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This paper considers diffeomorphism invariant theories of gravity coupled to matter, with second order
equations of motion. This includes Einstein-Maxwell and Einstein-scalar field theory with (after field
redefinitions) the most general parity-symmetric four-derivative effective field theory corrections. A gauge-
invariant approach is used to study the characteristics associated to the physical degrees of freedom in an
arbitrary background solution. The symmetries of the principal symbol arising from diffeomorphism
invariance and the action principle are determined. For gravity coupled to a single scalar field (i.e., a
Horndeski theory) it is shown that causality is governed by a characteristic polynomial of degree 6 which
factorizes into a product of quadratic and quartic polynomials. The former is defined in terms of an
“effective metric” and is associated with a “purely gravitational” polarization, whereas the latter generically
involves a mixture of gravitational and scalar field polarizations. The “fastest” degrees of freedom are
associated with the quartic polynomial, which defines a surface analogous to the Fresnel surface in crystal
optics. In contrast with optics, this surface is generically nonsingular except on certain surfaces in
spacetime. It is shown that a Killing horizon is an example of such a surface. It is also shown that a Killing
horizon satisfies the zeroth law of black hole mechanics. The characteristic polynomial defines a cone in the
cotangent space and a dual cone in the tangent space. The latter is used to define basic notions of causality

and to provide a definition of a dynamical black hole in these theories.
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I. INTRODUCTION

We will consider theories of gravity in d spacetime
dimensions described by a metric tensor g, coupled to
matter fields ¢;, I =1,...,N, with a diffeomorphism-
invariant action of the form

1
S=1esC d’x\/|g|L(g. #1) (1)
for some scalar Lagrangian L. We will restrict attention to
the class of theories for which the equations of motion are
second order. As well as Einstein gravity minimally
coupled to conventional matter fields, this class encom-
passes more exotic theories such as Lovelock theories [1]
(vacuum gravity in d > 4 dimensions) and Horndeski
theories [2] (gravity coupled to a scalar field in d =4
dimensions).

This class of theories also includes some important
examples motivated by effective field theory (EFT).
Einstein gravity minimally coupled to matter has a
Lagrangian whose terms involve up to 2 derivatives of
the fields. In EFT one adds to this all possible scalars
involving higher derivatives of the fields. The terms with
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the fewest derivatives give the leading corrections to
Einstein gravity. Remarkably, in several important cases,
one can use field redefinitions to arrange that the leading
higher derivative corrections still give rise to second order
equations of motion. We will discuss three examples of this.

Our first example is vacuum gravity. The leading
EFT corrections to the FEinstein-Hilbert Lagrangian have
4 derivatives. Using a field redefinition one can eliminate
4-derivative terms written in terms of the Ricci tensor, and
arrange that the only 4-derivative term is the “Gauss-
Bonnet” term. This is topological for d =4 but not for
d > 4. If we neglect terms with more than 4 derivatives
then we obtain Einstein-Gauss-Bonnet (EGB) theory,
which has second order equations of motion and therefore
belongs to the above class of theories (it is a Lovelock
theory).

The second example is the EFT of gravity coupled to a
scalar field in d = 4 dimensions. The leading EFT correc-
tions to the minimally coupled 2-derivative theory involve
terms with 4 derivatives. Field redefinitions can be used to
write the 4-derivative terms in various different forms [3]. If
one assumes a parity symmetry then one of these forms is
preferred because, after neglecting terms with more than
4 derivatives, it gives rise to second order equations
of motion [4-6] (it is a Horndeski theory, described in
Sec. IVA below). Hence the above class of theories
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includes the leading EFT corrections to (parity-symmetric)
Einstein-scalar theory in 4 dimensions.

A third example is d = 4 Einstein-Maxwell theory. In
this case, after field redefinitions, one can reduce the
possible parity-symmetric 4-derivative terms involving just
the Maxwell tensor to (F,, F*)* and (F,, F*)* where F,
is the dual Maxwell tensor. These terms give second order
equations of motion. The 4-derivative terms involving just
the metric can be reduced to a topological term as for
vacuum gravity. This leaves a possible 4-derivative inter-
action of the form RFF where R denotes the Riemann
tensor. One can again exploit field redefinitions to write this
term in the form RW,”F””FP", which gives second order
equations of motion [7]. Thus the above class of theories
includes Einstein-Maxwell theory with the leading parity
symmetric 4-derivative EFT corrections.

A minimal condition for a theory of the above type to
“make sense” classically is that it should admit a well-
posed initial value problem. Recently it has been shown
that this is indeed the case for Lovelock and Horndeski
theories at “weak coupling” [6,8]. The latter condition
means roughly that the contribution of higher derivative
terms to the equations of motion is small compared to the
2-derivative terms. Note that this condition is also required
for validity of EFT.

It is interesting to ask whether any of the important
theorems of general relativity can be extended to these
theories. The first step in attempting to do this is to
understand causal properties of these theories, which is
the subject of this paper. The basic notion in the study of
causality is the idea of a characteristic hypersurface. For
example, the wavefront arising from a compactly supported
perturbation is a characteristic hypersurface. In geometric
optics, surfaces of constant phase are characteristic hyper-
surfaces. Characteristic hypersurfaces are defined in a
general background solution as follows. Consider the
equations of motion linearized around the background
solution. These take the form

Pl 0,058G,5 + Pt 0,050¢p; + - =0
PP D,05680,, + Pl 0,0560, +---=0  (2)

where the ellipses denotes terms with fewer than 2
derivatives acting on (g, ¢;). Subscripts “g” and “m”
refer to “gravity” or “matter”. The coefficients Py, P, etc
of the 2-derivative terms are tensors that can depend on the
background fields (g,,.¢;) and their first and second
derivatives. These coefficients are assembled into a matrix
called the principal symbol defined as follows. Let &, be an
arbitrary covector. Then the principal symbol is

Po ety Pon et
P( ): ( 99 p g ﬁ) (3)

1 1J
Plele s Pl

We can regard this matrix as acting on ‘“polarization
vectors” of the form T = (t,,.t;) where t,, is symmetric.
However, owing to the diffeomorphism invariance of
our theory, it is better to regard it as acting on gauge
equivalence classes of polarizations [9], a notion we review
below. Such classes correspond to “physical polarizations”.
One then defines a covector &, to be characteristic if there
exists a nonzero equivalence class 7 satisfying the char-
acteristic equation P(&)T = 0. A hypersurface is character-
istic iff its normal is a characteristic covector. Associated
with any such hypersurface is a physical polarization (or
space of polarizations) that, in geometric optics, can
propagate along that hypersurface.

Causality is determined by algebraic properties of the
principal symbol and so we must start by studying these
algebraic properties. In Sec. II, I will show that the principal
symbol must possess certain symmetries. These follow
from the action principle and from diffeomorphism invari-
ance. These symmetries are particularly restrictive in low
spacetime dimensions. For d = 4 they imply that the tensor
P7°% can be written in terms of an “effective metric”: a
symmetric tensor C,, depending on the background fields
and their first and second derivatives. For a weakly coupled
theory, C,, is close to g,,. Next, in Sec. III, I will study the
characteristic equation for a general theory, focusing on the
d = 4 case. The analysis splits into two cases. In the first
case, &, is non-null with respect to (C~')# (the inverse of
C,,) and the gravitational polarization ¢,,, is determined (up
to gauge) by the matter polarization ¢,;. In the second case,
&, is null with respect to (C~')*. Whether or not this case
arises reduces to the condition that a “Weyl-like” tensor
constructed from the principal symbol and #; should admit
&, as a principal null direction.

In Sec. IV, I will consider d =4 theories of gravity
coupled to a single scalar field, i.e., Horndeski theories. In
this case I will show, for a general background solution, that
&, is characteristic iff p(£) =0 where the characteristic
polynomial is

p(§) = (CT"E.8,0(8) (4)

where Q(&) is a homogeneous quartic polynomial in & with
coefficients depending on the backgrounds fields and their
first and second derivatives. Clearly p(&) is a homogeneous
polynomial of degree 6 that factorizes into the product of a
quadratic and a quartic polynomial. For simple theories, or
symmetrical backgrounds (e.g., a FLRW cosmology), Q(&)
also factorizes, into a product of quadratic polynomials of
the form (C‘l)"”cfﬂcfyF/"’cf,,cfm where F* is another effec-
tive metric. However this factorization does not occur for
generic backgrounds of generic theories (such as the EFT of
a scalar field coupled to gravity).

This result implies that, in a Horndeski theory, the
normal £, to a (physical) characteristic surface must satisfy
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either the quartic equation Q(&) =0 or the quadratic
equation (C~')*&,E, =0. The set of solutions &, of
p(€) = 0 defines the characteristic cone in the cotangent
space at any point. So the result (4) shows that the
characteristic cone is the union of a quadratic cone and
a quartic cone.

There is a close similarity with the theory of electro-
magnetic waves in an anisotropic crystal [10], or elastic
waves in an anisotropic solid [11]. In the former case,
characteristics £, must satisfy a quartic equation and in the
latter case they must satisfy an equation of degree 6, as in
our case. The analogy is particularly close for an elastic
solid with hexagonal symmetry for which the characteristic
polynomial factorizes into a quadratic and quartic poly-
nomial as in (4) [11].

One can visualize the characteristic cone by taking a
cross section (of constant &, with respect to a suitable basis)
to define a “slowness surface” in R3. T will show that, for a
weakly coupled theory, the slowness surface has three
sheets, corresponding to the three physical degrees of
freedom. This surface is the union of an ellipsoid defined
by the quadratic equation with a 2-sheeted surface defined
by the quartic equation, with the quadratic ellipsoid lying
between the sheets of the quartic surface. In optics (for a
biaxial crystal), the analogous surface, sometimes called
the Fresnel surface, has 4 singular points where two sheets
of the quartic meet. This gives rise to the phenomenon of
conical refraction [10]. In our case I will show that, for a
generic background of a generic theory, the slowness
surface has 4 “double points” at which the quadratic and
quartic surfaces meet, however, generically they do so
smoothly, which implies that there is no conical refraction.
This is similar to the case of some hexagonally symmetric
materials in elasticity (e.g., Zinc [12]). In our case, for a
generic background of a generic theory, there will be
special (nongeneric) points in spacetime for which a double
point is replaced by a “triple point” where all three sheets of
the slowness surface meet. I will argue that these special
points fill out hypersurfaces in spacetime.

I will give an expression for the physical polarizations
associated with each sheet of the characteristic cone. The
quadratic cone is associated with a “purely gravitational”
polarization. In particular, this means that, in any (weakly
coupled) background, for any Horndeski theory, there is
always a physical graviton polarization that decouples from
the scalar field in the geometric optics limit (and propagates
on the null cone of C,, ). However, in a generic theory, this
is not the “fastest” degree of freedom. The latter is
associated with the inner sheet of the quartic cone. The
polarizations associated with the sheets of the quartic cone
generically involve mixing between the gravitational and
scalar field degrees of freedom.

Associated with the region enclosed by the inner sheet of
the characteristic cone one can define a dual cone in the
tangent space at any point. This dual cone governs causality

in these theories, i.e., it provides the appropriate generali-
zation of the usual “light cone” of GR. The dual cone can
be used to generalize standard GR definitions to this class
of theories. I will use it to provide a definition of the black
hole region in an asymptotically flat spacetime.

I will discuss in detail the case of a spacetime admitting a
Killing horizon. It turns out that such a horizon is an
example of a surface on which the slowness surface has a
triple point. However, this triple point is of a special type
which ensures that conical refraction does not occur and,
within the horizon, causality reduces to the usual notion of
causality with respect to the metric. I will also prove some
results about the surface gravity of a Killing horizon. First,
the surface gravity is constant if the theory is weakly
coupled on the Killing horizon, i.e., the zeroth law of black
hole mechanics holds. Second, the surface gravity defined
with respect to the effective metric C,, is the same as that
defined with respect to g,,.

This paper uses standard notions of causality from PDE
theory. However, as discussed above, some of the theories
discussed in this paper are motivated by EFT. The regime of
validity of EFT does not include waves of arbitrarily short
wavelength. I will explain why this means that one cannot
use geometric optics to distinguish between the character-
istic cone defined by (4) and the usual null cone of the
metric.

I will end in Sec. V by discussing some possibilities for
future research.

A. Notation and conventions

Lower case Greek indices are tensor indices. I consider
theories involving a metric tensor g,, with positive sig-
nature. All index raising and lowering will be performed
using this metric tensor (rather than the effective metric
C,). My convention for the Riemann tensor is

= H c
Rty = ZGMF‘DM + -
II. THE PRINCIPAL SYMBOL
AND ITS SYMMETRIES

A. Definition

Consider the theory defined by the action (1). For the
moment we assume only that the metric g, is nondegen-
erate but we do not require it to have a particular signature.
In particular, the following analysis applies for both
Lorentzian and Riemannian signature. Define

162G 6S y 162G 6S
B = - G
V191 99 Vgl 6¢1
so the equations of motion are
E =E' =0. (6)

We assume that these equations of motion are second order.
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Let &, be an arbitrary covector. Then the principal
symbol is defined as in (3) where

puend = OB gy OB
0 (aaaﬁgpa) ’ a(aaaﬁ¢1)
PI/,waﬂ — aEl Lafp _ aEI

m = —FF Pmm =3/ a9 7 \ 7
g (9,9p9,) (0,059 ) )

These definitions are equivalent to those obtained by
linearizing the equations of motion as in (2). By definition
these objects possess the symmetries

PZ;Paaﬂ _ szv)paaﬂ _ sz(pa)aﬁ _ PZ;pa(aﬂ) (8)

szfaﬂ — PE]I}‘;)I”/} — Pl(;’l;{(’l/}) (9)
P{ylllgl/”/’) — P;Irgqu)aﬁ — P,l,}:;(aﬁ) (10)
Pl = Pi? (11)

We will sometimes use the notation

PZf”[ (5) = sznlaﬁfafﬂ
PUL(&) = Piilegy (12)

P g;ﬂ"(g) =P z;paaﬁgagﬂ
aff
P11 (&) = Pug™ £ty

The principal symbol P(£) is a matrix that acts on the
vector space of “polarization” vectors of the form (z,,.1;)
where 1, is symmetric. In a general theory, P(£) depends
on the fields (g,,. ¢,) and their first and second derivatives.

