it does not
couple with the graviton at all. It could even be that this
means that only the zero value for this constant is fully
consistent.

In this section we want to perform the same computation
we did for GR but restricted to the unimodular theory. The
unimodular action corresponding to a scalar field mini-
mally coupled to the gravitational field can be written in
terms of an unconstrained metric g, as

1 N -1)(n=2)3"0,90,9
Sv=-3 2/dnx|9| <R+2A+( 4)(2 ) ;

—K2§Waﬂ¢ay¢), (68)

where we have written the original unimodular metric as
G = gV "9~ This action however has a complicated
symmetry sector because of the artificial Weyl invariance
that we have introduced when writing the theory in terms of
an unconstrained metric (the theory is invariant under
I = sz},w)- In order to be able to carry out the compu-
tation, we shall employ a trick first devised in [34]. Let us
go through their arguments to introduce the framework we
will use.

We can first generalize the unimodular action by
incorporating some arbitrary functions of the determinant
of the metric in front of the invariant measure

=——/dx g1(f

+ f(ﬂ(g)g” aﬂgaug - Kzfqﬁ(g).aﬂpaugbabd)) (69)

(9)R +2AfA(9)

In this way, we now have the most general transverse
diffeomorphism invariant action, and the unimodular action
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(68) is then a particular case of (69) for the following values
of the functions:

Fx) = 4,
(n=1)(n=2) .s
f,p(x) - 22 X o
Folx) = x5,
falx) =x (70)

The action (69) is only invariant under the diffeomor-
phisms that leave the determinant unchanged. Nevertheless,
we can now introduce a compensator field C(x) such that

&(x) = §C*(x) (71)

transforms as a true scalar, and then, we restore full
diffeomorphism invariance (at the cost of introducing a
new degree of freedom). The TDiff invariant action
corresponds to the unitary gauge C = 1. The generalized
action then reads

1

5= [ @x Vil @GR +2074(6)

+ f(/} (8)_@””8”6'81/8 - K2f¢(&)gﬂyay¢ay¢)' (72)

As a final step, we want to change to the Einstein frame
so that the kinetic term of the graviton takes the canonical
form. We start by performing a Weyl rescaling

G = Qz.a/uﬂ
o =Q"6, (73)

where the conformal factor Q is such that Q"2 = f(4). In
this way, the gravitational piece of the action is written in
Einstein’s frame, so that we have

VIglfE)R = /|glR + ... (74)

After this Weyl transformation, the action transforms into

1
S=-32 / d"x\/|g][R + 2AF 5 (Q) = &2 f (71 (Q"72) Q"¢ 0,400,

1 . 2(n—=1)(n-2)
30 [ eV Mg

-, @)

%) 2] #49,90,0. (75)

where we have defined F,(Q) = Q" f,(f~'(Q"2)). We can now make one final redefinition given by

[Z(n - ;)2(11 ~2)

— QZ—nfw (f—l (Qn—Z)) (af_ (Qn—

2
) )> }gﬂvaﬂgayg = K2 ¢" 0,90, 0. (76)

After all these steps we finally arrive at a quite simple action for gravity coupled to two scalar degrees of freedom, one of

them with a nonminimal coupling, which reads

1
5= [ xR+ 20F\(0) = 0,00, = CF4(0)5 0,00, )

In this formula, we have also defined Fy(p)=
Fo(fH(Q2)) Q2.

