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We discuss the weight of vacuum energy in various contexts. First, we compute the vacuum energy for
flat spacetimes of the form T3 × R, where T 3 stands for a general 3-torus. We discover a quite simple

relationship between energy at radius R and energy at radius l2s
R. Then we consider quantum gravity effects

in the vacuum energy of a scalar field inM3 × S1 whereM3 is a general curved spacetime, and the circle S1

refers to a spacelike coordinate. We compute it for general relativity and generic transverse diffeo-
morphisms theories. In the particular case of unimodular gravity vacuum energy does not gravitate.
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I. INTRODUCTION

The existence of vacuum energy is a prediction of
quantum field theory (QFT), although explicit computations
usually yield a divergent value for this observable. This is
not a problem whenever the gravitational interaction can be
neglected, because then the zero-point energy is physically
irrelevant and some normal ordering can be imposed which
renormalizes the vacuum energy to zero. This situation
changes, however, once the effects of the gravitational field
are taken into account. Then the vacuum energyweighs, and
its renormalization is physically relevant.
There are different senses in which we can speak about

vacuum energy (cf. the seminal paper on the Casimir effect
[1] and related comments in [2]).1 These ambiguities are
not unrelated with recent concerns on how the said Casimir
energy falls in an external gravitational field; that is,
whether or not it violates the equivalence principle (see
[6,7] and references therein). The main issue follows from
the use of the energy-momentum tensor to infer the vacuum
energy via the following variational formula:

δW ¼ −
1

2

Z ffiffiffiffiffi
jgj

p
dnxTμνδgμν: ð1Þ

Ambiguities arise because the computed energy-momentum
tensor is not conserved. Thismeans that the above expression

is not gauge invariant. In fact, in almost all treatments known
to us, the gravitational field is considered as a background
field and the Casimir effect is encapsulated in some energy-
momentum tensor (vacuumenergydensity). The treatment in
[8–12] is an exception as it is an example of how to compute
the gauge invariant Vilkovisky-DeWitt effective action of
quantum gravity.
It is worth pointing out the work of Jaffe and co-workers

[13,14] that claim (rightly so in our opinion) that the
experiments made up to now do not test the reality of the
vacuum energy, but rather of the Casimir force which can
be computed (as they do) using standard scattering tech-
niques. Nevertheless, these experiments by themselves do
not tell us anything about the weight (if any) of the vacuum
energy. Incidentally, one of the first persons to worry
about this subject, namely Pauli [15], denied the physical
relevance of the vacuum energy and claimed that it
should be subtracted from the total energy-momentum of
the system.
Our definition of vacuum energy stems from the back-

ground field approach in QFT. When the gravitational field
is treated as a gauge field then the effective action, when all
background matter fields are taken to be zero, contains a
leading term of the form

W0 ¼
Z ffiffiffiffiffi

jgj
p

dnxE0; ð2Þ

where E0 is the constant vacuum energy density, that is, the
cosmological constant, the field-independent piece of the
effective potential. With this definition, the engineering
dimension of E0 is n. Other definitions are often used in the
literature, and it is usually easy to relate them to ourW0. In
particular, we shall sometimes use the notation E0 for one
such quantity with mass dimension one.
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It is also interesting to consider some modifications of
general relativity, namely transverse theories in which the
volume element is changed to

dTðvolÞ≡ fðgÞdnx; ð3Þ

where fðgÞ is an arbitrary function of the determinant of the
metric tensor. We shall eventually comment on the par-
ticular case of unimodular gravity, in which fðgÞ ¼ 1, so
that the same term reads

W ¼
Z

dnxE0: ð4Þ

As a consequence, the vacuum energy density does not
weigh through a direct coupling with the gravitational field.
A similar coupling is indeed necessary owing to self-
consistency (i.e., Bianchi identity), but the point is that its
effect is not proportional to the constant E0.
Let us now summarize the contents of this paper. After

reviewing the standard treatment of vacuum energy in flat
space in our language, we generalize it to more general (still
background; that is, neglecting backreaction) flat manifolds
of the type T 3 ×R, where the three-dimensional manifold
is a general torus. In this simple situation, we can unveil
some relationship between the vacuum energy at radius R
and at radius l2s=R, in a sense to be clarified later. Then we
proceed to study the quantum gravity effects. We assume
that the background spacetime remains of the formM3 × S1

(where M3 is not necessarily flat) even after quantum
corrections. Our treatment is gauge invariant from the very
beginning, because when all interactions (including grav-
ity) are quantized and integrated upon in the path integral,
there is no other room for ambiguity than the renormaliza-
tion conditions to be imposed on finite parts once appro-
priate counterterms are included at each order in the loop
expansion.
In that sense, as we have already pointed out, for us the

vacuum energy is related to the constant term in the
effective Lagrangian, which in Einstein’s general relativity
couples directly to gravity only through the term

ffiffiffiffiffijgjp
. This

means that its effect on the energy-momentum tensor is
proportional to the background spacetime metric

Tvac
μν ∼ fðxÞgμν; ð5Þ

assuming there are no boundaries in the spacetime. This
procedure circumvents the nasty task of defining energy in
an arbitrary background spacetime, ḡμν, although it is true
that the name is only appropriate in some simple cases in
which the total energy can be properly defined.

A. Review of known results

Let us start with a brief review of known results in flat
space. The standard treatment in our language, as found in
[16] (and references therein) reads as follows. Consider the
heat kernel for a free scalar of mass m in Rn−1 × S1. Let us
denote coordinates as xμ ∈ Rn−1 where ðμ ¼ 0;…; n − 2Þ
and y≡ θR0 ∈ S1. We have denoted the radius of the
compact dimension by R0 in order to avoid confusion with
the scalar curvature which we denote by R. With this, the
boundary conditions we need to impose are

ϕðx; yÞ ¼ ϕðx; yþ 2πR0Þ ¼ ϕðx; yþ LÞ: ð6Þ

To implement this periodicity, we can expand the fields in
modes as

ϕ ¼
X
k

1ffiffiffiffi
L

p ϕkðxÞei2πky=L ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πR0

p
X
k

ϕkðxÞeiky=R0 : ð7Þ

It should be remarked that whereas the dimension ½ϕ� ¼ n−2
2

(that is 1 in n ¼ 4 dimensions), the dimension of ½ϕk� ¼ n−3
2

(1=2 in four dimensions).
Let us take the simple example of a massive scalar field

with a λϕ4 interaction in a four-dimensional space where
one of the coordinates is compactified on a circle.
Expanding the scalar field as a background value and a
perturbation, the quadratic piece in the perturbation reads

S2 ¼ −
1

2

Z
dðvolÞ4ϕðx; yÞð□4 þM2Þϕðx; yÞ; ð8Þ

where M2 ≡m2 þ λ
2
ϕ̄2 with ∂μϕ̄ ¼ 0.

The effective potential is defined as the approximation to
the effective action in which ϕ̄ is constant. This is the first
term in an expansion of the background field in derivatives.
Going back to the spacetime decomposition we can write
the quadratic operator as

S2 ¼ −
1

2

Z
d3x

ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q Z
L

0

dy
1

L

X
k

X
l

ϕkðxÞ
�
□

ð3Þ þ
�
2πk
L

�
2

þM2

�
ϕlðxÞeið2π=LÞðkþlÞy

¼ −
1

2

Z
d3x

ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q X
l

ϕlðxÞ
�
□ð3Þ þ

�
2πl
L

�
2

þM2

�
ϕ−lðxÞ; ð9Þ
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where we clearly see that the effect of integrating in the
compact dimension is a shift in the effective mass of the
scalar field. At this point, we are working with real scalar
fields so we have ϕ−lðxÞ ¼ ϕlðxÞ.
Were it not for the fact that one of the dimensions is a

circle, we would have that the effective action reads

W ¼ −
Z

dnx
ffiffiffiffiffi
jḡj

p Z
∞

0

dτ
τ
ð4πτÞ−n=2e−m2τ

¼ −
Vn

ð4πÞn=2 ðm
2Þn=2Γð−n=2Þ ð10Þ

which is divergent for n ∈ 2N. Taking the precise case of
(9), the effective action corresponds to n − 1 dimensions
really, owing to the fact that one of the spatial dimensions is
compactified being thus equivalent to a Kaluza-Klein tower
of momentum states. Using the effective mass of (9) we get