B. Consequences of the action principle

We will now show that the action principle implies that
the principal symbol is a symmetric matrix. Fix a “back-
ground” field configuration (not necessarily a solution) and
consider a 2-parameter compactly supported variation of
this configuration, parametrized by (4;,4,). This means
that we consider fields g, (x, 4,,4,) and ¢;(x, 4;, ;) which
coincide with the background fields g, (x,0,0) and
¢;(x,0,0) outside a compact set. Hence 0, g,, and 0, ¢,
are functions of compact support in spacetime.

Take a derivative with respect to A; of the action
evaluated on these fields:

1

S =———
! 167G

dd'x |g‘(EIw51.g/w + E161¢1) (13)

where §; denotes a partial derivative with respect to 4; and
compact support lets us discard total derivatives. Now take
a derivative with respect to 4, to obtain

1
5,8, =———
271 162G

+ (P Z;paaﬁaaaﬂ(snga +P /glrbnl aﬂ3a5ﬁ52¢1 +-- ')519,w
+ (P’I;l‘;aﬁaaa[)’62guy + Pi{zﬂaaa/}62¢l + - )5l¢1]
(14)

d'x\/1g] [E5,819,, + E'6,5,¢b;

where the ellipses denotes terms with fewer than 2
derivatives acting on d,g,, and 6,¢;. Since we are not
keeping track of such terms, we can replace partial
derivatives above with covariant derivatives. Integrating
by parts we have

6:615 =
+P Z-Zpgaﬂva‘slgﬂvvﬂ‘snga +P zfnl aﬂvafslguuvﬂézﬁﬁl
+ P%l;a/jv(161¢[v/j52gﬂp + PRIV 6 $1V 620
) (15)

d¥x\/|g|(=E"6,6,9,, — E'6,8,¢h;

where the ellipsis denotes terms for which the total number
of spacetime derivatives acting on the field variations is less
than 2. Now antisymmetrize in 4; and 4, and evaluate at
A1 = 4, = 0: the left-hand side (lhs) vanishes and terms
involving 6,8,9,, and 6,6,¢; drop out of the right-hand
side (rhs) when antisymmetrized, leaving (after using the
symmetry of the principal symbol on af)

1 / vpoaq, %o
0= 167G ddx |g|{(Png 4 - P/g)g” /j)vaélgﬂpvﬁﬁzgpg

+ [(ngﬂl(lﬂ - P’Ifllgaﬂ)vaélgﬁwv/}52¢l + (1 < 2)]
+ (PLaP — Pglzﬂ)va51¢lvﬂ52¢l +-0} (16)

This has to hold for arbitrary compactly supported varia-
tions. Hence the coefficients of the terms quadratic in first
derivatives of the variations must vanish:

uvpoaf} __ ppouvaf uvlaf _ pluvaf Lo _ pllap
Pg!] - ng Pgm - ng Pom = P (17)

These equations are equivalent to the statement that the
principal symbol (3) is symmetric. The equations of motion
were not used in the above argument, so this holds for any
field configuration.

If the background does satisfy the equations of motion
then by setting 6, = ; in (15) we see that the second
variation of the action around a solution is

1

018 = 1gmg | 4V 19I(Pa” "N 8190V 4519y

+ P anlaﬁva5lgypvﬁ5l¢l +P %aﬁva5l¢lvﬂ5lg,w
+ Pl 81V 01bs + ) (18)
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where the ellipsis denotes terms for which the total number
of derivatives acting on field variations is less than 2. Thus
the principal symbol determines the 2-derivative terms in
the action when expanded to quadratic order around a
background solution.

C. Consequences of diffeomorphism invariance

Next we will establish some further symmetries that
follow from invariance of the action under compactly
supported diffeomorphisms. Consider an infinitesimal dif-
feomorphism generated by a compactly supported vector
field X*. We assume that the matter fields are such that their
transformation does not involve derivatives of X*:

5'9/“-/ = ZV(ﬂXD) 5¢] = X”Lﬂ[ (19)
for some tensor fields L,;. For example, a set of scalar
fields ¢, has L,; = 0,¢; and a vector potential A, has
0A, = X"F,, (up to a compactly supported gauge trans-
formation) so L,, = F,. Taking the variation in (13) to be
such a diffeomorphism, with compactly supported X*, the
lhs vanishes and integrating by parts leads to the gener-
alized Bianchi identity:

V,EW — LM E =0 (20)

This has to hold for an arbitrary field configuration. Using
the chain rule to expand the first term gives

Pyl 9,0,059p0 + P 0,0,0p¢p +--- =0 (21)

where the ellipsis denotes terms not involving third (or
higher) derivatives of the fields. Since this equation has to
hold for an arbitrary field configuration, the coefficients of
the third derivative terms must vanish, which requires

Plééﬂﬂg‘aﬁ) =0 P/;’(:maﬁ) =0 (22)

Using the symmetries (17) these equations are equivalent to

Pt —0 P <0 @y

D. Combining the symmetries

We will now use the results established above to prove
the following proposition.

Proposition: Assume that the action (1) is invariant
under compactly supported infinitesimal diffeomorphisms
which act on the matter fields as in (19). Then the
components of the principal symbol can be written (for
arbitrary &)

Pilg (£) = Clhabe g, (24)
P’g‘gﬂ”(f) — Cﬂ(/’|a’/\5)ﬂ§a§ﬂ (25)

where C/#7° has the symmetries of a metric-derived
Riemann tensor:

Cluvpo — Cl[m/]pa _ Cluz/[pzf] — Clpopv Cly[y/m] =0 (26)
and CHi#2#3¥1%2% hag the symmetries
CHitamsvivays — Clinpapslvivrs — Cripons[vivars]
= CVialshikops (27)

and

C/‘l/‘ZU’ﬂ’lyzl’}] — C#lblzﬂs”l”z]% =0 (28)

The tensors C/#P? and CHi#2#31%2%5 gre uniquely defined by
the above properties. They depend on the fields (g,,.¢;)
and their first and second derivatives.

Proof.—First note that

P)Iy;:;a/} _ P%zﬁu _ P%fm
— _plawv _ plma
= P+ P+ P 4 P
= 2P 4 Pty Pl
= 2P — Pt (29)

where we have used (23) and (9) repeatedly. Rearranging
we have

Pig™ = P (30)

i.e., P is symmetric under interchange of the pair uv
with the pair af. It now follows from (23) that

Pui ™ = P = 0 (31)

wap .
so P+ vanishes when symmetrized on any three Greek
indices. We now define

Cluah _ g( pliwet _ plpey (32)
The symmetries (30) and (9) imply that
Clravp — Clvpua (33)
Furthermore we have
Clravp — Clualp) — Cllpalvp (34)
where the first equality follows from the definition of the

lhs and the second equality then follows from (33). Finally,
the symmetry (9) implies
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Clulwp] — (35)

Thus C/*® has the Riemann symmetries stated in (26).
Now consider

Clulalvlp) — %P%Aguaﬁ _ %P%Jéfau _ %Piff;yﬁ _ Plr/:;aﬂ (36)
using (23) in the final equality. Hence the relation between
C' and Pl is invertible. In particular we have established
Eq. (24). Conversely, to establish uniqueness of C’ with the
above symmetries and satisfying (24), note that the
symmetries imply that C/#ro=(2/3)(C#lplo) —Clu¥lol))
and using (24) this reduces to (32).

We can apply very similar arguments to P . First we have

uvpoaff Jpafic Jvppac
P 99 =—P 99 —-P 99

_ _pmappo _ puppac
=-P 99 P 99

= Pl Pl . pisee . pion
] Pzg(lﬁ/m + P/;;mz/}p + PZZU/)’/}{I
= 2P ps )

where we have used (23) and (8) repeatedly. Rearranging
we have

Pl = Pl (38)

and so combining with (17) we see that P4"°” has a

“pairwise interchange” symmetry, i.e., it iS symmetric

under interchange of any of the pairs uv, po and af.
Now consider

6P,g.§l//)‘{7‘(l)/)) _ (ngaapﬂ + ngpaaﬂ) + (Pzgwaaﬂ + zgam/ﬂ)
+ (P 4 P
_ P P P
_ _ P;;Ig/a ap Pzga av P;;ga vp

— g 0 (39

1 (Cuﬂavvﬁ + CHobvpa | CroavpB 4 Cﬂpﬂwa)

1

(APl — 2Ppm 2yt

A= AN = Q= N~

(AP + 2Pn0) = pip?

where the second equality uses (8) and (23), the third
equality uses (17) and the final equality is (23). From the
results that we have obtained, it follows that P4/
vanishes when symmetrized on any three indices.'

We now define

ot = 2 (P - P+ P (40)

[SSIIN\S)

The symmetries (8) imply that C**®°f vanishes when
antisymmetrized on any four indices, so (28) holds. The
pairwise interchange symmetry of P, implies that

CHravof — CvoPupa (41 )

so C is symmetric under interchange of the first three
indices with the final three indices. We can write the
definition of C as

Cﬂpauo‘ﬁ — 2(1)%”/"’4“}/” + Péﬁ;‘”|/’|”‘“)/”) (42)

i.e., the first term is antisymmetrized on indices ypa and the
second term is symmetrized on indices upa. But we have
seen that the symmetrized term vanishes. It follows that C is
totally antisymmetric on its first three indices and also on
its final three indices:

Cﬂpabo'ﬁ — C[ﬂ/)(l]wfﬁ — Cllﬂa[’/o'ﬁ] (43)

where the second equality follows from the interchange
symmetry. We have now established the symmetries (27).

Next consider the symmetrization of C#*°f on af and
on po. Using the symmetries of P, we obtain

(4 P/gt;ﬂvaﬁ + P/g’;aﬁllﬁ + P/;;ﬁtwa + Pg;apuﬁ + Pg;ﬁpﬂa + PZZﬂUPﬁ + nglwm + Pglgmpaﬁ + nguﬂva)

vpoaf pupcaf vupap pupcaf vupaf
(4P = Py ™™ — Pgg"™ — Pog™™ — Pg™™)

(44)

"This implies that P, is identically zero for d <2 dimensions (since at least 3 indices must take the same value for d < 2).
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The first equality is the definition of C. We then apply the
3-index symmetrization property of P, to the second and
third terms, the fourth and fifth terms etc to obtain the
second equality. We then apply this symmetrization prop-
erty to the second and fourth terms and to the third and fifth
terms to obtain the third equality. Using the symmetrization
property again gives the fourth equality, and the final
equality then follows from the pairwise interchange sym-
metry. This result shows that we can invert the relation
between C and P, so these two tensors contain the same
information. Equation (44) is equivalent to (25) and so we
have demonstrated that (40) satisfies all of the properties
listed in the proposition.

J

Finally we will demonstrate that (40) is the unique
expression for C#**/ that satisfies the properties listed in
the proposition. By linearity, this is equivalent to showing
that if C#***%f has the symmetries (27) and (28) and the rhs
of (25) vanishes (for any &,) then Crrvel must vanish. So
assume (27) and (28) and that the rhs of (25) vanishes. The
latter equation gives

Ccrpovep | cnofrpa y cuoovpf 4 CupProa — () (45)
Now add to this equation the two equations obtained by

cycling the indices ppa [this is motivated by the rhs of
(40)]. The result is

0= 3C/4/Jmm/3 + Cﬂ(iﬂl//)(l + Cmmvp/i + Cypﬂvo'a + C/)o’[}’yay + C/J(mvaﬂ + Cpaﬂy(m + C(l(iﬂl/ﬂ/) + C(I(F/)l/ﬂﬂ + Cay/}’y(rp
— 3C/4/Jm/a/3 + Cﬂa/izz/)a + Cﬂaav/)/i + Cﬂ/)ﬂl/O‘lX + Cﬂvapa/)’ + Cypava/} + C/wapa/} + Cﬂ/)uaaﬂ + C[lﬂl/(lo‘[) + Cﬂﬁal/ﬂf)

= 4CHpovep | Cuofrpa  CupProa y o cuvepaf | cupracp  (cupavop
= qCrpoveP _ cubovpa _ Cupproa y o cuvepal | cupracp  cupavop

= 4CHpavep _ ) Cubovpa | ) Curopaf o CHpracp
= qCHpavoP 4 cHbovap _ o Curvapap _ 9 cubroap

— 4qCHravop 4 9 CvPonap
— qCHravop

In the first and second equalities we have used the
symmetries (27). In the third equality we used the sym-
metry CHr®olf =0 from (28). The fourth equality uses
(27). In the fifth equality we used C#/lr2l = 0 from (28).
The sixth equality uses (27). The seventh equality uses
CWoler — () from combining (27) with (28). The final
equality uses (27). This concludes the proof.

