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The Standard-Model Extension (SME) is an effective-field-theoretic framework that catalogs all
Lorentz-violating field operators. The anisotropic correction from the minimal gravitational SME to
Newtonian gravitational energy for spheroids is studied, and the rotation of rigid spheroids is solved with
the perturbation method and numerical approach. The well-known forced precession solution given by
Nordtvedt in the parametrized post-Newtonian formalism is recovered and applied to two observed solitary
millisecond pulsars to set bounds on the coefficients for Lorentz violation in the SME framework. A
different solution, which describes the rotation of an otherwise free-precessing star in the presence of
Lorentz violation, is found, and its consequences on pulsar signals and continuous gravitational waves
emitted by neutron stars (NSs) are investigated. The study provides new possible tests of Lorentz violation
once free-precessing NSs are firmly identified in the future.
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I. INTRODUCTION

Lorentz invariance, which claims the equivalence
between any two inertial reference frames in formulating
the laws of physics, is a fundamental principle in both
general relativity (GR) and the Standard Model of particle
physics. However, in pursuing a unified theory of gravity
and quantum particles, violation of Lorentz invariance was
suggested [1–5] and has been treated as a possible sup-
pressed effect emerging from the Planck scale where the
unified theory lives. Therefore, searching for Lorentz-
invariance violation in high-precision terrestrial experi-
ments and astrophysical observations [5–7] not only serves
as a necessary test of our current best knowledge of the laws
of physics, but also provides us the chance to obtain
information on the underlying theory of quantum gravity
that is otherwise unattainable directly in the experiments
and observations with limited energy scales.
A practical framework to study Lorentz violation without

digging into the extensive intricacies of the underlying
theory is the Standard-Model Extension (SME) developed
since 1997 [8–10]. Aiming to guide experimental searches
of Lorentz violation, the SME framework is constructed at
the level of effective field theory and treats all possible
Lorentz-violating operators as perturbations on top of GR

and the Standard Model. In this work, we study the effects
of Lorentz violation on the rotation of stars. This belongs to
the gravitational sector of the SME framework, and for
simplicity, we only consider the modification to gravity
generated by the so-called minimal gravitational SME [11]
given by the action

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4xðRþ kαβγδRαβγδÞ þ Sk þ Sm; ð1Þ

where the Ricci scalar R represents the usual Einstein-
Hilbert term for GR, Rαβγδ is the Riemann tensor, and kαβγδ

is the tensor field that breaks local Lorentz invariance when
it acquires a nonzero vacuum expectation value in an
underlying theory. The action Sk describes the dynamics
of the Lorentz-violating field kαβγδ at the level of effective
field theory. The symmetry-breaking mechanism is impor-
tant but generally unspecified [10,12]. One of the central
tasks in the gravitational SME is obtaining approximate but
general expressions for the contribution of Sk in the field
equations using geometric properties of the spacetime
manifold like the Bianchi identity and the diffeomorphism
invariance [11,13]. The last term Sm is the action of
conventional matter and in this work we consider it
Lorentz invariant. Note that the geometrized unit system
where G ¼ c ¼ 1 is used. We will stick to this unit system
except when units are specified explicitly. Another explan-
ation of the notations in the remaining of the paper is that
repeated indices are summed even when they both are
subscripts or superscripts. Also note that the greek letters
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run over spacetime indices, while the latin letters are
restricted to spatial indices only.
The weak-field solution of the metric to the field

equations obtained from action (1) is calculated by
Bailey and Kostelecký [11]. In particular, as the starting
point of our study, the anisotropic modification to the
Newtonian potential energy between two point particles A
and B is

δU ¼ −
1

2
s̄ij

mAmB

jxA − xBj3
ðxiA − xiBÞðxjA − xjBÞ; ð2Þ

where xiA and xiB are the components of the position vectors
xA and xB. The quantities s̄ij are defined as the spatial
components of

s̄αβ ≡ 2

�
k̄αμβνgμν −

1

4
gαβk̄λμκνgμνgλκ

�
; ð3Þ

with k̄αβγδ being the vacuum expectation value of the tensor
field kαβγδ [10]. In practical calculations aiming to test the
theoretical predictions against experimental results, the
vacuum expectation value k̄αβγδ is taken to be constant
around the experimental setting in approximate inertial
frames, and its components, as well as the combinations
s̄αβ, are called coefficients for Lorentz violation.
Stringent constraints have been set on the SME coef-

ficients for Lorentz violation using an extensive number of
laboratory experiments and astrophysical observations [6].
In fact, they include results from considering the effects of
Eq. (2) on the rotation of the Sun [11] and two isolated
millisecond pulsars [14]. In this work, we consider the two
isolated millisecond pulsars in Ref. [14] and set new
constraints on the coefficients s̄ij. Our work complements
the results in the literature as we perform a rigorous study of
the rotation of a spheroidal star under the anisotropic
gravitational self-energy caused by Eq. (2) to serve as
the theoretical basis. In addition, our calculation clarifies
the fact that the effect of Lorentz violation adds to
stationary spinning stars as well as free-precessing stars.
While the former case is the Lorentz-violating precession
considered in the literature and has been used to set
constraints on the coefficients for Lorentz violation, the
latter case has not been investigated to our knowledge.
When Lorentz violation modifies the rotation of an other-
wise free-precessing neutron star (NS), the pulsar signal
and associated continuous gravitational waves (GWs)
emitted by the star [15] will change accordingly. A
significant part of our work is devoted to this new topic.
Before ending the Introduction, we are obligated to point

out that the gravitational sector of the SME is not the only
framework to study Lorentz violation in gravity. The
celebrated parametrized post-Newtonian (PPN) formalism
also includes coefficients describing possible preferred-
frame effects in metric gravitational theories [5,16]. The

first study of Lorentz-violating effects on the spins of the
Sun and of millisecond pulsars was done by Nordtvedt [17]
considering the specific PPN modification1

δUPPN ¼ α2
2

mAmB

jxA − xBj3
wiwjðxiA − xiBÞðxjA − xjBÞ ð4Þ

to the Newtonian potential. The coefficient α2 controls the
size of Lorentz violation, while the “absolute” velocity w
with respect to the preferred inertial frame picks up a
special direction and breaks Lorentz invariance [4]. Our
study is originally inspired by Nordtvedt’s work [17], and
our result recovers his solution when the replacement
[11,14]

s̄ij → −α2wiwj ð5Þ

is applied and proper approximations are made. The SME
framework is more generic than the PPN formalism in
terms of Lorentz violation [11]. Detailed comparisons are
presented in relevant paragraphs of the paper.
The organization of the paper is as follows. We start with

calculating the anisotropic gravitational self-energy due to
Eq. (2) for a spheroidal star in Sec. II A. Then, in Sec. II B,
we investigate the solutions to the rotational equations of
motion thoroughly, where both the perturbation method
and numerical calculation are employed. The observational
consequences are discussed in Sec. III with regard to NSs.
Section III A considers stationary spinning stars affected by
Lorentz violation and obtains constraints on the coefficients
for Lorentz violation from the observations of two solitary
millisecond pulsars. Sections III B and III C consider free-
precessing stars affected by Lorentz violation and provide
preliminary signal templates of pulsar pulses and continu-
ous GWs for fitting observational data in the future. Finally,
conclusions are summarized in Sec. IV. Appendix displays
some expressions for uniform spheroids, which are useful
for estimating numerical values.