W ¼ −
Vn−1

ð4πÞn−12 Γ
�
1 − n
2

�
1

Ln−1

X∞
l¼−∞

ðM2L2 þ 4l2π2Þn−12 :

ð11Þ

This is then the effective potential in our case, including
the quartic interaction in the effective potential approxi-
mation; that is, constant ϕ̄. In the massless case, for n ¼ 4,
we obtain

E0 ¼
W
V3

¼ −
π2

45L3
: ð12Þ

This result corresponds to the usual Casimir energy per unit
volume computed in [16]. The remarkable fact is that it is
negative definite, not the most natural thing to be for an
energy density.
In the case of M ≠ 0, we focus in the summation of (11)

defining the sum

SðMÞ≡ X∞
l¼−∞

½M2L2þ4l2π2�ðn−1Þ=2

¼ðMLÞn−1þ2
X∞
l¼1

ð2lπÞn−1
�
1þ

�
ML
2lπ

�
2
�n−1

2

: ð13Þ

Using the generalized binomial theorem2 and the definition
of the zeta function the sum reads

SðMÞ ¼ ðMLÞn−1 þ 2
X∞
k¼0

ðn−1
2
Þk

k!
ðMLÞ2kζð2kþ 1 − nÞ

× ð2πÞn−1−2k: ð15Þ

Let us note that the k ¼ 0 term reproduces the previous
massless case

Sð0Þ ¼ ð2πÞn−1ζð1 − nÞ: ð16Þ

To get the result for a complex scalar for Dirichlet boundary
conditions at y ¼ 0 and y ¼ 2πR0, we have to replace

L → 2L: ð17Þ

We would like to emphasize that we have not attempted to
compute the vacuum energy of the full flat space; rather our
renormalization condition is precisely

lim
L→∞

W0 ¼ 0: ð18Þ

That is, we define the vacuum energy of the full flat space
as zero and refer all other energies to it.

II. VACUUM ENERGY INDUCED
IN THREE-DIMENSIONAL TORI

The purpose of this section is to study the vacuum energy
of quantum field theory in a background space-time of the
form

F3 ×R; ð19Þ

where F3 is a flat 3-manifold and R represents time. There
are four-dimensional flat manifolds which fail to be in this
class, but we prefer to stick to (19) for simplicity. These
manifols have been completely classified by Wolf in [17].
Let us dwell in more detail in the particular case of

F3 ¼ T 3 ¼ R3

Γ where Γ is a three-dimensional lattice and the
flat manifold corresponds to a general three-torus (compu-
tations on similar backgrounds have been carried out in
[18]). The mathematical definition of a lattice [19] is the set
of points in R3 of the form

Γ≡ fZe⃗ag: ð20Þ

The three dimensional vectors e⃗a (a ¼ 1…3) are the
generators of the lattice. Accordingly, the dual lattice Γ�

is the set of points w ∈ R3 such that, w:v ∈ Z, for all points
v ∈ Γ. Now we can define the metric in this space as

gab ≡ e⃗a:e⃗b a; b ¼ 1…3; ð21Þ

2We have that

ðxþ yÞλ ¼
X∞
k¼0

ðλÞk
k!

xλ−kyk; ð14Þ

where we need jxj > jyj and where ðλÞk ≡ λðλ − 1Þ…ðλ − kþ 1Þ
is the definition of Pochhammer’s symbol (falling factorial) and
ðλÞ0 ¼ 1.
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which we will assume to be nondegenerate and positive
definite. The dual lattice Γ� is generated by the vectors e⃗�a
such that

e⃗�a:e⃗b ¼ δab: ð22Þ

We shall define the volume of the lattice by VolðΓÞ≡
det gab and dub the lattice as unimodular if VolðΓÞ ¼ 1.
In a 3-torus T 3 ¼ R3=Γ points are identified under

xi ¼ xi þ
Xa¼3

a¼1

na2π Ra eia; ð23Þ

where the subindex in Ra indicates a different radius for
each direction. We can now define some new coordinates
using (22), live in circles, za ≡ Raθa, and are defined as

za ≡ x⃗e⃗�a ¼ x⃗:e⃗�a þ 2πnaRa; ð24Þ

withe the periodicity property za ¼ za þ 2πnaRa. In these
coordinates, the corresponding spacetime metric will be

ds2 ≡ fμνdxμdxν ¼ dt2 −
X3
a;b¼1

gab� dzadzb: ð25Þ

After describing the needed coordinates and metric for
the precise spacetime, let us introduce an interacting
quantum field in F3 ×R. The action we consider has the
following form:

S¼
Z

d4x
ffiffiffiffiffiffi
jfj

p �
1

2
fμν∂μϕ∂νϕ−

1

2
m2ϕ2−

1

4!
λϕ4

�
; ð26Þ

where the metric has been defined in (25). Taking again
the one-loop effective potential approximation, the piece
of the Lagrangian quadratic in the quantum fields would
read

S2 ¼ S̄þ
Z

d4x
ffiffiffiffiffiffi
jfj

p �
1

2
fμν∂μϕ∂νϕ −

1

2
M̄2ϕ2

�
; ð27Þ

where the mass matrix is defined as M̄2 ≡m2 þ 1
2
λϕ̄2.

Notice that we keep assuming that ∂μϕ̄ ¼ 0. The heat
equation reads

∂
∂τKðx − x0jτÞ ¼ −½□E þ M̄2�Kðx − x0jτÞ ð28Þ

where x ¼ ðt; zaÞ as before and the □E operator stands for
the Euclidean3 version of the Laplacian associated with the
metric (25). Periodicity of the heat kernel in all the space of

the z coordinates is assured by construction as the solution
is related to Riemann’s theta function [20]

Θðx − x0jΩÞ≡ X
n∈Zg

eiπn
2Ωþ2πin:ðx−x0Þ ð29Þ

where x ∈ Cg and Ω is a g × g complex matrix such that
ImΩ > 0. In our case we need g ¼ 3, see Appendix C for
more details. In particular, we make the following ansatz
for the spatial part of the heat kernel:

Kðza − z0ajΩτÞ ¼ Θ
�
za − z0a
2πRa

				Ωτ�: ð30Þ

Note that the Riemann theta function is periodic, see
Appendix C 3. Taking the τ derivative we get

∂
∂τKðza− z0ajΩτÞ¼

�
πi
X
μν

Ωμνnμnν

�
Kðza− z0ajΩτÞ; ð31Þ

which has to be equal to the spatial part of the heat kernel
equation (28), namely, gab� ∂2

∂za∂zb Kðza − z0ajΩτÞ. This forces

Ωμν ¼ i
πRμRν

gμν� ; ð32Þ

where the repeated indices do not indicate summation in
this case.
We can finally write the total heat kernel as

Kðt − t0; za − z0ajΩτÞ

¼ 1ffiffiffiffiffiffiffiffi
4πτ

p e−
ðt−t0Þ2

4τ −M̄2τΘ
�
za − z0a
2πRa

				 iτgμν�
πRμRν

�
; ð33Þ

so that the effective potential energy reads

E0 ¼ −
Z

dτ
τ

1ffiffiffiffiffiffiffiffi
4πτ

p e−τ
P

ab
gab�

nanb
RaRb

−M̄2τ

¼
�X

ab

gab�
nanb
RaRb

þ M̄2

�
1=2

: ð34Þ

A. Duality property

After the preliminary computation of the induced vac-
uum energy on the three-dimensional tori, let us focus on
the relation between this potential for radius R and for

radius R̃ ¼ l2s
R (where at this point ls is just a constant with

dimensions of length), similar to the T-duality property in
string theory (cf. [21] and references therein). The key point
in finding this relation is the modular property of the theta
function, see Appendix C 3, which in the case of interest
takes the form

