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This paper considers diffeomorphism invariant theories of gravity coupled to matter, with second order
equations of motion. This includes Einstein-Maxwell and Einstein-scalar field theory with (after field
redefinitions) the most general parity-symmetric four-derivative effective field theory corrections. A gauge-
invariant approach is used to study the characteristics associated to the physical degrees of freedom in an
arbitrary background solution. The symmetries of the principal symbol arising from diffeomorphism
invariance and the action principle are determined. For gravity coupled to a single scalar field (i.e., a
Horndeski theory) it is shown that causality is governed by a characteristic polynomial of degree 6 which
factorizes into a product of quadratic and quartic polynomials. The former is defined in terms of an
“effective metric” and is associated with a “purely gravitational” polarization, whereas the latter generically
involves a mixture of gravitational and scalar field polarizations. The “fastest” degrees of freedom are
associated with the quartic polynomial, which defines a surface analogous to the Fresnel surface in crystal
optics. In contrast with optics, this surface is generically nonsingular except on certain surfaces in
spacetime. It is shown that a Killing horizon is an example of such a surface. It is also shown that a Killing
horizon satisfies the zeroth law of black hole mechanics. The characteristic polynomial defines a cone in the
cotangent space and a dual cone in the tangent space. The latter is used to define basic notions of causality
and to provide a definition of a dynamical black hole in these theories.
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I. INTRODUCTION

We will consider theories of gravity in d spacetime
dimensions described by a metric tensor gμν coupled to
matter fields ϕI, I ¼ 1;…; N, with a diffeomorphism-
invariant action of the form

S ¼ 1

16πG

Z
ddx

ffiffiffiffiffi
jgj

p
Lðg;ϕIÞ ð1Þ

for some scalar Lagrangian L. We will restrict attention to
the class of theories for which the equations of motion are
second order. As well as Einstein gravity minimally
coupled to conventional matter fields, this class encom-
passes more exotic theories such as Lovelock theories [1]
(vacuum gravity in d > 4 dimensions) and Horndeski
theories [2] (gravity coupled to a scalar field in d ¼ 4
dimensions).
This class of theories also includes some important

examples motivated by effective field theory (EFT).
Einstein gravity minimally coupled to matter has a
Lagrangian whose terms involve up to 2 derivatives of
the fields. In EFT one adds to this all possible scalars
involving higher derivatives of the fields. The terms with

the fewest derivatives give the leading corrections to
Einstein gravity. Remarkably, in several important cases,
one can use field redefinitions to arrange that the leading
higher derivative corrections still give rise to second order
equations of motion. Wewill discuss three examples of this.
Our first example is vacuum gravity. The leading

EFT corrections to the Einstein-Hilbert Lagrangian have
4 derivatives. Using a field redefinition one can eliminate
4-derivative terms written in terms of the Ricci tensor, and
arrange that the only 4-derivative term is the “Gauss-
Bonnet” term. This is topological for d ¼ 4 but not for
d > 4. If we neglect terms with more than 4 derivatives
then we obtain Einstein-Gauss-Bonnet (EGB) theory,
which has second order equations of motion and therefore
belongs to the above class of theories (it is a Lovelock
theory).
The second example is the EFT of gravity coupled to a

scalar field in d ¼ 4 dimensions. The leading EFT correc-
tions to the minimally coupled 2-derivative theory involve
terms with 4 derivatives. Field redefinitions can be used to
write the 4-derivative terms in various different forms [3]. If
one assumes a parity symmetry then one of these forms is
preferred because, after neglecting terms with more than
4 derivatives, it gives rise to second order equations
of motion [4–6] (it is a Horndeski theory, described in
Sec. IVA below). Hence the above class of theories*hsr1000@cam.ac.uk
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includes the leading EFT corrections to (parity-symmetric)
Einstein-scalar theory in 4 dimensions.
A third example is d ¼ 4 Einstein-Maxwell theory. In

this case, after field redefinitions, one can reduce the
possible parity-symmetric 4-derivative terms involving just
the Maxwell tensor to ðFμνFμνÞ2 and ðFμνF̃μνÞ2 where F̃μν

is the dual Maxwell tensor. These terms give second order
equations of motion. The 4-derivative terms involving just
the metric can be reduced to a topological term as for
vacuum gravity. This leaves a possible 4-derivative inter-
action of the form RFF where R denotes the Riemann
tensor. One can again exploit field redefinitions to write this
term in the form RμνρσF̃μνF̃ρσ, which gives second order
equations of motion [7]. Thus the above class of theories
includes Einstein-Maxwell theory with the leading parity
symmetric 4-derivative EFT corrections.
A minimal condition for a theory of the above type to

“make sense” classically is that it should admit a well-
posed initial value problem. Recently it has been shown
that this is indeed the case for Lovelock and Horndeski
theories at “weak coupling” [6,8]. The latter condition
means roughly that the contribution of higher derivative
terms to the equations of motion is small compared to the
2-derivative terms. Note that this condition is also required
for validity of EFT.
It is interesting to ask whether any of the important

theorems of general relativity can be extended to these
theories. The first step in attempting to do this is to
understand causal properties of these theories, which is
the subject of this paper. The basic notion in the study of
causality is the idea of a characteristic hypersurface. For
example, the wavefront arising from a compactly supported
perturbation is a characteristic hypersurface. In geometric
optics, surfaces of constant phase are characteristic hyper-
surfaces. Characteristic hypersurfaces are defined in a
general background solution as follows. Consider the
equations of motion linearized around the background
solution. These take the form

Pμνρσαβ
gg ∂α∂βδgρσ þ PμνIαβ

gm ∂α∂βδϕI þ � � � ¼ 0

PIμναβ
mg ∂α∂βδgμν þ PIJαβ

mm ∂α∂βδϕJ þ � � � ¼ 0 ð2Þ

where the ellipses denotes terms with fewer than 2
derivatives acting on ðδgμν; δϕIÞ. Subscripts “g” and “m”
refer to “gravity” or “matter”. The coefficients Pgg, Pgm, etc
of the 2-derivative terms are tensors that can depend on the
background fields ðgμν;ϕIÞ and their first and second
derivatives. These coefficients are assembled into a matrix
called the principal symbol defined as follows. Let ξμ be an
arbitrary covector. Then the principal symbol is

PðξÞ ¼
�
Pμνρσαβ
gg ξαξβ PμνIαβ

gm ξαξβ

PIμναβ
mg ξαξβ PIJαβ

mm ξαξβ

�
ð3Þ

We can regard this matrix as acting on “polarization
vectors” of the form T ≡ ðtμν; tIÞ where tμν is symmetric.
However, owing to the diffeomorphism invariance of
our theory, it is better to regard it as acting on gauge
equivalence classes of polarizations [9], a notion we review
below. Such classes correspond to “physical polarizations”.
One then defines a covector ξμ to be characteristic if there
exists a nonzero equivalence class T satisfying the char-
acteristic equation PðξÞT ¼ 0. A hypersurface is character-
istic iff its normal is a characteristic covector. Associated
with any such hypersurface is a physical polarization (or
space of polarizations) that, in geometric optics, can
propagate along that hypersurface.
Causality is determined by algebraic properties of the

principal symbol and so we must start by studying these
algebraic properties. In Sec. II, I will show that the principal
symbol must possess certain symmetries. These follow
from the action principle and from diffeomorphism invari-
ance. These symmetries are particularly restrictive in low
spacetime dimensions. For d ¼ 4 they imply that the tensor
Pμνρσαβ
gg can be written in terms of an “effective metric”: a

symmetric tensor Cμν depending on the background fields
and their first and second derivatives. For a weakly coupled
theory, Cμν is close to gμν. Next, in Sec. III, I will study the
characteristic equation for a general theory, focusing on the
d ¼ 4 case. The analysis splits into two cases. In the first
case, ξμ is non-null with respect to ðC−1Þμν (the inverse of
Cμν) and the gravitational polarization tμν is determined (up
to gauge) by the matter polarization tI . In the second case,
ξμ is null with respect to ðC−1Þμν. Whether or not this case
arises reduces to the condition that a “Weyl-like” tensor
constructed from the principal symbol and tI should admit
ξμ as a principal null direction.
In Sec. IV, I will consider d ¼ 4 theories of gravity

coupled to a single scalar field, i.e., Horndeski theories. In
this case I will show, for a general background solution, that
ξμ is characteristic iff pðξÞ ¼ 0 where the characteristic
polynomial is

pðξÞ ¼ ðC−1ÞμνξμξνQðξÞ ð4Þ

where QðξÞ is a homogeneous quartic polynomial in ξ with
coefficients depending on the backgrounds fields and their
first and second derivatives. Clearly pðξÞ is a homogeneous
polynomial of degree 6 that factorizes into the product of a
quadratic and a quartic polynomial. For simple theories, or
symmetrical backgrounds (e.g., a FLRW cosmology),QðξÞ
also factorizes, into a product of quadratic polynomials of
the form ðC−1ÞμνξμξνFρσξρξσ, where Fμν is another effec-
tive metric. However this factorization does not occur for
generic backgrounds of generic theories (such as the EFTof
a scalar field coupled to gravity).
This result implies that, in a Horndeski theory, the

normal ξμ to a (physical) characteristic surface must satisfy
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either the quartic equation QðξÞ ¼ 0 or the quadratic
equation ðC−1Þμνξμξν ¼ 0. The set of solutions ξμ of
pðξÞ ¼ 0 defines the characteristic cone in the cotangent
space at any point. So the result (4) shows that the
characteristic cone is the union of a quadratic cone and
a quartic cone.
There is a close similarity with the theory of electro-