E. Example: Einstein-Hilbert action

As an example, consider, for Lorentzian signature in any
number of dimensions, the Einstein-Hilbert action L = R
and no matter fields. We have E** = R* — (1/2)Rg"". The
principal symbol (acting on 7,,) can be read off by the
substitution 0,0, 9,, = £,£,t,, with the result

1 - - 1 -
(ng)wpa(‘f)tpﬁ = (_zfpgﬂt/w + ‘Spg(ﬂtwp - Egﬂvgpfgtmf)

1,
w = t/w - Egﬂulii (47)

~

This can be rewritten as

| a
(ng)ﬂvpa(éj)tpg = Eéﬂﬂgtﬁé fﬂ (48)

where

(46)
I
8l = q'8}), .6, (49)
hence for the Einstein-Hilbert action we have
Cﬂﬂ(lmﬁ = % ZZZ (50)

which clearly has the symmetries we have described above.

The result (50) also holds if we include “minimally
coupled” matter. More precisely it holds for L = R + L,, if
L, does not produce terms in E* involving second

derivatives of the metric (so L,, does not affect P).

F. Example: Lovelock theories

The principal symbol for Lovelock theories was calcu-
lated in [13—16]. From the results of [16] we can read off an
expression that satisfies (25):

C vof

upat

— _2Zpk 5’/0ﬂa]a2-”a2p—3a2p—2R

bbr R Pap-3Pap-
PZupaf\fy...Papafapn’ 1 :
p=1

R PR e )

(51)

where the k, are the coupling constants of the theory and
the antisymmetry ensures that the sum is finite. With a little
work one can check that this expression satisfies (27) and
(28). Hence, by uniqueness, this must be the correct result.
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Taking k; = —1/4 gives a conventionally normalized
Einstein term, i.e., it ensures that the p = 1 term agrees
with (50).

G. Maxwell field

Let us consider the case in which our “matter” field is a
Maxwell vector potential, i.e., ¢; > A,, so we replace
indices 7, J, ... with u, v, .... We assume that the action is
invariant under compactly supported gauge transforma-
tions.” We can use gauge invariance to deduce some further
symmetries of the principal symbol. Take &, to be a
compactly supported gauge transformation in (13).
Gauge invariance of the action, and 6,g,, = 0 then imply
the Bianchi identity

0="V,E
= Pty 0,0,0p9p0 + Phil 0,000pA, + -+ (52)

where the ellipsis denotes terms not involving third (or
higher) derivatives. This identity has to hold for any field
configuration, so the third derivative terms must vanish,
which requires

P%ﬂﬂ\aﬂ) -0 (53)
and (using symmetry on uv)

P =0 (54)
We also note the second equation of (23), which is

purled) — o (55)

Similar arguments to those used in Sec. II D imply that we
can write

Piap _ pgulalvlp) (56)

where M#*F has the symmetries of a (metric induced)
Riemann tensor.

H. Four dimensions

Now return to a general theory with d = 4 and assume
that g,, has Lorentzian signature. The symmetries of

Crirarsinnts ymply that we can define a symmetric tensor
Cu by

1
CHi2M3VIV3 — . cMibafl3p gV al30 C (57)
2 e

*Note that Chern-Simons terms such as _ f A A F (ford =3)or
JAAF AF (for d = 5) are invariant under gauge transforma-
tions of compact support so our analysis applies to theories
containing such terms.

where €,,,,, is the volume form on spacetime defined by the

metric. In a (right handed) basis we have

Mo — gHrpo ( 5 8)

V™9
where é“7° is a totally antisymmetric tensor density
with 9123 = —1.

For example, consider the Einstein-Hilbert Lagrangian
L = R. Recall that

1HaM3
(%11/21/3 - _€Mlmﬂ3p€ylu2y3p (59)

hence Eq. (50) can be rewritten

1
CHibap3Vialy — 5 eH1HAH3P V1V2V30 9o (Einstein—Hilbert)

(60)

so we have C,, = g,, for the Einstein-Hilbert action. This
result also holds if we include minimally coupled matter
fields.

Henceforth we will restrict attention to the case for which
C,, is nondegenerate, with the same signature as g, , as will
be the case if we restrict to field configurations for which
the theory is “weakly coupled.” By this, we mean that there
exists a basis for which the components of the tensors P,
P,y and P, are close to the corresponding expressions
arising from the Einstein-Hilbert Lagrangian minimally
coupled to conventional matter.

Let C =detC,, (in a RH basis). Explicitly this gives

C

==V "7 Co, C,Cr,C34
g g

1
:_47614#2/43/446”1”2”3”4(; C,.,C...C (61)

KV T ol U3V T 4y

We also have

1/2
Mo — (%) €/él/[)(r (62)

where e is defined by taking the volume form of C,,, and
raising indices with (C~')* (the inverse of C,,). Hence
(57) implies

CHitasvinls — % (_ %elgﬂzﬂsﬂelngbsﬂcpzT) (63)

Now note that the expression in parentheses can be
obtained from the expression (60) for CH1#2#3¥1%2%3 arising
from the Einstein-Hilbert Lagrangian simply by making the
substitution g,, — C,, (and so ¢ — (C~')*). Hence by
making this substitution in the Einstein-Hilbert result (47)
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(or by explicit computation) we obtain the following result
for a general theory:

CuaCopP ngg(f)tpﬂ
C 1 —1\po ~ ~ —1\po
= ; —E (C )ﬂ ipéﬂt}u/ + g(ﬂty)/}(c )[ 50—
1 -
— 5 Cﬂytﬂﬁ(c_l )Pa(C_l )Gﬁéaéﬂ) (64)
where
- 1 —1\po
b = Ty — EC/W(C Y7t (65)

I. Three dimensions

A similar simplification occurs for d = 3. In this case,
the symmetries of CHi#2#3¥1%245 mply that we can define a
scalar C by

CHikaH3VIVVs — geﬂlﬂzm eviny; (66)
hence
C
C o = 55’% (67)

so comparing with (50), we see that the Einstein-Hilbert
action gives C = 1 and, for a general theory, P** can be
obtained from the corresponding expression for the
Einstein-Hilbert action simply by multiplying by C. In
general, the scalar C depends on the background fields and
their first and second derivatives.

J. Five dimensions

For d = 5 the symmetries (27) imply that we can write

1
Vil a0y VUL
CHi#l3V V3 — _ cHiHaH300 Q) gV 1Y) 3/1/2]\]0“0(2/}]/}2 (68)

where N6 = Njwjpe = Nujps) @nd Nyype = N gy The
symmetries (28) reduce to N, =0 so N,,, has the
symmetries of a metric-derived Riemann tensor. (For a
Lovelock theory, the contribution of the p = 2 term in (51)
to Ny, 18 proportional to R,,,;.)

III. CHARACTERISTICS

A. Definition of physical characteristics
The usual definition states that a (real) covector &, is
characteristic iff there exists a nonzero vector 7' = (t,,, #;)
such that P(§)T =0, i.e.,

Pyl (&)1, + Prlg (£)1; = 0 (69a)

and

Pity (&)t + Piln(&)t, = 0 (69b)
where we have made use of the symmetry of P(&).
However, this definition is not appropriate in theories with
a gauge symmetry such as the theories we are studying. The
reason is that (23) implies that, for any &,, taking 7,, =
$wXy) and 1; = 0 gives (for any X)) a solution of the above
equations. This is a consequence of the diffeomorphism
invariance of the theory: such 7,, corresponds to a “high
frequency gauge transformation.” We can deal with this by
following the approach of [9] and working with gauge
equivalence classes. So define an equivalence relation
tw ~ b if 1, =1, + &, X, for some X,. The equations
above depend only on the equivalence class [t,,] to which
t,, belongs. Hence we can regard P(¢) as acting on vectors
of the form ([t,,]. #;). We say that a real, nonzero, covector
&, is characteristic iff there exists nonzero ([t,] ;)
satisfying the above equations.

If the “matter” is a Maxwell field (z; — 7,) then there is
an additional gauge symmetry arising from electromagnetic
gauge transformations. In this case we define 1, ~ ¢, + c&,
for any constant ¢, and regard P(&) as acting on vectors
of the form ([z,,]. [t,]). So real, nonzero &, is characteristic
if there exists nonzero ([t,,],[t,]) satisfying the above
equations.

We will focus on d = 4 “weakly coupled” theories. By
this, we mean that the fields are such that P, P,,, and P,,,,,
are small deformations of the corresponding results for a
“conventional” theory of Einstein gravity minimally
coupled to matter. In particular, P, is small since it
vanishes for a conventional theory. Furthermore, C,, is
close to g,, so C,, is invertible and has the same signature

as Gy,

B. Characteristics in four dimensions

For d = 4 recall that we defined C,, in (57). As in
Sec. ITH we assume that C,, is nondegenerate, with the
same (Lorentzian) signature as g,,, as will be the case for a
weakly coupled theory. The analysis can be split into
two cases.

Case 1 is defined by (C™' £ ,&, # 0. The coefficient of
1,, in (64) is nonzero. Hence, when this is substituted into
(69a), the tensorial structure of this equation implies that 7,
must take the form

’i/w = g(MXD) + ac;w + ﬁC/ApCuaP%);(g) I (70)

for some covector X, and scalars a, f. Substituting back
into (69a), one can solve to determine «,  [using (23)]. One
can then invert the relation between 7,, and #,, with the
result
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91/ r-1\a -
t;w = é:(ﬂXu) += [(C 1) ﬂéa&ﬁ] 1(2C;4/)Cua - CﬂbCpo')

C
x P (&)1 (71)

The first term of (71) is “pure gauge.” Thus, in this case,
the “gravitational” components [t,,| of the polarization
vector are fully determined by the “matter” components ;.
Substituting the above expression into (69b) and rearrang-

ing gives

0" (&)1, =0 (72)

where

C
Q”(g) = E (C_l)m/éﬂgppilnjm(é)

+(2C,,Cop = CuCop) Pe () Pty (£)  (T3)

This is a N x N symmetric matrix whose elements are
homogeneous quartic polynomials in ¢&,. Note that an
alternative expression for C/g is given in (61).

We can rewrite this matrix in a form that will prove
useful later. Equation (24) relates P,,, to the tensor Cluwpo
with Riemann symmetries. Let us now decompose this
tensor into its “Weyl” and “Ricci” parts, defined with
respect to the metric C,,:

Wlkwpe = Cluvpe _ (-1 pU)D\I\U]y c-! u[/)Dlllrf];t
(c™) +(C7)

3 DI(C (e (74)

where

DI/w = Cpﬂ_clﬂpva DI = C”DDI/w (75)
By definition, W/##¢ has the same symmetries as C/H*°
and is traceless in the sense that contracting any pair of
indices with C,,, gives a vanishing result. Writing C'mre in
terms of its Weyl and Ricci parts gives

Q"(§) = —(CT)EE FPE Ly
+2C CL//}WIWIW)—é/)éo'WJayﬂ(sfyé(S (76)

Ha
where F/@ = Fl/(ef) = Fl))ef ig defined by
1)y _ ¢ 1Jy6 (| y7J )y po
F 5755 - _EPmm é:yg& - 2C(mC[ﬁ/D w éygﬁ
1
=3 DUDg 5 + CopD' 7, DIV,
1 1
— (C—l )755}/55 <E Cyacu/}DmyDjaﬂ — 6 DIDJ>

(77)

Let us first discuss the case where the ¢; are real scalar
fields. For (72) to admit a nontrivial solution we need
Q(&) = 0 where

Q(&) =det Q1 (&) (78)

is a homogeneous polynomial in &, of degree 4N (where N
is the number of scalar fields). Fix some basis {f°, fi(i =
1,2,3)} for the cotangent space and write & = &, f° + &£
If we fix (real) &; then Q(&) = 0 is a polynomial equation
for &, of degree 4N, so there are at most 4N real roots.
Associated with each such root is a polarization #; which
uniquely determines [f,,] via (71). Hence, for a given
direction &; we obtain at most 4N distinct characteristics
(.. [t]. ;). However, our system has N 4 2 degrees of
freedom (N scalar and 2 graviton) so, as long as the
equations are hyperbolic in character (and the basis is
chosen appropriately), there should be 2N + 4 physical
characteristics: for each degree of freedom there should be
“future” and “past” directed characteristics with the pre-
scribed &;. If N > 2 then 4N > 2N + 4, which implies that
some of the roots &, of Q(&) must be complex (or repeated).
On the other hand, if N =1 then 4N < 2N + 4 so the
(quartic) polynomial Q(&) cannot describe all physical
characteristics—the “missing” characteristics correspond
to case 2 below.

Now we discuss briefly the case where the “matter” is a
Maxwell field, i.e., we take ¢p; = A,. We now have a gauge
freedom so 7, x £, is a “pure gauge” solution of (72), i.e.,
for any £, we have Q*(£)&, =0, so 0*(£) has rank at
most 3. To identify the physical characteristics we require
that Q" has rank strictly less than 3, which is equivalent to
the vanishing of the subdeterminant

Aﬂl/ = eﬂpll)zllz €D(710'20'3 Qp1 1 (6) szgz (5) £2ﬂ363 (5) (79)

This is a homogeneous polynomial of degree 12. Using
£,0" (&) = 0 one can show (compare [17])

Ay = &8,0(8) (80)

where A (&) is a homogeneous polynomial of degree 10. So
characteristics must satisfy A(&) = 0. Fixing &; as above,
this equation admits 10 roots for &,. However there are only
4 physical degrees of freedom (2 graviton and 2 photon), so
2 roots of A must be complex (or repeated).