3We are working with the mostly minus signature so that
□E ¼ − ∂2

∂t2 −
∂2
∂z2a.
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Θ
�
−
1

τ
Ω−1z

				 − 1

τ
Ω−1

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð−ΩτÞ

p
e
iπ
τ zΩ

−1zΘðzjΩτÞ: ð35Þ

Using (32) we have that for our case

Ω−1
μν ¼ −iπRμRνg�μν; ð36Þ

where again no summation is implicit. Taking the form of
the spatial coordinates appearing in (33) together with (36),
we find the following relation:

Θ
�

i
2τ

Rμ

X
α

g�μαðzα − z0αÞ
				 iτ πRμRνg�μν

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
−

iτgαβ�
πRαRβ

�s
e

1
4τ

P
ρσ
ðzρ−z0ρÞg�ρσðzσ−z0σÞ

× Θ
�
zμ − z0μ
2πRμ

				 iτgμν�
πRμRν

�
: ð37Þ

This entails some relationship between theories com-
pactified on Ra and those compactified on 1

Ra
, as we can use

(37) to relate the spatial part of the heat kernel at each of the
radius as

K

�
z̃μ − z̃0μ
2πR̃μ

				Ω̃ τ̃

�
¼ 1ffiffiffiffiffiffiffiffi

4πτ̃
p e−M

2 τ̃Θ
�
z̃μ − z̃0μ
2πR̃μ

				Ω̃ τ̃

�

¼
ffiffiffi
τ

τ̃

r
e−M

2ðτ̃−τÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
−

iτgαβ�
πRαRβ

�s
e

1
4τ

P
ρσ
ðzρ−z0ρÞg�ρσðzσ−z0σÞ

× K

�
zμ − z0μ
2πRμ

				Ωτ� ð38Þ

where the tilde variables corresponding to the inverse
radius4 read

τ̃ ¼ π2l4s
τ

; R̃μ ≡ l2s
Rμ

;

g̃�μν ≡ g�μν; z̃μ ¼
iπl2s
τ

X
α

g�μαzα: ð40Þ

Here ls is a (at this point arbitrary) length scale that is
introduced to keep engineering dimensions right. Let us

note that for τ ∈ R this relations map za ∈ R into z̃a ∈ C,
but the coordinates za remain real for τ imaginary.
Finally, we can compute the effective potential energy,

which reads

E0ðRaÞ ¼ −
Z

dτ
τ
trKðτÞ

¼ −
Z

dτ
τ

1ffiffiffiffiffiffiffiffi
4πτ

p e−M
2τΘ

�
0

				 iτgab�
πRaRb

�
; ð41Þ

and we can invert (41) to write the theta function in terms of
the effective potential as

1

τ
ffiffiffiffiffiffiffiffi
4πτ

p Θ
�
0

				 iτgab�
πRaRb

�
¼ −

1

2πi

Z
C
dμ2E0ðRaÞeμ2τ: ð42Þ

The circuit C is the one corresponding to Re μ2 ¼ c > 0

in the complex μ2 plane (c being an arbitrary positive
constant).
In a similar way, we can compute the potential energyfE0

corresponding to fRa, which is itself a function of Ra and τ.
This potential energy then is going to depend on the normal
radius Ra and we can write it as a function of E0ðRaÞ using
(38) as

fE0ðRaÞ ¼ −
Z

dτ̃
τ̃
trKðτ̃Þ

¼ −
Z

dτ̃
τ̃

ffiffiffi
τ

τ̃

r
e−M

2ðτ̃−τÞeπi
4

�
τ

π

�
3=2

ffiffiffiffiffi
g�

p
R1R2R3

trKðτÞ

¼
Z

dτ
τ

2iπ2l2s
e
πi
4

�
τ

π

�
3=2

ffiffiffiffiffi
g�

p
R1R2R3

e−M
2π2l4s=τ

×
Z
C
dμ2E0ðRaÞeμ2τ; ð43Þ

where we have used (40). This nonlocal integral relation-
ship between the potential and its dual is at variance with
the situation in string theory (see e.g., [21] and references
therein), where the relationship between the effective
potentials for dual tori is much simpler (they are actually
proportional).

III. THE EFFECT OF DYNAMICAL GRAVITY
ON THE VACUUM ENERGY

Let us now turn to the study of another aspect of vacuum
energy, namely, the quantum gravity corrections to the
Casimir effect (cf. [22] and references therein). We aim to
study the possible changes introduced by graviton fluctua-
tions. Once dynamical gravity is considered, there is no
ambiguity related to the energy-momentum tensor and the
effective action retains all of the gauge invariance.
In order to analyze the changes in the Casimir energy

brought by dynamical gravitons, we start with the follow-
ing simple action:

4There is another possibility given by

τ̃ ¼ τ; R̃μ ≡ τ

πRμ
; g̃�μν ≡ g�μν; z̃μ ¼ i

X
α

g�μαzα: ð39Þ

Nevertheless it is not clear whether the τ dependence of R̃
interferes with its physical meaning.
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S¼
Z ffiffiffiffiffi

jgj
p

d4x

�
−

1

2κ2
Rþ1

2
gμν∂μΦ∂νΦ−

1

2
m2Φ2−

λ

4!
Φ4

�
:

ð44Þ

We are going to work on a manifold of the form
M4 ≡M3 × S1, where M3 represents an arbitrary three-
dimensional manifold with Minkowskian signature and the
remaining spatial dimension is compactified on a circle. In
order to compute the one-loop effective action and the
effective potential, we use the background field technique
[23]. We expand the fields in their background value and a
perturbation as

gμν ≡ ḡμν þ κhμν;

Φ≡ ϕ̄þ ϕ: ð45Þ

Let us note that in order to be able to compare with the
usual Casimir effect in a nondynamical background, we
take the following form of the background metric:

ḡμνdxμdxν ¼
X2
n¼0

ḡαβðxÞdxαdxβ þ dy2; ð46Þ

where dy2 ¼ R2
0dθ

2. It is important to notice at this point
that we are giving up some of the background gauge
invariance. Instead of DiffðM4Þ we will have DiffðM3Þ ×
SOð2Þ with linear generators

ξ ¼
X

i¼0;1;2

ξiðxÞ ∂
∂xi þ

∂
∂y : ð47Þ

This means that we are neglecting certain quantum fluc-
tuations to keep our background metric form invariant.
Nevertheless, we will stick to this type of background to
make the computations physically sensible.
With the expansion (45) and after gauge fixing, the

quadratic piece of the action takes the form

S2þgf ¼ 1

2

Z ffiffiffiffiffi
jḡj

p
d4xΦAΔABΦB; ð48Þ

where we have defined the generalized field

ΦA ≡
�
hαβ

ϕ

�
; ð49Þ

and the operator has the symbolic form given by

ΔAB ¼ −gAB□̄þ YAB: ð50Þ

The details of the computation can be found in Appendix A
(cf. also [24]). In a previous paper [25], we studied the
two possible viewpoints that can be considered when

renormalizing Kaluza-Klein theories. The first one consists
of renormalizing the higher dimensional theory first and
expanding the resulting higher dimensional effective theory
(including counterterms) in harmonics afterward. The other
viewpoint consists of first expanding in harmonics the
classical theory and renormalizing the resulting four-
dimensional theory. The two viewpoints are in agreement
for free theories [26], but not anymore when interactions
are considered.
We shall stick here to the lower dimensional point of

view, that is, the later alternative. We expand the fields in
modes as

ΦA ¼
X
k

ΦA
k ðxÞeik2πy=L; ð51Þ

where L ¼ 2πR0. We can integrate the periodic coordinate
and get

S2þgf ¼
1

2

Z
d3x

ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q X
k

ðΦA
kΔk

ABΦB
k Þ; ð52Þ

where we have used (46) and ΦA
k ¼ ΦA

−k.
For the Casimir energy, we need to compute the finite

part of the effective action. In order to do that, we are going
to separate the contribution coming from the compact
dimension, that is, the mode number dependence, as