As an important remark, let us mention however that the
preceding set of transformations are not strictly valid in the
unimodular case because (76) vanishes when particulariz-
ing it for (70). This means that there is no way of writing
Q(¢) if the kinetic term vanishes for the new field. This
leads to the noninvertibility of the Weyl transformations so
that we cannot go back to the Jordan frame. In other words,
there is no way to implement Einstein’s frame in unim-
odular gravity via a Weyl transformation. Nonetheless,
there is some evidence based upon the results in [34], that
computing for general f(x) and particularizing at the end to

the value f(x) — x=" one gets the correct result, at least for

the divergent piece of the effective action. In particular, it
was shown there that whenever

2(n=1)f'(x)> = (n=2)f(x)f,(x) =0,  (78)

the theory is on-shell one-loop finite [34]. Unimodular
gravity corresponds to

(n=1)(n=2) 25

fqa(x) = 212 X, (79)

that is, it saturates this equality. It is quite remarkable that
the only transverse theories which are on-shell one-loop
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finite are precisely Einstein’s general relativity and unim-
odular gravity.

In this section, we carry on with the computation for a
general transverse theory. In order to make the computation
feasible, we will expand the scalar fields around constant
backgrounds (so that the kinetic term of the real scalar field
is just —F ¢(g‘0)¢ﬁ¢ and the nondiagonal terms with
derivatives vanish). The scalar equation of motion implies
that ¢ constant is a solution only in the massless and non-
self-interacting case. This is the reason why we take this
simple example instead of the massive interacting scalar
field of the previous section.

Let us start with the computation of this simple model.
We have two scalar fields with constant backgrounds plus
the graviton. Taking the quadratic piece after the expansion
(45), together with the gauge fixing action, we have

1 -
S =3 [ Va0 800 (50)
where the generalized field is now
ho?
= ¢ (81)
@

Again, the operator has the symbolic form

Copw 0 0
Ap=—| 0  Fylp) 0 |O+Yas (82)
0 0 1

The details of the computation can be found in Appendix A.
Performing the same mode expansion as before (51) we then
have

(83)

1 _
Saigr = 5/ dxy[1g|®) (@FAk,®F),
k

where we can separate the contribution coming from the
compact dimension and define

C,l/,w 0 0
Apg=— 0  Fylp) 0O
0 0 1
Copuw 0
2km\ 2 “
0 0 1

Taking the same definitions of the previous section we then
have

~ 1 (o) o0
—/d3x /|g|(3>7(4ﬂ)3/2tr Z Z
k=—00 p=0

xF(p—%).

We need to compute the heat kernel coefficients of the
operator that we obtain when we subtract the part of the
masses involving the mode number. Again, the mass matrix
has a very simple form when we raise one of the generalized
indices A, namely,

2knm\ 2
ory = (25 a4

so that any power of this matrix just yields the identity matrix.
Taking this into account and taking the sum of the first
three heat kernel coefficients we get

Mk ’5/2—1)]

(85)

(86)

2km 1 1 L
Finally, using the gravitational equation of motion,
1_
R Egﬂl/ + FA( ) /wAv (88)
the on-shell effective action reads
7 Fi(o)
W= [ dx/ —|=F A
/ " { 4503 L (9 Ao+
LyeN* [ Fi(p)?  Fal@)F\(p)  Fi(p)?* 7 2
— -F . 89
+ p 16x* 12«2 + 2K2 + 5 A@) (89)
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Let us comment now on the result we obtain. First of all, we
focus on the leading term, which is four times the energy of
a scalar field, as we could already anticipate from the
counting of the degrees of freedom. But this result cannot
be correct in the unimodular limit, as there is no arbitrary
function that prevents the coupling of this volume term to
gravity. This is due to the singular limit mentioned at the
beginning of the computation. When (76) vanishes, there is
no kinetic term for the new field ¢ and that leads to a
noninvertible internal metric C,z. The volume term is
special because it is only dependent on the trace of the
identity given by the product of the internal metric with its
inverse, so this clearly fails in the unimodular limit because
of the singular character of this matrix.