Case 2. This is defined by £, being null with respect
to Cp,:

(C_l)lwgugv =0 (81)

Introduce a null (with respect to C,,,) tetrad such that
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S = 5/9
Co = -1

Co=Cn=Cy=C;=0
Gy =8; (82)
where indices 7, } take values 2,3. In such a basis, the “pure

gauge” components of 7, are f,,. We need to solve (69a)
and (69b). Using (64), (69a) reduces to

C ~
ty; + P& =0

C
ty; + P (&)1 =0 2%

2g

C An
Etll + Pirllgll(f)tl =0 (83)

1 .
(P - Josrii@)u=0 @

Equations (83) fix the (gauge-invariant) “longitudinal part”
of 1, in terms of #;, i.e., they fix (C~')*¢,7,, where 7,,, is
given by (65). The traceless part of #;; is not restricted by
the above equations: this part has two independent com-
ponents, corresponding to the 2 graviton polarizations.

Equation (84) can be simplified by using (24) and
writing C’#7? in terms of its Weyl and Ricci parts defined
in (74) and (75). The result is

w00z, — 0 (85)

This equation has a simple geometrical interpretation: it
states that &, is a principal null direction (PND) of the
tensor W/#re¢, Note that this tensor has Weyl symmetries
(with respect to the metric C,,). So we have shown that (84)
is equivalent to

£, is aPND of W/wroy, (86)

A nonzero Weyl tensor admits exactly 4 (possibly degen-
erate) principal null directions (up to scaling &, ~A&,).
Given £, the above equation constrains 7; such that &, is
a PND.

View the lhs of (85) as a linear map from the N
dimensional space of vectors #; to the 2d space of 2 x 2
traceless symmetric matrices. Let r € {0, 1,2} be the rank
of this map. Then there is a N — r dimensional space of
vectors t; satisfying (85). Hence there is a N —r+2
dimensional space of vectors ([z,],7;) satisfying (69).
Note that the N =1 case is special because r <N so
r =2 cannot occur for N = 1.

We now substitute these results into (69b). The result is
an equation of the form M/¢; = ... where the rhs depends
(linearly) only on the traceless part of 7;;. This is a linear
equation constraining #; and the traceless part of #;;. Let
s <N be the rank of this system. Then this equation
imposes s conditions on #; and the traceless part of ;5.

Hence the space of solutions to (69a) and (69b) has
dimension at least N —r+2—-s=(N—s)+ (2—7).

Consider the case in which the matter is a set of N scalar
fields. For N = 1 (i.e., a Horndeski theory) we have r < 1
hence (N—5)+(2—r)>1 so there always exists a
nontrivial solution to (69a) and (69b). However, if N >
2 then “generically” (i.e., for a generic field configuration
of a generic theory) we might expect s = N and r = 2,
suggesting that there are no solutions to (69a) and (69b),
i.e., that case 2 does not arise. However, there are certainly
nongeneric theories for which case 2 does arise (e.g.,
Einstein gravity minimally coupled to N scalar fields
has r =5 =0).

In the case where the matter is a Maxwell field (indices
I,J — p,v) we have a 4 — r dimensional set of vectors 7,
allowed by (69), but one of these is pure gauge (propor-
tional to &,), leaving 3 — r physical photon polarizations
[2,], plus the 2 physical graviton polarizations, for a total of
5 —r physical polarizations ([z,,],[t,]) satisfying (69a).
The symmetries of the principal symbol following from
invariance under Maxwell gauge transformations imply
that M*(&£)E, =0 so M* (&) has nontrivial kernel and
therefore s < 3. Equations (69a) and (69b) have a space of
solutions ([t,,],[t,]) of dimension at least 5 —r —s. For
example, conventional Einstein-Maxwell theory has r = 0,
s = 1. However, for a generic background of a generic
theory we might expect » = 2 and s = 3 and so case 2 may
not arise.

IV. HORNDESKI THEORIES
A. Effective field theory

Consider Einstein gravity minimally coupled to a scalar
field. The Lagrangian is

L=R+X-V(®) (87)

where V(®) is an arbitrary potential and
1
X = ) (Vd)? (83)

The Lagrangian contains terms with up to 2 derivatives of
the fields. In EFT we add to this Lagrangian all possible
higher-derivative scalars constructed from the fields. One
can use field redefinitions to simplify the higher derivative
terms. In particular, for a parity-symmetric theory, one can
arrange that, after neglecting terms with 6 or more
derivatives, we have [3]

L=R+X-V(®)+ %a(tb)Xz + %ﬂ(d))LGB (89)

where V, a, f are arbitrary functions and
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1
Lap = 3Ol Ry R (90)

HiH2

is the Euler density of the Gauss-Bonnet invariant [recall
(49)]. From an EFT perspective, there is no reason to prefer
Lgp over, say, the square of the Weyl tensor. However, as
we emphasized in the introduction, the above theory is
preferred because it has second order equations of motion
and admits a well-posed initial value formulation, at
least when the theory is weakly coupled, i.e., when the
4-derivative contributions to the principal symbol are small
compared to the 2-derivative contribution [6,8].

The principal symbol of the above theory was calculated
in Ref. [18] for the case a = 0. It is straightforward to
include a (which affects only P,,,,). One can then read off
the effective metric defined in Sec. IT H:

- ﬂ/(q))vﬂvuq) -

C/u/ = 9w ﬂ”((l))V,;I)qu) (91)

Turning to P,,,, recall that this is related to C'mre by (24).
Since we have only a single scalar field we can drop indices
I1,J, ... from our equations so C/*»° — C#r° Using the
results of Ref. [18] we obtain:

CHvpo — _ﬁ/(q))Ryypa (92)
where R is the dual Riemann tensor:

= 1

R;wp(i = Z e;wal(lz 6/)0/)’1/)’2 Ralazﬂlﬂz (93)

Finally a straightforward calculation gives

Phiw = —(1 + a(®)X)g" + a(@)V,FOV'D  (94)
Now we can explain precisely what we mean by this theory
being weakly coupled. We require that there exists a basis
such that the contribution of the 4-derivative terms to the
principal symbol is small compared to the contribution of
the 2-derivative terms. In a basis that is orthonormal with
respect to g,,, the nonzero contributions of the 2-derivative
terms to (91) or (94) are +1. So we say that the theory is
weakly coupled if there exists an orthonormal basis such
that the components of all terms involving a, # in (91), (92)
and (94) are small compared to 1. In particular all
components of C**’° must be small compared to 1.
More informally, in EFT, we expect @ and f to be
proportional to #? where £ is a UV length scale. If the
metric and scalar field vary over some length scale £ then
the theory will be weakly coupled provided £/Z > 1. Note
that the theory might be weakly coupled in some region of
spacetime but strongly coupled in some other region.

B. General Horndeski theories

The Lagrangian of a Horndeski theory takes the form
L =>73_,L; where

—Qz( X) Ly =Gy(®.X)0d
— G4(®, X)R + 0xG4(®, X)84V, VYOV VoD
Gs(®, X)G,, V'V
1

6(')XQS(<I> X)éfﬁZV”V”GJV VeV, Vio (95)
with X defined in (88). The functions G, are arbitrary
functions of ® and X.

The principal symbol of a Horndeski theory is given in
Appendix B of [18] (where our P, is denoted 5i’gg etc.)
From this we can read off the effective metric defined in
section IT H:

Co = (s — 2X03Gs + X00Gs)gp
— (0xG4 — %%)VMQV”@ + Xaxgsv,,Vﬂ) (96)

Expressions for Ph,(¢) and P, (&) can also be read off
from Appendix B of [18]. They are lengthy so we will not
repeat them here.

There is some degeneracy between the coefficients G;.
Furthermore, field redefinitions (e.g., a conformal trans-
formation g,, - Q(®)g,,) can be used to adjust these
coefficients. We will assume that these coefficients are
smooth functions and eliminate (most of) the degeneracy by
imposing (0xG,)(®,0) = G4(®,0) = 1 and G5(®,0) = 0,
which corresponds to the 2-derivative terms in the action
taking the form (87). We say that the theory is weakly
coupled if there exists an orthonormal basis for which the
components of the principal symbol are close to those of a
2-derivative theory of the form (87). This will be true if the
background fields are slowly varying compared to any
length scale # defined by the functions G,. More precise
conditions are given in [20].4

C. Characteristics

Let us summarize the results of our analysis of the
characteristics in Sec. III B. There are two cases. In case 1,
(C7hyweE, # 0 and &, must satisfy Q(&) = 0 where

Q(Z.f) = _(C_l)ﬂyé: qua/jéaf/}

+2 Cy a Cl/ﬁ WW)DH& P ‘fo’ Wa]//)’5 fy ‘}:5 (97 )

with (symmetric) F? defined by

3For the special case dxG, = constant, Gs = 0, our C,,, reduces
to the effective metric defined in [19].

*Note that [20] uses slightly different definitions of G, and G,.
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C
FrOg g5 = — Y Phoné,Es — 2Cy, Cp, D WPOE &
1
- §DD75€y§5 + CosD™ E,DP;
1 1
— (C—l)yégyé:& (E CﬂacyﬂD””D“ﬁ — 6Dz) (98)

To recap on the notation: W##° D and D are the “Weyl
tensor”, “Ricci tensor” and “Ricci scalar” formed from
C*r? using the metric C,.

Q(&) is a homogeneous quartic polynomial in &,. To
write down the polarization vector ([t,,], ?) it is convenient
to define y by 1 = (C/g)(C™") ¢, E5p. From (71) and (24)
we have

1
Ly = 2 <Cﬂﬂ Cuo— D) Cﬂb Cpa) Cpaaﬂ‘fafﬂw

t=—(C)PELpw (99)

SR

where 1, is defined only up to addition of a pure
gauge term.

In case 2, &, must satisfy (C‘l)””fﬂf,, = 0 and we need
to solve (83) and (85) (with #; — ¢) and then substitute the
results into (69b). We can solve Eq. (85) by setting r = 0.
Equations (83) then assert that the longitudinal components
of 1, vanish, i.e., (C7")*&,7,, = 0. This means that the
graviton polarization is “transverse”, where the notion of
tranversality is defined with respect to C,, rather than g,,.
The nonzero components of [#,,] are the two components of
the traceless matrix #; 5 [in the basis of (82)]. Equation (69b)
reduces to

Wlo/ol;} =0 (100)
which is at most one condition on these two components,
leaving at least a single graviton polarization. So case 2
always admits a solution with a “purely gravitational”
(t = 0) polarization that is transverse (with respect to C,,).

In special cases, there may be additional polarizations in
case 2. For this to happen either (100) becomes trivial or
there exists a solution of (85) with ¢ # 0. Either of these
possibilities is equivalent to the vanishing of Wi, i.e., to
¢, being a PND of W#**?. When this happens, (83) specifies
the longitudinal components of 7, in terms of 7.
Substituting this into (69b), the traceless part of #;; drops
out (because it appears in the combination (100), which is
trivial) and so all nonzero terms in (69b) are proportional to
t. Thus this equation reduces to an expression of the form
S(&)t =0. An expression for S will be derived below
[Eq. (105)]. Generically we expect S(£) # 0 and so t = 0.
Hence the analysis is the same as before except now there
exists a 2-dimensional space of solutions of (100). So if &,

is a PND then there are two transverse “purely gravitatonal”
polarizations. If S(£) = 0 then there exists a third inde-
pendent polarization ([z,,], ) where # # 0 and [z, ] is purely
longitudinal.

We can relate this to the quartic polynomial Q(&) of (97).
Since (C~')#&,&, = 0, the first term in Q vanishes, and the
second term is

2C sz/)’ WHprve 5/} 6{; Way[)’5 57 55 — 2w?0}'0 W;O}'O

o

(101)

The rhs vanishes iff £, is a PND. Hence, a covector &, null
with respect to (C~")* satisfies Q(&) = 0iff £, is a PND of
WHe - So in case 2, £, will give rise to more than 1
independent polarization iff it also satisfies the quartic
equation of case 1.

A nonzero Weyl tensor admits 4 (possibly coincident)
PNDs (up to scaling &, ~ A£,). It follows that if W#»? # 0
then there exist exactly 4 (possibly degenerate) directions
&, satisfying both (C~")*¢&,&, = 0. and Q(&) = 0. For these
special directions there is a 2d space of purely gravitational
polarizations. If W#? =0 then all directions satisfying
(ChyweE, =0 will also satisfy Q(£) =0 and for all
such &, there exists a 2d space of purely gravitational
polarizations.

D. The characteristic cone and slowness surface

From the above analysis, it follows that a nonzero real
covector &, is characteristic iff either Q(§) =0 or
(C7tywg,E, = 0. Thus we can write the condition for &,
to be characteristic as p(&) =0 where p is defined in
equation (4). Clearly p(&) is a homogeneous polynomial of
degree 6 which factorizes into a product of a quadratic and
quartic polynomial. Note that degree 6 is the minimum
degree required to describe a second order system with
three degrees of freedom.

Fix a point in spacetime. We define the characteristic
cone in the cotangent space at that point as the set of
characteristic covectors &, i.e., the set of (real) solutions of
p(&) = 0. Clearly this cone is the union of the quadratic
cone (C")&,E, =0 and the quartic cone Q(&) = 0.
Recall that weak coupling ensures that C,, has the same
signature as g,,. Thus the quadratic cone is simply the null
cone of the Lorentzian (inverse) metric (C~!)#.

