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Numerical simulations of binary black holes are accompanied by an initial spurious burst of gravitational
radiation (called “junk radiation”) caused by a failure of the initial data to describe a snapshot of an inspiral
that started at an infinite time in the past. A previous study showed that the superposed harmonic (SH)
initial data give rise to significantly smaller junk radiation. However, it is difficult to construct SH initial
data for black holes with dimensionless spin χ ≳ 0.7. We here provide a class of spatial coordinate
transformations that extend SH to higher spin. The new spatial coordinate system, which we refer to as
superposed modified harmonic (SMH), is characterized by a continuous parameter—Kerr-Schild and
harmonic spatial coordinates are only two special cases of this new gauge. We compare SMH with the
superposed Kerr-Schild initial data by evolving several binary black hole systems with χ ¼ 0.8 and 0.9.
We find that the new initial data still lead to less junk radiation and only small changes of black hole
parameters (e.g., mass and spin). We also find that the volume-weighted constraint violations for the new
initial data converge with resolution during the junk stage ðt ≲ 700MÞ, which means there are fewer high-
frequency components in waveforms at outer regions.
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I. INTRODUCTION

The detection of GW150914 [1] and other binary
compact objects [2–6] has opened a new era in astrophys-
ics. With the improvement of detector sensitivity, more and
more events are expected to be detected in the near future
[7]. Therefore, an accurate modeling of coalescing binaries
is crucial for data analysis. Numerical relativity (NR)
remains the only ab initio method to simulate the coa-
lescence of binary black hole (BBH) systems. With NR,
one can obtain the entire BBHwaveform including inspiral,
merger, and ringdown. Moreover, gravitational wave mod-
els [8–15] used to analyze detector data are ultimately
calibrated against NR.
Numerical simulations of BBHs are based on splitting

the Einstein equation into constraint and evolution parts,
where the constraint equations provide the initial data to
evolve. However, the constructed initial data do not exactly
correspond to a quasiequilibrium state of an inspiral that
started at an infinite time in the past. For example, the tidal
distortion of a BH is not fully recovered, and the initial data
do not usually include gravitational radiation already
present. As a result, once the evolution begins, the system

relaxes into a quasiequilibrium state and gives rise to a
pulse of spurious radiation, which is referred to as “junk
radiation.” Several attempts have been made to reduce
junk radiation, by introducing post-Newtonian corrections
[16–21] or by using a curved conformal metric [18,22,23].
Recently, Varma, Scheel, and Pfeiffer [23] carried out a

systematic study of initial data and its effects on junk
radiation and computational efficiency of the subsequent
time evolution. The simulations studied in Varma, Scheel,
and Pfeiffer were performed with an NR code: the spectral
Einstein code (SpEC) [24], where the construction of initial
data is based on the extended conformal thin sandwich
(XCTS) formulation [25,26]. Within this formalism, sev-
eral free fields, including the conformal metric, must be
provided. Different choices of the free fields generate
different physical initial data; the data still correspond to
two black holes with the same desired mass ratio and spins,
but the initial tidal distortions and strong-field dynamics
differ. Varma, Scheel, and Pfeiffer showed that the junk
radiation and efficiency of the subsequent evolution depend
on the given free fields. In particular, choosing the initial
data based on two superposed black holes in time-
independent harmonic coordinates [27] [heretofore called
superposed harmonic (SH) data] leads to less junk radiation
than superposed Kerr-Schild (SKS) initial data [22], which
are typically used in SpEC simulations [28]. Varma, Scheel,*sma@caltech.edu
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and Pfeiffer also found that SH initial data have higher
computational efficiency. However, SH initial data work
well only for BHs with dimensionless spin χ ≲ 0.7. For
high-spin BHs, the horizons become so highly deformed
that it is difficult to construct initial data (cf. Fig. 10
in Ref. [23]).
For both SH and SKS initial data, the conformal spatial

metric and the trace of the extrinsic curvature are deter-
mined by superposing the analytic solutions for two single
Kerr black holes. The difference is that SKS uses the Kerr
metric in Kerr-Schild coordinates, and SH uses the Kerr
metric in time-independent harmonic coordinates [27].
It may be surprising that making a different coordinate
choice—the choice of coordinates for the single-BH
analytic solution—leads to a different physical BBH
solution. The reason is that the superposition of two
single-BH solutions does not solve the Einstein equations
for a BBH and is used to compute only some of the fields;
the remaining fields are computed by solving constraints
and by quasiequilibrium conditions. For a single black
hole, following the complete initial data procedure (includ-
ing solving the constraints numerically) for both SKS and
SH would result in the same physical Kerr metric but in
different coordinates.
In this paper, we extend SH to higher spins by using a

spatial coordinate map to transform the free data for the
single-BH conformal metric while retaining harmonic time
slicing for this single-BH conformal metric. The coordinate
transformation defines a class of spatial coordinate systems
that are characterized by a continuous parameter α. We refer
to these coordinates as the modified harmonic (MH)
coordinate system. MH coordinates are purely harmonic
with α ¼ 1 and correspond to spatial KS when α ¼ 0.
Similar to the cases of SKS and SH, initial data for a BBH
system can also be constructed by superposing two single
Kerr black holes in MH coordinates. We refer to these
initial data as superposed modified harmonic (SMH). For
the BBH systems with χ > 0.7, a value of α < 1 results in
less distorted horizons. However, it is desirable to keep α
as close to 1 as possible so that SMH data still share the
desirable properties of SH initial data.
This paper is organized as follows. In Sec. II, we