Second, we see that the subleading terms depend on the
cosmological constant and the arbitrary function in front of
the original term in the action. Taking the unimodular limit,
this function has to be able to cancel the square root of the
determinant of the metric so that the cosmological constant
does not couple to gravity in the unimodular case, as it is
well known. Nevertheless, as the unimodular limit turns out
to be singular (there is no way of going to the Einstein
frame), we cannot trust these results in that limit either.
However, it is fortunate that at this point we can rely on an
independent calculation of the vacuum energy in unim-
odular gravity by two different groups [35,36]. Both groups
show that in that case, the vacuum energy does not couple
to the gravitational field, that is, it does not weigh in the
same sense as all other forms of energy.

V. CONCLUSIONS

In this paper we have discussed the quantum field
vacuum energy in several contexts. In the background
field formalism that we use all along, vacuum energy
appears as the field-independent term of the effective
potential, that is, a cosmological constant. This is true
no matter whether the gravitational field is considered as a
nondynamical background, or else as a quantized dynami-
cal entity. In that sense the weight of the vacuum energy is
guaranteed ab initio to be the same as any other form of
energy and no ambiguity should arise.

We have studied spacetime manifolds of the type T; x R
(where the real line represents time), which are particularly
interesting from the physical point of view. The general case
corresponding to manifolds of the form [F; x R, [F5 being flat,
were completely classified by Wolf in his famous book [17].
For the sake of brevity, we have only derived a general
formula for the effective potential density of T; x R mani-
folds, although we conjecture that our calculation could be
easily extended to the other flat manifolds in Wolf’s list. We
find a quite simple (albeit nonlocal) relationship between
physics at radius R and physics at radius /2 /R. This relation-
ship, which ultimately stems from Poisson’s summation
formula and the magic of Riemann’s theta functions, is
somewhat similar to the one appearing in string theory. The

difference is that the free energy and its dual are not
proportional but rather related through an integral transform.

We have also studied quantum gravity corrections to the
vacuum energy and find an unambiguous energy-momen-
tum tensor for the vacuum energy. This tells us how
vacuum energy weighs, in agreement with the equivalence
principle, as we argued earlier on. It is also remarkable that
the contribution of gravitons to the vacuum energy is twice
the one stemming from scalars. This was already known in
flat spacetime but we have showed that it remains true for
quite general backgrounds.

Finally, we have extended our calculation to transverse
gravity, invariant under transverse diffeomorphisms only
(those are the ones such that its generating vector field is
transverse, that is, 9,6 = 0). Unfortunately our techniques
fail in the most interesting case, which is the case of
unimodular gravity. General arguments however guarantee
that vacuum energy does not weigh in this case. In fact this
is not exactly true, owing to self-consistency imposed by
Bianchi identities, but at any rate the weigh should remain
independent of &.

This is a physical prediction, which could be verified in a
laboratory. This allows unimodular gravity to be disproved.
We are aware of the difficulties of such an experiment, but
hopefully precision measurements would be carried out in
the future years. One should never underestimate the
ingenuity of our experimental colleagues.
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APPENDIX A: SOME DETAILS
OF THE COMPUTATIONS

1. The effect of dynamical gravity on the vacuum energy

For the first computation, we take the following action:

1
S:/d"x |g| |:_2_K'2R+

1 m> A
_ W o g2 g4
23,,453(15 2(15 4!¢ ,

(A1)
together with the classical background expansion
g/w = g;u/ + Khmn
p=9¢+¢. (A2)
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The equations of motion for this action then read where
- 1. - kK. o - - = -= - — —g.
R, - ngR + 7gWVp¢vp¢ _ szﬂdivyd) Ayp gagld + Yup (A7)
2
2o (Mo A and
- - Ao B h?
—D¢—m2¢—6¢3 =0. (A3) yh = s ) (A8)
We use a generalized De Donder gauge given by The internal metric takes the form
—1_
SGF = /dnx |g|ng/)(”)( (A4) Caﬂ;w 0
9daB = (A9)
0 1
with
! with
7=V, - EW — 2kpV b (A5)
1
C vpe — 7(? )gurr +g agu _f_] pf_] (f)’
The quadratic piece of the action, after gauge fixing, takes " g roskr e
2
the form Cmor =2 (gﬂf’g” + - 9*”?”) - (A10)
n —
2/
S == 9|d*x®AA g DF A6
S 4 A (A6) The components of Y5 are also detailed below
|
o Lo = = N L P
YAB = g (gaﬂgﬁu + G 9pu — gaﬂg/w)R + Z (gaﬂR/u/ + g/wRaﬂ)
1 _ 1, _
g (gzuR/iv + gal/R/}u + g[i/tRay + g/iuRa ) 4 (Ryowﬁ + RU(lﬂﬁ)
2
K — p——— — _ — — — _ —_ —— - _ — p— -
+ Z (gaﬂvﬁ¢vy¢ + abvﬁ¢vy¢ + gﬁﬂva¢vu¢ + gﬂuva¢vu¢)
K> = - - = = o
Z(gaﬁv dV, ¢ + V ¢ ¢)
K2 B le -cpo m> -, A -
Z (g(mgﬁu + gavg/}y gaﬁg;w) <2 V,,d)V/ ¢ - 7 ¢2 - E ¢4> s
-~ 1 - m*> - A -
hg _ yph - _ _
Yup = Yup =2k <2Vavﬁ¢ _Zgaﬁm¢—9aﬁ7¢ _4'ga/j¢ )
A= R
Y= —m =28 + 2V, V. (Al1)

The contribution coming from the ghost loops is also
needed. The ghost Lagrangian is obtained performing a
variation on the gauge fixing term

1 - _ - -
5)(1/ = ; (Dg;w + R;w - 2K2vu¢vv¢)€ﬂﬁ (Alz)
plus terms that give operators cubic in fluctuations and
therefore are irrelevant at one loop. The ghost Lagrangian
then reads

(=05 — R™ + 22VF GV )V,

/ d"x Ig

(A13)

With these, we can compute the traces of the different total
heat kernel coefficients, where we also include the ghost
contribution (the extra factor is coming from the fermion
loop and from the complex character of the ghosts)
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trf(ag(A) = 248" (A))(ga5)>?] = 3

tr{(a1 (&) — 242 (A)) (gap) 2] = m? + (5m2K2+ )¢2

o m* 1
tr{(az(A) ~ 265" (8))(9ap) '] = 5+ ¢ (~26m*
57 .4 55
+ ( %m K %

b e KT, B9+ 220 0 +

2. Dynamical transverse gravity

For the computation regarding TDiff invariant theories,
the starting point is the action given by

1
Sz—ﬁ/d”x |g|[R + 2AF A ()

- Kzgﬂyaﬂ(pavgo - K2F¢ (¢)gﬂya;t¢av¢] (AIS)

For this computation, we consider that the background
value of the two scalar fields is constant and we expand the
graviton in the usual way

9w = g/u/ + Kh/ll/’
b=d+0.

»=0+0. (Al6)

Then, the quadratic piece of the action after gauge fixing
(the De Donder gauge is enough here as the scalar fields
have constant backgrounds) takes the form

SZ+Jf / \/ |g d4xd)AAAB(DB <A17)

where now the generalized field contains the extra scalar
field

ho?
A= ¢ (A18)
@,
and the operator has again the symbolic form
—CopJ 0 0
Ayp = 0 —Fy(@)d 0 | +Yas (A19)
0 0 -0

2/1454 _1 KZﬁya)vy&’

K2+ 3m?1)¢?

K> - 9 -
2 4 6 _ 7 492738
A+ )qﬁ (l9m 2450 TRk
1—61 2;8?,,&5?”&5 +%5 (171m21<4 — 55K20)$*V V¢
Any QVu¢V”¢Vy¢V”¢ (Al4)

[
In this case, the components of Y 5 are

hh L = = - = P | A
YAB = § (gaﬂgﬂu + G 9pu — gaﬂgﬂu)R + Z (gaﬁR/w + g/wRaﬂ)
1. - - - o
- g (gaﬂR/}u + g(wRﬁy + g/}uRow + gﬁuRap)

1 - -
(Ryabﬁ + Ruaﬂﬂ)

|
—_

+ - (gaﬂg/}y + g(wgﬂﬂ - ga/)’gﬂu)AFA [QD] ’

4

1
—— g AF'\ (@),
2Kgaﬁ A((p)

1 _
Yip = — AFA(®).