To understand the nature of the quartic cone, consider
first the case of the 2-derivative theory (87), for which
Cu = Gu» C**° =0 and P, (&) = —¢"¢,¢&,. Hence for
this theory we have

0(8) = (96,5,
p() = —(g"8.L)

2 derivative theory  (102)
So in this case the quartic cone, and the full characteristic

cone, degenerate to the null cone of the metric. Hence, in

084027-13



HARVEY S. REALL

PHYS. REV. D 103, 084027 (2021)

this 2-derivative theory, a hypersuface is characteristic iff it
is null, so causality is determined by the null cone of the
physical metric.

There is a more complicated class of theories for which
Q(&) factorizes into a product of quadratic polynomials.
This is the class of theories for which W#? vanishes for
any background solution. We will refer to such a theory as a
factorized theory. For such a theory we have

Q(é) = _(C_l )”ygﬂgyFlmgpéa
p(&)=—[(CTMweE )P Frog €,  factorized theory  (103)

In this case, the quartic cone (and also the full characteristic
cone) is the union of two quadratic cones, i.e., the
null cones of (C~')* and F*. Hence for this class of
theories the quadratic cone is a subset of the quartic cone.
An example of a factorized theory is (89) with constant j
(which implies that the final term in (89) is topological).
From (92) we see that this theory has C*° =0, and
hence W#° =0, for any background solution. Another
example is a Horndeski theory with G, = 1, G5 = 0. In this
case, F*¥ coincides with the “effective” metric discussed
previously in [21]. In both of these examples we have
C/u/ = g/w's

A nonfactorized theory has WH*”° #0 in a generic
background solution. However, for such a theory, there
are nongeneric background solutions for which W+#*? = (0
and hence Q(&) factorizes as above in such special
backgrounds. For example, this occurs when the back-
ground solution is a cosmological solution with FLRW
symmetry. This symmetry implies that W**#° and C,, have
FLRW symmetry. Tracelessness of W#? then implies
WHe = (). So in a FLRW background, we have Q(&) =
—(CTNWE £, FPEES ie., the quartic cone is the union of
the null cones of (C~')* and F**. Hence this is another
case for which the quadratic cone is a subset of the quartic
cone. A covector is characteristic iff it is null with respect to
either (C~')* or F*. In cosmological terminology, the
former case describes (purely gravitational) tensor modes
and the latter case describes the scalar mode. Our two
effective metrics determine the 2-derivative terms in the
equations for tensor and scalar perturbations derived
in [22].

Now we consider a general theory and a general back-
ground solution for which the theory is weakly coupled, at
least in some region. We will show that the quartic cone has
two sheets, and that the quadratic cone lies between (or on)
these sheets.

The expressions in Appendix B of [18] suggest that the
conditions for a Horndeski theory to be a factorized theory are
0xGs = 0xG4 — 09Gs = 0. Under these conditions, (96) implies
that C,,, is conformal to g, and so the quadratic cone is the same
as the null cone of ¢"*.

At weak coupling, we can pick a basis so that the
components of C,, are close to those of g,,. Choose such a
basis {f, f} (i = 1, 2, 3) for the cotangent space, which is
orthonormal with respect to (C~')#, ie., (C7') =
diag(—1,1,1,1) and hence ¢" ~ diag(—1,1,1,1). Given
a time-orientation, we choose f so that the corresponding
dual basis vector is future-directed. In such a basis, fix the
spatial components &; of &, and regard Q(§) =0 as a
quartic equation to determine &, in terms of &; (which is
assumed nonzero). In the 2-derivative theory, the roots of
this quartic are the roots of ¢#*¢£,&, = 0, which we write as
&~ F/EE;. These two roots correspond to the two
components of the null cone of ¢*” and each root has
degeneracy 2. Weak coupling implies that, in our basis,
the coefficients of the polynomial Q(&) are small defor-
mations of the coefficients in (102). Since the roots
of a polynomial depend continuously on these coefficients,
it follows that the 4 roots &, of the quartic can be
divided into 2 pairs according to whether they are defor-
mations of & or of & . The polynomial has real coefficients
so each pair is either real, or is a pair of complex
conjugate roots.

The case of complex conjugate roots can be excluded as
follows. Notice that, for the 2-derivative theory, Q(&) is
negative everywhere except on the null cone of ¢**. So,
viewed as a function of &, Q(£) is negative everywhere
except at & = £F where it vanishes. Hence when we
deform to a weakly coupled theory, Q(£) will be negative
everywhere except possibly near &5 Now evaluate Q(&) on
the null cone of (C~')*, i.e., for & = F+/&¢&;. The first
term of Q(&) vanishes. From (101) we see that the final
term in Q(&) is non-negative. Hence Q(&) >0 for
& = FVEE. Tt follows that Q(&) must have a pair of
(possibly degenerate) real roots near each of &, = F+/E:&;,
which excludes the possibility of complex roots. We label
these roots as & and &5, where |E5,| < VEE; < |EE|. Note
that the roots &L, and &8 are homogeneous in &, with
degree 1.

We now see that the quartic cone is the union of two
cones: an “inner” cone & = &=, lying inside (or on) the null
cone of (C~H)# (given by & = F/&&) and an “outer”
cone & = &%, lying outside (or on) the null cone of
(C~")¥. (In both cases these are double cones, with the
4 superscript distinguishing the two components of the
double cone.) Inside the inner cone and outside the outer
cone we have Q(&) < 0 and between the inner and outer
cones we have Q(&) > 0.

This establishes that, for a weakly coupled theory, the
characteristic cone is the union of three (double) cones: the
quadratic cone and the “inner” and “outer” cones just
discussed. For given ¢;, the three cones are associated with
three different physical polarizations. In geometric optics,
the speed of propagation of these polarizations is deter-
mined by these three cones. From the previous section we
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know that the quadratic cone is associated with a purely
gravitational polarization whereas, generically, the inner
and outer cones correspond to mixtures of scalar field and
gravitational polarizations. For a weakly coupled theory, all
three cones are close to the null cone of ¢".

Fix a point ¢ in spacetime. We define the Gdrding cone
I'; as the connected component of {£,:p(&) # 0} that
contains Ff° (weak coupling implies p(f,) # 0). I'; are
the two open regions contained inside the inner sheet of the
quartic cone. The results established above imply that p(&)
is a hyperbolic polynomial6 with respect to f, which
implies that Fg are convex sets [23]. In the 2-derivative
theory (87), the Gérding double cone Iy U I'; is the set of
covectors that are timelike with respect to ¢**. In general, it
is the set of covectors that are “timelike” with respect to the
causal structure defined by the equations of motion. In
future we will sometimes suppress the dependence on ¢ and
write I'* instead of T';.

As an example of the importance of the Garding cone,
consider the initial value problem, with initial data speci-
fied on a hypersurface X. Then the initial value problem is
well-posed in the formulation of [6,8] if the initial data is
chosen so that the theory is weakly coupled on X, and
% is “spacelike” in the sense that its normal covector n,
belongs to the Garding cone.

To visualize the characteristic cone, it is convenient to fix
the scaling freedom &, ~ 4, by setting &, = —1. This
corresponds to taking the intersection of the characteristic
cone with the plane &, = —1. This defines the slowness
surface, a surface in R3 with coordinates &;. This name
comes from the literature on elastic waves, see e.g., [11]. In
a homogeneous elastic solid one can consider plane waves
proportional to exp(i§,x*) with &, = (-, ;) and define
the phase velocity v, = |w|/\/&;&;. Taking @ = 1 we then
have /& = 1/v, so the distance from the origin to a
point on the slowness surface is the reciprocal of the phase
velocity. Thus the inner sheet of the slowness surface
corresponds to the “fastest” degree of freedom. In our case,
the slowness surface is the union of a two-sheeted quartic
surface and a quadratic surface (in the above basis, a unit
sphere), with the quadratic surface lying between (or on)
the sheets of the quartic surface. The Garding cone
corresponds to the region inside the inner sheet of the
quartic surface.

We will need to determine whether the characteristic
cone (or slowness surface) admits singular points. Consider
an algebraic surface defined by a polynomial equation
f(x,y,z,...) = 0. A singular point is a point on the surface
at which the gradient of f vanishes. At a singular point,
vanishing of the gradient of f implies that it might not be

®A homogeneous polynomial p(&) is said to be a hyperbolic
polynomial with respect to a covector n,, iff p(n) # 0 and, for any
&, the polynomial p(& — An) has only real roots A.

possible to draw a tangent plane at that point. Instead one
can draw a tangent cone defined by the vanishing of the first
not-identically-zero term in the Taylor expansion of f about
the singular point.

In our case, if £, is a nonzero singular point of the
characteristic cone then any multiple of £, is also a singular
point, so such points fill out straight lines on the cone. In
other words, it is only the direction of &, that is important so
we will sometimes refer to such &, as a singular direction.
Singular directions of the characteristic cone are in 1-1
correspondence with singular points of the slowness sur-
face. We will now argue that &, is a singular direction iff it
lies on both the quadratic and quartic cones, i.e., the
singular directions are straight lines where the quadratic
cone touches the quartic cone. Correspondingly, singular
points of the slowness surface are points at which the
quadratic surface touches the quartic surface.

To see this, using (4) one finds that dp/0¢&, vanishes iff
either (a) both (C‘l)’“’.’;ﬂfv and Q(&) vanish, i.e., &, lies on
both the quadratic and quartic cones, or (b) 9Q/9¢, =0
(which implies Q = 0), i.e., §, is a singular direction of the
quartic cone. In fact (b) is a special case of (a). To see this,
fix &; and view Q as a quartic polynomial in &; as above.
If the roots are nondegenerate then they are smooth
functions of the coefficients of the polynomial, and hence
depend smoothly on &;. Writing Q in factorized form in
terms of these roots we see that 0Q/0&, # 0 when the roots
are nondegenerate. Hence, at a singular point of Q, the
roots of the quartic must be degenerate. From the dis-
cussion above we saw that such degeneracy occurs only
when &, lies on both the quartic and quadratic cone. Hence
(b) is a special case of (a). So £, is a singular direction of the
characteristic cone iff it lies on both the quadratic and
quartic cones.

To summarize, a singular point on the slowness surface
corresponds to a singular direction of the characteristic
cone, along which the quadratic cone touches the quartic
cone. The condition for (nonzero) &, to be such a direction
is the vanishing of (101). A generic background solution of
a nonfactorized theory will have W#*° #£ (O and then (101)
vanishes for between 1 and 4 (generically 4) distinct
directions, corresponding to the (possibly coincident)
principal null directions (PNDs) of W#**?. This is shown
in the left plot of Fig. 1. On the other hand, for a factorized
theory (or a nongeneric background of a nonfactorized
theory) we have W#?° = ( and then the quadratic surface
is a subset of the quartic surface (which sheet it coincides
with may be different on different parts of the surface), so
all points on the quadratic portion of the slowness surface
are singular points. In either case, the analysis of the
previous subsection shows that if £, is a singular direction
then there exists a 2d space of “purely gravitational”
polarizations that (in geometric optics) can propagate in
this direction.
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FIG. 1.

Slowness surface when W#¢ = ). The figures show the intersection of the slowness surface (in R* with coordinates £;) with a

plane passing through the origin and two of the four points (the green dots) corresponding to principal null directions (PNDs). The
dashed black curve shows the sphere corresponding to the null cone of (C~!)#. The solid blue curve corresponds to the quartic surface.
The left sketch shows the generic behavior, where the quartic surface is nonsingular and the PNDs correspond to double points where the
quadratic surface touches the quartic surface smoothly at the green points. The right sketch shows nongeneric behavior where one of the
PNDs corresponds to a triple point at which the quartic surface is singular. (The figures are exaggerated for clarity; for a weakly coupled
theory, all surfaces will be close to each other and to the ellipsoid corresponding to the null cone of the physical metric.)

As an example, consider a spherically symmetric sol-
ution, i.e., both the metric and scalar field are spherically
symmetric. Then WHP° will be spherically symmeric.
Assume a nonfactorized theory and that the background
has W#re # ( so there are 4 (possibly degenerate) PNDs. A
PND must be invariant under the spherical symmetry (as
otherwise there would be a continuous family of PNDs)
hence it must coincide with either the “ingoing” or “out-
going” radial null direction. Hence, from the result just
established, any singular direction must coincide with one
of these radial null directions. We can relate our discussion
to the study of linear perturbations of static, spherically
symmetric, solutions in [24,25]. These perturbations can be
classified by their parity. Odd parity perturbations are
purely gravitational and reduce to a single ODE [24], with
kinetic term determined by our effective metric C,,. The
even parity perturbations of [25] correspond to our quartic
polynomial. Reference [25] observed that one of the two
“radial velocities” for even parity perturbations coincides
with the radial velocity of odd parity perturbations; this
corresponds to our observation that the radial direction is a
singular direction belonging to both the quadratic and
quartic cones.

In algebraic geometry, a double point is a singular point
for which the Hessian 9’p/ 0£,0&, is nonvanishing. A
triple point is a singular point for which this Hessian
vanishes. At a singular point, this Hessian is proportional to
§,,(C‘1)/’(”8Q/ 0&,) so a triple point is a singular point at
which 0Q/9¢, = 0, i.e., it is a singular point of the quartic
cone.’ Using this terminology, we can classify a singular

’A triple point of the (degree 6) slowness surface is a double
point of the quartic surface but this is potentially confusing so we
will not use the latter terminology.

direction of the characteristic cone as either a double
direction or a triple direction, and we will refer to the
corresponding points on the slowness surface as double
points and triple points. We saw above that if the roots of
the quartic are nondegenerate then 9Q/9¢, # 0. Hence, the
roots of the quartic must be degenerate if £, is a triple
direction, so the two sheets of the quartic cone coincide
along such a direction. Since the quadratic cone lies
between these sheets, it follows that all three sheets of
the cone meet along a triple direction so this is a direction
for which “all three polarizations propagate at the
same speed”.