provide some basic information about how we compute
initial data and evolve BBH systems. In Sec. III, we
compare the behavior of different single-BH coordinate
systems. In particular, in Sec. III E, we explicitly point
out the numerical reason that SH does not work for high-
spin BHs. This immediately leads to a class of spatial
coordinate transformations, defined in Sec. III F, that
can cure the numerical issues. We then use the MH
coordinate system to construct initial data for BBHs (i.e.,
SMH) with χ ¼ 0.8 and 0.9 and evolve these systems. In
Sec. IV, we discuss the results of our simulations. Finally,
in Sec. V, we discuss our results and highlight possible
future work.

Throughout the paper, we use Latin letters to stand for
the spatial indices and Greek letters to represent spacetime
indices.

II. BBH INITIAL DATA AND EVOLUTION

Following the discussions in Ref. [23], we use the XCTS
formulation to construct initial data for a binary black hole
system. Within this formalism, one can freely specify the
conformal metric ḡij, trace of extrinsic curvature K, and
their time derivatives ∂tḡij and ∂tK. To obtain quasiequili-
brium initial data, we choose

∂tḡij ¼ 0; ∂tK ¼ 0: ð1Þ

The construction of the other free fields, ḡij and K, is based

on the 3-metric gβij and the trace of extrinsic curvature Kβ

of two single boosted Kerr BHs, where the superscript
β ¼ 1, 2 labels each of the two BHs in the binary system.
The conformal metric and the trace of the extrinsic
curvature are then given by

ḡij ¼ fij þ
X2
β¼1

e−r
2
β=w

2
β

�
gβij − fij

�
; ð2Þ

K ¼
X2
β¼1

e−r
2
β=w

2
βKβ; ð3Þ

respectively, where fij is the flat 3-metric and rβ is the
Euclidean coordinate distance from the center of each
BH [29]. Note that each metric is weighted by a Gaussian
with width

wβ ¼ 0.6dL1

β ; ð4Þ

where dL1

β is the Euclidean distance between the Newtonian
L1 Lagrange point and the center of the black hole labeled
by β. Here, gβij and Kβ correspond to the Kerr solution
expressed in either the KS, harmonic, or MH coordinate
systems. BBH initial data constructed from the two Kerr
solutions in the aforementioned coordinates are referred to
as SKS, SH, and SMH, respectively.
After specifying the free fields, the initial data are

completed by solving a set of coupled elliptic equations
that ensure satisfaction of the constraints and an additional
quasiequilibrium condition. Additionally, these elliptic
equations require boundary conditions. At the outer boun-
dary (typically chosen to be 109M from the sources), we
impose asymptotic flatness [cf. Eqs. (11)–(13) in Ref. [23]],
and at each inner boundary we enforce an apparent horizon
condition [cf. Eqs. (15)–(24) in Ref. [23]]. After generating
initial data in the XCTS formalism, we also need to specify
the initial gauge for time evolution. Here, we use the most
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common choice for SpEC simulations: ∂tN ¼ ∂tNi ¼ 0 in
a corotating frame, where N is the lapse function and Ni is
the shift vector. It was shown that the damped harmonic
gauge [30] is the most suitable for mergers, so we do a
smooth gauge transformation on a timescale of ∼50M
during the early inspiral, to transform from the initial gauge
to the better-suited damped harmonic gauge.

III. MODIFIED HARMONIC COORDINATE
SYSTEM

In this section, we aim to investigate the reason that
makes the harmonic coordinates problematic for high-spin
BHs. We begin with a brief review of KS coordinates in
Sec. III A. Then, in Sec. III B, we outline a method that can
be used to study the numerical behavior of Kerr metric in
different coordinate systems. It is then applied to KS spatial
coordinates with harmonic slicing in Sec. III C and to
harmonic coordinates in Sec. III D. Those analyses allow
us to explicitly show the numerical problem with using
harmonic coordinates for high-spin BHs, as discussed in
Sec. III E. Finally, in Sec. III F, we provide a coordinate
map to fix the problem.

A. Kerr in Kerr-Schild coordinates

For a stationary Kerr BH with mass M and angular
momentum χM2 in the z direction, the metric in KS
coordinates xμKS ¼ ðtKS; xKS; yKS; zKSÞ is given by [31]

ds2 ¼ gμνdx
μ
KSdx

ν
KS ¼ ðημν þ 2HlμlνÞdxμKSdxνKS; ð5Þ

where ημν is the Minkowski metric, H is a scalar function,
and lμ is a null covariant vector. The expressions for H and
lμ are not used here but can be found in Ref. [31]. With KS
coordinates, the radial Boyer-Lindquist coordinate r can be
written as [31]

r2 ¼ 1

2
ðx2KS þ y2KS þ z2KS − a2Þ

þ
�
1

4
ðx2KS þ y2KS þ z2KS − a2Þ2 þ a2z2KS

�
1=2

ð6Þ

or, equivalently,

x2KS þ y2KS
r2 þ a2

þ z2KS
r2

¼ 1: ð7Þ

Here, we have used a ¼ χM for the sake of conciseness.
The outer and inner horizons of the BH are located at

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð8Þ

B. Transforming from KS to a different
coordinate system

Now we introduce a new coordinate system xμ ¼ ðt; x;
y; zÞ, which are related to the KS coordinates xμKS through

0
BBB@

dtKS
dxKS
dyKS
dzKS

1
CCCA ¼

�
1 b

0 C

�0BBB@
dt

dx

dy

dz

1
CCCA; ð9Þ

where b is a 3D vector and C is a 3 × 3 matrix. In Eq. (9),
we have assumed that the new spatial coordinates are
independent of tKS.