II. ROTATION OF A SPHEROID UNDER
LORENTZ-VIOLATING GRAVITY

A. Anisotropic gravitational self-energy

For a nonspherical star, the integral of the potential
energy correction in Eq. (2) depends on the orientation of
the star, causing a torque during its rotation. Specifically
speaking, we calculate δU in the body frame of the star at
any instant,

δU ¼ −
1

4
s̄ij

Z
d3xd3x0ρðxÞρðx0Þ ðx

i − x0iÞðxj − x0jÞ
jx − x0j3 ; ð6Þ

1Notice that we follow the usage of α2 byWill [5] related to the
one used by Nordtvedt [17] via α2 ¼ 2αNordtvedt2 .
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where ρ is the density of the star and is assumed to be
independent of time in the body frame. The orientation
dependence goes into δU as the star rotates. If we set up an
inertial frame X-Y-Z, then s̄ij ði; j ¼ x; y; zÞ in the body
frame is related to s̄IJ ðI; J ¼ X; Y; ZÞ in the inertial frame
by a rotation transformation

s̄ij ¼ RiIRjJs̄IJ: ð7Þ

Noticing that s̄IJ are the constant coefficients for Lorentz
violation, δU therefore depends on the orientation of the
body through the rotation matrix RiI. The orientation of the
body is conveniently described by the Euler angles (see
Fig. 1), which are the kinematic quantities to be solved
from the equations of motion. For later use, we write the
elements of the rotation matrix as

RiI ¼ êi · êI; ð8Þ

where fêig (i ¼ x, y, z) is the basis of the body frame x-y-z,
and fêIg (I ¼ X, Y, Z) is the basis of the inertial frame
X-Y-Z. The inner products can be computed using the
relations [18]

êx ¼ ðcos α cos γ − sin α cos β sin γÞêX
þ ðsin α cos γ þ cos α cos β sin γÞêY þ sin β sin γêZ;

êy ¼ ð− cos α sin γ − sin α cos β cos γÞêX
þ ð− sin α sin γ þ cos α cos β cos γÞêY þ sin β cos γêZ;

êz ¼ sin α sin βêX − cos α sin βêY þ cos βêZ: ð9Þ

Back to the potential energy correction in Eq. (6), to
proceed with the calculation analytically as much as

possible, we focus on the simple case where the star is a
spheroid described by

x2 þ y2

a21
þ z2

a23
¼ 1; ð10Þ

in the body frame, and its density ρ is axisymmetric about
the z axis (for an ellipsoid, see, e.g., Ref. [19]). In such a
case, one can show that s̄xy; s̄xz, and s̄yz do not appear in
δU, and that s̄xx and s̄yy appear as the combination
s̄xx þ s̄yy. Because the trace s̄xx þ s̄yy þ s̄zz is rotationally
invariant and hence does not contribute to the anisotropic
correction, the contribution from s̄xx þ s̄yy can be repre-
sented by s̄zz so that the true anisotropic correction of the
potential energy is simply

δU ¼ Cs̄zz; ð11Þ

with the constant C being

C ¼ 1

4

Z
d3xd3x0ρðxÞρðx0Þ ðx − x0Þ2 − ðz − z0Þ2

jx − x0j3 : ð12Þ

The result (11) deserves a comparison with that of
Nordtvedt [17]. Treating the potential correction (4) as a
perturbation on top of the Newtonian potential, Nordtvedt
[17] used the tensor virial relation to obtain the anisotropic
gravitational self-energy for a spheroid star as

δUPPN ¼ −
1

2
α2Trotðw · Ω̂Þ2; ð13Þ

where Trot is the rotational kinetic energy, and Ω̂ is the unit
vector along the angular velocity of the star.
First of all, we point out that with the replacement (5),

Eq. (11) recovers the form of Eq. (13) when the star spins
stationarily along the z axis. As Nordtvedt obtained, for
nonrelativistic stars, the constant C is equal to Trot=2 by
virtue of the tensor virial relation

Kij þ δijP −Uij ¼ 0; ð14Þ

where δij is the Kronecker delta, and

Kij ≡
Z

ρvivjd3x;

P≡
Z

pd3x;

Uij ≡
Z

ρxi∂jΦd3x; ð15Þ

with v being the velocity field inside the star, p being the
pressure inside the star, and Φ being the usual Newtonian
potential

FIG. 1. Euler angles α, β, and γ connecting the X − Y − Z
frame and the x − y − z frame. The lineMN is the intersection of
the X-Y plane and the x-y plane.
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ΦðxÞ ¼ −
Z

d3x0
ρðx0Þ
jx − x0j : ð16Þ

The result C ¼ Trot=2 is straightforward to prove once we
notice the integral identity

Uij ¼ 1

2

Z
d3xd3x0ρðxÞρðx0Þ ðx

i − x0iÞðxj − x0jÞ
jx − x0j3 ; ð17Þ

and for a star spinning along the z direction

Kzz ¼ 0; Trot ¼
1

2
ðKxx þ KyyÞ: ð18Þ

In Appendix, the constant C is exhibited for uniform
spheroids by utilizing the Newtonian potential inside an
ellipsoid of uniform density (see, e.g., Refs. [20,21]).
Second, we notice that Eqs. (11) and (13) are different

for a generally rotating spheroidal star whose angular
velocity is not aligned with its symmetric axis. The origin
of the difference is that Eq. (13) requires the star to be a
stationary fluid in equilibrium, while Eq. (11) applies as
long as the star has an axisymmetric mass distribution.
Whether the star is a fluid or a rigid body does not affect the
validity of Eq. (11). Now comes the question: How could
the state of the star influence the alignment between its
angular velocity and symmetric axis? In fact, if the star is a
rigid body, then the direction of its angular velocity can be
different from its symmetric axis. But when it is a fluid, the
deformation is caused by rotation, and therefore, its
symmetric axis must be aligned with its angular velocity
as long as the system is in equilibrium.
To better understand the context and the limitation of

Eq. (13), let us consider a freely rotating star, namely, when
there is no torque. If modeled as a rigid body, depending on
whether the angular velocity is aligned with the symmetric
axis, two kinds of solutions exist: the stationary spinning
solution where the star spins around the fixed symmetric
axis, and the free-precessing solution where the star spins
around its symmetric axis while that axis rotates around the
fixed direction of the conserved angular momentum [18]. If
modeled as a fluid, the free-precessing solution cannot exist
because even if the angular velocity is not aligned with the
symmetric axis initially, the deformation caused by rotation
will eventually change the symmetric axis to the direction
of angular velocity, leaving the star in the state of sta-
tionary spin.
When the torque caused by Lorentz violation is taken

into consideration, the two types of solutions for a freely
rotating star, namely, the stationary spinning solution and
the free-precessing solution, might be treated as the zeroth-
order solution for applying the perturbation method. The
details are discussed in Sec. II B. Here, we just point out
that the effect of the Lorentz-violating torque is forcing the
star to precess around one of the principal axes of the s̄ij

tensor. When this effect is added to a stationary spinning
star, we call the motion single precession. When the forced
precession due to Lorentz violation is added to a free-
precessing star, we call the motion twofold precession.
In the single-precession solution, the precession is

caused by Lorentz violation, which is assumed to be small.
Therefore, the total angular velocity can be approximated
as aligned with the symmetric axis of the star. This enables
us to put Eq. (11) in the form of Eq. (13) at the leading order
of Lorentz violation via the replacement (5). So, the single-
precession solution is the one found by Nordtvedt [17].
However, for our result, there is no need to restrict it to fluid
stars, as Eq. (11) applies to fluids as well as rigid bodies.
The other solution that we defined, the twofold-precession
solution, as its name suggests, is a superposition of the free
precession where the symmetric axis of the star precesses
around the angular momentum and the forced precession
where the angular momentum precesses around one of the
principal axes of the s̄ij tensor. Though only applicable to
stars if they are modeled as rigid bodies, the twofold-
precession solution describes a new Lorentz-violating
effect in the rotation of stars that has not been studied in
the literature to our knowledge.
Before moving to study the solutions in detail, a brief

clarification of the model of NS deformation might be
useful. We will adopt the model described by Jones and
Andersson [22] where the deformation of the star has two
contributions: the centrifugal deformation and the Coulomb
deformation. The centrifugal deformation is the fluid
deformation that scales with the square of the angular
velocity, while the Coulomb deformation describes the
rigid deviation from the spherical shape sustained by the
electrostatic force. The fact that the electrostatic interaction
is much weaker than the gravitational interaction in NSs
implies that the rigid Coulomb deformation is much smaller
than the fluid centrifugal deformation. Using the oblateness
defined as

ϵ ¼ Izz − Ixx

Ixx
; ð19Þ

where Ixx and Izz are the eigenvalues of the moment of
inertia tensor, to characterize the deformations of spheroi-
dal stars, an estimation of the centrifugal deformation is

ϵf≈
jΩj2R3

M
≈2.1×10−3

�jΩj=2π
100Hz

�
2
�

R
10 km

�
3
�
1.4M⊙

M

�
;

ð20Þ

whereΩ is the angular velocity, R is the radius, andM is the
mass of the NS, while the oblateness ϵr caused by the
Coulomb deformation is about 5 orders of magnitude
smaller [22]. Therefore, when applying the single-preces-
sion solution to NSs, the rigid deformation ϵr can be
neglected, and the deformation is described by the fluid
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oblateness ϵf. However, the fact that NSs can have
rigid deformation described by ϵr is vital when the
twofold-precession solution is to apply. Similar to the
free-precessing NSs considered in Refs. [15,22–24], NSs
with Lorentz-violating gravity under the twofold preces-
sion produce modulated pulsar signals and in the meantime
are sources of continuous GWs providing potential new
tests of Lorentz violation. This will be the central topic in
Sec. III.
Finally, we point out that Lorentz violation itself also

deforms stars [25,26]. But then the deformation due to
Lorentz violation contributes at the second order in terms of
the coefficients for Lorentz violation to the anisotropic
gravitational self-energy. To keep the analysis clear and
tractable, we neglect any Lorentz-violating correction to the
structure of stars in this work.