magnetic waves in an anisotropic crystal [10], or elastic
waves in an anisotropic solid [11]. In the former case,
characteristics ξμ must satisfy a quartic equation and in the
latter case they must satisfy an equation of degree 6, as in
our case. The analogy is particularly close for an elastic
solid with hexagonal symmetry for which the characteristic
polynomial factorizes into a quadratic and quartic poly-
nomial as in (4) [11].
One can visualize the characteristic cone by taking a

cross section (of constant ξ0 with respect to a suitable basis)
to define a “slowness surface” in R3. I will show that, for a
weakly coupled theory, the slowness surface has three
sheets, corresponding to the three physical degrees of
freedom. This surface is the union of an ellipsoid defined
by the quadratic equation with a 2-sheeted surface defined
by the quartic equation, with the quadratic ellipsoid lying
between the sheets of the quartic surface. In optics (for a
biaxial crystal), the analogous surface, sometimes called
the Fresnel surface, has 4 singular points where two sheets
of the quartic meet. This gives rise to the phenomenon of
conical refraction [10]. In our case I will show that, for a
generic background of a generic theory, the slowness
surface has 4 “double points” at which the quadratic and
quartic surfaces meet, however, generically they do so
smoothly, which implies that there is no conical refraction.
This is similar to the case of some hexagonally symmetric
materials in elasticity (e.g., Zinc [12]). In our case, for a
generic background of a generic theory, there will be
special (nongeneric) points in spacetime for which a double
point is replaced by a “triple point”where all three sheets of
the slowness surface meet. I will argue that these special
points fill out hypersurfaces in spacetime.
I will give an expression for the physical polarizations

associated with each sheet of the characteristic cone. The
quadratic cone is associated with a “purely gravitational”
polarization. In particular, this means that, in any (weakly
coupled) background, for any Horndeski theory, there is
always a physical graviton polarization that decouples from
the scalar field in the geometric optics limit (and propagates
on the null cone of Cμν). However, in a generic theory, this
is not the “fastest” degree of freedom. The latter is
associated with the inner sheet of the quartic cone. The
polarizations associated with the sheets of the quartic cone
generically involve mixing between the gravitational and
scalar field degrees of freedom.
Associated with the region enclosed by the inner sheet of

the characteristic cone one can define a dual cone in the
tangent space at any point. This dual cone governs causality

in these theories, i.e., it provides the appropriate generali-
zation of the usual “light cone” of GR. The dual cone can
be used to generalize standard GR definitions to this class
of theories. I will use it to provide a definition of the black
hole region in an asymptotically flat spacetime.
I will discuss in detail the case of a spacetime admitting a

Killing horizon. It turns out that such a horizon is an
example of a surface on which the slowness surface has a
triple point. However, this triple point is of a special type
which ensures that conical refraction does not occur and,
within the horizon, causality reduces to the usual notion of
causality with respect to the metric. I will also prove some
results about the surface gravity of a Killing horizon. First,
the surface gravity is constant if the theory is weakly
coupled on the Killing horizon, i.e., the zeroth law of black
hole mechanics holds. Second, the surface gravity defined
with respect to the effective metric Cμν is the same as that
defined with respect to gμν.
This paper uses standard notions of causality from PDE

theory. However, as discussed above, some of the theories
discussed in this paper are motivated by EFT. The regime of
validity of EFT does not include waves of arbitrarily short
wavelength. I will explain why this means that one cannot
use geometric optics to distinguish between the character-
istic cone defined by (4) and the usual null cone of the
metric.
I will end in Sec. V by discussing some possibilities for

future research.

A. Notation and conventions

Lower case Greek indices are tensor indices. I consider
theories involving a metric tensor gμν with positive sig-
nature. All index raising and lowering will be performed
using this metric tensor (rather than the effective metric
Cμν). My convention for the Riemann tensor is
Rμ

νρσ ¼ 2∂ ½ρΓ
μ
jνjσ� þ � � �.

II. THE PRINCIPAL SYMBOL
AND ITS SYMMETRIES

A. Definition

Consider the theory defined by the action (1). For the
moment we assume only that the metric gμν is nondegen-
erate but we do not require it to have a particular signature.
In particular, the following analysis applies for both
Lorentzian and Riemannian signature. Define

Eμν ¼ −
16πGffiffiffiffiffijgjp δS

δgμν
EI ¼ −

16πGffiffiffiffiffijgjp δS
δϕI

ð5Þ

so the equations of motion are

Eμν ¼ EI ¼ 0: ð6Þ

We assume that these equations of motion are second order.
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Let ξμ be an arbitrary covector. Then the principal
symbol is defined as in (3) where

Pμνρσαβ
gg ≡ ∂Eμν

∂ð∂α∂βgρσÞ
PμνIαβ
gm ≡ ∂Eμν

∂ð∂α∂βϕIÞ

PIμναβ
mg ≡ ∂EI

∂ð∂α∂βgμνÞ
PIJαβ
mm ≡ ∂EI

∂ð∂α∂βϕJÞ
ð7Þ

These definitions are equivalent to those obtained by
linearizing the equations of motion as in (2). By definition
these objects possess the symmetries

Pμνρσαβ
gg ¼ PðμνÞρσαβ

gg ¼ PμνðρσÞαβ
gg ¼ PμνρσðαβÞ

gg ð8Þ

PμνIαβ
gm ¼ PðμνÞIαβ

gm ¼ PμνIðαβÞ
gm ð9Þ

PIμναβ
mg ¼ PIðμνÞαβ

mg ¼ PIμνðαβÞ
mg ð10Þ

PIJαβ
mm ¼ PIJðαβÞ

mm ð11Þ

We will sometimes use the notation

Pμνρσ
gg ðξÞ≡ Pμνρσαβ

gg ξαξβ PμνI
gm ðξÞ≡ PμνIαβ

gm ξαξβ

PIμν
mg ðξÞ≡ PIμναβ

mg ξαξβ PIJ
mmðξÞ≡ PIJαβ

mm ξαξβ ð12Þ

The principal symbol PðξÞ is a matrix that acts on the
vector space of “polarization” vectors of the form ðtμν; tIÞ
where tμν is symmetric. In a general theory, PðξÞ depends
on the fields ðgμν;ϕIÞ and their first and second derivatives.

B. Consequences of the action principle

We will now show that the action principle implies that
the principal symbol is a symmetric matrix. Fix a “back-
ground” field configuration (not necessarily a solution) and
consider a 2-parameter compactly supported variation of
this configuration, parametrized by ðλ1; λ2Þ. This means
that we consider fields gμνðx; λ1; λ2Þ and ϕIðx; λ1; λ2Þ which
coincide with the background fields gμνðx; 0; 0Þ and
ϕIðx; 0; 0Þ outside a compact set. Hence ∂λi gμν and ∂λiϕI

are functions of compact support in spacetime.
Take a derivative with respect to λ1 of the action

evaluated on these fields:

δ1S ¼ −
1

16πG

Z
ddx

ffiffiffiffiffi
jgj

p
ðEμνδ1gμν þ EIδ1ϕIÞ ð13Þ

where δ1 denotes a partial derivative with respect to λ1 and
compact support lets us discard total derivatives. Now take
a derivative with respect to λ2 to obtain

δ2δ1S¼−
1

16πG

Z
ddx

ffiffiffiffiffi
jgj

p
½Eμνδ2δ1gμνþEIδ2δ1ϕI

þðPμνρσαβ
gg ∂α∂βδ2gρσ þPμνIαβ

gm ∂α∂βδ2ϕI þ� � �Þδ1gμν
þðPIμναβ

mg ∂α∂βδ2gμνþPIJαβ
mm ∂α∂βδ2ϕJ þ� � �Þδ1ϕI�

ð14Þ

where the ellipses denotes terms with fewer than 2
derivatives acting on δ2gμν and δ2ϕI . Since we are not
keeping track of such terms, we can replace partial
derivatives above with covariant derivatives. Integrating
by parts we have

δ2δ1S¼ 1

16πG

Z
ddx

ffiffiffiffiffi
jgj

p
ð−Eμνδ2δ1gμν −EIδ2δ1ϕI

þPμνρσαβ
gg ∇αδ1gμν∇βδ2gρσ þPμνIαβ

gm ∇αδ1gμν∇βδ2ϕI

þPIμναβ
mg ∇αδ1ϕI∇βδ2gμν þPIJαβ

mm ∇αδ1ϕI∇βδ2ϕJ

þ � � �Þ ð15Þ

where the ellipsis denotes terms for which the total number
of spacetime derivatives acting on the field variations is less
than 2. Now antisymmetrize in λ1 and λ2 and evaluate at
λ1 ¼ λ2 ¼ 0: the left-hand side (lhs) vanishes and terms
involving δ2δ1gμν and δ2δ1ϕI drop out of the right-hand
side (rhs) when antisymmetrized, leaving (after using the
symmetry of the principal symbol on αβ)