1 Note that we here keep the forms of b
and C generic, so that our present discussion can be applied
to different coordinate systems.
With the Jacobian at hand, we could transform the Kerr

metric into the new coordinates and study the numerical
features of each metric component, such as the problematic
behavior of harmonic coordinates for high-spin black holes,
but this usually involves very complicated calculations.
However, since gKSμν can be decomposed into two pieces
[Eq. (5)], it is simpler to study the transformations of ημν.

2

In the new coordinates, we have

ημν ¼
�−1 0

0 I3

�
→

�
1 b

0 C

�T�−1 0

0 I3

��
1 b

0 C

�

¼
� −1 −b
−bT CTC − bTb

�
; ð10Þ

where I3 is the three-dimensional identity matrix. Both the
3-metric ðCTC − bTbÞ and the shift vector −b above are
modified by the vector b. Any numerically problematic
term in b might cause difficulty to resolve the metric in the
new coordinates. Below, we focus on the z component of b,
bz, at the inner boundary r ¼ rþ, and study its numerical
behavior for high-spin black holes (especially when
a → M) with several coordinates.

C. Kerr-Schild spatial coordinates
with harmonic slicing

We first apply our discussion in Sec. III B to a mixed
coordinate system: KS spatial coordinates together with
harmonic temporal slicing; then we have

CKSHS ¼ I3; ð11aÞ

bKSHS ¼
2M

r − r−
∇r; ð11bÞ

1Equivalently, ðxKS; yKS; zKSÞ are independent of t.
2We have checked that the same problematic terms also occur

in the Hlμlν piece of Eq. (5).
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where the subscript “KSHS” stands for Kerr-Schild
spatial coordinates with harmonic slicing and r is the
radial Boyer-Lindquist coordinate. Note that Eq. (11b) is
the result of [27]

tKSHS ¼ tKS −
Z

2M
r − r−

dr: ð12Þ

We refer the reader to the Appendix for the detailed
expression of ∇r. The z component of bKSHS at the inner
boundary r ¼ rþ is given by (as a → M)

bzKSHS ¼
M2zKS

r4þ þ ðazKSÞ2
: ð13Þ

D. Harmonic coordinates

Let us turn our attention to harmonic coordinates
xμH ¼ ðtH; xH; yH; zHÞ, where the spatial coordinates also
become harmonic. For such a coordinate system, we
have [27]

ðr −MÞ2 ¼ 1

2
ðx2H þ y2H þ z2H − a2Þ

þ
�
1

4
ðx2H þ y2H þ z2H − a2Þ2 þ a2z2H

�
1=2

ð14Þ

and

x2H þ y2H
ðr −MÞ2 þ a2

þ z2H
ðr −MÞ2 ¼ 1; ð15Þ

where the subscript “H” stands for harmonic coordinates.
The harmonic slicing implies

bH ¼ 2M
r − r−

∇r; ð16Þ

with the z component of bH at r ¼ rþ given by (as a → M)

bzH ¼ M2zH
ðrþ −MÞ4 þ ðazHÞ2

: ð17Þ

Expressions for the 3×3 block matrix, ðCHÞij ¼ ∂xiKS=∂xjH,
along with additional details, can be found in the
Appendix.

E. Problematic behavior of harmonic coordinates

In SpEC, the Legendre polynomials are used to numeri-
cally expand bzH and bzKSHS as functions of cos θ, defined by

cos θ ¼ zHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2H þ y2H þ z2H

p :

Here, θ is the polar angle in harmonic coordinates and is not
to be confused with the angular Boyer-Lindquist coordi-
nate. As a test, we first represent bzH [Eq. (17)] with 20
Legendre-Gauss collocation points and a BH spin of
a ¼ 0.95M. The results of this test are shown in Fig. 1.
From Fig. 1, we see that the function bzH is difficult to
resolve using Legendre polynomials. This is the primary
reason that harmonic coordinates fail to accurately re-
present high-spin BH initial data. Note that increasing the
resolution to l≳ 60 (for a single BH) eventually allows us
to resolve bzH, but in practice requiring such high resolution
is computationally prohibitive; furthermore, the required
resolution increases rapidly as the spin increases.
Previous studies have shown success in high-spin BBH

simulations with SKS initial data up to spins of χ ¼ 0.998
[32]. A natural question to ask is whether the spatial or
the time coordinates are more important in allowing KS
coordinates to better resolve highly spinning black holes.
Therefore, we also investigate the behavior of bzKSHS (see
Sec. III C), in which the time coordinate is harmonic but the
spatial coordinates are Kerr-Schild. Again, we represent
bzKSHS with 20 Legendre-Gauss collocation points and a BH
spin of a ¼ 0.95M, as shown in Fig. 1. The representation is
much better than the case of harmonic coordinates. And we
also confirm that, with such mixed coordinates, BBH initial
data can be indeed extended to higher spins. However, as we
show later, they do not lead to a smaller amount of junk
radiation than SKS initial data.
Looking more closely at Fig. 1, bzKSHS has fewer

structures than bzH, which makes bzKSHS easier to represent
by Legendre polynomials. More quantitatively, we write