Vi =1 =
(A20)

Finally, the trace of the heat kernel coefficients reads

tr{(ap(8) — 245" (8)) (98) ] = 4,
, 28 A
(a1 (8) = 24"(8)) (9a5)'?] = 5 AFalw] + 5 Filgl,
tr[(ax(A) = 245" (A)) (gaz)~"/?]
56 4A? 2A?
=~ ARl = =5 FAloP - S5 FalolFlgl
AZ
+ o File 2. (A21)
2k
APPENDIX B: THE DUAL ROLE
OF THE MASSES
Consider the operator O given by
=—(0-m?), (B1)

with constant m. The heat kernel coefficients can be found
in the literature so that the divergent piece (in n = 4) of the
operator reads
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1 1
—log detA = ——
n

! Lrmr o Lo
2 —4 (4x)?

6 2

1 _ _
+—(5R* - 2R}, + 2R§m)] . (B2)

360

There is however another way of computing the same
divergent piece of the determinant, namely, integrating the
mass independently

1 d’r s
T
:_Lza m"=2rT p_ﬁ

(471.);1/2 —~ p 2
p=0

so that all of the mass dependence is treated exactly. In
n =4 —¢ we have

1
Elog detA =

(B3)

1

%logdetA— avtrmnil L)) — 2a1(ﬁ)+%M4ao(E)].

(B4)
The difference here is that a,(~[J) is independent of m and

taking the values of the various heat kernel coefficients
from the literature we get

a()(lj) = 1,
_ 1._
(ll(D) = ER’
a,)()) = ﬁ(SR2 2R2, + 2R, ). (B5)

We see that we obtain the same result using both methods.

APPENDIX C: THETA FUNCTIONS

Let us summarize the definitions and the principal
properties of theta functions that are used in the paper
(for an exhaustive exposition, see the classical text of
Mumford [20]).

1. Poisson summation formula

Many of the most interesting properties of the theta
functions are a simple consequence of Poisson’s summa-
tion formula which states that the sum over the integers of a
function and of its Fourier transform is the same,

> flm) =Y F(n) (C1)
mezZ nez
provided we define the Fourier transform as
Fip)= [ ase s (2)

In order to prove Poisson’s formula, let us define a new
function

=) flx+aq). (C3)
qeZ
It can be expanded in a Fourier series as
= Zcmez”i’”", (C4)

mezZ

with coefficients

1 1
cw= [ dxh(x)e?7m¥ = / dx ) f(x+ q)e 2mimx
/0 (x) | > flx+q)

qeZ

g+1
/ dy f(y)e*rm=
qeZ

= [Ty sy = Fm) (cs)
Now we have by definition
3 rm) = () (co)
and
S F=m) = Y e, = h(0) ()

Let us now apply Poisson’s formula to the function

fx) = ems (C8)
whose Fourier transform reads
~ 1w
f(p) = Nl (€9)
It follows that
D e = Ze = (C10)

xeZ pEZ

which is the basis of the modular properties of all theta
functions.