0 ¼ 1

16πG

Z
ddx

ffiffiffiffiffi
jgj

p
fðPμνρσαβ

gg − Pρσμναβ
gg Þ∇αδ1gμν∇βδ2gρσ

þ ½ðPμνIαβ
gm − PIμναβ

mg Þ∇αδ1gμν∇βδ2ϕI þ ð1 ↔ 2Þ�
þ ðPIJαβ

mm − PJIαβ
mm Þ∇αδ1ϕI∇βδ2ϕJ þ � � �g ð16Þ

This has to hold for arbitrary compactly supported varia-
tions. Hence the coefficients of the terms quadratic in first
derivatives of the variations must vanish:

Pμνρσαβ
gg ¼ Pρσμναβ

gg PμνIαβ
gm ¼ PIμναβ

mg PIJαβ
mm ¼ PJIαβ

mm ð17Þ

These equations are equivalent to the statement that the
principal symbol (3) is symmetric. The equations of motion
were not used in the above argument, so this holds for any
field configuration.
If the background does satisfy the equations of motion

then by setting δ2 ¼ δ1 in (15) we see that the second
variation of the action around a solution is

δ21S ¼ 1

16πG

Z
ddx

ffiffiffiffiffi
jgj

p
ðPμνρσαβ

gg ∇αδ1gμν∇βδ1gρσ

þ PμνIαβ
gm ∇αδ1gμν∇βδ1ϕI þ PIμναβ

mg ∇αδ1ϕI∇βδ1gμν

þ PIJαβ
mm ∇αδ1ϕI∇βδ1ϕJ þ � � �Þ ð18Þ
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where the ellipsis denotes terms for which the total number
of derivatives acting on field variations is less than 2. Thus
the principal symbol determines the 2-derivative terms in
the action when expanded to quadratic order around a
background solution.

C. Consequences of diffeomorphism invariance

Next we will establish some further symmetries that
follow from invariance of the action under compactly
supported diffeomorphisms. Consider an infinitesimal dif-
feomorphism generated by a compactly supported vector
field Xμ. We assume that the matter fields are such that their
transformation does not involve derivatives of Xμ:

δgμν ¼ 2∇ðμXνÞ δϕI ¼ XμLμI ð19Þ

for some tensor fields LμI . For example, a set of scalar
fields ϕI has LμI ¼ ∂μϕI and a vector potential Aμ has
δAν ¼ XμFμν (up to a compactly supported gauge trans-
formation) so Lμν ¼ Fμν. Taking the variation in (13) to be
such a diffeomorphism, with compactly supported Xμ, the
lhs vanishes and integrating by parts leads to the gener-
alized Bianchi identity:

∇νEμν − Lμ
IEI ¼ 0 ð20Þ

This has to hold for an arbitrary field configuration. Using
the chain rule to expand the first term gives

Pμνρσαβ
gg ∂ν∂α∂βgρσ þ PμνIαβ

gm ∂ν∂α∂βϕI þ � � � ¼ 0 ð21Þ

where the ellipsis denotes terms not involving third (or
higher) derivatives of the fields. Since this equation has to
hold for an arbitrary field configuration, the coefficients of
the third derivative terms must vanish, which requires

PμðνjρσjαβÞ
gg ¼ 0 PμðνjIjαβÞ

gm ¼ 0 ð22Þ

Using the symmetries (17) these equations are equivalent to

PμνρðσαβÞ
gg ¼ 0 PIμðναβÞ

mg ¼ 0 ð23Þ

D. Combining the symmetries

We will now use the results established above to prove
the following proposition.
Proposition: Assume that the action (1) is invariant

under compactly supported infinitesimal diffeomorphisms
which act on the matter fields as in (19). Then the
components of the principal symbol can be written (for
arbitrary ξμ)

PIμν
mg ðξÞ ¼ CIμανβξαξβ ð24Þ

Pμνρσ
gg ðξÞ ¼ CμðρjανjσÞβξαξβ ð25Þ

where CIμνρσ has the symmetries of a metric-derived
Riemann tensor:

CIμνρσ ¼CI½μν�ρσ ¼CIμν½ρσ� ¼CIρσμν CIμ½νρσ� ¼ 0 ð26Þ

and Cμ1μ2μ3ν1ν2ν3 has the symmetries

Cμ1μ2μ3ν1ν2ν3 ¼ C½μ1μ2μ3�ν1ν2ν3 ¼ Cμ1μ2μ3½ν1ν2ν3�

¼ Cν1ν2ν3μ1μ2μ3 ð27Þ

and

Cμ1μ2½μ3ν1ν2ν3� ¼ Cμ1½μ2μ3ν1ν2�ν3 ¼ 0 ð28Þ

The tensors CIμνρσ and Cμ1μ2μ3ν1ν2ν3 are uniquely defined by
the above properties. They depend on the fields ðgμν;ϕIÞ
and their first and second derivatives.
Proof.—First note that

PIμναβ
mg ¼ −PIμαβν

mg − PIμβνα
mg

¼ −PIαμβν
mg − PIβμνα

mg

¼ PIαβνμ
mg þ PIανμβ

mg þ PIβναμ
mg þ PIβαμν

mg

¼ 2PIαβμν
mg þ PIναμβ

mg þ PIνβαμ
mg

¼ 2PIαβμν
mg − PIνμαβ

mg ð29Þ

where we have used (23) and (9) repeatedly. Rearranging
we have

PIμναβ
mg ¼ PIαβμν

mg ð30Þ

i.e., PIμναβ
mg is symmetric under interchange of the pair μν

with the pair αβ. It now follows from (23) that

PIðμναÞβ
mg ¼ PIβðαμνÞ

mg ¼ 0 ð31Þ

so PIμναβ
mg vanishes when symmetrized on any three Greek

indices. We now define

CIμανβ ¼ 2

3
ðPIμναβ

mg − PIμβαν
mg Þ ð32Þ

The symmetries (30) and (9) imply that

CIμανβ ¼ CIνβμα ð33Þ

Furthermore we have

CIμανβ ¼ CIμα½νβ� ¼ CI½μα�νβ ð34Þ

where the first equality follows from the definition of the
lhs and the second equality then follows from (33). Finally,
the symmetry (9) implies
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CIμ½ανβ� ¼ 0 ð35Þ

Thus CIμανβ has the Riemann symmetries stated in (26).
Now consider

CIμðαjνjβÞ ¼ 2

3
PIμναβ
mg −

1

3
PIμβαν
mg −

1

3
PIμανβ
mg ¼ PIμναβ

mg ð36Þ

using (23) in the final equality. Hence the relation between
CI and PI

mg is invertible. In particular we have established
Eq. (24). Conversely, to establish uniqueness of CI with the
above symmetries and satisfying (24), note that the
symmetries imply that CIμνρσ¼ð2=3ÞðCIμðνjρjσÞ−CIμðνjσjρÞÞ
and using (24) this reduces to (32).
We can apply very similar arguments toPgg. First we have

Pμνρσαβ
gg ¼ −Pμνραβσ

gg − Pμνρβασ
gg

¼ −Pμναρβσ
gg − Pμνβρασ

gg

¼ Pμναβρσ
gg þ Pμνασβρ

gg þ Pμνβαρσ
gg þ Pμνβσρα

gg

¼ 2Pμναβρσ
gg þ Pμνσαβρ

gg þ Pμνσβρα
gg

¼ 2Pμναβρσ
gg − Pμνσραβ

gg ð37Þ
where we have used (23) and (8) repeatedly. Rearranging
we have

Pμνρσαβ
gg ¼ Pμναβρσ

gg ð38Þ

and so combining with (17) we see that Pμνρσαβ
gg has a

“pairwise interchange” symmetry, i.e., it is symmetric
under interchange of any of the pairs μν, ρσ and αβ.
Now consider

6PμðνρjσjαÞβ
gg ¼ ðPμνασρβ

gg þ Pμνρσαβ
gg Þ þ ðPμρνσαβ

gg þ Pμρασνβ
gg Þ

þ ðPμαρσνβ
gg þ Pμανσρβ

gg Þ
¼ −Pμνσβαρ

gg − Pμρσβαν
gg − Pμασβνρ

gg

¼ −Pσβμναρ
gg − Pσβμραν

gg − Pσβμανρ
gg ¼ 0 ð39Þ

where the second equality uses (8) and (23), the third
equality uses (17) and the final equality is (23). From the
results that we have obtained, it follows that Pμνρσαβ

gg

vanishes when symmetrized on any three indices.1

We now define

Cμρανσβ ¼ 2

3
ðPμνρσαβ

gg þ Pρνασμβ
gg þ Pανμσρβ

gg Þ ð40Þ

The symmetries (8) imply that Cμρανσβ vanishes when
antisymmetrized on any four indices, so (28) holds. The
pairwise interchange symmetry of Pgg implies that

Cμρανσβ ¼ Cνσβμρα ð41Þ

so C is symmetric under interchange of the first three
indices with the final three indices. We can write the
definition of C as

Cμρανσβ ¼ 2ðP½μjνjρjσjα�β
gg þ PðμjνjρjσjαÞβ

gg Þ ð42Þ

i.e., the first term is antisymmetrized on indices μρα and the
second term is symmetrized on indices μρα. But we have
seen that the symmetrized term vanishes. It follows thatC is
totally antisymmetric on its first three indices and also on
its final three indices:

Cμρανσβ ¼ C½μρα�νσβ ¼ Cμρα½νσβ� ð43Þ

where the second equality follows from the interchange
symmetry. We have now established the symmetries (27).
Next consider the symmetrization of Cμρανσβ on αβ and

on ρσ. Using the symmetries of Pgg we obtain

1

4
ðCμρανσβ þ Cμσβνρα þ Cμσανρβ þ CμρβνσαÞ

¼ 1

6
ð4Pμνρσαβ

gg þ Pρνασμβ
gg þ Pρνβσμα

gg þ Pσναρμβ
gg þ Pσνβρμα

gg þ Pανμσρβ
gg þ Pβνμσρα

gg þ Pανμρσβ
gg þ Pβνμρσα

gg Þ

¼ 1

6
ð4Pμνρσαβ

gg − Pρνμσαβ
gg − Pσνμραβ

gg − Pρνμσαβ
gg − Pσνμραβ

gg Þ

¼ 1

6
ð4Pμνρσαβ

gg − 2Pρνμσαβ
gg − 2Pσνμραβ

gg Þ

¼ 1

6
ð4Pμνρσαβ

gg þ 2Pρσμναβ
gg Þ ¼ Pμνρσαβ

gg ð44Þ

1This implies that Pgg is identically zero for d ≤ 2 dimensions (since at least 3 indices must take the same value for d ≤ 2).
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The first equality is the definition of C. We then apply the
3-index symmetrization property of Pgg to the second and
third terms, the fourth and fifth terms etc to obtain the
second equality. We then apply this symmetrization prop-
erty to the second and fourth terms and to the third and fifth
terms to obtain the third equality. Using the symmetrization
property again gives the fourth equality, and the final
equality then follows from the pairwise interchange sym-
metry. This result shows that we can invert the relation
between C and Pgg so these two tensors contain the same
information. Equation (44) is equivalent to (25) and so we
have demonstrated that (40) satisfies all of the properties
listed in the proposition.

Finally we will demonstrate that (40) is the unique
expression for Cμρανσβ that satisfies the properties listed in
the proposition. By linearity, this is equivalent to showing
that if Cμρανσβ has the symmetries (27) and (28) and the rhs
of (25) vanishes (for any ξμ) then Cμρανσβ must vanish. So
assume (27) and (28) and that the rhs of (25) vanishes. The
latter equation gives

Cμρανσβ þ Cμσβνρα þ Cμσανρβ þ Cμρβνσα ¼ 0 ð45Þ

Now add to this equation the two equations obtained by
cycling the indices μρα [this is motivated by the rhs of
(40)]. The result is

0 ¼ 3Cμρανσβ þ Cμσβνρα þ Cμσανρβ þ Cμρβνσα þ Cρσβναμ þ Cρσμναβ þ Cραβνσμ þ Cασβνμρ þ Cασρνμβ þ Cαμβνσρ

¼ 3Cμρανσβ þ Cμσβνρα þ Cμσανρβ þ Cμρβνσα þ Cμναρσβ þ Cμρσναβ þ Cμνσραβ þ Cμρνασβ þ Cμβνασρ þ Cμβανσρ

¼ 4Cμρανσβ þ Cμσβνρα þ Cμρβνσα þ 2Cμνσραβ þ Cμβνασρ þ Cμβανσρ

¼ 4Cμρανσβ − Cμβσνρα − Cμβρνσα þ 2Cμνσραβ þ Cμβνασρ þ Cμβανσρ

¼ 4Cμρανσβ − 2Cμβσνρα þ 2Cμνσραβ þ 2Cμβνασρ

¼ 4Cμρανσβ þ 2Cμβσναρ − 2Cμνσβαρ − 2Cμβνσαρ

¼ 4Cμρανσβ þ 2Cνβσμαρ

¼ 6Cμρανσβ ð46Þ

In the first and second equalities we have used the
symmetries (27). In the third equality we used the sym-
metry Cμ½ρανσ�β ¼ 0 from (28). The fourth equality uses
(27). In the fifth equality we used Cμβ½σνρα� ¼ 0 from (28).
The sixth equality uses (27). The seventh equality uses
C½μβσν�αρ ¼ 0 from combining (27) with (28). The final
equality uses (27). This concludes the proof.

E. Example: Einstein-Hilbert action

As an example, consider, for Lorentzian signature in any
number of dimensions, the Einstein-Hilbert action L ¼ R
and no matter fields. We have Eμν ¼ Rμν − ð1=2ÞRgμν. The
principal symbol (acting on tμν) can be read off by the
substitution ∂μ∂νgρσ → ξμξνtρσ with the result

ðPggÞμνρσðξÞtρσ ¼
�
−
1

2
ξρξρ t̃μν þ ξρξðμt̃νÞρ −

1

2
gμνξρξσ t̃ρσ

�

t̃μν ≡ tμν −
1

2
gμνt

ρ
ρ ð47Þ

This can be rewritten as

ðPggÞμνρσðξÞtρσ ¼
1

2
δνσβμραt

ρ
σξαξβ ð48Þ

where

δ
μ1…μq
ν1…νq ≡ q!δμ1½ν1…δ

μq
νq� ð49Þ

hence for the Einstein-Hilbert action we have

Cμρα
νσβ ¼ 1

2
δνσβμρα ð50Þ

which clearly has the symmetries we have described above.
The result (50) also holds if we include “minimally

coupled” matter. More precisely it holds for L ¼ Rþ Lm if
Lm does not produce terms in Eμν involving second
derivatives of the metric (so Lm does not affect Pgg).

F. Example: Lovelock theories

The principal symbol for Lovelock theories was calcu-
lated in [13–16]. From the results of [16] we can read off an
expression that satisfies (25):

Cμρα
νσβ

¼−2
X
p≥1

pkpδ
νσβα1α2…α2p−3α2p−2
μραβ1β2…β2p−3β2p−2

Rα1α2
β1β2…Rα2p−3α2p−2

β2p−3β2p−2 :

ð51Þ
where the kp are the coupling constants of the theory and
the antisymmetry ensures that the sum is finite. With a little
work one can check that this expression satisfies (27) and
(28). Hence, by uniqueness, this must be the correct result.
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Taking k1 ¼ −1=4 gives a conventionally normalized
Einstein term, i.e., it ensures that the p ¼ 1 term agrees
with (50).

G. Maxwell field

Let us consider the case in which our “matter” field is a
Maxwell vector potential, i.e., ϕI → Aμ, so we replace
indices I; J;… with μ; ν;…. We assume that the action is
invariant under compactly supported gauge transforma-
tions.2 We can use gauge invariance to deduce some further
symmetries of the principal symbol. Take δ1 to be a
compactly supported gauge transformation in (13).
Gauge invariance of the action, and δ1gμν ¼ 0 then imply
the Bianchi identity

0 ¼ ∇μEμ

¼ Pμρσαβ
mg ∂μ∂α∂βgρσ þ Pμναβ

mm ∂μ∂α∂βAν þ � � � ð52Þ

where the ellipsis denotes terms not involving third (or
higher) derivatives. This identity has to hold for any field
configuration, so the third derivative terms must vanish,
which requires

PðμjρσjαβÞ
mg ¼ 0 ð53Þ

and (using symmetry on μν)

PμðναβÞ
mm ¼ 0 ð54Þ

We also note the second equation of (23), which is

PμρðσαβÞ
mg ¼ 0 ð55Þ

Similar arguments to those used in Sec. II D imply that we
can write

Pμναβ
mm ¼ MμðαjνjβÞ ð56Þ

where Mμανβ has the symmetries of a (metric induced)
Riemann tensor.

H. Four dimensions

Now return to a general theory with d ¼ 4 and assume
that gμν has Lorentzian signature. The symmetries of
Cμ1μ2μ3ν1ν2ν3 imply that we can define a symmetric tensor
Cμν by

Cμ1μ2μ3ν1ν2ν3 ¼ −
1

2
ϵμ1μ2μ3ρϵν1ν2ν3σCρσ ð57Þ

where ϵμνρσ is the volume form on spacetime defined by the
metric. In a (right handed) basis we have

ϵμνρσ ¼ 1ffiffiffiffiffiffi−gp ϵ̃μνρσ ð58Þ

where ϵ̃μνρσ is a totally antisymmetric tensor density
with ϵ̃0123 ¼ −1.
For example, consider the Einstein-Hilbert Lagrangian

L ¼ R. Recall that

δμ1μ2μ3ν1ν2ν3 ¼ −ϵμ1μ2μ3ρϵν1ν2ν3ρ ð59Þ

hence Eq. (50) can be rewritten

Cμ1μ2μ3ν1ν2ν3 ¼ −
1

2
ϵμ1μ2μ3ρϵν1ν2ν3σgρσ ðEinstein-HilbertÞ

ð60Þ

so we have Cμν ¼ gμν for the Einstein-Hilbert action. This
result also holds if we include minimally coupled matter
fields.
Henceforth wewill restrict attention to the case for which

Cμν is nondegenerate, with the same signature as gμν, as will
be the case if we restrict to field configurations for which
the theory is “weakly coupled.” By this, we mean that there
exists a basis for which the components of the tensors Pgg,
Pmg and Pmm are close to the corresponding expressions
arising from the Einstein-Hilbert Lagrangian minimally
coupled to conventional matter.
Let C ¼ detCμν (in a RH basis). Explicitly this gives

C
g
¼ − ffiffiffiffiffiffi−gp

g
ϵμνρσC0μC1νC2ρC3σ

¼ −
1

4!
ϵμ1μ2μ3μ4ϵν1ν2ν3ν4Cμ1ν1Cμ2ν2Cμ3ν3Cμ4ν4 ð61Þ

We also have

ϵμνρσ ¼
�
C
g

�
1=2

ϵμνρσC ð62Þ

where ϵμνρσC is defined by taking the volume form ofCμν and
raising indices with ðC−1Þμν (the inverse of Cμν). Hence
(57) implies