FIG. 1. The function bz in KSHS [Eq. (13)], harmonic
[Eq. (17)], and MH [Eq. (23)] coordinates with α ¼ 0.7. Solid
lines represent bz, whereas triangles represent the Legendre-
Gauss collocation approximation to each function bz using 20
Legendre polynomials. The spin of the BH is a ¼ 0.95M. bz is
better approximated by a fixed number (l ¼ 20) of Legendre
polynomials for MH than for harmonic coordinates.
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bzH ∼
1

u2 þ ϵ
1þϵ

; ð18Þ

with

u ¼ a
rþ −M

cos θ; ϵ ¼ ðrþ −MÞ2
ðrþ −MÞ2 þ a2

: ð19Þ

In Eq. (18), we have omitted unimportant functions of
cos θ, since they are well represented by Legendre poly-
nomials. We see bzH has two poles: u ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ=ð1þ ϵÞp

.
The domain of convergence for Legendre series Pnðcos θÞ
is an elliptic region on the complex plane [33]. If we restrict
ourselves to the real axis, we can obtain the radius of
convergence as

j cos θj≲
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ

1þ ϵ

r
rþ −M

a
: ð20Þ

The radius becomes less than 1 if a≳ 0.75M; thus, in that
case the Legendre polynomials fail to provide a good
representation for the metric. This is the main reason that
BBH simulations using SH become difficult when spins
are larger than about a ¼ 0.7M [23]. We remark that
Chebyshev series have the same domain of convergence
as Legendre series; hence, we do not expect that the
situation can be improved by changing basis.

F. Modified harmonic coordinates

We have seen that bzH is sensitive to cos θ for high-spin
BHs. To reduce such dependence, we define a more general
coordinate system

x2MH þ y2MH

ðr − αMÞ2 þ a2
þ z2MH

ðr − αMÞ2 ¼ 1; tMH ¼ tH; ð21Þ

which leads to

ðr − αMÞ2 ¼ 1

2
ðx2MH þ y2MH þ z2MH − a2Þ

þ
�
1

4
ðx2MH þ y2MH þ z2MH − a2Þ2 þ a2z2MH

�
1=2

:

ð22Þ

Here, we introduce a new constant parameter α. As
mentioned earlier, we refer to this new choice of spatial
coordinates as the MH coordinate system. MH coordinates
become harmonic (spatial) coordinates when α ¼ 1
[Eq. (15)] and become KS (spatial) coordinates when
α ¼ 0 [Eq. (7)]. Meanwhile, the time slicing of MH
coordinates is the same as in harmonic, regardless of the
value of α. With this new coordinate system, the radius
of the outer horizon along the spin direction is

ð1 − αÞM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. For a → M, this radius goes to

M for KS coordinates (α ¼ 0), and it goes to zero for
harmonic coordinates (α ¼ 1). Therefore, the horizon with
harmonic coordinates is highly compressed in the spin
direction. However, if we let α be a number smaller than but
still close to 1, the horizon will be less distorted. On the
other hand, since α is close to 1, we can expect that it still
shares some similar properties (e.g., less junk radiation)
with harmonic coordinates.
As in Sec. III E, we use the function bz as an example to

see the improvement offered by MH coordinates. In the
MH coordinate system, we have

bzMH ¼ M2zMH

ðrþ − αMÞ4 þ ðazMHÞ2
: ð23Þ

Now ðrþ −MÞ2 is replaced by ðrþ − αMÞ2. The problem-
atic part of bzMH takes the same form as Eq. (18), except that

u ¼ a
rþ − αM

cos θ; ϵ ¼ ðrþ − αMÞ2
ðrþ − αMÞ2 þ a2

: ð24Þ

And the radius of convergence is given by

j cos θj≲
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ

1þ ϵ

r
rþ − αM

a
: ð25Þ

In Fig. 2, we plot the radius of convergence as a function of
χ ¼ a=M for several values of α. We see the convergent
region for a fixed χ is enlarged if α becomes smaller. As a
consequence, it should be easier for Legendre polynomials
to represent bzMH. To see that this is the case, in Fig. 2 we
plot bzMH with α ¼ 0.7 and a ¼ 0.95M, using the same
set of angular Legendre-Gauss collocation points as for the
other curves in the figure. As expected, the representation
in Legendre polynomials of bzMH shows an enormous
improvement over the same representation of bzH.