B. Rotation of a spheroidal star

We are ready to write down the equations of motion and
solve the rotation of a spheroidal star. First, the coefficients
for Lorentz violation naturally fix a convenient inertial
frame, namely, the one that diagonalizes the s̄IJ matrix. We
will use it as the inertial frame X-Y-Z. Please note that the
inertial frame widely used in the literature is the canonical
Sun-centered celestial-equatorial frame [27]. It is generally
different from the frame used here as the off-diagonal
coefficients for Lorentz violation unlikely happen to vanish
in the canonical Sun-centered celestial-equatorial frame.
With the rotation matrix (8), the anisotropic gravitational

self-energy (11) is

δU ¼ Cððs̄XXsin2αþ s̄YYcos2αÞsin2β þ s̄ZZcos2βÞ; ð21Þ
where s̄XX; s̄YY , and s̄ZZ are the eigenvalues of the s̄IJ

matrix. Then, to express the rotational kinetic energy in
terms of the Euler angles and their derivatives, we employ
the kinematic relation between the velocity components in
the body frame and the Euler angles [18],

Ωx ¼ _α sin β sin γ þ _β cos γ;

Ωy ¼ _α sin β cos γ − _β sin γ;

Ωz ¼ _α cos β þ _γ; ð22Þ
where the dot denotes the time derivative. With Ixx ¼ Iyy,
the rotational kinetic energy simplifies to

Trot ¼
1

2
Ixxð _α2sin2β þ _β2Þ þ 1

2
Izzð _α cos β þ _γÞ2: ð23Þ

The Euler-Lagrange equations from L ¼ Trot − δU can be
derived, and there are two first integrals,

E ¼ Trot þ δU;

Ωz ¼ _α cos β þ _γ: ð24Þ

The total energy E is not very useful in helping simplify the
other equations. The z component of the angular velocity
Ωz can be used to eliminate _γ from the other two Euler-
Lagrange equations so that they become

sin2βα̈þ sin 2β _α _β−
IzzΩz

Ixx
sin β _β ¼ −

1

Ixx
∂δU
∂α ;

β̈ −
1

2
sin 2β _α2 þ IzzΩz

Ixx
sin β _α ¼ −

1

Ixx
∂δU
∂β : ð25Þ

First, we consider an illustrative case where only s̄ZZ is
nonzero. This is the case where the tensor s̄ij degenerates to
a vector as in the correspondence (5). With s̄XX ¼ s̄YY ¼ 0,
δU is independent of α so that solutions with α̈ ¼ 0, _β ¼ 0
are consistent with Eqs. (25) given

_α ¼ IzzΩz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIzzΩzÞ2 − 8s̄ZZCIxxcos2β

p
2Ixx cos β

: ð26Þ

When s̄ZZ ¼ 0, the “þ” sign recovers the free-precessing
solution, and the “−” sign gives the stationary spinning
solution. Correspondingly, for s̄ZZ ≠ 0, the þ sign gives
what we call twofold precession, and the − sign gives what
we call single precession. The single-precession solution,
once approximated at the leading order of s̄ZZ ↔ −α2jwj2,
is the one obtained by Nordtvedt [17].
The solutions (26) hold when the matrix s̄IJ has only one

nonvanishing eigenvalue whose eigenvector is chosen to be
the Z axis. Similar solutions exist when the matrix s̄IJ has
two same eigenvalues whose eigenvectors are chosen to be
the X axis and the Y axis, because in such a case, δU is also
independent of α. In fact, a matrix having only one
nonvanishing eigenvalue can also be said to have two
same eigenvalues where the same eigenvalues are zero. In
conclusion, when the matrix s̄IJ has two same eigenvalues,
we can set up the X-Y-Z frame properly so that solutions
similar to Eq. (26) with a constant β exist.
Now we can discuss the solutions in general when the

matrix s̄IJ has three different eigenvalues. In such a case,
δU depends on both α and β. Solutions with a constant β do
not exist, but as Lorentz violation is supposed to be small,
we use the ansatz

α ¼ α0 þ atþ αð1Þ;

β ¼ β0 þ βð1Þ ð27Þ

to find perturbative solutions at the leading order of Lorentz
violation. In the ansatz (27), α0 and β0 are constants, while
αð1Þ and βð1Þ are functions of time assumed to be much
smaller than 1. The constant a representing the precessing
angular velocity for free rotation takes the values
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a ¼
� ω

cos β0
; free precession;

0; stationary spin;
ð28Þ

with ω≡ IzzΩz=Ixx according to Eq. (26) when s̄ZZ ¼ 0.
Substituting the derivatives of the ansatz (27) into
Eqs. (25), and approximating α and β in the equations
with α0 þ at and β0, we find

α̈ð1Þ � ω

sin β0
_βð1Þ ¼ −

1

Ixxsin2β0

∂δU
∂α

����
α¼α0þat;β¼β0

;

β̈ð1Þ ∓ ω sin β0 _αð1Þ ¼ −
1

Ixx
∂δU
∂β

����
α¼α0þat;β¼β0

: ð29Þ

Note that the upper signs are for the perturbation to a free-
precessing star, generating twofold-precession solutions,
while the lower signs are for the perturbation to a stationary
spinning star, generating single-precession solutions. We
will stick to this sign convention when wewrite expressions
containing upper and lower signs. Equations (29) are two
coupled oscillation equations for _αð1Þ and _βð1Þ with driven
forces. Using Eq. (21) to write out the right-hand sides of
Eqs. (29), the solutions can be found as

_αð1Þ ¼∓ að1Þ ∓ A
sin β0

sin ðωtþ φÞ þ ηαC̃ cos 2ðatþ α0Þ;
_βð1Þ ¼ A cos ðωtþ φÞ þ ηβC̃ sin 2ðatþ α0Þ; ð30Þ

with A and φ being two integral constants of the homo-
geneous solutions. The constants að1Þ, C̃, ηα, and ηβ are

að1Þ ¼ Cð2s̄ZZ − s̄XX − s̄YYÞ cos β0
IzzΩz ;

C̃ ¼ Cðs̄XX − s̄YYÞ
IzzΩz ;

ηα ¼
� cos β0ð2þcos2β0Þ

4−cos2β0
; twofold precession;

cos β0; single precession;

ηβ ¼
� 3 sin β0cos2β0

4−cos2β0
; twofold precession;

sin β0; single precession:
ð31Þ

We point out that when s̄XX ¼ s̄YY ¼ 0, the inhomo-
geneous solutions in Eqs. (30) recover the solutions (26)
at the leading order of Lorentz violation.
The constant að1Þ, generated by the constant term on the

right-hand side of the second equation in Eqs. (29),
represents the forced precession due to Lorentz violation.
It can be absorbed into a by redefining a to be

a ¼
� ω

cos β0
− að1Þ; twofold precession;

að1Þ; single precession:
ð32Þ

Note that the forced precession acts oppositely on a free-
precessing star and a stationary spinning star.
Now we can use this new a in solutions (30), and the

benefit is that the second term in _βð1Þ is no longer constant
for the single-precession solution. As β at most changes
from 0 to π by definition, its rate of change really should
not contain any constant term. Keeping in mind that the
definition (32) is used, then the ansatz (27) together with
the solutions for αð1Þ and βð1Þ,