Δk
AB ¼ −gAB□̄ð3Þ −

�
2kπ
L

�
2

gAB þ YAB: ð53Þ

Now, we know that using the heat kernel method the
effective action reads

W ¼ −
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q
Tr

�Z
dτ
τ

X
k

Kkðx; x0; τÞ
�
; ð54Þ

with

Kkðx; x0; τÞ ¼
1

ð4πτÞn=2 e
−Mk

ABτ
X
p

apðΔk
ABÞτp: ð55Þ

Note that we have defined the “mass matrix” as the part
containing the induced masses coming from the compacti-
fication of the fourth dimension. In Appendix B we show
the equivalence between different ways of treating the mass
term. In this case, we have

Mk
AB ¼

�
2kπ
L

�
2

gAB: ð56Þ

It is a fact that given the simple form of the matrix, it is
possible to keep it in the exponential and treat it exactly
without having to use the small proper time expansion.
Nevertheless, the rest of the operator cannot be treated
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exactly so that we use the small proper time approximation
for the remaining operator

Δk
AB ¼ −gAB□̄ð3Þ þ YAB: ð57Þ

Integrating (54) over τ yields

W ¼ −
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q
1

ð4πÞ3=2

× tr
X∞
k¼−∞

X∞
p¼0

ðapÞAB½ðMkÞ3=2−p�BAΓ
�
p −

3

2

�
: ð58Þ

We see that we need to multiply the matrix of the heat
kernel coefficients with the mass matrix. Before going on,
let us note that the mass matrix has a very simple form
when we raise one of the generalized indices A, this is done
using the internal metric defined in Appendix A, namely,

ðMkÞAB ¼
�
2kπ
L

�
2

δAB; ð59Þ

so that any power of this matrix equals the identity matrix.
Taking this into account and taking the sum of the first three
heat kernel coefficients we get

W ¼ −
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q
1

ð4πÞ3=2

× tr
X∞
k¼−∞

��
2kπ
L

�
3

Γ
�
−
3

2

�
a0ðΔÞAA

þ
�
2kπ
L

�
Γ
�
−
1

2

�
a1ðΔÞAA

þ Γ
�
1

2

��
L
2kπ

�
a2ðΔÞAA

�
: ð60Þ

In order to extract the finite part of the mode sums,
we use here the zeta function regularization given near
s ¼ 1 by

ζðsÞ¼
X∞
n¼0

1

ns
¼ 1

s−1
þ γE− γ1ðs−1ÞþOðs−1Þ2; ð61Þ

so that we take the γE as the finite part of ζð1Þ (the details of
the regularization can be found in Appendix D). We also
need the values of ζð−1Þ and ζð−3Þ which are well known.
With all of this, the effective action finally reads

W ¼ −
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q �
π2

15L3
þ 1

24L

�
2m2 þ ð10m2κ2 þ λÞϕ̄2 þ 5

6
κ2λϕ̄4 − 11κ2∇̄νϕ̄∇̄νϕ̄

�
þ L
4π2

γE

�
m4

4
þ
�
−
13

6
m4κ2 þm2

4
λ

�
ϕ̄2 þ

�
−
57

40
m4κ4 −

55

72
m2κ2λþ λ2

16

�
ϕ̄4

−
κ2λ

80
ð19m2κ2 þ 5λÞϕ̄6 −

19

1920
κ4λ2ϕ̄8 − κ2

�
2m2 þ 1

3
λϕ̄2

�
ϕ̄ □̄ ϕ̄−

11

12
m2κ2∇̄μϕ̄∇̄μϕ̄

þ
�
57

40
m2κ4 −

11

24
κ2λ

�
ϕ̄2∇̄μϕ̄∇̄μϕ̄þ 19

160
κ4λϕ̄4∇̄μϕ̄∇̄μϕ̄þ κ2□̄ ϕ̄ □̄ ϕ̄þ 203

80
κ2∇̄μϕ̄∇̄μϕ̄∇̄νϕ̄∇̄νϕ̄

��
: ð62Þ

Taking κ ¼ 0 in our result does not yield directly the
purely scalar part of it. Instead, we get the sum of the
contributions of the scalar field in a fixed background and
the purely gravitational part. This result can be understood
by noticing that the κ → 0 limit is equivalent to the
decoupling limit of gravity. In this limit, there is no
interaction between the gravitons and the scalar field and
the result is the independent sum of the contributions of the
different fields.
For massless scalars, in flat space, the well-known result

is given in Eq. (12). Taking the 1=L3 contribution in (62),
and splitting it as the sum of the pure gravitational piece
(which contains the contribution of the ghost Lagrangian)

and the piece coming from the scalar field in the gravita-
tional background, we have

E0 ¼ −
π2

15L3
¼ 1

V3

ðWg þWϕÞ ¼ −
2π2

45L3
−

π2

45L3
: ð63Þ

The purely scalar part matches the Casimir energy found in
(12). It is worth highlighting the fact that the contribution of
gravitons to the vacuum energy is exactly twice the one
of a single scalar. This is what happens in flat spacetime
(for an incomplete list of references see [27–32]), but we
see here that it stays true even in our quite general
spacetime backgrounds. We can now compute the one-
loop “energy-momentum tensor” given by
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Tμν ¼ 2ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q δW
δḡμν

¼ −
π2

15L3
ḡμν −

1

12L

��
m2 þ

�
5m2κ2 þ λ

2

�
ϕ̄2 þ 5

12
κ2λϕ̄4 −

11

2
κ2∇̄λϕ̄∇̄λϕ̄

�
ḡμν þ 11κ2∇̄μϕ̄∇̄νϕ̄

�
−

L
8π2

γ

��
m4

2
þ 1

6
ð−26m4κ2 þ 3m2λÞϕ̄2 þ

�
−
57

20
m4κ4 −

55

36
m2κ2λþ λ2

8

�
ϕ̄4

−
κ2λ

40
ð19m2κ2 þ 5λÞϕ̄6 −

19

960
κ4λ2ϕ̄8 þ 13

6
m2κ2∇̄λϕ̄∇̄λϕ̄þ 1

60
ð171m2κ4 − 55κ2λÞϕ̄2∇̄λϕ̄∇̄λϕ̄

þ 19

80
κ4λϕ̄4∇̄λϕ̄∇̄λϕ̄þ 2κ2□̄ ϕ̄ □̄ ϕ̄þ 203

40
κ2∇̄ρϕ̄∇̄ρϕ̄∇̄σϕ̄∇̄σϕ̄

�
ḡμν −

13

3
m2κ2∇̄μϕ̄∇̄νϕ̄

−
1

30
ð171m2κ4 − 55κ2λÞϕ̄2∇̄μϕ̄∇̄νϕ̄ −

19

40
κ4λϕ̄4∇̄μϕ̄∇̄νϕ̄ −

203

10
κ2∇̄μϕ̄∇̄λϕ̄∇̄λϕ̄∇̄νϕ̄

þþ8κ2∇̄μ
□̄ ϕ̄ ∇̄νϕ̄

�
: ð64Þ

Taking ϕ̄ constant, the result for massless scalars with no
interaction reduces to

Tμν ¼ −
π2

15L3
ḡμν; ð65Þ

which is in agreement with the classical Refs. [6,33] to the
extent that they can be compared. They are mainly
interested in the parallel plates situation; whereas we are
computing the change in vacuum energy due to compacti-
fication in a circle.