FIG. 2. The radius of convergence given in Eq. (25).
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IV. RESULTS

In this section, we investigate the numerical behavior of
BBHs evolved starting with SMH initial data, compared to
evolution of SKS data. We pick four cases, as summarized
in Table I. To make comparisons, we consider constraint
violations, computational efficiency, changes of BH param-
eters (mass and spin), and junk radiation. For the first three
factors, we show the general features of SMH by focusing
on case I. For junk radiation, we study all cases. For each
simulation, we evolve with three resolutions (labeled Lev1,
2, and 3 in order of increasing resolution). The resolution is
chosen by specifying different numerical error tolerances to
the adaptive mesh refinement (AMR) algorithm [34]. The
orbital eccentricity is iteratively reduced to below ∼10−3
[35]. The coordinate sizes of the black holes are different
for SMH and SKS, so the excision boundaries (which are
placed just inside each apparent horizon) are also different
for SMH and SKS; this means that the grids are not exactly
the same between the two cases, but the grid points are
chosen by AMR so that the two cases have the same
approximate numerical error.

A. Constraint violations and computational efficiency

Figure 3 shows the evolution of the volume-weighted
generalized harmonic constraint energy Nvolume, which is
given by [Eq. (53) of Ref. [36]]

Nvolume ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
V FðxÞ2d3xR

V d
3x

s
; ð26Þ

with FðxÞ the generalized harmonic constraint energy at x.
For the first ∼25M of evolution, the constraints of SMH are
much larger than those of SKS. This is because BHs with
SMH initial data are more distorted than SKS, and the
metric is more difficult to resolve; however, the metric is
much easier to resolve for SMH than SH (which is not
shown because even constructing the initial data for SH
is problematic with a spin of χ ¼ 0.8). Furthermore, at
slightly later times, constraints decrease rapidly. During the
junk stage (t≲ 700M), the constraints for the evolution of
SMH initial data are smaller than those of SKS by an order

of magnitude. After the junk leaves the system, the
evolution of SMH initial data is still a little bit better than
that of SKS initial data, although constraints of SKS and
SMH become similar at late times (t≳ 3000M for Lev3
and t≳ 2000M for Lev2).
During the junk stage, we make no attempt to resolve the

junk oscillations; i.e., the AMR algorithm is intentionally
set to change the grid very infrequently (and not at all in the
wave zone) during the junk stage of the evolution. We do
this because resolving junk is computationally expensive
and because the junk is not part of the physical solution we
care about. Accordingly, the SKS curves in Fig. 3 are not
well resolved during the junk stage and do not show good
convergence. However, we notice that the simulations of
SMH initial data are better resolved than for SKS, and
they converge with resolution even during the junk stage;
convergence during the junk stage was also observed for
SH with low-spin BHs [23].
The convergence plot looks slightly different when the

norm of the constraint energy is determined using a
pointwise L2 norm over grid points rather than an integral
over the volume, as given by

Npointwise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1ðFiÞ2
N

r
; ð27Þ

TABLE I. A summary of parameters (mass ratio q and
dimensionless spins χ ) for four simulations, where the spins of
case II are chosen randomly. The orbital angular momentum is
pointing along (0,0,1). In the final column, we show the value of
α for MH coordinates.

Simulation label q χ 1 χ 2 α

Case I 1 (0,0,0.8) (0,0,0.8) 0.9
Case II 1 (0.44,0.44,0.50) (0.13,0.64,0.46) 0.9
Case III 2 (0,0,0.7) (0,0,0.8) 0.8
Case IV 1 (0,0,0.9) (0,0,0.9) 0.7

FIG. 3. The volume-weighted generalized harmonic constraint
energy for evolutions of case I, with both SKS (dotted lines) and
SMH (solid lines) initial data. Three resolutions are shown,
labeled “Lev1” (red), “Lev2” (blue), and “Lev3” (black) in order
of decreasing AMR tolerance (i.e., in order of increasing
numerical resolution). At the beginning, BHs of SMH initial
data are more distorted on the grid, so the constraints are worse.
However, as the gauge transition proceeds, the constraints decay
quickly. During most of the junk stage ð25M ≲ t≲ 700MÞ, the
constraints of SMH initial data are smaller than SKS by an order
of magnitude. They also converge with resolution. After the junk
stage, SKS and SMH finally become comparable.
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where the subscript i stands for the index of a grid point and
N is the total number of grid points. The pointwise norm is
shown in Fig. 4. For the pointwise norm, the improvement
of convergence of SMH over SKS is not as good as for the
volume-weighted norm. This is because the pointwise norm
gives larger weight to the interior regions near the BHs
where there are more points, whereas the volume norm
gives larger weight to the exterior wave zone which covers
more volume. The difference between Figs. 3 and 4
illustrates that the improvement of the constraints in the
case of SMH mainly comes from the outer region, where
the high-frequency components in the waveforms are
smaller (i.e., less junk radiation). Figure 4 also shows
that the pointwise norms (L2 norm) for evolutions of both
initial datasets become comparable much earlier than the
volume norms (t ∼ 200M). This is because the pointwise
norms are monitored by AMR, and, therefore, their values
remain consistent with the numerical error tolerance in
AMR during the evolution as AMR makes changes to the
grid resolution.
To understand how the computational efficiency of the

evolution depends on the initial data, in Fig. 5 we show the
total number of grid points in the computational domain as
a function of time. At the beginning, SMH needs many
more points than SKS. As the gauge gradually transforms
to the damped harmonic gauge, the BHs become less
distorted and AMR decides to drop grid points. During the
evolution, there are two factors that mainly control the
number of grid points. One is AMR, which adjusts grid
points based on the numerical error tolerance. The other
one is the domain decomposition [37]. SpEC splits the
entire computation region into various subdomains. In
particular, there are a series of concentric spherical shells
around each BH. The subdomain boundaries are fixed in
the “grid frame,” the frame in which the BHs do not move,
but these boundaries do move in the “inertial frame,” the
frame in which the BHs orbit and approach each other [38].