αð1Þ ¼ � A
ω sin β0

cos ðωtþ φÞ þ ηα
C̃
2a

sin 2ðatþ α0Þ;

βð1Þ ¼ A
ω
sin ðωtþ φÞ − ηβ

C̃
2a

cos 2ðatþ α0Þ; ð33Þ

give the perturbation solutions with integral constants A, φ,
α0, and β0.
The perturbation solutions are useful in analytically

illustrating how Lorentz violation described by the matrix
s̄IJ with three different eigenvalues affects a freely rotating
spheroidal star. But a complete discussion of the rotational
motion has to involve numerical solutions, because there
are solutions to Eqs. (25) that cannot be described by the
perturbation solutions even at the leading order of Lorentz
violation. To see this, let us consider solving Eqs. (25) with
initial values given by

αjt¼0 ¼ α0 �
A

ω sin β0
cosφþ ηα

C̃
2a

sin 2α0;

βjt¼0 ¼ β0 þ
A
ω
sinφ − ηβ

C̃
2a

cos 2α0;

_αjt¼0 ¼ a ∓ A
sin β0

sinφþ ηαC̃ cos 2α0;

_βjt¼0 ¼ A cosφþ ηβC̃ sin 2α0: ð34Þ

The fact that the initial values αjt¼0, βjt¼0, _αjt¼0, and _βjt¼0

might be arbitrarily assigned indicates that the correspond-
ing integral constants A, φ, α0, and β0 should also be able to
take any value. However, the perturbative approach restricts
A to be small, losing solutions where _αjt¼0 is at the order of
ω= cos β0 but significantly different from it. These solutions
belong to the case of twofold precession, but because the
directions of angular momentum around which free pre-
cession happens deviate from the Z axis too much, free
precession around the Z axis is no longer able to serve as
the zeroth-order solution for the perturbation method. More
seriously, the perturbative approach assumes αð1Þ and βð1Þ
to be much smaller than 1. But for the single-precession
solution in Eqs. (33), this assumption is very much
questionable as a small quantity a ¼ að1Þ appears in the
denominators of the second terms of αð1Þ and βð1Þ.
Somehow, the perturbative single-precession solution does
mimic the numerical solutions in one period of the forced
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precession when β0 is small (β0 ≲ 1). But when β0 gets
close to π=2, the approximation fails completely.
Figures 2–5 display examples to compare the perturbation

solutions with the numerical solutions, and also illustrate the
caseswhere the perturbationmethod is invalid. In the figures,
the time and angular velocities have dimensionless values by
employing a time unit tc defined as

tc ¼
ffiffiffiffiffiffi
Ixx

C

r
: ð35Þ

Then, for demonstration purposes, the integral constantΩz is
taken to be 1, the ratio Izz=Ixx is taken to be 1.1, and the
eigenvalues of s̄ij are taken to be s̄XX ¼ 0.02,
s̄YY ¼ 0.01, s̄ZZ ¼ −0.04.

FIG. 2. Example I of twofold precession (denoted as tp-I hereafter). The left plots are the solutions of the Euler angles α and β as
functions of time. The right plot shows the trajectories of the heads of êx (green) and êz (blue) in the X-Y-Z frame, while their tails are
fixed at the origin. The arrows mark the two vectors at t ¼ 0. The initial values αjt¼0 ¼ π

2
, βjt¼0 ≈ 0.701, _αjt¼0 ≈ 1.509, and _βjt¼0 ¼ 0 are

adopted by setting α0 ¼ π
2
, β0 ¼ 0.7, A ¼ 0, and φ ¼ π

2
in Eqs. (34). Other parameters used are γjt¼0 ¼ 0, Ωz ¼ 1, Izz=Ixx ¼ 1.1, and

fs̄XX; s̄YY ; s̄ZZg ¼ f0.02; 0.01;−0.04g. Time and time derivatives are dimensionless under the time unit tc defined in Eq. (35).

FIG. 3. Example II of twofold precession (denoted as tp-II hereafter). See the caption of Fig. 2 for the meaning of the illustration. The
initial values αjt¼0 ¼ π

2
, βjt¼0 ≈ 1.065, _αjt¼0 ≈ 0.889, and _βjt¼0 ¼ 0 are adopted by setting α0 ¼ π

2
, β0 ¼ 0.7, A ¼ 0.4, and φ ¼ π

2
in

Eqs. (34). Other parameters are the same as those in Fig. 2.
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Before we turn to the observational consequences, let us
address the fact that our discussion above assumes that the
forced precession due to Lorentz violation is around the Z
axis. Depending on the initial values, the forced precession
can be around the other two principal axes of the matrix s̄IJ.
An interesting result from our study of the numerical
solutions is that without loss of generality, if the three
different eigenvalues of s̄ij satisfy s̄ZZ < s̄YY < s̄XX, then

the forced precession around the Y axis is unstable. This is
very similar to the Dzhanibekov effect (also called the
tennis racket theorem) in free rotation [28]. Once this is
stated, we point out that the above discussion equally
applies to the forced precession around the X axis by
changing the indices

Z → X; X → Y; Y → Z ð36Þ

FIG. 4. Example I of single precession. See the caption of Fig. 2 for the meaning of the illustration. The initial values αjt¼0 ¼ π
2
,

βjt¼0 ≈ 0.671, _αjt¼0 ≈ −0.068, and _βjt¼0 ¼ 0 are adopted by setting α0 ¼ π
2
, β0 ¼ 0.7, A ¼ 0.01, and φ ¼ π

2
in Eqs. (34). Other

parameters are the same as those in Fig. 2.

FIG. 5. Example II of single precession. See the caption of Fig. 2 for the meaning of the illustration. The initial values αjt¼0 ¼ π
2
,

βjt¼0 ≈ 1.146, _αjt¼0 ≈ −0.008, and _βjt¼0 ¼ 0 are adopted by setting α0 ¼ π
2
, β0 ¼ 1.4, A ¼ 0.01, and φ ¼ π

2
in Eqs. (34). Other

parameters are the same as those in Fig. 2.
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in Eqs. (31) and keeping in mind that ðα; β; γÞ now refer to
the Euler angles between the x-y-z frame and the Y-Z-X
frame (see Fig. 6).

III. OBSERVATIONAL CONSEQUENCES

NSs observed as pulsars provide tests against the above-
predicted single-precession motion due to Lorentz-violat-
ing gravity [14,17,29,30]. In Sec. III A, we will discuss the
constraints set on the coefficients for Lorentz violation by
applying the single-precession solution to two observed
solitary millisecond pulsars [29]. On the other hand, the
twofold-precession solution, developed from free preces-
sion once Lorentz-violating gravity presents, cannot be
used to constrain the coefficients for Lorentz violation
currently as evidence of free-precessing NSs are yet
preliminary (see, e.g., Ref. [31]). Based on the hypothesis
that NSs might possess tiny rigid deformations, the
modulations on pulsar signals and the emission of con-
tinuous GWs due to free precession have been studied in
the literature to predict observational signatures for search-
ing such NSs [15,22–24]. Following similar considerations,
we investigate in Secs. III B and III C the observational
signatures in pulsar pulses and continuous GW signals
from NSs undergoing the twofold-precession motion.