IV. DYNAMICAL TRANSVERSE GRAVITY

When we functionally integrate over unimodular metrics
only (which is of course not the same thing as GR in the
gauge jḡj ¼ 1) then the background-field-independent term
in the effective action does not couple at all to the graviton
(just because

ffiffiffiffiffijḡjp ¼ 1). Nevertheless in this case a curious
thing happens. Namely, the invariance under transverse
diffeomorphisms (TDiff) with generators that obey

∂μξ
μ ¼ 0 ð66Þ

is not enough to imply conservation of the energy-
momentum tensor corresponding to the background fields,
but only guarantees the existence of some spacetime
function TðxÞ such that

∇α
∂S
∂gαβ ¼ ∂βTðxÞ: ð67Þ

As is well known, Bianchi identities allow now for an
arbitrary cosmological constant, which appears here as an
integration constant in the background equations of motion.
But the role of this integration constant seems to be

somewhat mysterious in the sense that it does not
couple with the graviton at all. It could even be that this
means that only the zero value for this constant is fully
consistent.
In this section we want to perform the same computation

we did for GR but restricted to the unimodular theory. The
unimodular action corresponding to a scalar field mini-
mally coupled to the gravitational field can be written in
terms of an unconstrained metric ĝμν as

SUG¼−
1

2κ2

Z
dnxjĝj1n

�
R̂þ2Λþðn−1Þðn−2Þ

4n2
ĝμν∂μĝ∂νĝ

ĝ2

− κ2ĝμν∂μϕ∂νϕ

�
; ð68Þ

where we have written the original unimodular metric as
gμν ¼ ĝ−1=nĝμν. This action however has a complicated
symmetry sector because of the artificial Weyl invariance
that we have introduced when writing the theory in terms of
an unconstrained metric (the theory is invariant under
ĝμν → Ω2ĝμν). In order to be able to carry out the compu-
tation, we shall employ a trick first devised in [34]. Let us
go through their arguments to introduce the framework we
will use.
We can first generalize the unimodular action by

incorporating some arbitrary functions of the determinant
of the metric in front of the invariant measure

S ¼ −
1

2κ2

Z
dnx

ffiffiffiffiffi
jĝj

p
ðfðĝÞR̂þ 2ΛfΛðĝÞ

þ fφðĝÞĝμν∂μĝ∂νĝ − κ2fϕðĝÞĝμν∂μϕ∂νϕÞ: ð69Þ

In this way, we now have the most general transverse
diffeomorphism invariant action, and the unimodular action
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(68) is then a particular case of (69) for the following values
of the functions:

fðxÞ ¼ x
2−n
2n ;

fφðxÞ ¼
ðn − 1Þðn − 2Þ

2n2
x
2−5n
2n ;

fϕðxÞ ¼ x
2−n
2n ;

fΛðxÞ ¼ x
2−n
2n : ð70Þ

The action (69) is only invariant under the diffeomor-
phisms that leave the determinant unchanged. Nevertheless,
we can now introduce a compensator field CðxÞ such that

σ̂ðxÞ≡ ĝC2ðxÞ ð71Þ

transforms as a true scalar, and then, we restore full
diffeomorphism invariance (at the cost of introducing a
new degree of freedom). The TDiff invariant action
corresponds to the unitary gauge C ¼ 1. The generalized
action then reads

S ¼ −
1

2κ2

Z
dnx

ffiffiffiffiffi
jĝj

p
ðfðσ̂ÞR̂þ 2ΛfΛðσ̂Þ

þ fφðσ̂Þĝμν∂μσ̂∂νσ̂ − κ2fϕðσ̂Þĝμν∂μϕ∂νϕÞ: ð72Þ

As a final step, we want to change to the Einstein frame
so that the kinetic term of the graviton takes the canonical
form. We start by performing a Weyl rescaling

gμν ≡Ω2ĝμν;

σ ≡Ω2nσ̂; ð73Þ

where the conformal factor Ω is such that Ωn−2 ¼ fðσ̂Þ. In
this way, the gravitational piece of the action is written in
Einstein’s frame, so that we have

ffiffiffiffiffi
jĝj

p
fðσ̂ÞR̂ ¼

ffiffiffiffiffi
jgj

p
Rþ…: ð74Þ

After this Weyl transformation, the action transforms into

S ¼ −
1

2κ2

Z
dnx

ffiffiffiffiffi
jgj

p
½Rþ 2ΛFΛðΩÞ − κ2fϕðf−1ðΩn−2ÞÞΩ2−ngμν∂μϕ∂νϕ�

þ 1

2κ2

Z
dnx

ffiffiffiffiffi
jgj

p �
2ðn − 1Þðn − 2Þ

Ω2
−Ω2−nfφðf−1ðΩn−2ÞÞ

�∂f−1ðΩn−2Þ
∂Ω

�
2
�
gμν∂μΩ∂νΩ; ð75Þ

where we have defined FΛðΩÞ≡ ΩnfΛðf−1ðΩn−2ÞÞ. We can now make one final redefinition given by�
2ðn − 1Þðn − 2Þ

Ω2
−Ω2−nfφðf−1ðΩn−2ÞÞ

�∂f−1ðΩn−2Þ
∂Ω

�
2
�
gμν∂μΩ∂νΩ≡ κ2gμν∂μφ∂νφ: ð76Þ

After all these steps we finally arrive at a quite simple action for gravity coupled to two scalar degrees of freedom, one of
them with a nonminimal coupling, which reads

S ¼ −
1

2κ2

Z
dnx

ffiffiffiffiffi
jgj

p
½Rþ 2ΛFΛðφÞ − κ2gμν∂μφ∂νφ − κ2FϕðφÞgμν∂μϕ∂νϕ�: ð77Þ

In this formula, we have also defined FϕðφÞ ¼
fϕðf−1ðΩn−2ÞÞΩ2−n.
As an important remark, let us mention however that the

preceding set of transformations are not strictly valid in the
unimodular case because (76) vanishes when particulariz-
ing it for (70). This means that there is no way of writing
ΩðφÞ if the kinetic term vanishes for the new field. This
leads to the noninvertibility of the Weyl transformations so
that we cannot go back to the Jordan frame. In other words,
there is no way to implement Einstein’s frame in unim-
odular gravity via a Weyl transformation. Nonetheless,
there is some evidence based upon the results in [34], that
computing for general fðxÞ and particularizing at the end to
the value fðxÞ → x

2−n
2n one gets the correct result, at least for

the divergent piece of the effective action. In particular, it
was shown there that whenever

2ðn − 1Þf0ðxÞ2 − ðn − 2ÞfðxÞfφðxÞ ¼ 0; ð78Þ

the theory is on-shell one-loop finite [34]. Unimodular
gravity corresponds to

fφðxÞ ¼
ðn − 1Þðn − 2Þ

2n2
x
2−5n
2n ; ð79Þ

that is, it saturates this equality. It is quite remarkable that
the only transverse theories which are on-shell one-loop
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finite are precisely Einstein’s general relativity and unim-
odular gravity.
In this section, we carry on with the computation for a

general transverse theory. In order to make the computation
feasible, we will expand the scalar fields around constant
backgrounds (so that the kinetic term of the real scalar field
is just −Fϕðφ̄Þϕ□̄ϕ and the nondiagonal terms with
derivatives vanish). The scalar equation of motion implies
that ϕ̄ constant is a solution only in the massless and non-
self-interacting case. This is the reason why we take this
simple example instead of the massive interacting scalar
field of the previous section.
Let us start with the computation of this simple model.

We have two scalar fields with constant backgrounds plus
the graviton. Taking the quadratic piece after the expansion
(45), together with the gauge fixing action, we have

S2þgf ¼ 1

2

Z ffiffiffiffiffi
jḡj

p
d4xΦAΔABΦB; ð80Þ

where the generalized field is now

ΦA ≡
0B@hαβ

ϕ

φ

1CA: ð81Þ

Again, the operator has the symbolic form

ΔAB ¼ −

0B@Cαβμν 0 0

0 FϕðφÞ 0

0 0 1

1CA□̄þ YAB: ð82Þ

The details of the computation can be found in Appendix A.
Performing the same mode expansion as before (51) we then
have

S2þgf ¼
1

2

Z
d3x

ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q X
k

ðΦA
kΔk

ABΦB
k Þ; ð83Þ

where we can separate the contribution coming from the
compact dimension and define