As the separation between the BHs decreases, the inertial-
frame widths of the subdomains between them decreases as
well. During the evolution, the inertial-frame widths of the
spherical shells are monitored. Once one of the shells
becomes sufficiently squeezed, the algorithm drops one of
the shells and redistributes the computational domain. In
Ref. [23], the authors pointed out that evolutions of SH
initial data are faster than for SKS initial data. However,
that statement is not true at very early times, when SH starts
with more spherical shells and more grid points, which
leads to low speed. The evolution of SH initial data then
gradually speeds up after several spherical shells are
dropped and eventually becomes faster than the corre-
sponding evolution of SKS data. Our simulation here is
similar. In Fig. 5, AMR modifies Ngrid smoothly, while the
discontinuous jump is caused by the shell-dropping algo-
rithm. For each BH, we have six spherical shells initially.
However, four of them are dropped during the first ∼200M.
In the end, the number of grid points for evolutions of SMH
is smaller than for evolutions of SKS. This not only
improves the computational efficiency of each time step,
but also increases the time step Δt allowed by the Courant
limit (Δt ∼ N−2

grid). As shown in Fig. 6, the time step for
SMH jumps several times because of the shell-dropping

FIG. 4. The same as Fig. 3, except that L2 norm is used.
FIG. 5. Computational efficiency of evolutions of SMH
(α ¼ 0.9) and SKS initial data for case I, with the highest
resolution. The upper panel is the total number of grid points
as a function of time. At the beginning, the SMH initial data
require many more grid points to meet the error tolerance. As the
gauge transition to damped harmonic gauge proceeds (on a
timescale of ∼50M), the BHs become less distorted, so AMR
gradually drops points. At the same time, several concentric
spherical shells around each of the BHs are dropped, which leads
to discontinuous jumps in the number of grid points. In the end,
evolution of SMH initial data has fewer collocation points than
for SKS. The lower panel is the accumulated CPU hours versus
time. The SMH initial data are extremely slow at the beginning.
As the collocation points and subdomains are adjusted, they
speed up. The total CPU hours for evolutions of both initial
datasets are similar.
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algorithm. In the end, Δt for SMH is larger than the one for
SKS. Both Ngrid and Δt contributes to the high speed of
evolutions of SH and SMH initial data. And we have
checked that the increase of Δt plays the major role in the
speed increase.
The bottom panel in Fig. 5 shows the accumulated CPU

hours of the simulation. At first, the evolution of SMH is
extremely slow. Once several shells are dropped, the
simulation gradually speeds up. This suggests that both
SH and SMH initial data start with more shells than
necessary. Therefore, it might be possible to further

improve the computational efficiency solely by reducing
the number of shells.

B. Junk radiation and changes in parameters

Since the BHs in the initial data are not in true
quasiequilibrium, the masses and spins of BHs relax once
the evolution begins, resulting in slight deviations from
their initial values. In Fig. 7, we show the change of
irreducible massΔMirrðtÞ ¼ jMirrðtÞ −Mirrðt ¼ 0Þj and the
change of spin ΔχðtÞ ¼ jχðtÞ − χðt ¼ 0Þj as functions of
time, for three resolutions. We can see the variations are on
the same order for both SMH and SKS initial data, but
SMH has smaller oscillations. With the highest resolution,
the deviation of SMH is smaller by a factor of ∼1.5–2.
To study the junk radiation in the waveform, in Fig. 8 we

plot the amplitudes of different spin-weighted spherical
harmonic modes hlm, for cases I, II, and III listed in Table I
(case IV will be discussed later). Note that the linear growth
of h21 for case II appears because only the initial part of the
waveform is shown; over the entire evolution, the mode is
oscillatory.
We can see that the junk radiation of evolutions of SMH

initial data is less than for SKS for most of the modes. In
general, the junk radiation leaves the system faster for SMH
initial data than for SKS. However, the decrease of junk
radiation for SMH is not as significant as SH for low-spin
BHs [23]. Some modes of SMH initial data, such as h33, are
similar to SKS. Comparing cases II and III, we note that
the junk radiation of α ¼ 0.8 SMH is larger than that of
α ¼ 0.9, presumably because α ¼ 0.8 deviates more from
SH initial data (α ¼ 1). Note that case II has similar junk

FIG. 6. The time step as a function of evolution time. The
resolution is Lev3. Initially, the time step for evolutions of SKS
initial data is larger than for SMH. However, after several jumps
due to the shell-dropping algorithm, SMH eventually has a larger
time step than SKS.