Cμ1μ2μ3ν1ν2ν3 ¼ C
g

�
−
1

2
ϵμ1μ2μ3ρC ϵν1ν2ν3σC Cρσ

�
ð63Þ

Now note that the expression in parentheses can be
obtained from the expression (60) for Cμ1μ2μ3ν1ν2ν3 arising
from the Einstein-Hilbert Lagrangian simply by making the
substitution gμν → Cμν (and so gμν → ðC−1Þμν). Hence by
making this substitution in the Einstein-Hilbert result (47)

2Note that Chern-Simons terms such as
R
A ∧ F (for d ¼ 3) orR

A ∧ F ∧ F (for d ¼ 5) are invariant under gauge transforma-
tions of compact support so our analysis applies to theories
containing such terms.
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(or by explicit computation) we obtain the following result
for a general theory:

CμαCνβP
αβρσ
gg ðξÞtρσ

¼ C
g

�
−
1

2
ðC−1Þρσξρξσ t̃μν þ ξðμ t̃νÞρðC−1Þρσξσ

−
1

2
Cμνt̃ρσðC−1ÞραðC−1Þσβξαξβ

�
ð64Þ

where

t̃μν ¼ tμν −
1

2
CμνðC−1Þρσtρσ ð65Þ

I. Three dimensions

A similar simplification occurs for d ¼ 3. In this case,
the symmetries of Cμ1μ2μ3ν1ν2ν3 imply that we can define a
scalar C by

Cμ1μ2μ3ν1ν2ν3 ¼ −
C
2
ϵμ1μ2μ3ϵν1ν2ν3 ð66Þ

hence

Cμρα
νσβ ¼ C

2
δνσβμρα ð67Þ

so comparing with (50), we see that the Einstein-Hilbert
action gives C ¼ 1 and, for a general theory, Pμνρσαβ

gg can be
obtained from the corresponding expression for the
Einstein-Hilbert action simply by multiplying by C. In
general, the scalar C depends on the background fields and
their first and second derivatives.

J. Five dimensions

For d ¼ 5 the symmetries (27) imply that we can write

Cμ1μ2μ3ν1ν2ν3 ¼ 1

4
ϵμ1μ2μ3α1α2ϵν1ν2ν3β1β2Nα1α2β1β2 ð68Þ

where Nμνρσ ¼ N½μν�ρσ ¼ Nμν½ρσ� and Nμνρσ ¼ Nρσμν. The
symmetries (28) reduce to Nμ½νρσ� ¼ 0 so Nμνρσ has the
symmetries of a metric-derived Riemann tensor. (For a
Lovelock theory, the contribution of the p ¼ 2 term in (51)
to Nμνρσ is proportional to Rμνρσ.)

III. CHARACTERISTICS

A. Definition of physical characteristics

The usual definition states that a (real) covector ξμ is
characteristic iff there exists a nonzero vector T ≡ ðtμν; tIÞ
such that PðξÞT ¼ 0, i.e.,

Pμνρσ
gg ðξÞtρσ þ PIμν

mg ðξÞtI ¼ 0 ð69aÞ

and

PIμν
mg ðξÞtμν þ PIJ

mmðξÞtJ ¼ 0 ð69bÞ

where we have made use of the symmetry of PðξÞ.
However, this definition is not appropriate in theories with
a gauge symmetry such as the theories we are studying. The
reason is that (23) implies that, for any ξμ, taking tμν ¼
ξðμXνÞ and tI ¼ 0 gives (for any Xμ) a solution of the above
equations. This is a consequence of the diffeomorphism
invariance of the theory: such tμν corresponds to a “high
frequency gauge transformation.” We can deal with this by
following the approach of [9] and working with gauge
equivalence classes. So define an equivalence relation
t0μν ∼ tμν if t0μν ¼ tμν þ ξðμXνÞ for some Xμ. The equations
above depend only on the equivalence class ½tμν� to which
tμν belongs. Hence we can regard PðξÞ as acting on vectors
of the form ð½tμν�; tIÞ. We say that a real, nonzero, covector
ξμ is characteristic iff there exists nonzero ð½tμν�; tIÞ
satisfying the above equations.
If the “matter” is a Maxwell field (tI → tμ) then there is

an additional gauge symmetry arising from electromagnetic
gauge transformations. In this case we define t0μ ∼ tμ þ cξμ
for any constant c, and regard PðξÞ as acting on vectors
of the form ð½tμν�; ½tμ�Þ. So real, nonzero ξμ is characteristic
if there exists nonzero ð½tμν�; ½tμ�Þ satisfying the above
equations.
We will focus on d ¼ 4 “weakly coupled” theories. By

this, we mean that the fields are such that Pgg, Pmg and Pmm

are small deformations of the corresponding results for a
“conventional” theory of Einstein gravity minimally
coupled to matter. In particular, Pmg is small since it
vanishes for a conventional theory. Furthermore, Cμν is
close to gμν so Cμν is invertible and has the same signature
as gμν.

B. Characteristics in four dimensions

For d ¼ 4 recall that we defined Cμν in (57). As in
Sec. II H we assume that Cμν is nondegenerate, with the
same (Lorentzian) signature as gμν, as will be the case for a
weakly coupled theory. The analysis can be split into
two cases.
Case 1 is defined by ðC−1Þμνξμξν ≠ 0. The coefficient of

t̃μν in (64) is nonzero. Hence, when this is substituted into
(69a), the tensorial structure of this equation implies that t̃μν
must take the form

t̃μν ¼ ξðμXνÞ þ αCμν þ βCμρCνσP
Iρσ
mg ðξÞtI ð70Þ

for some covector Xμ and scalars α, β. Substituting back
into (69a), one can solve to determine α, β [using (23)]. One
can then invert the relation between t̃μν and tμν with the
result
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tμν ¼ ξðμXνÞ þ
g
C
½ðC−1Þαβξαξβ�−1ð2CμρCνσ − CμνCρσÞ

× PIρσ
mg ðξÞtI ð71Þ

The first term of (71) is “pure gauge.” Thus, in this case,
the “gravitational” components ½tμν� of the polarization
vector are fully determined by the “matter” components tI .
Substituting the above expression into (69b) and rearrang-
ing gives

QIJðξÞtJ ¼ 0 ð72Þ
where

QIJðξÞ≡ C
g
ðC−1ÞμνξμξνPIJ

mmðξÞ

þ ð2CμρCνσ − CμνCρσÞPIμν
mg ðξÞPJρσ

mg ðξÞ ð73Þ

This is a N × N symmetric matrix whose elements are
homogeneous quartic polynomials in ξμ. Note that an
alternative expression for C=g is given in (61).
We can rewrite this matrix in a form that will prove

useful later. Equation (24) relates Pmg to the tensor CIμνρσ

with Riemann symmetries. Let us now decompose this
tensor into its “Weyl” and “Ricci” parts, defined with
respect to the metric Cμν:

WIμνρσ ≡ CIμνρσ − ðC−1Þμ½ρDjIjσ�ν þ ðC−1Þν½ρDjIjσ�μ

þ 1

3
DIðC−1Þμ½ρðC−1Þσ�ν ð74Þ

where

DIμν ≡ CρσCIμρνσ DI ≡ CμνDIμν ð75Þ

By definition, WIμνρσ has the same symmetries as CIμνρσ

and is traceless in the sense that contracting any pair of
indices with Cμν gives a vanishing result. Writing CIμνρσ in
terms of its Weyl and Ricci parts gives

QIJðξÞ ¼ −ðC−1ÞμνξμξνFIJαβξαξβ

þ 2CμαCνβWIμρνσξρξσWJαγβδξγξδ ð76Þ

where FIJαβ ≡ FIJðαβÞ ≡ FðIJÞαβ is defined by

FIJγδξγξδ ¼ −
C
g
PIJγδ
mm ξγξδ − 2CαμCβνDðIjμνjWJÞαγβδξγξδ

−
1

3
DðIDJÞγδξγξδ þ CαβDIαγξγDJβδξδ

− ðC−1Þγδξγξδ
�
1

2
CμαCνβDIμνDJαβ −

1

6
DIDJ

�

ð77Þ

Let us first discuss the case where the ϕI are real scalar
fields. For (72) to admit a nontrivial solution we need
QðξÞ ¼ 0 where

QðξÞ≡ detQIJðξÞ ð78Þ

is a homogeneous polynomial in ξμ of degree 4N (where N
is the number of scalar fields). Fix some basis ff0; fiði ¼
1; 2; 3Þg for the cotangent space and write ξ ¼ ξ0f0 þ ξifi.
If we fix (real) ξi then QðξÞ ¼ 0 is a polynomial equation
for ξ0 of degree 4N, so there are at most 4N real roots.
Associated with each such root is a polarization tI which
uniquely determines ½tμν� via (71). Hence, for a given
direction ξi we obtain at most 4N distinct characteristics
ðξμ; ½tμν�; tIÞ. However, our system has N þ 2 degrees of
freedom (N scalar and 2 graviton) so, as long as the
equations are hyperbolic in character (and the basis is
chosen appropriately), there should be 2N þ 4 physical
characteristics: for each degree of freedom there should be
“future” and “past” directed characteristics with the pre-
scribed ξi. If N > 2 then 4N > 2N þ 4, which implies that
some of the roots ξ0 ofQðξÞmust be complex (or repeated).
On the other hand, if N ¼ 1 then 4N < 2N þ 4 so the
(quartic) polynomial QðξÞ cannot describe all physical
characteristics—the “missing” characteristics correspond
to case 2 below.
Now we discuss briefly the case where the “matter” is a