A. Single-precession motion and constraints
on Lorentz violation

We start with considering the change of the angle
between the spin axis êz and a fixed direction in the

X-Y-Z frame when a star is in the state of single precession.
Calling that angle λ and describing the fixed direction using
the spherical angular coordinates ðθo;ϕoÞ in the X-Y-Z
frame, we have the relation

cos λ ¼ sin θo sin β sinðα − ϕoÞ þ cos θo cos β; ð37Þ

where α and β are the Euler angles used in Sec. II. Assume
that the changes in α and β are much smaller than 1 during a
certain time interval, then the change of cos λ can be
approximated as

Δ cos λ ≈ ðsin θo cos β sin ðα − ϕoÞ − cos θo sin βÞΔβ
þ sin θo sin β cos ðα − ϕoÞΔα: ð38Þ

For estimations, we use the perturbation solution (27) to
approximate the changes in α and β as

Δα≈ _αΔt≈
�
1þ A

að1Þ sinβ0
sinφþcosβ0C̃

að1Þ
cos2α0

�
að1ÞΔt;

Δβ≈ _βΔt≈
�

A

að1Þ
cosφþ sinβ0C̃

að1Þ
sin2α0

�
að1ÞΔt; ð39Þ

where the start of the time interval Δt has been set at t ¼ 0.
Because A, C̃, and að1Þ are at the same order, Δα, Δβ, and
hence, Δ cos λ are proportional to að1ÞΔt with factors of
order unity. Here we neglect any situation where ðθo;ϕoÞ
and fA;φ; α0; β0g are fine-tuned to vanish the factor for
Δ cos λ. Once an observation puts a bound on the change of
λ during a certain time interval, the corresponding con-
straint on the combination 2s̄ZZ − s̄XX − s̄YY is

j2s̄ZZ − s̄XX − s̄YY j≲
���� IzzΩz

CΔt cos β0
Δ cos λ

����: ð40Þ

The estimation (40) depends on β0, which roughly
characterizes the angle between the symmetric axis of
the star and the Lorentz-violating principal axis around
which the forced precession happens. Checked with
numerical results, we find that when β0 ≲ 1.1, the estima-
tion (40) gives correct orders of magnitude for
j2s̄ZZ − s̄XX − s̄YY j. But as we mentioned in Sec. II B,
when β0 approaches π=2, the estimation (40) fails because
the perturbation method breaks down. A semianalytical
relation based on Eq. (40) and numerical results is

j2s̄ZZ − s̄XX − s̄YY j≲ η

���� IzzΩz

CΔt
Δ cos λ

����; ð41Þ

where η can be approximated by 1= cos β0 for β0 ≲ 1.1 but
then only increases to 10 when β0 approaches π=2.
Now we are ready to apply Eq. (41) to two solitary

pulsars: PSRs B1937þ 21 and J1744 − 1134. Their
observed pulse profiles over 15 years were thoroughly

FIG. 6. Euler angles α, β, and γ connecting the Y-Z-X frame
and the x-y-z frame. The line PQ is the intersection of the Y-Z
plane and the x-y plane.
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analyzed by Shao et al. [29]. Here we simply use the
conclusion that the change in the angle λ, now being
the angle between the spin axis and the line of sight, is
bounded by

Δλ ¼ 1

2

sinW
2

cot λ cosW
2
þ cot χ

ΔW; ð42Þ

whereW is the pulse width, ΔW is the change in W during
the 15 years, and χ is the angle between the spin axis of the
NS and the symmetric axis of the pulsar beam which has
been assumed to take the shape of a narrow cone [32]. The
values of those quantities for each pulsar are listed in
Table I. The derived bounds on Δλ and hence on the
combination j2s̄ZZ − s̄XX − s̄YY j are shown in the last three
rows of the table (the last row is the same as the second to
last row except that η is set to 10, which is suggested as the
upper limit of η by our numerical solutions). As an
estimation, a uniform density of ρNS ∼ 1015 g=cm3 and a
fluid deformation of ϵf ∼ 10−3 have been used to get

Izz

C
≈
15

4π

1

ρNSϵf
∼ 10−5 s2 ð43Þ

for the NSs.
Under the correspondence (5), the constraints in Table I

are consistent with those in Ref. [29] for the PPN α2
parameter. Then, we do notice that they are 3 to 5 orders of
magnitude better than the global results in Ref. [14] where
the same two solitary pulsars were used, but the test was
done together with another 11 binary pulsars in order to
obtain the global constraints on the coefficients for Lorentz
violation instead of the “maximal-reach” ones as done in
Ref. [33]. This shows that, (i) observations of solitary
pulsars are more sensitive to Lorentz violation than those of
binary pulsars, and (ii) the correlations between different
coefficients for Lorentz violation can severely degrade the
constraints [14].

B. Twofold-precession motion and pulsar signal

To construct pulsar signals from a NS under the twofold-
precession motion, we adopt the cone model to describe the
radiation beam [32,34]. Figure 7 illustrates a half radiation
cone in the X-Y-Z frame. In principle, the radiation comes
from two opposite sides of a NS and is in the shape of a
double cone. But for clarity, we will only track the half cone
as shown in Fig. 7 and analyze the signal from it. The signal
from the opposite half cone can be obtained simply by
reversing the unit vector along the axis of the cone in the
following analysis.
In the cone model, signals are observed when the line of

sight is inside the radiation cone. Mathematically, it means

TABLE I. Observational quantities from PSRs B1937þ 21 and J1744 − 1134 [29] to constrain Lorentz violation.
The pulse profile of PSR B1937þ 21 consists of a main pulse and an interpulse, both of which put bounds on the
change of λ and hence constrain Lorentz violation. The pulse width is taken at 50% intense level in practice. The last
row, conservative bound on j2s̄ZZ − s̄XX − s̄YY j, is obtained by setting η ¼ 10.

Main pulse
of PSR B1937þ 21

Interpulse of
PSR B1937þ 21 PSR J1744 − 1134

Spin period (ms) 1.6 1.6 4.1
W (deg) 8.3 10 13
Bound on ΔW (10−3 deg) −48 53 20
λ (deg) 100 100 95
χ (deg) 75 105 51
Bound on Δλ (10−3 deg) −19 −5.2 1.6
Bound on j2s̄ZZ − s̄XX − s̄YY j 10−14η 10−15η 10−16η
Conservative bound on j2s̄ZZ − s̄XX − s̄YY j 10−13 10−14 10−15

FIG. 7. Cone model for pulsar radiation [32,34]. The unit vector
along the magnetic dipole moment is denoted as m̂. It is the
symmetric axis of the cone. The semiopen angle of the cone is
denoted as ρ. While the star rotates, m̂ changes its orientation, and
at some time, the cone encloses a unit vector n̂, so the radiation is
received by the observer in the direction of n̂. The colatitude and
the azimuth for m̂ and n̂ in the X-Y-Z frame are denoted as ðΘ;ΦÞ
and ðθo;ϕoÞ, respectively.
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cos ρ < m̂ · n̂; ð44Þ

where ρ is the semiopen angle of the cone, m̂ is the unit
vector along the axis of the cone, and n̂ is the unit vector
along the line of sight. The axis of the cone, generally
believed to be aligned with the magnetic dipole moment of
the star, is fixed in the body frame and therefore can be
described by two constant angular coordinates ðχ; δÞ as

m̂ ¼ sin χ cos δêx þ sin χ sin δêy þ cos χêz: ð45Þ

The direction of the line of sight, if we neglect the proper
motion of the star relative to the observer, is fixed in the
X-Y-Z frame and will be described by two constant angular
coordinates ðθo;ϕoÞ as

n̂ ¼ sin θo cosϕoêX þ sin θo sinϕoêY þ cos θoêZ: ð46Þ

Using Eqs. (9), the product of m̂ and n̂ can be written as a
function of time due to the time-dependent Euler angles,

m̂ · n̂ ¼ sin θo sin χ cosðα − ϕoÞ cosðγ þ δÞ
− sin θo sin χ sinðα − ϕoÞ cos β sinðγ þ δÞ
þ sin θo cos χ sinðα − ϕoÞ sin β
þ cos θo sin χ sin β sinðγ þ δÞ
þ cos θo cos χ cos β: ð47Þ

The angles ϕo and δ can be absorbed into the initial values
of α and γ in the above expression. For given θo, χ, and ρ,
once the rotation of the star is known, the inequality (44)
can be solved to predict the time intervals during which
signals are observed.
A quick review of the observational signatures of free-

precessing pulsars is heuristic to explore the twofold-
precession case; more details can be found in, e.g.,
Ref. [15]. For an axisymmetric NS, the free-precessing
solution has

_α ¼ IzzΩz

Ixx cos β
;

_γ ¼ Ωz − _α cos β ¼ −ϵΩz; ð48Þ

with the angle β being constant. Therefore, the expression
m̂ · n̂ as shown in Eq. (47) is simply a sum of four sinusoids
of angular frequencies _α − _γ, _α, _αþ _γ, and _γ. The analysis
is further simplified by the fact that the deformation ϵ is
extremely small for NSs so that the frequency components
_α� _γ are basically the same as _α, leaving the pulsar period
to be P ≈ 2π= _α and modulated with a period of
PP ≈ 2π=j_γj. Here we assume that the directions of the z
axis and the Z axis are properly chosen so that Ωz and cos β
are positive.