A triple direction must satisfy the conditions for a
singular direction, i.e., £, must be a PND of Wr»e,
Evaluating 9Q/0¢, in the null basis of (82) and imposing

the PND condition W% = 0 gives

aQ _ v ~ ~
6_5” — —2(C 1);4 gyF()O + 8W/40]0wl0]0 — 5!145’ (104)
where
S = 2F00 4 gW10j0yy10j0 (105)

Thus £, is a triple direction iff £, is a PND which also
satisfies S = 0. Note that S is independent of how the null
basis vectors are chosen: F® = F%¥¢,£; and it can be
shown that the second term in § is invariant under a change
of basis when ¢, is a PND.

For a double direction, S#0 so 0Q/d¢, x & =
—(C~"y¥¢, which shows that, along a double direction,
the quartic cone and the quadratic cone have the same
normal, i.e., they touch smoothly as shown in Fig. 1 (left
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plot). However, for a triple direction we have 0Q/9¢, = 0.
Generically this means that one cannot draw a tangent
plane to the slowness surface (or characteristic cone) at
such a point, as shown in the right plot of Fig. 1. Instead
one has a tangent cone at such a point. However, in special
cases this cone can degenerate to a plane, tangent to all
three sheets of the slowness surface, and so in such cases
one can draw a tangent. We will see below that this happens
at a Killing horizon.

If Wrre £0 then, generically, there is no reason to
expect S = 0 at one of the 4 PNDs. So, generically, the
PNDs correspond to double directions rather than triple
directions. In a generic spacetime, the condition that S = 0
at one of the PNDs defines a (maybe disconnected)
hypersurface X in spacetime. At a point p ¢ X, the slow-
ness surface will have (generically) 4 double points.
However, for p € Z the slowness surface will have a triple
point as well as double points.

If Wrre = () (e.g., a factorized theory) then the condition
for a triple direction reduces to F' "ﬁfafﬂ =0, i.e., £, must

be null with respect to both (C~!)* and F**. We have
already seen that when W#° = (), the quartic cone is the
union of the null cones of these two metrics. The slowness
surface is the union of the quadratic ellipsoids associated
with each of these cones. All points on the ellipsoid defined
by (C~')* are double points, and points that lie on both
ellipsoids are triple points. If the ellipsoids intersect trans-
versally then the lines of intersection are lines of triple
points on the slowness surface.

E. Characteristic surfaces

Consider linear perturbations around a background
solution. In the high frequency (geometric optics) limit,
a surface of constant phase is a characteristic surface. In the
2-derivative theory (87), a surface is characteristic iff it is
null. This corresponds to the fact that, in this theory, high
frequency disturbances propagate at the speed of light. For
a more general Horndeski theory, characteristic hyper-
surfaces are generically non-null and, at high frequency,
the 3 physical degrees of freedom propagate with different
speeds. For each speed, the above analysis above has
determined a corresponding “polarization eigenvector.”

Given a solution arising from initial data specified on
some surface 2, if we disturb the data in a subregion Q C =
then the resulting disturbance will propagate into spacetime
inside a region bounded by an “outgoing” characteristic
surface emanating from 9Q corresponding to the “fastest”
degree of freedom, i.e., a characteristic surface with normal
.fﬂ € OI'". Conversely, the domain of dependence of Q, the
region of spacetime where the solution is uniquely deter-
mined by initial data on Q, will be the region inside the
future and past-directed ingoing fastest characteristic
hypersurfaces emanating from 0Q (see e.g., [26] for results
in this direction).

For the 2-derivative theory, a surfaces is characteristic iff
itis null, and such surfaces are generated by null geodesics.
In a more general theory, we have seen that £, is character-
istic if it is null with respect to C,, hence a hypersurface
that is null with respect to C,, is characteristic. Such
surfaces are generated by null geodesics of C,,. A hyper-
surface is also characteristic if its normal £, lies on the
quartic cone. Such hypersurfaces are generated by bichar-
acteristic curves of the equation Q(¢) =0. These are
defined as follows [27]. A bicharacteristic curve is a pair
(x#(1),&,(1)) satisfying Hamilton’s equations

. 00 : 00
H_— = - =

= Oz, &, = Ew (106)
with initial condition (x#(0),&,(0)) chosen to satisfy
0(x#(0),£,(0)) = 0. Hamilton’s equations then imply
Q(x#(1).&,(1)) = 0, i.e., £,(1) is everywhere characteristic.
One can also define bicharacteristic curves for the quadratic
cone by replacing Q with (C~')*¢,&,. These curves are
simply the null geodesics of C,,,.

The tangent vector to a bicharacteristic curve is a
possible direction of propagation of a high frequency wave
packet. A characteristic covector £, can be regarded as
the wave vector of a high-frequency plane wave, with &,
fixed in terms of &; by solving the quartic equation, as
discussed above. The group velocity can be defined as
¢l = —0¢&y/d&;, viewed as a function of &;. Consider the
tangent vector X* = dQ/J&, to a bicharacteristic curve
associated with the quartic cone. Differentiating Q(&) =0
with respect to &; gives —Xocé + X' = 0. Hence a bichar-
acteristic curve travels at the group velocity. Generically,
for given &;, we expect there to be three different group
velocities associated with the 3 degrees of freedom, i.e., the
three sheets of the characteristic cone.

We argued above that, for a generic background of a
nonfactorized theory, the two sheets of the quartic cone do
not meet except along triple directions which occur only on
some (possibly disconnected) hypersurface X in spacetime.
For points on X the slowness surface generically has an
isolated triple point. Away from X, the two sheets of the
quartic do not meet, so if £,(0) € OI'* (the inner sheet)
then &,(¢) € OI'* as long as x*(r) does not intersect X.
Even when x#(¢) does intersect X, the fact that the triple
points are isolated points on the 2-dimensional slowness
surface implies that a 2-parameter fine-tuning [of &,(0),
which fixes ##(0) via the first equation of (106)] would be
required to hit a triple point. In other words, £,(0) must
coincide with a particular point on the slowness surface in
order for the bicharacteristic curve to hit the triple point

¥We sometimes will not distinguish between such a pair and its
projection x*(t) to spacetime e.g., in the statement that null
geodesics of C,, are bicharacteristic curves.
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when it reaches X. Thus, for a generic solution of a
nonfactorized theory, a bicharacteristic curve will not
encounter a triple point of the quartic surface unless its
initial direction is fine-tuned such that £,(0) coincides with
certain isolated points on the slowness surface.

What happens to a bicharacteristic curves that does
reach a triple point of the slowness surface? There is
now the possibility of the curve “crossing” from the
inner sheet to the outer sheet of the quartic surface, in
which case it no longer corresponds to the fastest degree
of freedom. However, when this happens, there will
also be bicharacteristic curves which cross from the outer
sheet to the inner sheet, so one can extend the original
curve by gluing it to one of the latter curves. The resulting
curve will be nonsmooth at the point where the curves
are glued.

F. Causal cone in the tangent space

At any point p of spacetime we define the causal
cone C[f in the tangent space as the dual of the Gérding
cone I';:

Cy = {X:Xrg, <OV &, €T} (107)
The sets Cf are convex and closed. In the 2-derivative
theory (87), Cj, is the set of future-directed causal (or zero)
vectors and C, is the set of past-directed causal (or zero)
vectors. In a more general theory, causal properties of the
theory are not determined by the null cone of the metric but
instead by the cones C;‘E. Hence Cﬁ should be used to define
basic notions of causality.

The strongest justification for this statement comes from
results for linear hyperbolic (systems of) PDEs on R? with
constant coefficients. For such equations one can define I'*
in essentially the same way as we did above. With constant
coefficients, one can identify the tangent space with
spacetime in the same way that one does in special
relativity, i.e., a vector in the tangent space corresponds
to the position vector of a point in spacetime relative to
some origin. We can now regard C;; (which, for constant
coefficients, does not depend on p) as a cone in spacetime.
It can be shown that this cone is the smallest closed
convex cone containing the support of the retarded Green
function with delta function source at the origin [23,28].
The significance of convexity is that if one can send a
signal from the origin to points X and Y* then one can also
send a signal to AX* and (1 —A)Y* for A € [0, 1]. Hence
one can first send a signal to the point with position vector
AX#, and then from there one can send a signal to
AX* 4+ (1 — 2)Y*. So the region that one can send a signal
to must be convex.

Another example is given by Christodoulou’s notion of a
“regularly hyperbolic” PDE, which encompasses equations
with nonconstant coefficients, and nonlinear equations,

such as a perfect fluid, or an elastic solid [29].9 For this
class of equations, results analogous to (108) below imply
that causality is determined by the cones C;.

We now consider the cones C;; for the theories discussed
above. Consider first the case for which triple directions are
absent, so the sheets of the quartic do not intersect each
other (except at the origin). We now review an argument
(see e.g., [29]) which relates OC;; (the boundary of C3) to
the set of tangent vectors to bicharacteristic curves. The set
6F§ is the innermost sheet of the quartic surface, which is
nonsingular in the absence of triple points (except at the
origin). Now any nonzero X* € Clﬂf defines a supporting
hyperplane in the cotangent space, i.e., a plane through the
origin X#&, = 0 such that F?,E lies entirely on one side of
this plane. If one considers how this plane varies as X*
varies then it is clear that X* belongs to the boundary 80?5
when this plane is a tangent plane to OI';. But since o'
corresponds to a sheet of the quartic cone, it has normal
0Q/9¢,. Hence if X* € OC;; then X* « 0Q/ &, evaluated
at some & € 9I';. To fix the sign of the constant of
proportionality, consider £, € c‘)F[ﬂ,E and pick &£, such that
&, + 066, €Ty, We argued above that Q <0 in I'5
in a weakly coupled theory. Hence 0 > Q(&+ 6¢) =
6£,00/0&, +--- so X* must be a positive multiple of
0Q/9¢,. Since Q/0x, is a homogeneous cubic expres-
sion in &, the freedom to rescale X* by a positive constant
just corresponds to the freedom to rescale &, by a positive
constant, which is already present in the definition of 8Fli,.
Hence we have shown that'

oC; ={00Q/0¢,:£,€ 0I5} (ifnotripledirection) (108)

However, from the previous section, a (nonzero) vector
belongs to the set on the rhs iff it is tangent to a bichar-
acteristic curve associated with the innermost sheet of the
quartic surface in the cotangent space. Since this innermost
sheet corresponds to the “fastest” degree of freedom, the
associated bicharacteristic curves are the “fastest” curves.
Thus the boundary of C?,E consists of tangent vectors to the
fastest possible curves, which helps explain why Cf should
be used to define notions of causality.

The rhs of (108) involves only the inner sheet of the
quartic cone. The wave cone is the analogous set defined
using all three sheets of the characteristic cone:

W, ={0Q/9€,: 0(£) =0} U {X*:C,, X*X* =0}  (109)

*This class of equations consists of theories admitting an action
principle and such that high-frequency linearized perturbations have
positive energy density. Unfortunately this class does not include
gral\(/)itational theories, for which positivity of energy is more subtle.

Note that we allow &, to vanish on the rhs to recover the zero
element of JC;.
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This can be divided into “future” and “past” cones W[f.
The wave cone also has 3 sheets (each a double cone), with
the cones 80?5 corresponding to the outermost, i.e.,
“fastest” sheet.'! For PDEs with constant coefficients,
the sheets of the wave cone correspond to the singular
support of the Green function, i.e., to “sharp” signals (see
[11] for a clear discussion of this for the case of waves in an
elastic solid). The three sheets of the wave cone are
associated with the three different group velocities dis-
cussed above.

To arrive at the result (108) we assumed that there are no
triple directions. If there is a triple direction then the result
(108) might not be true. In this case C?,E is the convex hull of
W, The reason is that a triple point is a singular point of
the quartic surface and, generically, one does not expect
a tangent plane to exist at such a point. Instead there is a
family of supporting hyperplanes, corresponding to a
family of vectors X*. If the slowness surface has an isolated
triple point then this family of vectors fills out a planar
section of the convex hull, with normal ¢, (the triple
direction). Thus if £, is a triple direction then it is associated
with a continuous family of directions X*, rather than with
a unique direction as in (108).

As an example of this, consider a factorized theory. In
such cases Q(&) factorizes into the product of two quadratic
polynomials and W, is the union of the null cones of the
two effective metrics C,,, and (F~'),,. If these null cones
are concentric then C; is simply the causal cone of the
effective metric with the outermost null cone. However, if
the cones of the two effective metrics have a nontrivial
intersection then C; is the convex hull of the union of these
two cones.

Now consider a nonfactorized theory, with a background
solution for which W#*? = (), and assume that the slowness
surface has an isolated triple point. In this case, the quartic
has an isolated singular point. This is similar to what
happens for electromagnetism in an electrically anisotropic
medium: a “biaxial” crystal has a quartic slowness surface
with 4 singular points [10]. As mentioned above, the
singular points are associated with flat (planar) sections
of the convex hull of WI% with a singular direction éﬂ of the
quartic surface corresponding to a family of vectors X*
lying on such a planar section. In crystal optics, if one
considers plane waves with wave vector &, then the
associated X* corresponds to the direction of energy
transport, i.e., to the direction of a ray. This leads to the
phenomenon of conical refraction [10] in which a ray of
electromagnetic waves with wave vector &; corresponding
to a singular point on the slowness surface enters a crystal
and is split into a family of rays, filling out a cone, with the

"Note that the fastest degree of freedom corresponds to the
innermost sheet of the characteristic cone in the cotangent space
but to the outermost sheet of the wave cone in the tangent space.

associated X* lying on the planar section of dCj. This
contrasts with what happens for generic (nonsingular) &;
where the incident ray is split into just two rays inside the
crystal, corresponding to the two sheets of the slowness
surface.