Maxwell field, i.e., we take ϕI ¼ Aμ. We now have a gauge
freedom so tμ ∝ ξμ is a “pure gauge” solution of (72), i.e.,
for any ξμ we have QμνðξÞξν ¼ 0, so QμνðξÞ has rank at
most 3. To identify the physical characteristics we require
that Qμν has rank strictly less than 3, which is equivalent to
the vanishing of the subdeterminant

Δμν ¼ ϵμρ1ρ2ρ3ϵνσ1σ2σ3Q
ρ1σ1ðξÞQρ2σ2ðξÞQρ3σ3ðξÞ ð79Þ

This is a homogeneous polynomial of degree 12. Using
ξνQμνðξÞ ¼ 0 one can show (compare [17])

Δμν ¼ ξμξνΔðξÞ ð80Þ

where ΔðξÞ is a homogeneous polynomial of degree 10. So
characteristics must satisfy ΔðξÞ ¼ 0. Fixing ξi as above,
this equation admits 10 roots for ξ0. However there are only
4 physical degrees of freedom (2 graviton and 2 photon), so
2 roots of Δ must be complex (or repeated).
Case 2. This is defined by ξμ being null with respect

to Cμν:

ðC−1Þμνξμξν ¼ 0 ð81Þ

Introduce a null (with respect to Cμν) tetrad such that
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ξμ ¼ δ0μ C00 ¼ C11 ¼ C0î ¼ C1î ¼ 0

C01 ¼ −1 Cî ĵ ¼ δî ĵ ð82Þ

where indices î; ĵ take values 2,3. In such a basis, the “pure
gauge” components of tμν are t0μ. We need to solve (69a)
and (69b). Using (64), (69a) reduces to

C
2g

tî î þ PI11
mg ðξÞtI ¼ 0

C
2g

t1î þ PI1î
mgðξÞtI ¼ 0

C
g
t11 þ PIî î

mgðξÞtI ¼ 0 ð83Þ

�
PIî ĵ
mgðξÞ − 1

2
δî ĵP

Ik̂ k̂
mg ðξÞ

�
tI ¼ 0 ð84Þ

Equations (83) fix the (gauge-invariant) “longitudinal part”
of tμν in terms of tI , i.e., they fix ðC−1Þμνξμt̃νρ where t̃μν is
given by (65). The traceless part of tî ĵ is not restricted by
the above equations: this part has two independent com-
ponents, corresponding to the 2 graviton polarizations.
Equation (84) can be simplified by using (24) and

writing CIμνρσ in terms of its Weyl and Ricci parts defined
in (74) and (75). The result is

WIî0ĵ0tI ¼ 0 ð85Þ

This equation has a simple geometrical interpretation: it
states that ξμ is a principal null direction (PND) of the
tensor WIμνρσtI. Note that this tensor has Weyl symmetries
(with respect to the metricCμν). So we have shown that (84)
is equivalent to

ξμ is a PNDofWIμνρσtI ð86Þ

A nonzero Weyl tensor admits exactly 4 (possibly degen-
erate) principal null directions (up to scaling ξμ ∼ λξμ).
Given ξμ, the above equation constrains tI such that ξμ is
a PND.
View the lhs of (85) as a linear map from the N

dimensional space of vectors tI to the 2d space of 2 × 2
traceless symmetric matrices. Let r ∈ f0; 1; 2g be the rank
of this map. Then there is a N − r dimensional space of
vectors tI satisfying (85). Hence there is a N − rþ 2
dimensional space of vectors ð½tμν�; tIÞ satisfying (69).
Note that the N ¼ 1 case is special because r ≤ N so
r ¼ 2 cannot occur for N ¼ 1.
We now substitute these results into (69b). The result is

an equation of the form MIJtJ ¼ … where the rhs depends
(linearly) only on the traceless part of tî ĵ. This is a linear
equation constraining tI and the traceless part of tî ĵ. Let
s ≤ N be the rank of this system. Then this equation
imposes s conditions on tJ and the traceless part of tî ĵ.

Hence the space of solutions to (69a) and (69b) has
dimension at least N − rþ 2 − s ¼ ðN − sÞ þ ð2 − rÞ.
Consider the case in which the matter is a set of N scalar

fields. For N ¼ 1 (i.e., a Horndeski theory) we have r ≤ 1
hence ðN − sÞ þ ð2 − rÞ ≥ 1 so there always exists a
nontrivial solution to (69a) and (69b). However, if N ≥
2 then “generically” (i.e., for a generic field configuration
of a generic theory) we might expect s ¼ N and r ¼ 2,
suggesting that there are no solutions to (69a) and (69b),
i.e., that case 2 does not arise. However, there are certainly
nongeneric theories for which case 2 does arise (e.g.,
Einstein gravity minimally coupled to N scalar fields
has r ¼ s ¼ 0).
In the case where the matter is a Maxwell field (indices

I; J → μ; ν) we have a 4 − r dimensional set of vectors tμ
allowed by (69), but one of these is pure gauge (propor-
tional to ξμ), leaving 3 − r physical photon polarizations
½tμ�, plus the 2 physical graviton polarizations, for a total of
5 − r physical polarizations ð½tμν�; ½tμ�Þ satisfying (69a).
The symmetries of the principal symbol following from
invariance under Maxwell gauge transformations imply
that MμνðξÞξν ¼ 0 so MμνðξÞ has nontrivial kernel and
therefore s ≤ 3. Equations (69a) and (69b) have a space of
solutions ð½tμν�; ½tμ�Þ of dimension at least 5 − r − s. For
example, conventional Einstein-Maxwell theory has r ¼ 0,
s ¼ 1. However, for a generic background of a generic
theory we might expect r ¼ 2 and s ¼ 3 and so case 2 may
not arise.

IV. HORNDESKI THEORIES

A. Effective field theory

Consider Einstein gravity minimally coupled to a scalar
field. The Lagrangian is

L ¼ Rþ X − VðΦÞ ð87Þ

where VðΦÞ is an arbitrary potential and

X ¼ −
1

2
ð∇ΦÞ2 ð88Þ

The Lagrangian contains terms with up to 2 derivatives of
the fields. In EFT we add to this Lagrangian all possible
higher-derivative scalars constructed from the fields. One
can use field redefinitions to simplify the higher derivative
terms. In particular, for a parity-symmetric theory, one can
arrange that, after neglecting terms with 6 or more
derivatives, we have [3]

L ¼ Rþ X − VðΦÞ þ 1

2
αðΦÞX2 þ 1

4
βðΦÞLGB ð89Þ

where V, α, β are arbitrary functions and
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LGB ¼ 1

4
δμ1μ2μ3μ4ν1ν2ν3ν4 Rμ1μ2

ν1ν2Rμ3μ4
ν3ν4 ð90Þ

is the Euler density of the Gauss-Bonnet invariant [recall
(49)]. From an EFT perspective, there is no reason to prefer
LGB over, say, the square of the Weyl tensor. However, as
we emphasized in the introduction, the above theory is
preferred because it has second order equations of motion
and admits a well-posed initial value formulation, at
least when the theory is weakly coupled, i.e., when the
4-derivative contributions to the principal symbol are small
compared to the 2-derivative contribution [6,8].
The principal symbol of the above theory was calculated

in Ref. [18] for the case α ¼ 0. It is straightforward to
include α (which affects only Pmm). One can then read off
the effective metric defined in Sec. II H:

Cμν ¼ gμν − β0ðΦÞ∇μ∇νΦ − β00ðΦÞ∇μΦ∇νΦ ð91Þ

Turning to Pmg, recall that this is related to CIμνρσ by (24).
Since we have only a single scalar field we can drop indices
I; J;… from our equations so CIμνρσ → Cμνρσ. Using the
results of Ref. [18] we obtain:

Cμνρσ ¼ −β0ðΦÞR̃μνρσ ð92Þ

where R̃ is the dual Riemann tensor:

R̃μνρσ ¼
1

4
ϵμνα1α2ϵρσβ1β2R

α1α2β1β2 ð93Þ

Finally a straightforward calculation gives

Pμν
mm ¼ −ð1þ αðΦÞXÞgμν þ αðΦÞ∇μΦ∇νΦ ð94Þ

Now we can explain precisely what we mean by this theory
being weakly coupled. We require that there exists a basis
such that the contribution of the 4-derivative terms to the
principal symbol is small compared to the contribution of
the 2-derivative terms. In a basis that is orthonormal with
respect to gμν, the nonzero contributions of the 2-derivative
terms to (91) or (94) are �1. So we say that the theory is
weakly coupled if there exists an orthonormal basis such
that the components of all terms involving α, β in (91), (92)
and (94) are small compared to 1. In particular all
components of Cμνρσ must be small compared to 1.
More informally, in EFT, we expect α and β to be

proportional to l2 where l is a UV length scale. If the
metric and scalar field vary over some length scale L then
the theory will be weakly coupled provided L=l ≫ 1. Note
that the theory might be weakly coupled in some region of
spacetime but strongly coupled in some other region.