Δk
AB ¼ −

0B@Cαβμν 0 0

0 FϕðφÞ 0

0 0 1

1CA□̄
ð3Þ

−
�
2kπ
L

�
2

0B@Cαβμν 0 0

0 FϕðφÞ 0

0 0 1

1CAþ YAB: ð84Þ

Taking the same definitions of the previous section we then
have

W¼−
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q
1

ð4πÞ3=2 tr
X∞
k¼−∞

X∞
p¼0

ðapÞAB½ðMkÞ3=2−p�BA

×Γ
�
p−

3

2

�
: ð85Þ

We need to compute the heat kernel coefficients of the
operator that we obtain when we subtract the part of the
masses involving the mode number. Again, the mass matrix
has a very simple form when we raise one of the generalized
indices A, namely,

ðMkÞAB ¼
�
2kπ
L

�
2

δAB; ð86Þ

so that any power of thismatrix just yields the identitymatrix.
Taking this into account and taking the sum of the first

three heat kernel coefficients we get

W ¼ −
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q
1

ð4πÞ3=2 tr
X∞
k¼−∞

��
2kπ
L

�
3

Γ
�
−
3

2

�
a0ðΔÞAA

þ
�
2kπ
L

�
Γ
�
−
1

2

�
a1ðΔÞAA þ Γ

�
1

2

��
L
2kπ

�
a2ðΔÞAA

�
: ð87Þ

Finally, using the gravitational equation of motion,

R̄μν ¼
1

2
ḡμν þ FΛðφÞḡμνΛ; ð88Þ

the on-shell effective action reads

W ¼
Z

d3x
ffiffiffiffiffiffiffiffiffiffi
jḡjð3Þ

q �
−

4π2

45L3
−
Λ
L

�
7

9
FΛðφÞ þ

F00
ΛðφÞ
12κ2

�
þ LγEΛ2

π2

�
−
F00
ΛðφÞ2
16κ4

þ FΛðφÞF00
ΛðφÞ

12κ2
þ F0

ΛðφÞ2
2κ2

þ 7

5
FΛðφÞ2

��
: ð89Þ
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Let us comment now on the result we obtain. First of all, we
focus on the leading term, which is four times the energy of
a scalar field, as we could already anticipate from the
counting of the degrees of freedom. But this result cannot
be correct in the unimodular limit, as there is no arbitrary
function that prevents the coupling of this volume term to
gravity. This is due to the singular limit mentioned at the
beginning of the computation. When (76) vanishes, there is
no kinetic term for the new field φ and that leads to a
noninvertible internal metric CAB. The volume term is
special because it is only dependent on the trace of the
identity given by the product of the internal metric with its
inverse, so this clearly fails in the unimodular limit because
of the singular character of this matrix.
Second, we see that the subleading terms depend on the

cosmological constant and the arbitrary function in front of
the original term in the action. Taking the unimodular limit,
this function has to be able to cancel the square root of the
determinant of the metric so that the cosmological constant
does not couple to gravity in the unimodular case, as it is
well known. Nevertheless, as the unimodular limit turns out
to be singular (there is no way of going to the Einstein
frame), we cannot trust these results in that limit either.
However, it is fortunate that at this point we can rely on an
independent calculation of the vacuum energy in unim-
odular gravity by two different groups [35,36]. Both groups
show that in that case, the vacuum energy does not couple
to the gravitational field, that is, it does not weigh in the
same sense as all other forms of energy.

V. CONCLUSIONS

In this paper we have discussed the quantum field
vacuum energy in several contexts. In the background
field formalism that we use all along, vacuum energy
appears as the field-independent term of the effective
potential, that is, a cosmological constant. This is true
no matter whether the gravitational field is considered as a
nondynamical background, or else as a quantized dynami-
cal entity. In that sense the weight of the vacuum energy is
guaranteed ab initio to be the same as any other form of
energy and no ambiguity should arise.
We have studied spacetime manifolds of the type T 3 × R

(where the real line represents time), which are particularly
interesting from the physical point of view. The general case
corresponding tomanifolds of the form F3 ×R, F3 being flat,
were completely classified byWolf in his famous book [17].
For the sake of brevity, we have only derived a general
formula for the effective potential density of T 3 ×R mani-
folds, although we conjecture that our calculation could be
easily extended to the other flat manifolds in Wolf’s list. We
find a quite simple (albeit nonlocal) relationship between
physics at radiusR and physics at radius l2s=R. This relation-
ship, which ultimately stems from Poisson’s summation
formula and the magic of Riemann’s theta functions, is
somewhat similar to the one appearing in string theory. The

difference is that the free energy and its dual are not
proportional but rather related through an integral transform.
We have also studied quantum gravity corrections to the

vacuum energy and find an unambiguous energy-momen-
tum tensor for the vacuum energy. This tells us how
vacuum energy weighs, in agreement with the equivalence
principle, as we argued earlier on. It is also remarkable that
the contribution of gravitons to the vacuum energy is twice
the one stemming from scalars. This was already known in
flat spacetime but we have showed that it remains true for
quite general backgrounds.
Finally, we have extended our calculation to transverse

gravity, invariant under transverse diffeomorphisms only
(those are the ones such that its generating vector field is
transverse, that is, ∂μξ

μ ¼ 0). Unfortunately our techniques
fail in the most interesting case, which is the case of
unimodular gravity. General arguments however guarantee
that vacuum energy does not weigh in this case. In fact this
is not exactly true, owing to self-consistency imposed by
Bianchi identities, but at any rate the weigh should remain
independent of E0.
This is a physical prediction, which could be verified in a

laboratory. This allows unimodular gravity to be disproved.
We are aware of the difficulties of such an experiment, but
hopefully precision measurements would be carried out in
the future years. One should never underestimate the
ingenuity of our experimental colleagues.
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APPENDIX A: SOME DETAILS
OF THE COMPUTATIONS

1. The effect of dynamical gravity on the vacuum energy

For the first computation, we take the following action:

S ¼
Z

dnx
ffiffiffiffiffi
jgj

p �
−

1

2κ2
Rþ 1

2
∂μϕ∂μϕ −

m2

2
ϕ2 −

λ

4!
ϕ4

�
;

ðA1Þ

together with the classical background expansion

gμν ¼ ḡμν þ κhμν;

ϕ ¼ ϕ̄þ ϕ: ðA2Þ
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The equations of motion for this action then read

R̄μν −
1

2
ḡμνR̄þ κ2

2
ḡμν∇̄ρϕ̄∇̄ρϕ̄ − κ2∇̄μϕ̄∇̄νϕ̄

þ κ2ḡμν

�
−
m2

2
ϕ̄2 −

λ

4!
ϕ̄4

�
¼ 0;

− □̄ ϕ̄−m2ϕ̄ −
λ

6
ϕ̄3 ¼ 0: ðA3Þ

We use a generalized De Donder gauge given by

SGF ¼
Z

dnx
ffiffiffiffiffi
jḡj

p 1

4
ḡμνχμχν ðA4Þ

with

χν ¼ ∇̄μhμν −
1

2
∇̄νh − 2κϕ∇̄νϕ̄: ðA5Þ

The quadratic piece of the action, after gauge fixing, takes
the form

S2þgf ¼ 1

2

Z ffiffiffiffiffi
jḡj

p
d4xΦAΔABΦB ðA6Þ

where

ΔAB ¼ −gAB□̄þ YAB ðA7Þ

and

ψA ≡
�
hαβ

ϕ

�
: ðA8Þ

The internal metric takes the form

gAB ¼
�
Cαβμν 0

0 1

�
ðA9Þ

with

Cμνρσ ¼
1

8
ðḡμρḡνσ þ ḡμσ ḡνρ − ḡμνḡρσÞ;

Cμνρσ ¼ 2

�
ḡμρḡνσ þ ḡμσ ḡνρ −

2

n − 2
ḡμνḡρσ

�
: ðA10Þ

The components of YAB are also detailed below

Yhh
AB ¼ 1

8
ðḡαμḡβν þ ḡανḡβμ − ḡαβḡμνÞR̄þ 1

4
ðḡαβR̄μν þ ḡμνR̄αβÞ

−
1

8
ðḡαμR̄βν þ ḡανR̄βμ þ ḡβμR̄αν þ ḡβνR̄αμÞ −

1

4
ðR̄μανβ þ R̄ναμβÞ

þ κ2

4
ðḡαμ∇̄βϕ̄∇̄νϕ̄þ ḡαν∇̄βϕ̄∇̄μϕ̄þ ḡβμ∇̄αϕ̄∇̄νϕ̄þ ḡβν∇̄αϕ̄∇̄μϕ̄Þ

−
κ2

4
ðḡαβ∇̄μϕ̄∇̄νϕ̄þ ḡμν∇̄αϕ̄∇̄βϕ̄Þ

−
κ2

4
ðḡαμḡβν þ ḡανḡβμ − ḡαβḡμνÞ

�
1

2
∇̄ρϕ̄∇̄ρϕ̄ −

m2

2
ϕ̄2 −

λ

4!
ϕ̄4

�
;