FIG. 7. The evolution of irreducible mass (left) and dimensionless spin (right) of the first BH for case I, with three resolutions. The
quantities shown are deviations from their values at t ¼ 0. Evolutions of SMH initial data have fewer oscillations than SKS. Deviations
of three parameters for both initial datasets are on the same order.
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radiation as case III when both cases are evolved from
SKS initial data; this suggests that the difference in junk
radiation between cases II and III seen in Fig. 8 is probably
not due to differences in parameters like the mass ratio.
For case IV, a BBH system with dimensionless spins 0.9,

we need to decrease α to 0.7, since for that large of spin
α ¼ 0.8 requires too high resolution and sometimes the
initial data solver does not converge. To speed up the
evolution, we start the SMH initial data with fewer
spherical shells around each BH than the standard choice
made by SpEC. The comparison of the waveform is in
Fig. 9, where we show only h22 and h44. We can see the
junk radiation for SMH initial data is still less than for SKS.
But the improvement is not as good as other cases. For
modes other than h22 and h44, we do not see improvements.
The main reason appears to be that α ¼ 0.7 deviates too
much from α ¼ 1, so that the benefit of SH initial data is
reduced. In addition, in Fig. 10 we compare the accumu-
lated CPU hours for evolutions of both initial datasets.

We can see the initial computational efficiency for SMH
initial data is much lower, but it gradually catches up after
several shells are dropped. For evolutions of only a few
orbits, the expense of evolving SMH initial data may not be
worth the extra computational cost. But for evolutions of
many orbits, the extra cost at the beginning of the evolution
will be comparatively small.
In most of the evolutions shown here, shortly after the

beginning of the simulation, several spherical shells around
each BH are dropped, leading to a smaller number of grid
points, a larger time step, and overall greater computational
efficiency. However, for a general evolution, we are not
always “lucky” enough to gain this efficiency, since the
current algorithm for dropping spherical shells aims only to
avoid narrow shells rather than to speed up the simulation.
To improve the computational efficiency for all simula-
tions, we could start with fewer spherical shells at t ¼ 0.
However, the benefit of this change is limited without
changing the shell-dropping algorithm. One workaround is

FIG. 8. Mode amplitudes of waveforms for cases I, II, and III with the highest resolution. Columns correspond to three cases, and rows
are for different modes. For SMH initial data, we pick α ¼ 0.9 for cases I and II and α ¼ 0.8 for case III. Note that the linear growth of
h21 for case II appears because only the initial part of the waveform is shown. Over the entire evolution, the mode is oscillatory. In
general, the junk radiation of SMH initial data leaves the system faster. It is also smaller than the junk radiation of SKS for most of the
modes. However, there are some modes, such as h33, that have the same peak as SKS.
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to use smaller α, which speeds up the simulation, but if α
deviates too much from α ¼ 1, we cannot have less junk
radiation. Therefore, we suggest that the algorithm that
divides the domain in to subdomains should be modified to

account for computational efficiency during the evolution,
or a better algorithm should be developed to initialize
subdomains. Given such future algorithmic improvements,
we could potentially run high-spin BBH evolution with
larger α, which can lead to less junk radiation.

V. CONCLUSION

In this paper, we extended SH initial data [23] to higher-
spin BBHs by introducing a class of spatial coordinate
systems that represent a time-independent slicing of a
single Kerr black hole and are characterized by a continu-
ous parameter α. This coordinate representation of Kerr is
used to supply free data for the initial-value problem for
BBH systems; we call the resulting initial-value solution
SMH initial data. The harmonic (α ¼ 1) and KS (α ¼ 0)
coordinate representations of Kerr are only two special
cases of our new representation. The coordinate shape of
the horizon becomes less spherical and more distorted for
larger α. Therefore, for high-spin BHs, we pick α < 1 to
decrease the distortion and ease requirements on very high
resolution during the BBH simulation. At the same time, α
should be close to 1 so that SMH initial data still have the
desirable properties of SH initial data as shown in Ref. [23],
such as less junk radiation. We have tested that for SMH
initial data with α ¼ 0, i.e., harmonic time slicing with KS
spatial coordinates, there is more junk radiation than for
SKS initial data.
We have evolved four BBH systems with dimensionless

spins 0.8 or 0.9 starting from SMH initial data with α
between 0.7 and 0.9, and we compared with evolutions
of the same system starting from SKS initial data. The first
three cases, all with dimensionless spin 0.8, represent
different situations: a nonprecessing system with equal
masses, a precessing system with random spin directions,
and a nonprecessing system with unequal masses. In
general, the junk radiation of SMH initial data leaves the
system faster than that of SKS. For most gravitational wave
modes, the SMH initial data lead to less junk radiation. The
exceptions, like the h33 mode and the h21 mode for case III,
have bursts with amplitudes similar to SKS. Furthermore,
α ¼ 0.8 SMH has more junk radiation than α ¼ 0.9.
Using case I as an example, we also studied other

properties of the evolution, including constraint violations,
computational efficiency, and changes in parameters. We
found the values of the volume-weighted constraints for
SMH initial data are smaller than those of SKS by factors of
10. Furthermore, the volume-weighted constraints of SMH
initial data converge with resolution during the junk stage.
However, L2-norm constraints do not have such conver-
gence. Therefore, the benefit is mainly from the outer
regions, where there is less junk radiation.
At the beginning of the evolution for case I, SMH

requires more collocation points than SKS to reach the
error tolerance because the horizon is distorted; hence, it
proceeds more slowly. At later times, SKS and SMH run at

FIG. 9. The h22 and h44 modes for the highest resolution of case
IV, an equal-mass BBH system with larger spins. The spins for
both BHs are (0,0,0.9), which we have not been able to run with
SH initial data. We can still see that the junk radiation for SMH is
less than SKS.