In a generic background of a nonfactorized theory, we
have argued that the quartic surface is nonsingular except
on some hypersurface in spacetime. This hypersurface
seems analogous to the case of a layer of a biaxial crystal
of vanishing thickness, which is unlikely to lead to
observable effects. However, there may be symmetrical
(hence nongeneric) solutions (perhaps stationary axisym-
metric black hole spacetimes) for which the slowness
surface admits a triple point everywhere. In such space-
times, conical refraction may lead to interesting effects.

G. Causal structure and black holes

I will use capital letters (e.g., “Causal”, “Timelike”) to
distinguish notions defined with respect to C; from the
same notions defined in the traditional way using the
metric. So we say a vector is future-directed Causal iff it
is a nonzero element of C;; and future-directed Timelike iff
it belongs to the interior of C}. Past directed Causal or
Timelike vectors are defined by replacing C;; with C,. We
say that a smooth curve is future-directed Causal (Timelike)
iff its tangent vector is everywhere future-directed Causal
(Timelike). Past directed Causal and Timelike curves are
defined similarly. We define the Causal future of a set W as
the set J (W) consisting of points p for which there exists
a future-directed Causal curve from W to p. Similarly the
Chronological future Z* (W) is defined as the set of points
p for which there exists a future-directed Timelike curve
from W to p. The Causal and Chronological past are
defined similarly.

To define the notion of asymptotic flatness in the usual
way, via conformal compactification, we need the space-
time curvature and scalar field derivatives to decay suffi-
ciently rapidly that the causal structure near infinity is
determined by the light cone of the metric in the usual way.
More precisely, we need C,, to approach g,,, and the
quartic polynomial to approach (102), at appropriate rates
at infinity. Then, near infinity, the causal structure of our
theory will reduce to the causal structure defined using the
metric in the usual way, which is preserved by conformal
compactification. In the compactified spacetime we define
the black hole region % of the spacetime manifold M as
M\ T~ (F 7). The future event horizon Z* is defined as the
boundary of 9. We expect this to be a “fastest” outgoing
characteristic hypersurface. In particular, when Z* is
differentiable, its normal will belong to OI'" (the inner
sheet of the quartic). It would be very interesting to know
whether this surface satisfies a version of the second law of
black hole mechanics, i.e., is there some quantity that is
nondecreasing along the bicharacteristic curves that gen-
erate this surface?
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Now consider a stationary (i.e., time-independent) black
hole solution. In a 2-derivative theory with suitable matter,
it is known that the event horizon of such a black hole must
be a Killing horizon. It would be interesting to try to prove
such a result for theories of the type considered here, at
weak coupling. Some evidence that such a result may exist,
and some properties of a Killing horizon, are provided by
the following proposition.

Proposition: Consider a smooth solution (g,,,®)
which has a symmetry generated by a vector field &,
ie., & is a Killing vector field and

&V, ® =0 (110)
Assume that this solution admits a Killing horizon N of &,
i.e., NV is a null hypersurface with normal 5”, and assume
that the theory is weakly coupled on N. Then A is a
characteristic hypersurface and &, is a triple direction of the
characteristic cone. Furthermore, the Hessian of Q at that
point is a nonzero multiple of &*&.

This first part of this proposition is similar to previous
results for Lovelock [15,30] and Horndeski theories
[31,32]. In the Horndeski case, the interpretation of terms
of the characteristic cone and the result for the Hessian are
new. This proposition is proved in the Appendix.

The significance of &, being a triple direction is that it
implies that A is characteristic for all three physical
polarizations. In particular, this implies that A/ is a fastest
outgoing characteristic hypersurface (for a suitable defi-
nition of “outgoing”). So this is consistent with the
possibility that A/ is the event horizon of a stationary
solution.

To understand the significance of the above result for the
Hessian, consider the quartic polynomial Q(w) (we write
w,, here since we are using &, for the normal to our Killing
horizon). Since Q is a homogeneous quartic polynomial we
have

1
0(w) = — 0" w,w,w,w, (111)

4!
for some symmetric tensor Q**° which can be read off
from (97). Since &, is a singular direction of the quartic,
9Q/0w, vanishes for w, = &£, hence

Qﬂl/ptffyénga = 0 (1 12)

The Hessian of Q at ¢, is
H" = ! HEPO 113
- 5 Q gpéa ( )

From (112) we have H*¢£, = 0 hence H* is degenerate,
with rank at most 3. For a generic triple direction we expect
that the rank will equal 3. However, in the circumstances

covered by our proposition we see that H#* has rank 1, so
this triple direction is nongeneric. Consider the behavior of
Q in a neighborhood of &,:

O(E +58) = yHPog08,+ - (114)
where the ellipsis denotes terms cubic or quartic in 6&,,.
Since H" « &*&¥, the quadratic term vanishes if, and only
if, £#6£, =0. This is the equation of a plane in the
cotangent space with normal &'. Hence in a neighborhood
of &,, both sheets of the quartic cone degenerate to this
plane with normal & (which is also the normal to the
quadratic cone as (C~')*¢, o & on N: see (A6) in the
Appendix). In particular, even though ¢, is a singular
direction of the quartic cone, one can still define a unique
tangent plane to the cone at this point. This has the
following corollary:

Corollary: If p €N then a vector in Cj UC, is
tangent to NV if, and only if, it is a multiple of &~.

Proof.—Assume (by adjusting the sign if necessary) that
X# € C} and that X* is tangent to N so X#&, =0. We
know that &, is characteristic and corresponds to a singular
direction of the quartic cone. Hence &, belongs to both
sheets of the quartic cone. In particular it belongs to the
inner sheet OI'; U 9I';,. By choosing the appropriate sign
we have ££, € OI';. Consider the plane X*w, = 0 in the
cotangent space. We know that this plane contains +£,.
But, by definition of C}, this plane is a supporting hyper-
plane of I'}}. So it is a supporting hyperplane that touches
o'} (at +¢&,). For a generic singular direction there could
be many such supporting hyperplanes because a tangent
plane is not defined at a generic singular point. However,
we have just seen that our result for the Hessian implies that
there is a unique tangent plane to OI'} at &£, and this plane
has normal &“. Hence X" must be a multiple of &~.
Conversely, if X* o« & then the plane X*w, = 0 is tangent
to OI'; U O, at £&, and so either I'; or I'; lies in the
region with X*w, <0 so X* € C; UC,. "

The point here is that, for a generic triple direction, we
saw in Sec. IV F that the absence of a well-defined tangent
plane implies that one might have e.g., a flat “convex hull”
section of JC;; (say) and this gives rise to the phenomenon
of conical refraction. If &, had been a generic triple
direction then conical refraction would occur within A/,
i.e., from any point p of N there would have been a cone
(with narrow opening angle and containing &) of directions
in which causal propagation tangential to A" was possible.
But, in fact this does not happen because the triple direction
is nongeneric: the above result shows that causal propa-
gation within \V occurs only along the integral curves of &,
i.e., the usual generators of A. If the Killing horizon is
axisymmetric as well as stationary then this means that the
angular velocity can be defined in the usual way.
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Since £, is a singular direction, N is a null hypersurface
with respect to C,, (as well as with respect to g,,).
Furthermore, since &# generates a symmetry of the solution,
it follows that & is a Killing vector field of C,,, and hence
N is a Killing horizon with respect to C,,- What is the
surface gravity of this Killing horizon? In the Appendix
we prove:

Proposition: Under the same assumptions as the
previous proposition, the surface gravity of A is constant
(if N is connected) and the surface gravity of A with
respect to C,, is the same as the surface gravity with
respect to g,

The first part of this proposition says that the horizon
obeys the zeroth law of black hole mechanics. The second
part of the proposition ensures that the Hawking temper-
ature defined with respect to C,,, is the same as that defined
with respect to g,,. If the solution admits a Euclidean
section then there is a simpler way of seeing this: C,, is
built from g,, and ® so if these fields are smooth on the
Euclidean section with a certain period for Euclidean time
then C,, must also be smooth with the same choice of
period.

H. Causality in effective field theory

As explained in the Introduction and in Sec. IVA,
some of the theories we have been considering can be
motivated by EFT. In this section we will discuss briefly the
question of whether the difference between the character-
istic cone of the 4-derivative theory and the characteristic
cone of the 2-derivative theory (i.e., the null cone of the
metric) is actually observable in EFT. This is an issue that
has been discussed several times in the literature, see
e.g., [33-35]. A particularly detailed account has appeared
recently [36].

Consider the EFT of gravity coupled to a scalar field. As
described in Sec. IVA, the EFT action consists of the
2-derivative action (87) supplemented by an infinite set of
higher-derivative terms. The leading higher-derivative
terms have 4 derivatives and, after field redefinitions,
can be written as in (89). The coefficients a, f of (89)
are dimensionful with dimensions of length squared. In
EFT these coefficients will be O(£?) where ¢ is a length
scale associated with “UV physics”, e.g., the scale at which
new massive fields start to play a role in the physics.
Consider a field configuration that, in some coordinate
chart, varies over a length scale L, i.e., derivatives of the
fields are O(L~"). Validity of EFT requires L /¢ >> 1; if this
does not hold then one requires a full UV description of the
physics. Then the 4-derivative terms in the equations of
motion are suppressed relative to the 2-derivative terms by
a factor or order (#/L)?. Higher derivative terms are
suppressed by higher powers of (#/L)?. So in EFT, the
2-derivative theory provides the leading order description
of the physics and the 4-derivative theory provides an

improved description. The 4-derivative theory is weakly
coupled, as we have assumed repeatedly above.'?

Since the 4-derivative theory should provide a better
description of physics than the 2-derivative theory, one
would expect that the characteristic cone of the 4-derivative
theory, which we studied above, should provide a better
description of causality than the characteristic cone of the
2-derivative theory (which is simply the null cone of the
metric). However, as emphasized in [36], the difference
between these two cones may not be observable in EFT.

One way of seeing this is to consider how one might
“send a signal” from one point of spacetime to another. This
can be done by using geometric optics to construct wave
packets which propagate along bicharacteristic curves. So
consider a linear perturbation with wavelength 4, i.e.,
derivatives of the linearized fields are of order A~!. To
apply the geometric optics approximation to the 4-deriva-
tive theory we assume that 4 is much shorter than any other
length scale in the problem. One then finds that surfaces of
constant phase are characteristic surfaces as defined above.
However, the assumption that 4 is shorter than any other
length scale is incompatible with the condition /1 <« 1
required for validity of EFT.

Let us consider more carefully the size of different terms
in the linearized equations. In the 2-derivative theory, the
equation of motion gives us terms of order A=2, L™'A~! and
L72, where L is the scale over which the background
solution varies (for example the linearized Einstein equa-
tion contains a term R¥*“§g,, which is of order L72).
In geometric optics we assume that first set of terms
dominates, which requires 4/L < 1. When we include
4-derivative terms, the equation of motion now gives us
additional terms of order A72(#/L)? L~'27'(¢/L)? and
L2(¢/L)? (there are no terms involving A= or A= because
the equations of motion are second order). In applying
geometric optics to the 4-derivative theory, we retain the
terms of order A=2(#/L)%. But 172(¢/L)? = L2(¢/1)? <
L2 because validity of EFT requires #/A < 1. So within
the regime of validity of EFT the terms of order A72(¢/L)?
are negligible compared to the “dispersive” 2-derivative
terms of order L~2 which are neglected in geometric optics.
Thus, for consistency, we should also neglect the terms of
order A72(#/L)?, in which case we retain just the terms of
order 472, which is just geometric optics of the 2-derivative
theory (although applied to a background solution of the
4-derivative theory). Hence, within the regime of validity of
EFT, geometric optics cannot distinguish between the

"This does not imply that a solution of the 4-derivative theory
must remain close to a solution of the 2-derivative theory. Secular
effects, gradually accumulating over time, might cause a solution
of the 4-derivative theory to diverge from a solution of the
2-derivative theory over a long enough time [37]. If this happens
then the solution of the 4-derivative theory should provide the
better description of the physics.
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characteristic cone of the 4-derivative theory and that of the
2-derivative theory.

This raises the question of whether the analysis of
this paper can tell us anything about EFT. The answer
(probably) is yes, because the characteristic cone is relevant
not just for geometric optics, but for many other properties
of the 4-derivative theory. Since the (weakly coupled)
4-derivative theory makes sense as a self-contained
classical theory, one might hope that some of the important
theorems of general relativity can be extended from the
2-derivative theory to the 4-derivative theory. The proofs of
many of these theorems are based on causal properties of
the theory. If these theorems can be extended to the
4-derivative theory then it seems likely that the character-
istic cone, as defined in this paper, will provide the relevant
notion of causality. So even if this notion of causality is not
directly observable, it might provide instead a technical tool
for establishing a result that does tell us something
interesting in EFT. For example perhaps there exists an
extension of the Penrose singularity theorem to the
4-derivative theory which involves a slightly modified
definition of a trapped surface.'? Or, as we have mentioned
above, maybe there is an extension of the second law of
black hole mechanics to these theories.