Yhϕ
AB ¼ Yϕh

AB ¼ 2κ

�
1

2
∇̄α∇̄βϕ̄ −

1

4
ḡαβ□̄ ϕ̄−ḡαβ

m2

4
ϕ̄ −

λ

4!
ḡαβϕ̄3

�
;

Yϕϕ
AB ¼ −m2 −

λ

2
ϕ̄2 þ 2κ2∇̄ρϕ̄∇̄ρϕ̄: ðA11Þ

The contribution coming from the ghost loops is also
needed. The ghost Lagrangian is obtained performing a
variation on the gauge fixing term

δχν ¼
1

κ
ð□̄ḡμν þ R̄μν − 2κ2∇̄μϕ̄∇̄νϕ̄Þξμ; ðA12Þ

plus terms that give operators cubic in fluctuations and
therefore are irrelevant at one loop. The ghost Lagrangian
then reads

Sgh ¼
1

2

Z
dnx

ffiffiffiffiffi
jḡj

p 1

2
V�
μð−□̄ḡμν − R̄μν þ 2κ2∇̄μϕ̄∇̄νϕ̄ÞVν:

ðA13Þ

With these, we can compute the traces of the different total
heat kernel coefficients, where we also include the ghost
contribution (the extra factor is coming from the fermion
loop and from the complex character of the ghosts)
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tr½ða0ðΔÞ − 2aghost0 ðΔÞÞðgABÞ3=2� ¼ 3;

tr½ða1ðΔÞ − 2aghost1 ðΔÞÞðgABÞ1=2� ¼ m2 þ
�
5m2κ2 þ λ

2

�
ϕ̄2 þ 5

12
κ2λϕ̄4 −

11

2
κ2∇̄νϕ̄∇̄νϕ̄;

tr½ða2ðΔÞ − 2aghost2 ðΔÞÞðgABÞ−1=2� ¼
m4

2
þ 1

6
ð−26m4κ2 þ 3m2λÞϕ̄2

þ
�
−
57

20
m4κ4 −

55

36
m2κ2λþ λ2

8

�
ϕ̄4 −

κ2λ

40
ð19m2κ2 þ 5λÞϕ̄6 −

19

960
κ4λ2ϕ̄8

− κ2
�
4m2 þ 2

3
λϕ̄2

�
ϕ̄ □̄ ϕ̄−

11

6
m2κ2∇̄μϕ̄∇̄μϕ̄þ 1

60
ð171m2κ4 − 55κ2λÞϕ̄2∇̄μϕ̄∇̄μϕ̄

þ 19

80
κ4λϕ̄4∇̄μϕ̄∇̄μϕ̄þ 2κ2□̄ ϕ̄ □̄ ϕ̄þ 203

40
κ2∇̄μϕ̄∇̄μϕ̄∇̄νϕ̄∇̄νϕ̄: ðA14Þ

2. Dynamical transverse gravity

For the computation regarding TDiff invariant theories,
the starting point is the action given by

S ¼ −
1

2κ2

Z
dnx

ffiffiffiffiffi
jgj

p
½Rþ 2ΛFΛðφÞ

− κ2gμν∂μφ∂νφ − κ2FϕðφÞgμν∂μϕ∂νϕ�: ðA15Þ

For this computation, we consider that the background
value of the two scalar fields is constant and we expand the
graviton in the usual way

gμν ¼ ḡμν þ κhμν;

ϕ ¼ ϕ̄þ ϕ;

φ ¼ φ̄þ φ: ðA16Þ

Then, the quadratic piece of the action after gauge fixing
(the De Donder gauge is enough here as the scalar fields
have constant backgrounds) takes the form

S2þgf ¼ 1

2

Z ffiffiffiffiffi
jḡj

p
d4xΦAΔABΦB; ðA17Þ

where now the generalized field contains the extra scalar
field

ΦA ≡
0B@hαβ

ϕ

φ;

1CA ðA18Þ

and the operator has again the symbolic form

ΔAB ¼

0B@−Cαβμν□̄ 0 0

0 −FϕðφÞ□̄ 0

0 0 −□̄

1CAþ YAB: ðA19Þ

In this case, the components of YAB are

Yhh
AB ¼ 1

8
ðḡαμḡβν þ ḡανḡβμ − ḡαβḡμνÞR̄þ 1

4
ðḡαβR̄μν þ ḡμνR̄αβÞ

−
1

8
ðḡαμR̄βν þ ḡανR̄βμ þ ḡβμR̄αν þ ḡβνR̄αμÞ

−
1

4
ðR̄μανβ þ R̄ναμβÞ

þ 1

4
ðḡαμḡβν þ ḡανḡβμ − ḡαβḡμνÞΛFΛ½φ�;

Yhφ
AB ¼ Yφh

AB ¼ −
1

2κ
ḡαβΛF0

Λðφ̄Þ;

Yφφ
AB ¼ −

1

κ2
ΛF00

Λðφ̄Þ: ðA20Þ

Finally, the trace of the heat kernel coefficients reads

tr½ða0ðΔÞ − 2aghost0 ðΔÞÞðgABÞ3=2� ¼ 4;

tr½ða1ðΔÞ − 2aghost1 ðΔÞÞðgABÞ1=2� ¼
28

3
ΛFΛ½φ� þ

Λ
κ2

F00
Λ½φ�;

tr½ða2ðΔÞ − 2aghost2 ðΔÞÞðgABÞ−1=2�

¼ −
56

5
ΛF2

Λ½φ� −
4Λ2

κ2
F0
Λ½φ�2 −

2Λ2

3κ2
FΛ½φ�F00

Λ½φ�

þ Λ2

2κ4
F00
Λ½φ�2: ðA21Þ

APPENDIX B: THE DUAL ROLE
OF THE MASSES

Consider the operator O given by

O≡ −ð□ −m2Þ; ðB1Þ

with constant m. The heat kernel coefficients can be found
in the literature so that the divergent piece (in n ¼ 4) of the
operator reads
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1

2
log detΔ ¼ 1

n − 4

1

ð4πÞ2
�
−
1

6
R̄M2 þ 1

2
M4

þ 1

360
ð5R̄2 − 2R̄2

μν þ 2R̄2
μνρσÞ

�
: ðB2Þ

There is however another way of computing the same
divergent piece of the determinant, namely, integrating the
mass independently

1

2
log detΔ ¼ −

1

2

Z
dτ
τ

1

ð4πτÞn=2 e
−m2τ

X∞
p¼0

apτp

¼ −
1

ð4πÞn=2
X∞
p¼0

apmn−2pΓ
�
p −

n
2

�
; ðB3Þ

so that all of the mass dependence is treated exactly. In
n ¼ 4 − ϵ we have

1

2
log detΔ¼ 1

n−4

1

ð4πÞ2 ½a2ð□̄Þ−M2a1ð□̄Þþ1

2
M4a0ð□̄Þ�:

ðB4Þ

The difference here is that apð−□Þ is independent ofm and
taking the values of the various heat kernel coefficients
from the literature we get

a0ð□̄Þ ¼ 1;

a1ð□̄Þ ¼ 1

6
R̄;

a2ð□̄Þ ¼ 1

360
ð5R̄2 − 2R̄2

μν þ 2R̄2
μνρσÞ: ðB5Þ

We see that we obtain the same result using both methods.