FIG. 10. The accumulated CPU hours for evolutions of SMH
and SKS initial data as functions of time. The BBH system is case
IV, and we plot results for the highest resolution. The initial
computational efficiency of SMH initial data is much lower than
for SKS, but after a short time both evolutions proceed at the
same number of CPU hours per simulation time.
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approximately the same rate, after both the computational
efficiency on each time slice and the size of the time step
increase for the SMH case.
For case IV, which has BHs with dimensionless spin

0.9, we found that we needed to decrease α to 0.7. We
simulated an equal-mass BBH system with equal dimen-
sionless spins χ 1;2 ¼ ð0; 0; 0.9Þ and compared h22 and h44
for both SMH and SKS initial datasets. Junk radiation for
SMH is still less than for SKS, but the improvement is not
as good as the case of lower spin. The comparison of CPU
hours for these two cases show that the initial compu-
tation efficiency for SMH initial data is much lower. But
it gradually becomes the same as SKS after several shells
are dropped.
We also found that the algorithm for choosing the

number and sizes of subdomains in SpEC could use some
improvement, particularly for the initial choice of sub-
domains and the early stages of the evolution. In most
simulations but not all, AMR eventually chooses a sub-
domain distribution that increases computational efficiency.
Some improvements can be gained by simply starting
with fewer spherical shells around each BH, but we find
that the effects of this change are limited. Therefore, the
evolution of SMH initial data for high-spin BBH will
benefit from either an algorithm to adjust subdomain sizes
based on computational efficiency during the evolution
or a better algorithm to initialize subdomains. Those
algorithmic improvements could allow us to run high-spin
BBH evolutions with larger α, which can give rise to less
junk radiation.
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APPENDIX: DETAILS OF MH COORDINATES

For a Kerr BH with an arbitrary spin vector a, the
transformations between KS spatial coordinates and MH
spatial coordinates are given by

xKS ¼
a2 þ rðr − αMÞ
a2 þ ðr − αMÞ2 xMH

þ αM
a2 þ ðr − αMÞ2 ðxMH × aÞ

þ ðxMH · aÞa αM
ðr − αMÞ½a2 þ ðr − αMÞ2� ; ðA1Þ

where a2 ¼ a · a and r is the radial Boyer-Lindquist
coordinate. For α ¼ 0, we have xKS ¼ xMH, i.e., the identity
transformation. The Jacobian Cij

MH ¼ ∂xiKS=∂xjMH between
KS and MH coordinates is given by3

Cij
MH ¼ a2 þ rðr − αMÞ

a2 þ ðr − αMÞ2 δ
ij þ αM

a2 þ ðr − αMÞ2 akϵ
ijk

þ aiaj
αM

ðr − αMÞ½a2 þ ðr − αMÞ2�

þMα½a2 − ðr −MαÞ2�
½a2 þ ðr −MαÞ2�2 xiMH∂jr

−
2Mαðr −MαÞ

ða2 þ ðr −MαÞ2Þ2 x
MH
m akϵimk∂jr

− xmMHama
i∂jr

Mα½a2 þ 3ðr −MαÞ2�
½a2 þ ðr −MαÞ2�2ðr − αMÞ2 ;

ðA2Þ

where ϵijk is the Levi-Civita symbol, δij is the Kronecker
delta, and the Einstein summation convention is used.
For α ¼ 1, Cij

MH becomes Cij defined in Sec. III D. By
differentiating Eq. (22), we have

∂ir ¼
xMH
i þ ða · xMHÞai=ðr − αMÞ2
2ðr − αMÞ

h
1 − xMH·xMH−a2

2ðr−αMÞ2
i : ðA3Þ

With MH coordinates, the null covariant vector l in Eq. (5)
can be written as

l ¼
�
dtMH þ 2M

r − r−
dr

�

þ ðr − αMÞxMH − a × xMH þ ða · xMHÞa=ðr − αMÞ
ðr − αMÞ2 þ a2

· dxMH; ðA4Þ

where the first bracket corresponds to dtKS [see Eq. (12),
with tMH ¼ tH]. The scalar functionH in Eq. (5) is given by

H ¼ Mrðr − αMÞ2
r2ðr − αMÞ2 þ ða · xMHÞ2

: ðA5Þ

3Here, we do not distinguish upper and lower indices of a
tensor in a Euclidean space.
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In addition, the lapse function N and the shift vector Ni in
MH coordinates are given by

N−2 ¼ 1þ 2Mðr − αMÞ2
r2ðr − αMÞ2 þ ða · xMHÞ2

r2 þ ðrþ 2MÞrþ
r − r−

;

ðA6Þ

Ni ¼ Nrli þ Nϕ
ajxMH

k ϵjki

a
; ðA7Þ

respectively, with

Nr ¼ N2
2Mrþ
ρ2

; Nϕ ¼ −N2
a
ρ2

2M
r − r−

; ðA8Þ

ρ2 ¼ r2 þ a2cos2θ ¼ r2 þ ða · xMHÞ2
ðr − αMÞ2 ; li ¼ li; ðA9Þ

where θ is the polar Boyer-Lindquist coordinate and li is
the spatial component of the null covariant vector l.
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