An exact analytical expression of the pulsar period P in
terms of the Euler angles was derived in Ref. [22] by
calculating the rate of the azimuthal angle of m̂ in the
X-Y-Z frame. Denote the angular coordinates of m̂ in the
X-Y-Z frame as ðΘ;ΦÞ, then their relation with ðχ; δÞ can
be found by transforming the Cartesian components of m̂
under the rotation (8). The result is

cosΘ ¼ cos β cos χ þ sin β sin χ sin ðγ þ δÞ;
tanΦ ¼ tan ðαþ ΔΦÞ; ð49Þ

where

tanΔΦ ¼ cos β sin ðγ þ δÞ − sin β cot χ
cos ðγ þ δÞ : ð50Þ

The pulsar period defined as the time intervals between m̂
consecutively passing through the plane formed by the Z
axis and the observer is then

P≡ 2π
_Φ
¼ 2π

_αþ Δ _Φ
≈
2π

_α

�
1 −

Δ _Φ
_α

�
; ð51Þ

where

Δ _Φ ¼ −_γ
sin β cot χ sin ðγ þ δÞ − cos β

cos2ðγ þ δÞ þ ðsin β cot χ − cos β sin ðγ þ δÞÞ2 :

ð52Þ

Equation (51) not only confirms that the pulsar period P is
approximately generated by the angular frequency _α and
that the modulation on P involves sinusoidal functions of γ,
but also describes the time evolution of P quantitatively,
ready to fit observational data, say, to extract the parameters
_α, _γ, β, and χ.
Besides the pulsar period, the widths of pulse signals

also encode information on the motion of the star. With the
cone model of the radiation beam, it is defined as the
change of the azimuthal angle of m̂ in the X-Y-Z frame
during the time when n̂ is inside the cone, namely,

W ≡Φ2 −Φ1; ð53Þ

whereΦ1 andΦ2 are the azimuthal angleΦ solved from the
equation of the inequality (44) with

m̂ · n̂ ¼ sinΘ sin θ0 cos ðΦ − ϕoÞ þ cosΘ cos θo: ð54Þ

Fortunately, because j_γj is much smaller than _Φ ≈ _α, the
angle Θ given by the first equation in Eqs. (49) can be
treated as unchanged during Φ changing from Φ1 to Φ2 so
that the rootsΦ1 andΦ2 are symmetric about the azimuthal
angle ϕo of the observer, namely,
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Φ1 ≈ ϕo −
W
2
; Φ2 ≈ ϕo þ

W
2
; ð55Þ

and hence, as given in Refs. [32,34], setting the expression
(54) equal to cos ρ leads to an analytical expression for W,

cos
W
2
≈
cos ρ − cosΘ cos θo

sinΘ sin θo
: ð56Þ

When the time dependence of Θ is put back in Eq. (56), it
describes the modulated pulse width at the period
PP ≈ 2π=j_γj. By fitting this equation to observational data,
the parameters _γ, ρ, and θo can be extracted.
Let us now turn to the Lorentz-violating twofold-

precession case. Similar characteristics of pulse signals
exist. In fact, Eqs. (51) and (56) apply straightforwardly as
long as j_γj ≪ _α. This is exactly the regime where the
perturbation solution of the twofold precession works.
Neglecting the oscillating terms αð1Þ and βð1Þ, the pertur-
bation solution has

_α ≈ a ¼ IzzΩz

Ixx cos β0
− að1Þ;

_γ ¼ Ωz − _α cos β ≈ −ϵΩz þ cos β0að1Þ; ð57Þ

where the free-precessing angular frequencies _α and _γ are
shifted due to Lorentz violation. By fitting Eqs. (51) and
(56) to observational data, we will be able to extract the two
shifted frequencies _α and _γ and the angular parameters β0,
χ, ρ, and θo.
A crucial defect here is that once _α and _γ are extracted,

we are unable to deduceΩz, ϵ, and að1Þ simultaneously. One

more piece of information on the three quantities is required
from the observational data. It involves details of the
pattern of m̂ · n̂ that are beyond the perturbation approxi-
mation of _α and _γ in Eqs. (57), and inevitably invokes
numerical solutions of the twofold-precession motion.
Numerical calculations for m̂ · n̂ are also necessary for
another important reason. When _γ is not much smaller than
_α, the perturbation solution breaks down, and to make
matters worse, Eqs. (51) and (56) are also not valid
anymore, so there are no analytical templates to fit the
pulsar period and the pulse width. In this case, the
inequality (44) needs to be solved numerically to deduce
the discrete time series of the pulsar period and pulse width
to fit the observational data. The rotation of the star, the
parameters ϵ, χ, ρ, and θo, and the coefficients for Lorentz
violation s̄XX, s̄YY , and s̄ZZ might be determined via
elaborate numerical calculations and careful treatments.
Of course, other measurements, like the polarization
properties of the radiation, might provide extra information
and can be combined to derive a full solution. This is
beyond the scope of the current work.
In Fig. 8, the time evolutions of m̂ · n̂ using the two

numerical solutions in Fig. 2 (solution tp-I) and Fig. 3
(solution tp-II) are displayed, while Fig. 9 depicts the
corresponding angular frequency spectra. A decisive char-
acteristic shows up in the case of the solution that invalid-
ates the perturbation approach (namely, solution tp-II). That
is the extra smallest frequency component appearing in the
lower plot of Fig. 9. This frequency corresponds to the
average angular velocity at which the angular momentum
of the star precesses about the Z axis. Though no simple
approximate expression relates it to the coefficients for
Lorentz violation, numerical calculations indicate that this

FIG. 8. Time evolutions of m̂ · n̂ using the numerical solutions in Figs. 2 and 3. The constant angles θo and χ are taken to be 0.8 and
0.5 rad in the plots. The red dashed lines represent the cosine value of ρ ¼ 0.6 rad, illustrating the time segments when m̂ · n̂ is above
cos ρ so that the signal is observed under the corresponding setup. With our choice of ϵr ¼ 0.1 in the numerical solutions, the time unit is
tc ∼ 10−3 s if the density of the NS is ρNS ∼ 1015 g=cm3.
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angular frequency has the same order of magnitude as the
coefficients for Lorentz violation under the dimensionless
parametrization using the time unit defined in Eq. (35),
which for realistic NSs has an estimation

tc ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15

4π

1

ρNSϵr

s
∼ 1 s; ð58Þ

with density ρNS ∼ 1015 g=cm3 and rigid deformation ϵr ∼
10−8 assumed.2 The extra frequency component does not
show up in the case of solution tp-I, because in that case,
the angular momentum of the star is almost aligned with the
Z axis, so the precession of the angular momentum around
the Z axis caused by Lorentz violation degenerates with the
free precession, generating a total precession rate _α
approximately given by the first equation in Eqs. (57)
where the Lorentz-violating contribution að1Þ is unable to
be decoupled.
In Fig. 10, the discrete time series of the pulsar period

and of the time segment corresponding to the pulse width
calculated by solving the inequality (44) using the numeri-
cal templates of m̂ · n̂ from Fig. 8 are plotted. For the case
of the solution tp-I (left panels of Fig. 10), the smooth
curves that approximate the discrete points are generated

using Eqs. (51) and (56). They fit very well. For the case of
the solution tp-II (right panels of Fig. 10), Eqs. (51) and
(56) fail to approximate the discrete series, so we have to
interpolate the points to reveal their trends. Note that in
both cases there is a period of about 40tc originated from
the angular frequency between 0.1 t−1c and 0.2 t−1c in Fig. 9,
while in the right panels, a period of about 180tc shows
up—more perceivable in the pulsar-period plot than in the
pulse-width plot—reflecting the characteristic angular fre-
quency between 0.03 t−1c and 0.04t−1c in the lower panel
of Fig. 9.