APPENDIX C: THETA FUNCTIONS

Let us summarize the definitions and the principal
properties of theta functions that are used in the paper
(for an exhaustive exposition, see the classical text of
Mumford [20]).

1. Poisson summation formula

Many of the most interesting properties of the theta
functions are a simple consequence of Poisson’s summa-
tion formula which states that the sum over the integers of a
function and of its Fourier transform is the same,X

m∈Z
fðmÞ ¼

X
n∈Z

f̃ðnÞ; ðC1Þ

provided we define the Fourier transform as

f̃ðpÞ≡
Z

∞

−∞
dxe−2πixpfðxÞ: ðC2Þ

In order to prove Poisson’s formula, let us define a new
function

hðxÞ≡X
q∈Z

fðxþ qÞ: ðC3Þ

It can be expanded in a Fourier series as

hðxÞ≡ X
m∈Z

cme2πimx; ðC4Þ

with coefficients

cm ≡
Z

1

0

dx hðxÞe−2πimx ¼
Z

1

0

dx
X
q∈Z

fðxþ qÞe−2πimx

¼
X
q∈Z

Z
qþ1

q
dy fðyÞe2πimðy−qÞ

¼
Z

∞

−∞
dy fðyÞe2πimy ¼ f̃ð−mÞ: ðC5Þ

Now we have by definitionX
m∈Z

fðmÞ ¼ hð0Þ; ðC6Þ

and X
m∈Z

f̃ð−mÞ ¼
X
m∈Z

cm ¼ hð0Þ: ðC7Þ

Let us now apply Poisson’s formula to the function

fðxÞ ¼ eπx
2τ ðC8Þ

whose Fourier transform reads

f̃ðpÞ ¼ 1ffiffiffi
τ

p e−
πp2

τ : ðC9Þ

It follows that X
x∈Z

eπx
2τ ¼ 1ffiffiffi

τ
p

X
p∈Z

e−
πp2

τ ðC10Þ

which is the basis of the modular properties of all theta
functions.

2. Jacobi’s theta function

Jacobi’s theta functions is defined as

ϑðzjτÞ≡X
n∈Z

eπin
2τþ2πinz; ðC11Þ

and obeys the differential equation given by
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∂
∂τ ϑðzjτÞ ¼

i
4π

∂2

∂z2 ϑðzjτÞ: ðC12Þ

This is nothing but the heat equation with proper time

τproper ¼
i
4π

τ: ðC13Þ

Moreover, taking the small proper time limit we obtain

lim
τ→0

ϑðzjτÞ ¼
X
n∈Z

e2πinz ¼
X
p∈Z

δðz − pÞ: ðC14Þ

A very important property of this function is the
modular property. Consider ða; b; c; dÞ ∈ Z and such that
ad − bc ¼ 1. Then

ϑ

�
z

zτ þ d

				 aτ þ b
cτ þ d

�
¼ ζðcτ þ dÞ1=2eπiz2 c

cτþdϑðzjτÞ: ðC15Þ

This is quite simple to prove for θð0jiτÞ by using Poisson‘s
summation formula, presented in the previous section,
Appendix C 1. As a particular case we have

ϑ

�
0

				 − 1

τ

�
¼ τ1=2ϑð0jτÞ: ðC16Þ

3. Riemann theta function

The Riemann theta function is a generalization of the
Jacobi theta function. Taking

Hn ¼ fF ∈ Mðn;CÞjF ¼ FT ImF > 0g ðC17Þ

to be the set of symmetric square matrix whose imaginary
part is positive definite, and given Ω ∈ Hn the Riemann
theta function is defined as

ΘðzjΩÞ ¼
X
m∈Zg

exp

�
2πi

�
1

2
mTΩmþmTz

��
: ðC18Þ

Here, z ∈ Cg is a g-dimensional complex vector, and the
superscript T denotes the transpose. By construction, the
Riemann theta function is periodic in ðz − z0Þ

Θðz − z0jΩÞ ¼ Θðz − z0 þmjΩÞ ðC19Þ

for arbitrary m ∈ Zg.
The modular property reads [20]

Θð½½CΩτ þD�−1�T · zj½AΩτ þ B�½CΩτ þD�−1Þ
¼ tγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½CΩτ þD�

p
eπiz·½½½CΩτþD�−1C�·zΘðzjΩτÞ; ðC20Þ

where ðtγÞ8 ¼ 1 and γ ≡ ðAC B
DÞ ∈ Spð4;ZÞ.

4. Dimensional reduction and oxidation

Consider a scalar field in a gravitational background as
the one considered previously

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p
ϕðx; yÞ□4ϕðx; yÞ: ðC21Þ

Working on a manifold of the formM4 ≡M3 × S1, we can
expand in the field in harmonics

ϕðx; yÞ ¼ 1ffiffiffiffi
L

p ϕnðxÞein2πy=L; ðC22Þ

so that the quadratic part of the action reads (after the
integration of the compact dimension)

S¼
X
n

Z
d3x

ffiffiffiffiffiffiffiffiffiffi
jgjð3Þ

q
ϕnðxÞ

�
□3þ

�
2πn
L

�
2
�
ϕnðxÞ: ðC23Þ

Our aim is to show that when L → 0 (reduction) the
theory reduces to a three-dimensional one, and that when
L → ∞ the theory cannot be told apart from the ordinary
four-dimensional one (oxidation). The heat kernel we are
interested in can be factorized as

trKM3×S1ðτÞ ¼ trKM3
ðτÞϑ

�
0

				 iτ
πL2

�
¼ trKM3

ðτÞ
�
iπL2

τ

�
1=2

ϑ

�
0

				iπ L2

τ

�
; ðC24Þ

where we have used the property (C16) in the last equality.
The problem is how to recover four-dimensional results

out of three-dimensional ones. Reduction is easy, because

lim
L→0

ϑ

�
0

				 iτ
πL2

�
¼ 1; ðC25Þ

trKM3×S1ðτÞ ¼ trKM3
: ðC26Þ

Oxidation is also clear, just because we also have

lim
L→∞

ϑð0jiπL2Þ ¼ 1; ðC27Þ

and then,

trKM3×S1ðτÞ ¼ trKM3
ðτÞ

�
iπL2

τ

�
1=2

: ðC28Þ

It would be interesting to discover the physical interpre-
tation of the factor ðiπL2

τ Þ1=2.
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APPENDIX D: REGULARIZATION OF ζð1Þ
Throughout the text, we make use of the zeta function

regularization in various computations. In this appendix we
go through some of the details used for the ζð1Þ case.
We take as the starting point the sum given by

Xn¼∞

n¼1

1

n
≡ lim

ϵ→0

Xn¼∞

n¼1

1

n
e−ϵn; ðD1Þ

and define

SðϵÞ≡ Xn¼∞

n¼1

1

n
e−ϵn: ðD2Þ

Taking a first derivative of this function we obtain

dSðϵÞ
dϵ

¼ −
Xn¼∞

n¼1

e−ϵn ¼ 1

1 − eϵ
; ðD3Þ

so that we can further write

SðϵÞ ¼ ϵ − logðeϵ − 1Þ þ C: ðD4Þ

Taking the limit when ϵ → 0, we finally get

SðϵÞ ∼ log jϵj þ C: ðD5Þ

Let us note that we have implemented the boundary
condition

lim
ϵ→∞

SðϵÞ ¼ 0: ðD6Þ

We can now determine the constant C taking

Sð0Þ ¼
X∞
n¼1

1

n
¼ ζð1Þ ¼ ∞ ðD7Þ

which does not seem to help. Nevertheless, near s ¼ 1 on
the real axis

ζðsÞ ¼ 1

s − 1
þ γE − γ1ðs − 1Þ þOðs − 1Þ2 ðD8Þ

where γE ¼ 0.5772 is Euler’s Gamma constant and γ1 ¼
−0.0728 is Stieljes’s constant. This is also true going along
the imaginary axis

ζð1þ iϵÞ ¼ 1

iϵ
þ γE − iγ1ϵþOðϵ2Þ; ðD9Þ

so that we can take the finite value of ζð1Þ ¼ γE.
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