V. DISCUSSION

The results of this paper suggest several opportunities for
future research. I have considered in detail the class of
theories consisting of gravity coupled to a scalar field, with
second order equations of motion. It would be interesting to
perform a similar analysis for other theories with second
order equations of motion. The class of theories of gravity
coupled to an electromagnetic field will be discussed
elsewhere.

It would be interesting to determine the characteristic
cone for some particular solutions of theories of the type
(89) or more general Horndeski theories, for example black
hole solutions. Stationary black hole solutions have been
constructed numerically both in the spherically symmetric
case (see e.g., [38]) and in the rotating case (see e.g.,
[39,40]). Our result on Killing horizons implies that, on the
horizon of such a solution, the characteristic cone will
admit a triple direction. But how does the cone behave in
other directions? What happens for points not on the
horizon? Also very interesting would be to study the
characteristic cone for time-dependent solutions without
symmetries, such as the solutions constructed numerically
in [41]. In particular one could study the properties of the
event horizon, as defined above, of these dynamical
solutions.

BSuch a theorem might assert that if there exists a trapped
surface then either there exists an incomplete bicharacteristic
curve or the solution becomes strongly coupled.

Our definition of the characteristic polynomial provides
anotion of (weak) hyperbolicity for Horndeski theories that
is independent of any gauge-fixing procedure. The idea is
that the characteristic polynomial p(&) should be a hyper-
bolic polynomial (see footnote 6). We have seen that this is
the case at weak coupling but it might fail for stronger
coupling. Away from weak coupling, the effective metric
C,, might not be invertible and so our definition of p(&)
can break down. However, this can be dealt with by
defining

p(&) = (C/g)p(&) = C"E,6,0(8)

1
WY — . cMP1P2P3 V010203
¢ 31 € € CP1¢71 Cﬂzﬂz C/’3¢73

(115)
which is always well defined. The polynomials p and p have
equivalent properties at weak coupling (when C/g~ 1). It
seems very unlikely that a well-posed formulation of the
equations of motion will exist if p(&) is not a hyperbolic
polynomial. Conversely, if p(£) is a hyperbolic polynomial
for some generic class of backgrounds of interest then one
might expect such a formulation to exist in these back-
grounds. The formulation of [6,8] was proved to be well
posed at weak coupling. It would be interesting to know if it
remains well posed at strong coupling whenever p(&) is a
hyperbolic polynomial. It seems possible that this will be the
case provided the auxiliary metrics ¢ and @ of this
formulation are chosen so that their null cones lie strictly
outside the characteristic cone defined by p(&).

Reference [42] considered spherically symmetric gravi-
tational collapse in a theory of the form (89). The spheri-
cally symmetric reduction of the theory was found to
violate weak hyperbolicity when the fields become suffi-
ciently strong. It is possible that a failure of hyperbolicity in
the full theory occurs before the failure of hyperbolicity of
the reduced theory. Computing the polynomial p(&) for
these backgrounds would provide a fairly simple way of
determining whether or not this happens.
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APPENDIX: PROOF OF PROPOSITIONS ON
KILLING HORIZONS

1. Proof of first proposition

From (110) we have
0=V,(&V,0)=&V,V,0+V,0V,E  (Al)

contracting with & gives
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gEV N,y = —k&V,0 =0 (A2)
where « is the surface gravity of A/. Using this, and the fact
that & is null with respect to g, we obtain from (91) or (96)
that C,,&"&" = 0on NV, i.e., & is null with respect to C,,, on
N. Next we want to show that &, is null with respect to
(C~1)". Note that

for some 7,,. The first equality is Killing’s equation and the
second equality, which holds only on A/, follows because
&, 1s hypersurface orthogonal. Substituting into (A1) we
have, on N,

&V, V0 = -V, 0 (A4)
Now, for either the theory (89) or for a general Horndeski
theory we have

C,, = ag,, +bV,V,®+cV, OV, O (AS)
for certain coefficients a, b, c. Hence, on N,
C.& = A¢, A=a-byp'V,® (A6)

Non-degeneracy of C,, (for a weakly coupled theory)
implies that the lhs is nonzero so A # 0. Rearranging we
have & = A(C')"¢, so contracting with £, we have, on
N, 0=¢,8 =A(C)™EE,. Hence, on N, in a weakly
coupled theory,

(C_l)/wg,ugv =0 (A7)
so the hypersurface N is null with respect to C L as well as
with respect to g,,. It follows that N is a characteristic
hypersurface associated with the quadratic cone.

We will now show that £, also corresponds to a singular
point of the quartic surface. We first show that certain
components of the Riemann tensor vanish on . A Killing
vector field satisfies

vyvygp = pr;méa- (Ag)
Contract this equation with vectors r”, s¥, #* that are tangent
to A\ to obtain, on N,

R

oouo?? SUHET = PSP PV UV €

= r/’t”Vﬂ(s”Vytfp) - r”(ﬂ‘vﬂs”)vyfp (A9)
On the rhs the first term involves a derivative with respect to
. Since #* is tangential to A/, we can use (A3) (which
holds only on N) to obtain

rptﬂvu(svvvfp) = rptﬂvﬂ [Sb(évnp - ép’/lv)]
= _rpﬂlv/l(svi/lvgp)
= —s”nyr”tﬂvﬁé‘p

= —Sbﬂu’”pf”(fﬂ”lp - 5/177;4)
) (A10)

where we have used the fact that »#, s# and t* have
vanishing contracting with £, because £, is normal to N.
The second term on the rhs of (A9) is

r/)(tﬂvﬂsl/)vvép = (tﬂvﬂsl/)rp(évﬂp - ‘S/J”Iv)
= r'n,5,t'V,s"
= —r'n,s"1"V ¢,

= _rp”psytﬂ(éyr/u - 51/7]/4)
—0 (Al1)

we have again used (A9) and the fact that 7, s# and # have
vanishing contracting with £,. Hence we have shown that,

on N,

Rpu/m

PsvitEe =0 (A12)
for any vectors r”, s, * that are tangent to .
We will now introduce a basis of vectors on N that is

null with respect to g,,.'* We choose ¢/ « &. We pick et

(1 =2, 3) to be a pair of orthonormal spacelike vectors
that are tangent to ' (and hence orthogonal to &). Finally
we pick ¢f) to be the unique null vector that is orthogonal to
¢t and satisfies g,,efef=—1. This defines a basis

{ep. €}, €4, i =2,3} such that the nonzero metric compo-

nents are go; = gjo = —1 and g;3 = &;;. Note that the dual
basis has € « &,.

Next we recall the concept of boost weight. A boost is a
rescaling of the null basis vectors ey — dey, e; — A ley.
A tensor component that scales by a factor of A8 has boost
weight B. For example under this rescaling we have

V Vb = e’fe%’V”VDCD - /I‘le’fe’{vﬂvytb (A13)
hence the lhs has B = —1. The boost weight of a tensor
component can be written as a sum where each subscript 0
index contributes +1, each subscript 1 index contributes
—1, each superscript 0 index contributes —1 and each
superscript 1 index contributes +1. Indices 7,] do not
contribute to B. So in the above example B =
—1+4+0 = —1. Note that boost weight is additive: if we
consider the outer product of two tensors then the boost

“This should not be confused with the basis of (82) that is null
with respect to Cp,.
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weight of a given component is the sum of the boost
weights of the terms appearing in the product.

Our strategy now will be to show that, on V, the negative
boost weight components of all relevant tensors are zero.
First consider (110) and (A4). In our basis these give
hence the negative boost weight components of V,® and
V,V,® vanish on AV. Note also that nonvanishing com-
ponents of g,, have B = 0.

Taking r = e;, s = e, t = e;0rr =e;, s = e;,t:e,;in
(A12) we now obtain

Ry =0 Ry, =0 (A15)
So far we have not used any equations of motion. We
now consider the Einstein equation on N which can be
written as

G, =

nv

(A16)

where the rhs is a polynomial in V,®, V,V,®, R, ;. 9,,
and ¢* (with coefficients that are scalar functions of @),
where R,,, appears only with degree 0 and 1 (see
Appendix A of [18]). Consider the negative boost weight
components of this equation. The B = —2 component can
be seen to be trivial so we consider the B = —1 component.
The second equation of (A15) implies that the lhs is
R;: = —R,;;- The negative boost weight components of
all tensors on the rhs vanish, except possibly for R,,,,
which has possibly nonzero negative boost-weight compo-
nents R,;; (and those related by symmetry). Hence the
Einstein equation reduces to
—Roi = Xi5Ro11; (A17)
for some quantity X;; with B = 0. Now in the 2-derivative
theory (87) the rhs of the Einstein equation does not involve
the Riemann tensor hence X;; = 0 in this theory. Hence, in
a general weakly coupled theory, X; ; must be small and so
the determinant of the above linear system is nonzero and
the Einstein equation implies
Roip =0 (A18)
Combined with (A15) this shows that all negative boost
weight components of the Riemann tensor vanish on \.
From (A14) and (91) or (96) we see that the negative
boost weight components of C,, must all vanish on N,
Using (C~')*C,, = &), we obtain (C")** « &, and hence
negative boost weight components of (C~!)* must also
vanish on .

Now we consider C***°. This is another polynomial in
V,®,V,V,® R, g, and ¢ with coefficients that are
scalar functions of ®. This can be seen from (92) [for the
theory (89)] or from the expressions in Appendix B of [18].
We have shown that the negative boost weight components
of all of these tensors vanish and so it follows that all
negative boost weight components of C*** must vanish

on N:

Ci=0 CMi=0 CYik=0 (A19)
Since all negative boost weight components of C#*° and
C,, vanish, it follows that so must the negative boost

weight components of D* and WH°:

DOO — DOi =0 WOin — WOIOi — WOijk =0 (AZO)
We can write our quartic polynomial for a general covector
w, as in (111). The tensor Q**#° is a polynomial in D**,
wree C,, (Cyw, V,®,V,V,®, g, and ¢*. (Here we
use the expression for P,,, in (94) or the corresponding
expression in Appendix B of [18].) We have shown that
negative boost weight components of all of these tensors
vanish on V. Hence the negative boost weight components
of Q*** must vanish on N. In particular we have

0(8) x Q% =0 (A21)

so &, lies on the quartic cone. Furthermore

00 IR ,
(32) -pevacexom—o ()

"

hence £, is a singular direction of the quartic surface.
Finally we have

H* = < aZQ

Ow, 0w,

1
> — 5 Qﬂp/)o’é}fﬁ x Q;wOO — 5/14611/Q1100
w=¢ :

(A23)
For the 2-derivative theory (87) we know that Q takes the
form (102) for which 0% < 0. Hence, by continuity, we
will have Q"' < 0 in a weakly coupled theory. So we have

shown that, at weak coupling, the Hessian of Q at &, has
rank 1: H* o EHEY.

2. Proof of second proposition
The surface gravity of A" with respect to g, is defined by
v/t (gppgygp)b\/ = _2K§[4 (A24)

which is equivalent to
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EV E = K& (A25)

To prove the first part of the proposition (the zeroth law of
black hole mechanics), contract (A8) with & and rearrange
to obtain

Rpwmé:yéa = vu (‘}:yvu‘}::p) - (vuéy)vuéfl (A26)

Now let # be tangent to . Contracting with # and using
(A25) gives, on N/
R o8 187 = 'V, (k€7) — (V. &)V, &

= ("V, k)& + kt'V & — 1*(V &)V &

= ("V, k)& —kt'n,& — t'n, & (A27)

using (A3) in the final line. Now contracting (A3) with &
and using (A25) gives

k= —nt¢, (A28)
hence the final two terms cancel above, giving
prﬂagy[ﬂ‘f” = (t”vﬂK)gp (A29)

Evaluating this equation in the null basis used in the proof
of the previous proposition gives

("V k)89 & R, 1" = 1V k Ryt (A30)
using 1 = 0 as #* is tangent to V. The rhs vanishes because
of (A18). Hence « is constant on each connected compo-
nent of .

Now consider the surface gravity k- of N defined with
respect to C,,:

V,(C,,E°8) |y = =2KcC (A31)
We want to show k- = k.
Using (110), (A1) and (AS) we have
Cupfyfp = agy/;gyép - b(fyvyfp)qu) (A32)

Hence on N using (A25) gives

v;l (Cl/ﬂgvfp) = avu (gbpé:ugp) - Kép(vubqu) + bvﬂqu)>

—-bV,(&V,E)V, @
= =2axé, + bV &’V ,® - b(&'V , V &)V , @
_b<vﬂ§l/)(vv§p>qu} (A33)

where in the second line we have used (110) and (Al)
again. Now we use (A3) to obtain

bKvyépv/)(I) = bK(éﬂ’Tﬂ - qﬂf/))v/)q)

= bx(n’V,®)¢&, (A34)
and
b(vﬂil')(vyfp)qu) = b(&ﬂﬂy - ﬂyéy)éyﬂpv/)q)
=b&n,(w'V,®)&,
= —bx(n’V,®)¢, (A35)

where the final equality follows from (A28). Using (A8) we
have

b(EV,V, &)V, ® = bR,,,,£EV'd  (A36)

VH® is tangential to A because &, V#® = 0 from (110).
Hence the rhs vanishes by (A29).
Putting these results together we have

V,(C,,E&) ==2k(a— b’V , @), = —2AkE, = —2kC, &
(A37)

where we used (A6) in the final two equalities. Comparing
with (A31) we see k- = k.
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