C. Twofold-precession motion and continuous GWs

The quadrupole GW radiated by a freely precessing rigid
body was calculated in Refs. [23,35]. To investigate the
quadrupole radiation by a rigid body undergoing the
twofold-precession motion due to Lorentz violation, we
generalize Zimmermann’s calculation [35] to any rotating
rigid body with torques.
The metric perturbation in the X-Y-Z frame is given by

the quadrupole formula

hIJ ¼ −
2

r
̈IIJ; ð59Þ

where r is the distance from the star to the observer, and the
double dots denote the second time derivative. The time
dependence of the inertial-frame components of the moment
of inertia tensor originates in the rotation matrix via

IIJ ¼ RiIRjJIij; ð60Þ

while the body-frame components of the moment of inertia
tensor are constant. The derivatives of RiI can be derived by
noticing that the body-frame axes undergo an infinitesimal
rotation

êi → êi þ dtΩ × êi ð61Þ

at the instant when the body rotates with an angular velocity
Ω. The change of RiI is therefore dtðΩ × êiÞ · êI , giving

dRiI

dt
¼ ðΩ × êiÞ · êI ¼ ϵIJKΩJRiK; ð62Þ

where ϵIJK is the Levi-Civita symbol. Equation (62) can be
used to calculate _IIJ. When combined with the equation of
motion

_IIJΩJ þ IIJ _ΩJ ¼ ΓI; ð63Þ

_Ω can be solved in terms of Ω and the torque Γ. Then, the
demanded second derivative ̈IIJ can be found to take the form

̈IIJ ¼ RiIRjJAij ð64Þ

FIG. 9. Fourier transformations for m̂ · n̂ in Fig. 8. The dashed
red vertical lines mark _α ≈ 1.438 and j_γj ¼ 0.1, which are the
values from the free-precessing equations (48) with
Izz=Ixx ¼ 1.1, Ωz ¼ 1, and β ¼ 0.7. As we have taken
ϵr ¼ 0.1, the frequency unit is 1=tc ∼ 1000 rad=s if the density
of the NS is ρNS ∼ 1015 g=cm3.

2We must point out that because we use Izz=Ixx ¼ 1.1 for
illustrative purposes in our numerical examples, meaning
ϵr ¼ 0.1, the time unit tc in the plots is really at the order of
10−3 s if the density is ρNS ∼ 1015 g=cm3.
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with the help of the derivative of Eq. (62). The body-frame
tensorAij is lengthy in general but much simplified when the
body frame diagonalizes the moment of inertia tensor, which
is the case in our setup. The components then read

Axx ¼ 2ðΔ2ðΩyÞ2 − Δ3ðΩzÞ2Þ;
Ayy ¼ 2ðΔ3ðΩzÞ2 − Δ1ðΩxÞ2Þ;
Azz ¼ 2ðΔ1ðΩxÞ2 − Δ2ðΩyÞ2Þ;

Axy ¼
�ðΔ3Þ2

Izz
þ Δ1 − Δ2

�
ΩxΩy þ Δ3

Izz
Γz;

Axz ¼
�ðΔ2Þ2

Iyy
þ Δ3 − Δ1

�
ΩxΩz þ Δ2

Iyy
Γy;

Ayz ¼
�ðΔ1Þ2

Ixx
þ Δ2 − Δ3

�
ΩyΩz þ Δ1

Ixx
Γx; ð65Þ

where ðΩx;Ωy;ΩzÞ are the body-frame velocity components
given in terms of the Euler angles and their derivatives in
Eqs. (22), and the body-frame torque components
ðΓx;Γy;ΓzÞ can be calculated from the anisotropic potential
δU via

Γx ¼ −
sin γ
sin β

∂αδU − cos γ∂βδU þ cot β sin γ∂γδU;

Γy ¼ −
cos γ
sin β

∂αδU þ sin γ∂βδU þ cot β cos γ∂γδU;

Γz ¼ −∂γδU: ð66Þ
The symbols Δ1, Δ2, and Δ3 follow the definition of
Zimmermann [35],

Δ1¼ Iyy− Izz; Δ2¼ Izz− Ixx; Δ3¼ Ixx− Iyy: ð67Þ

It is plain that Eqs. (65) go back to the result of Zimmermann
[35] when Γ ¼ 0.
As we restrict ourselves to spheroids, the tensor Aij is

further simplified by Ixx ¼ Iyy and Γz ¼ 0. In the absence
of Lorentz violation, the star precesses freely, and the tensor
̈IIJ has a simple form,

ÏIJ ¼ 1

2
Δ2 _α

2 sin2β

×

0
B@
2cos2α tanβ 2sin2α tanβ −sinα

2sin2α tanβ −2cos2α tanβ cosα

− sinα cosα 0

1
CA; ð68Þ

which tells that hIJ is a spherical wave with exactly two
frequency components, namely, _α and 2_α. When Lorentz
violation presents and the star is subjected to the twofold-
precession motion, the tensor ̈IIJ becomes complicated as _β
no longer vanishes. But if we only consider motions given
by the perturbation solution, we expect Eq. (68) to be a fair
approximation and that the continuous GW still has two
frequency components _α and 2_α, with _α being the Lorentz-
violating shifted angular frequency given by the first
equation in Eqs. (57).
For an observer with colatitude θo and azimuth ϕo in the

X-Y-Z frame, the basis to decompose the 2 physical
degrees of freedom for the continuous GW can be taken as

FIG. 10. Discrete time series of the pulsar period and time segment associated with the pulse width solved from m̂ · n̂ ¼ cos ρ with m̂ · n̂
from Fig. 8 and ρ ¼ 0.6 rad. The left plots are for the solution tp-I where the lines are generated by Eqs. (51) and (56). The right plots are for
the solution tp-II where Eqs. (51) and (56) fail to approximate the discrete points and the lines are spline interpolations of the discrete points.
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eþ ≡ θ̂o ⊗ θ̂o − ϕ̂o ⊗ ϕ̂o; e× ≡ θ̂o ⊗ ϕ̂o þ ϕ̂o ⊗ θ̂o;

ð69Þ

where

θ̂o ¼ cos θo cosϕoêX þ cos θo sinϕoêY − sin θoêZ;

ϕ̂o ¼ − sinϕoêX þ cosϕoêY: ð70Þ

Then, the “þ” and the “×” components of the continuous
GW are

hþ ¼ 1

2
ðθ̂Ioθ̂Jo − ϕ̂I

oϕ̂
J
oÞhIJ ¼ −

1

r
ðθ̂Ioθ̂Jo − ϕ̂I

oϕ̂
J
oÞ̈IIJ;

h× ¼ 1

2
ðθ̂Ioϕ̂J

o þ ϕ̂I
oθ̂

J
oÞhIJ ¼ −

1

r
ðθ̂Ioϕ̂J

o þ ϕ̂I
oθ̂

J
oÞ̈IIJ; ð71Þ

where θ̂Io and ϕ̂I
o are the components of θ̂o and ϕ̂o in the

X-Y-Z frame as shown in Eqs. (70).
When continuous GWs from NSs are detected, Eqs. (71)

can be used as template waveforms to match observational
data. Similar to the analysis of the pulsar signal in Sec. III B,

to extract the coefficients for Lorentz violation s̄XX, s̄YY , s̄ZZ

and the NS parameters ϵ, Ωz, θo, r from observational data,
elaborate numerical calculations are required. Using the two
numerical solutions in Figs. 2 and 3 to calculate ̈IIJ, we plot
the corresponding waveforms in Fig. 11 and their Fourier
transformations in Fig. 12. Tiny high frequency components
in the spectra are found. They are featured in the subplots of
Fig. 12 and turn out to be exactly 3 times the fundamental
frequencies, which are represented by the peaks near
1.438 t−1c and can be regarded as the average values of _α
for the twofold-precession motions. Frequencies higher than
the third harmonic exist, but their amplitudes are even much
smaller. We point out that unlike the pulsar signal of solution
tp-II, there is no low frequency at the order of the coefficients
for Lorentz violation in the continuous GW spectra.
However, the advantage of a continuous GW signal is that
both solutions tp-I and tp-II exhibit the third harmonic
characterizing the deviation of the waveform from that of
a free-precessing NS, though in the case of solution tp-I,
the amplitude of the third harmonic is further suppressed.
This Lorentz-violating feature is worth looking for and may
reveal new physics beyond the current understanding.