B. General Horndeski theories

The Lagrangian of a Horndeski theory takes the form
L ¼ P

5
k¼2 Lk where

L2 ¼ G2ðΦ; XÞ L3 ¼ G3ðΦ; XÞ□Φ

L4 ¼ G4ðΦ; XÞRþ ∂XG4ðΦ; XÞδμρνσ∇μ∇νΦ∇ρ∇σΦ

L5 ¼ G5ðΦ; XÞGμν∇μ∇νΦ

−
1

6
∂XG5ðΦ; XÞδμρανσβ∇μ∇νΦ∇ρ∇σΦ∇α∇βΦ ð95Þ

with X defined in (88). The functions Gk are arbitrary
functions of Φ and X.
The principal symbol of a Horndeski theory is given in

Appendix B of [18] (where our Pgg is denoted δP̃gg etc.)
From this we can read off the effective metric defined in
section II H3:

Cμν ¼ ðG4 − 2X∂XG4 þ X∂ΦG5Þgμν
− ð∂XG4 − ∂ΦG5Þ∇μΦ∇νΦþ X∂XG5∇μ∇νΦ ð96Þ

Expressions for Pμν
mgðξÞ and PmmðξÞ can also be read off

from Appendix B of [18]. They are lengthy so we will not
repeat them here.
There is some degeneracy between the coefficients Gk.

Furthermore, field redefinitions (e.g., a conformal trans-
formation gμν → ΩðΦÞ2gμν) can be used to adjust these
coefficients. We will assume that these coefficients are
smooth functions and eliminate (most of) the degeneracy by
imposing ð∂XG2ÞðΦ; 0Þ ¼ G4ðΦ; 0Þ ¼ 1 and G3ðΦ; 0Þ ¼ 0,
which corresponds to the 2-derivative terms in the action
taking the form (87). We say that the theory is weakly
coupled if there exists an orthonormal basis for which the
components of the principal symbol are close to those of a
2-derivative theory of the form (87). This will be true if the
background fields are slowly varying compared to any
length scale l defined by the functions Gk. More precise
conditions are given in [20].4

C. Characteristics

Let us summarize the results of our analysis of the
characteristics in Sec. III B. There are two cases. In case 1,
ðC−1Þμνξμξν ≠ 0 and ξμ must satisfy QðξÞ ¼ 0 where

QðξÞ ¼ −ðC−1ÞμνξμξνFαβξαξβ

þ 2CμαCνβWμρνσξρξσWαγβδξγξδ ð97Þ

with (symmetric) Fαβ defined by

3For the special case ∂XG4¼constant, G5 ¼ 0, our Cμν reduces
to the effective metric defined in [19].

4Note that [20] uses slightly different definitions of G2 and G4.
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Fγδξγξδ ¼ −
C
g
Pγδ
mmξγξδ − 2CαμCβνDμνWαγβδξγξδ

−
1

3
DDγδξγξδ þ CαβDαγξγDβδξδ

− ðC−1Þγδξγξδ
�
1

2
CμαCνβDμνDαβ −

1

6
D2

�
ð98Þ

To recap on the notation: Wμνρσ, Dμν and D are the “Weyl
tensor”, “Ricci tensor” and “Ricci scalar” formed from
Cμνρσ using the metric Cμν.
QðξÞ is a homogeneous quartic polynomial in ξμ. To

write down the polarization vector ð½tμν�; tÞ it is convenient
to define ψ by t ¼ ðC=gÞðC−1Þαβξαξβψ. From (71) and (24)
we have

tμν ¼ 2

�
CμρCνσ −

1

2
CμνCρσ

�
Cρασβξαξβψ

t ¼ C
g
ðC−1Þαβξαξβψ ð99Þ

where tμν is defined only up to addition of a pure
gauge term.
In case 2, ξμ must satisfy ðC−1Þμνξμξν ¼ 0 and we need

to solve (83) and (85) (with tI → t) and then substitute the
results into (69b). We can solve Eq. (85) by setting t ¼ 0.
Equations (83) then assert that the longitudinal components
of tμν vanish, i.e., ðC−1Þμνξμt̃νρ ¼ 0. This means that the
graviton polarization is “transverse”, where the notion of
tranversality is defined with respect to Cμν rather than gμν.
The nonzero components of ½tμν� are the two components of
the traceless matrix tî ĵ [in the basis of (82)]. Equation (69b)
reduces to

Wî0ĵ0tî ĵ ¼ 0 ð100Þ

which is at most one condition on these two components,
leaving at least a single graviton polarization. So case 2
always admits a solution with a “purely gravitational”
(t ¼ 0) polarization that is transverse (with respect to Cμν).
In special cases, there may be additional polarizations in

case 2. For this to happen either (100) becomes trivial or
there exists a solution of (85) with t ≠ 0. Either of these
possibilities is equivalent to the vanishing of Wî0ĵ0, i.e., to
ξμ being a PND ofWμνρσ. When this happens, (83) specifies
the longitudinal components of tμν in terms of t.
Substituting this into (69b), the traceless part of tî ĵ drops
out (because it appears in the combination (100), which is
trivial) and so all nonzero terms in (69b) are proportional to
t. Thus this equation reduces to an expression of the form
SðξÞt ¼ 0. An expression for S will be derived below
[Eq. (105)]. Generically we expect SðξÞ ≠ 0 and so t ¼ 0.
Hence the analysis is the same as before except now there
exists a 2-dimensional space of solutions of (100). So if ξμ

is a PND then there are two transverse “purely gravitatonal”
polarizations. If SðξÞ ¼ 0 then there exists a third inde-
pendent polarization ð½tμν�; tÞwhere t ≠ 0 and ½tμν� is purely
longitudinal.
We can relate this to the quartic polynomialQðξÞ of (97).

Since ðC−1Þμνξμξν ¼ 0, the first term inQ vanishes, and the
second term is

2CμαCνβWμρνσξρξσWαγβδξγξδ ¼ 2Wî0ĵ0Wî0ĵ0 ð101Þ

The rhs vanishes iff ξμ is a PND. Hence, a covector ξμ null
with respect to ðC−1Þμν satisfiesQðξÞ ¼ 0 iff ξμ is a PND of
Wμνρσ. So in case 2, ξμ will give rise to more than 1
independent polarization iff it also satisfies the quartic
equation of case 1.
A nonzero Weyl tensor admits 4 (possibly coincident)

PNDs (up to scaling ξμ ∼ λξμ). It follows that if Wμνρσ ≠ 0
then there exist exactly 4 (possibly degenerate) directions
ξμ satisfying both ðC−1Þμνξμξν ¼ 0 andQðξÞ ¼ 0. For these
special directions there is a 2d space of purely gravitational
polarizations. If Wμνρσ ¼ 0 then all directions satisfying
ðC−1Þμνξμξν ¼ 0 will also satisfy QðξÞ ¼ 0 and for all
such ξμ there exists a 2d space of purely gravitational
polarizations.

D. The characteristic cone and slowness surface

From the above analysis, it follows that a nonzero real
covector ξμ is characteristic iff either QðξÞ ¼ 0 or
ðC−1Þμνξμξν ¼ 0. Thus we can write the condition for ξμ
to be characteristic as pðξÞ ¼ 0 where p is defined in
equation (4). Clearly pðξÞ is a homogeneous polynomial of
degree 6 which factorizes into a product of a quadratic and
quartic polynomial. Note that degree 6 is the minimum
degree required to describe a second order system with
three degrees of freedom.
Fix a point in spacetime. We define the characteristic

cone in the cotangent space at that point as the set of
characteristic covectors ξμ, i.e., the set of (real) solutions of
pðξÞ ¼ 0. Clearly this cone is the union of the quadratic
cone ðC−1Þμνξμξν ¼ 0 and the quartic cone QðξÞ ¼ 0.
Recall that weak coupling ensures that Cμν has the same
signature as gμν. Thus the quadratic cone is simply the null
cone of the Lorentzian (inverse) metric ðC−1Þμν.
To understand the nature of the quartic cone, consider

first the case of the 2-derivative theory (87), for which
Cμν ¼ gμν, Cμνρσ ¼ 0 and PmmðξÞ ¼ −gμνξμξν. Hence for
this theory we have

QðξÞ ¼ −ðgμνξμξνÞ2
pðξÞ ¼ −ðgμνξμξνÞ3 2 derivative theory ð102Þ

So in this case the quartic cone, and the full characteristic
cone, degenerate to the null cone of the metric. Hence, in
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this 2-derivative theory, a hypersuface is characteristic iff it
is null, so causality is determined by the null cone of the
physical metric.
There is a more complicated class of theories for which

QðξÞ factorizes into a product of quadratic polynomials.
This is the class of theories for which Wμνρσ vanishes for
any background solution. We will refer to such a theory as a
factorized theory. For such a theory we have

QðξÞ¼−ðC−1ÞμνξμξνFρσξρξσ

pðξÞ¼−½ðC−1Þμνξμξν�2Fρσξρξσ factorized theory ð103Þ

In this case, the quartic cone (and also the full characteristic
cone) is the union of two quadratic cones, i.e., the
null cones of ðC−1Þμν and Fμν. Hence for this class of
theories the quadratic cone is a subset of the quartic cone.
An example of a factorized theory is (89) with constant β
(which implies that the final term in (89) is topological).
From (92) we see that this theory has Cμνρσ ¼ 0, and
hence Wμνρσ ¼ 0, for any background solution. Another
example is a Horndeski theory with G4 ¼ 1, G5 ¼ 0. In this
case, Fμν coincides with the “effective” metric discussed
previously in [21]. In both of these examples we have
Cμν ¼ gμν.