2. Jacobi’s theta function

Jacobi’s theta functions is defined as

Z|T E emn r+2mnz

nez

(C11)

and obeys the differential equation given by
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2

) = o). (1)

This is nothing but the heat equation with proper time

i

Tproper — E T (C 1 3)

Moreover, taking the small proper time limit we obtain

Zezmnz _ 25 7—

nez peZ

11m8 (z]z) = (C14)

A very important property of this function is the
modular property. Consider (a, b, ¢,d) € Z and such that
ad — bc = 1. Then

z
9
<Zr+d

This is quite simple to prove for 8(0|iz) by using Poisson‘s
summation formula, presented in the previous section,
Appendix C 1. As a particular case we have

9 (o‘ - %) — £129(0]1).

at+ b
ct+d

> = {(ct+ d)'2e"T=R9(z]7).  (C15)

(C16)

3. Riemann theta function

The Riemann theta function is a generalization of the
Jacobi theta function. Taking

H, ={F € M(n,C)|[F = F'ImF >0} (C17)

to be the set of symmetric square matrix whose imaginary
part is positive definite, and given Q € H,, the Riemann
theta function is defined as

D exp <27zi (% m'Qm + mTz)). (C18)

mez9

0(z|Q) =

Here, z € CY is a g-dimensional complex vector, and the
superscript 7' denotes the transpose. By construction, the
Riemann theta function is periodic in (z — z’)

O(z - |Q) = 6(z - ' + m|Q) (C19)
for arbitrary m € Z9.
The modular property reads [20]
O([[CQz + D]7'|T - z|[AQr + B][CQz + D)
det[CQr + D]em =[P Cl2@(2|Qr),  (C20)

where (7,)* =1 and y = (2 5) € Sp(4. Z).

4. Dimensional reduction and oxidation

Consider a scalar field in a gravitational background as
the one considered previously

5= / dey/ T (ey) Dalrey). (C21)

Working on a manifold of the form M, = M5 x S', we can

expand in the field in harmonics

blxy) = %m (x)enmL. (c22)

so that the quadratic part of the action reads (after the
integration of the compact dimension)

s=3 [ ¢/l 90,0 o () 0. 2

Our aim is to show that when L — 0 (reduction) the
theory reduces to a three-dimensional one, and that when
L — oo the theory cannot be told apart from the ordinary
four-dimensional one (oxidation). The heat kernel we are
interested in can be factorized as

it
L2\ 1/2
= tr Ky, (7) (l” ) 8(0
: T

where we have used the property (C16) in the last equality.
The problem is how to recover four-dimensional results
out of three-dimensional ones. Reduction is easy, because

2

in %) (C24)

}i_rg& (0' %) =1, (C25)
Ky, 51 (7) = trK . (C26)
Oxidation is also clear, just because we also have
Lh_{l;&(thsz) I, (C27)
and then,
(0K yy o5t (7) = Ky, (2) <i”fz> T s

It would be interestlng to discover the physical interpre-
tation of the factor (2L)'/2,
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APPENDIX D: REGULARIZATION OF ¢£(1)

Throughout the text, we make use of the zeta function
regularization in various computations. In this appendix we
go through some of the details used for the (1) case.
We take as the starting point the sum given by

n=oo 1 n=oo 1
Y —=lim) —emn, (D1)
n =0 n
n=1 n=1
and define
n=0oo 1
S(e) = —e ", (D2)
n=1 n
Taking a first derivative of this function we obtain
dS(e) = 1
=- = D3
de ; ¢ 1 —ef (D3)
so that we can further write
S(e) =e—1log(ef — 1) + C. (D4)
Taking the limit when ¢ — 0, we finally get
S(e) ~logle| + C. (D5)

Let us note that we have implemented the boundary
condition

lim S(e) = 0. (D6)
We can now determine the constant C taking
=1
SO0)=>» —=¢(1) = D7
=) —=¢(1)=oo (D7)

n=1

which does not seem to help. Nevertheless, near s = 1 on
the real axis

¢(s) = tre—r(s—1)+0(s-1)* (D8)

s—1

where yr = 0.5772 is Euler’s Gamma constant and y; =
—0.0728 is Stieljes’s constant. This is also true going along
the imaginary axis

1
(1 +ie) = +7p=ine+0(), (DY)

so that we can take the finite value of {(1) = yg.
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