FIG. 11. Continuous GWs from NSs subjected to the solutions tp-I and tp-II. The angular coordinates of the observer are taken to be
θo ¼ 0.8 rad and ϕo ¼ 0 in the plots. Time and distance are parametrized using the time unit tc defined in Eq. (35), which is at the order
of 10−3 s with our choice of ϵr ¼ 0.1 in the numerical solutions and ρNS ∼ 1015 g=cm3 assumed for the density of the NS.

PRECESSION OF SPHEROIDS UNDER LORENTZ VIOLATION … PHYS. REV. D 103, 084028 (2021)

084028-15



IV. CONCLUSION

Lorentz violation modifies the Newtonian potential by an
anisotropic correction, generating a torque on spheroidal stars
that forces the otherwise conserved angularmomentum of the
star to precess around a preferred direction defined by the
coefficients for Lorentz violation. To solve the motion
rigorously, we first calculate the anisotropic gravitational
self-energy of the star caused by Lorentz violation in the
minimal gravitational SME in Sec. II A. The result is proved
to be equivalent to that of Nordtvedt [17] when the star is
treated as a stationary spinning fluid star in equilibrium so the
tensor virial relation holds. Discrepancy occurs when the star
possesses a rigid deformation which invalidates the tensor
virial relation. Besides stationary spin, free precession is also
a solution of motion for such stars in the absence of torques.
Then in Sec. II B, the forced precession caused by the

Lorentz-violating torque on stationary spinning stars and
on free-precessing stars is explicitly calculated using the
perturbation method to solve the rotational equations of
motion. Interestingly, we find that the direction of the
forced precession on stationary spinning stars is opposite to
the direction of the forced precession on free-precessing
stars as shown in Eq. (32). Numerical solutions are explored
to check the validity of the perturbation approach. Initial
values for which the perturbation approach fails are iden-
tified. The study of the solutions is finished by clarifying that
the preferred directions around which the forced precession
happens are exactly the eigenvectors of the matrix s̄ij. An

interesting result is that when the matrix s̄ij acquires three
different eigenvalues, the forced precession is unstable if it is
around the eigenvector corresponding to the middle eigen-
value. This is similar to the well-known Dzhanibekov effect
(or the tennis racket theorem).
After the solutions of motion are studied thoroughly, we

apply them to explore the observational consequences for
NSs in Sec. III. Section III A treats the two solitary pulsars in
Ref. [29] as stationary spinning spheroids at zeroth order, and
sets bounds on the coefficients for Lorentz violation by
attributing any possible tiny alteration of the NSs’ orienta-
tions hidden in observational uncertainties to the forced
precession due to Lorentz violation. With the connection
between the SME coefficients s̄ij and the PPN coefficient α2
shown in Eq. (5), the constraints obtained here are consistent
with the ones for the α2 coefficient in Ref. [29]. However, our
“maximal-reach” constraints obtained from the two solitary
pulsars are 3 to 5 orders of magnitude better than those in
Ref. [14]. The same two solitary pulsars are used there but
together with another 11 binary pulsars for a global analysis.
Notice that herewe use a different coordinate frame from that
of Ref. [14], so a plain comparison is only heuristic.
Nevertheless, this suggests that the orbital motions of the
binary pulsars are less sensitive to Lorentz violation than the
rotational motions of the solitary pulsars. Therefore, we urge
observers to analyze the stability of pulsar spins—possibly
via the pulse profile stability as it was done by Shao et al.
[29]—with more suitable systems and to put tighter bounds
on the coefficients for Lorentz violation.
In Secs. III B and III C, pulsar signals and continuous

GWs from Lorentz-violating-affected free-precessing NSs
are investigated. When the angular momentum of the star is
close to the preferred direction around which the forced
precession happens, the spectra of the signals are very much
like those from a free-precessing NS. The forced precession
does shift frequencies in the spectra, but the contribution
from it is practically unable to be decoupled from the free-
precessing frequency components. When the angular
momentum of the star makes a relatively large angle to
the preferred direction around which the forced precession
happens, decisive characteristics that areworth searching for
show up in the spectra. For pulsar signals, the signature is an
extremely low frequency component as shown in the lower
plot of Fig. 9. The observables, namely, the pulsar period and
the pulse width, are not only modulated by the average rate
of the Euler angle γ, but also modulated by this frequency
(right plots in Fig. 10). The polarization characteristics of
pulsar pulses are interesting to investigate in future studies,
and they could provide more information on the rotation of
theNS and its radiation properties. ForGWs, the signature is
represented by the third harmonic shown in the subplots of
Fig. 12. Free-precessing spheroidal NSs emit continuous
GWs only at the first and the second harmonics of the rate of
theEuler angleα. But once affected byLorentz violation, the
continuousGWemitted by the star is no longer a simple sum

FIG. 12. Fourier transformations for the continuous GWs
shown in Fig. 11. The dashed red vertical lines mark _α ≈
1.438 and 2_α ≈ 2.876, which are the angular frequencies of
the continuous GWs from a free-precessing NS with
Izz=Ixx ¼ 1.1, Ωz ¼ 1, and β ¼ 0.7. As we have taken
ϵr ¼ 0.1, the frequency unit is 1=tc ∼ 1000 rad=s if the density
of the NS is ρNS ∼ 1015 g=cm3.
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of sinusoidal functions. Thewaveformgenerally involves all
harmonics of the average rate of the Euler angle α, with the
amplitudes decreasing rapidly after the first two.
The characteristic frequencies in the spectra of the signals

are qualitative support for Lorentz violation if observed. To
extract quantitative values of the coefficients for Lorentz
violation, as well as the physical parameters of the NS,
numerical calculations are necessary to fit the observational
data. Tentative candidates of free-precessing NSs are pro-
posed in pulsar observations [31,36], while searches for
continuous GWs have not yet confidently identified any
positive detections [37–42].Our study supplies the necessary
templates for potential new tests of Lorentz violation that
take advantage of the two state-of-the-art observation chan-
nels in the era of multimessenger astronomy. Once free-
precessing NSs are unambiguously identified, the new tests
using theirmodulated pulsar signals and continuousGWs are
bound to enrich our fundamental knowledge on Lorentz
symmetry of our spacetime.
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APPENDIX: THE CONSTANT
C FOR UNIFORM SPHEROIDS

Using the results on Maclaurin spheroids summarized in
Refs. [20,21], we can explicitly write down the constant C
in terms of the eccentricity defined as

e≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
a3
a1

�
2

s
ðA1Þ

for a spheroid (10) with uniform density. We start with the
Newtonian potential (16) inside an ellipsoid of uniform
density,

Φ ¼ −πρðA0 − A1x2 − A2y2 − A3z2Þ: ðA2Þ

The constants A0, A1, A2, and A3 happen to have closed-
form results for spheroids,

A0 ¼ 2a21
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p arcsine
e

¼ 2a21

�
1−

1

3
e2 þOðe4Þ

�
;

A1 ¼ A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p

e2

�
arcsine

e
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p �
¼ 2

3

�
1−

1

5
e2 þOðe2Þ

�
;

A3 ¼
2

e2

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2

p arcsine
e

�
¼ 2

3

�
1þ 2

5
e2 þOðe2Þ

�
: ðA3Þ

It then follows that the constant C is

C ¼ 1

2
ðUxx −UzzÞ ¼ 4π2

15
ρ2a21a3ða21A1 − a23A3Þ

¼ 16π2

225
ρ2a41a3ðe2 þOðe4ÞÞ: ðA4Þ

We point out that the equilibrium condition

p
ρ
¼ −Φþ 1

2
jΩj2ðx2 þ y2Þ þ const ðA5Þ

on the surface where p ¼ 0 implies

jΩj2 ¼ 2πρ

�
A1 −

a23
a21

A3

�
: ðA6Þ

As the angular velocity Ω is along the z axis, we
directly see

Trot ¼
1

2
IzzjΩj2 ¼ 2C; ðA7Þ

where Izz ¼ 8π=15ρa41a3 has been used. It is also worth
pointing out that both the eccentricity defined in Eq. (A1)
and the oblateness defined in Eq. (19) characterize the
deviation of a spheroid from a sphere. For a uniform
spheroid, they are simply related via

ϵ ¼ e2

2 − e2
: ðA8Þ
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