5

A nonfactorized theory has Wμνρσ ≠ 0 in a generic
background solution. However, for such a theory, there
are nongeneric background solutions for which Wμνρσ ¼ 0
and hence QðξÞ factorizes as above in such special
backgrounds. For example, this occurs when the back-
ground solution is a cosmological solution with FLRW
symmetry. This symmetry implies that Wμνρσ and Cμν have
FLRW symmetry. Tracelessness of Wμνρσ then implies
Wμνρσ ¼ 0. So in a FLRW background, we have QðξÞ ¼
−ðC−1ÞμνξμξνFαβξαξβ i.e., the quartic cone is the union of
the null cones of ðC−1Þμν and Fμν. Hence this is another
case for which the quadratic cone is a subset of the quartic
cone. A covector is characteristic iff it is null with respect to
either ðC−1Þμν or Fμν. In cosmological terminology, the
former case describes (purely gravitational) tensor modes
and the latter case describes the scalar mode. Our two
effective metrics determine the 2-derivative terms in the
equations for tensor and scalar perturbations derived
in [22].
Now we consider a general theory and a general back-

ground solution for which the theory is weakly coupled, at
least in some region. We will show that the quartic cone has
two sheets, and that the quadratic cone lies between (or on)
these sheets.

At weak coupling, we can pick a basis so that the
components of Cμν are close to those of gμν. Choose such a
basis ff0; fig (i ¼ 1, 2, 3) for the cotangent space, which is
orthonormal with respect to ðC−1Þμν, i.e., ðC−1Þμν ¼
diagð−1; 1; 1; 1Þ and hence gμν ≈ diagð−1; 1; 1; 1Þ. Given
a time-orientation, we choose f0 so that the corresponding
dual basis vector is future-directed. In such a basis, fix the
spatial components ξi of ξμ and regard QðξÞ ¼ 0 as a
quartic equation to determine ξ0 in terms of ξi (which is
assumed nonzero). In the 2-derivative theory, the roots of
this quartic are the roots of gμνξμξν ¼ 0, which we write as
ξ�0 ≈∓ ffiffiffiffiffiffiffi

ξiξi
p

. These two roots correspond to the two
components of the null cone of gμν and each root has
degeneracy 2. Weak coupling implies that, in our basis,
the coefficients of the polynomial QðξÞ are small defor-
mations of the coefficients in (102). Since the roots
of a polynomial depend continuously on these coefficients,
it follows that the 4 roots ξ0 of the quartic can be
divided into 2 pairs according to whether they are defor-
mations of ξþ0 or of ξ−0 . The polynomial has real coefficients
so each pair is either real, or is a pair of complex
conjugate roots.
The case of complex conjugate roots can be excluded as

follows. Notice that, for the 2-derivative theory, QðξÞ is
negative everywhere except on the null cone of gμν. So,
viewed as a function of ξ0, QðξÞ is negative everywhere
except at ξ0 ¼ ξ�0 where it vanishes. Hence when we
deform to a weakly coupled theory, QðξÞ will be negative
everywhere except possibly near ξ�0 . Now evaluateQðξÞ on
the null cone of ðC−1Þμν, i.e., for ξ0 ¼ ∓ ffiffiffiffiffiffiffi

ξiξi
p

. The first
term of QðξÞ vanishes. From (101) we see that the final
term in QðξÞ is non-negative. Hence QðξÞ ≥ 0 for
ξ0 ¼ ∓ ffiffiffiffiffiffiffi

ξiξi
p

. It follows that QðξÞ must have a pair of
(possibly degenerate) real roots near each of ξ0 ¼ ∓ ffiffiffiffiffiffiffi

ξiξi
p

,
which excludes the possibility of complex roots. We label
these roots as ξ�in and ξ

�
out where jξ�outj ≤

ffiffiffiffiffiffiffi
ξiξi

p
≤ jξ�inj. Note

that the roots ξ�out and ξ�in are homogeneous in ξi, with
degree 1.
We now see that the quartic cone is the union of two

cones: an “inner” cone ξ0 ¼ ξ�in, lying inside (or on) the null
cone of ðC−1Þμν (given by ξ0 ¼ ∓ ffiffiffiffiffiffiffi

ξiξi
p

) and an “outer”
cone ξ0 ¼ ξ�out lying outside (or on) the null cone of
ðC−1Þμν. (In both cases these are double cones, with the
� superscript distinguishing the two components of the
double cone.) Inside the inner cone and outside the outer
cone we have QðξÞ < 0 and between the inner and outer
cones we have QðξÞ ≥ 0.
This establishes that, for a weakly coupled theory, the

characteristic cone is the union of three (double) cones: the
quadratic cone and the “inner” and “outer” cones just
discussed. For given ξi, the three cones are associated with
three different physical polarizations. In geometric optics,
the speed of propagation of these polarizations is deter-
mined by these three cones. From the previous section we

5The expressions in Appendix B of [18] suggest that the
conditions for a Horndeski theory to be a factorized theory are
∂XG5 ¼ ∂XG4 − ∂ΦG5 ¼ 0. Under these conditions, (96) implies
that Cμν is conformal to gμν and so the quadratic cone is the same
as the null cone of gμν.
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know that the quadratic cone is associated with a purely
gravitational polarization whereas, generically, the inner
and outer cones correspond to mixtures of scalar field and
gravitational polarizations. For a weakly coupled theory, all
three cones are close to the null cone of gμν.
Fix a point q in spacetime. We define the Gårding cone

Γ�
q as the connected component of fξμ∶pðξÞ ≠ 0g that

contains ∓f0 (weak coupling implies pðf0Þ ≠ 0). Γ�
q are

the two open regions contained inside the inner sheet of the
quartic cone. The results established above imply that pðξÞ
is a hyperbolic polynomial6 with respect to f0, which
implies that Γ�

q are convex sets [23]. In the 2-derivative
theory (87), the Gårding double cone Γþ

q ∪ Γ−
q is the set of

covectors that are timelike with respect to gμν. In general, it
is the set of covectors that are “timelike” with respect to the
causal structure defined by the equations of motion. In
future we will sometimes suppress the dependence on q and
write Γ� instead of Γ�

q .
As an example of the importance of the Gårding cone,

consider the initial value problem, with initial data speci-
fied on a hypersurface Σ. Then the initial value problem is
well-posed in the formulation of [6,8] if the initial data is
chosen so that the theory is weakly coupled on Σ, and
Σ is “spacelike” in the sense that its normal covector nμ
belongs to the Gårding cone.
To visualize the characteristic cone, it is convenient to fix

the scaling freedom ξμ ∼ λξμ by setting ξ0 ¼ −1. This
corresponds to taking the intersection of the characteristic
cone with the plane ξ0 ¼ −1. This defines the slowness
surface, a surface in R3 with coordinates ξi. This name
comes from the literature on elastic waves, see e.g., [11]. In
a homogeneous elastic solid one can consider plane waves
proportional to expðiξμxμÞ with ξμ ¼ ð−ω; ξiÞ and define
the phase velocity vp ¼ jωj= ffiffiffiffiffiffiffi

ξiξi
p

. Taking ω ¼ 1 we then
have

ffiffiffiffiffiffiffi
ξiξi

p ¼ 1=vp so the distance from the origin to a
point on the slowness surface is the reciprocal of the phase
velocity. Thus the inner sheet of the slowness surface
corresponds to the “fastest” degree of freedom. In our case,
the slowness surface is the union of a two-sheeted quartic
surface and a quadratic surface (in the above basis, a unit
sphere), with the quadratic surface lying between (or on)
the sheets of the quartic surface. The Gårding cone
corresponds to the region inside the inner sheet of the
quartic surface.
We will need to determine whether the characteristic

cone (or slowness surface) admits singular points. Consider
an algebraic surface defined by a polynomial equation
fðx; y; z;…Þ ¼ 0. A singular point is a point on the surface
at which the gradient of f vanishes. At a singular point,
vanishing of the gradient of f implies that it might not be

possible to draw a tangent plane at that point. Instead one
can draw a tangent cone defined by the vanishing of the first
not-identically-zero term in the Taylor expansion of f about
the singular point.
In our case, if ξμ is a nonzero singular point of the

characteristic cone then any multiple of ξμ is also a singular
point, so such points fill out straight lines on the cone. In
other words, it is only the direction of ξμ that is important so
we will sometimes refer to such ξμ as a singular direction.
Singular directions of the characteristic cone are in 1-1
correspondence with singular points of the slowness sur-
face. We will now argue that ξμ is a singular direction iff it
lies on both the quadratic and quartic cones, i.e., the
singular directions are straight lines where the quadratic
cone touches the quartic cone. Correspondingly, singular
points of the slowness surface are points at which the
quadratic surface touches the quartic surface.
To see this, using (4) one finds that ∂p=∂ξμ vanishes iff

either (a) both ðC−1Þμνξμξν and QðξÞ vanish, i.e., ξμ lies on
both the quadratic and quartic cones, or (b) ∂Q=∂ξμ ¼ 0

(which implies Q ¼ 0), i.e., ξμ is a singular direction of the
quartic cone. In fact (b) is a special case of (a). To see this,
fix ξi and view Q as a quartic polynomial in ξ0 as above.
If the roots are nondegenerate then they are smooth
functions of the coefficients of the polynomial, and hence
depend smoothly on ξi. Writing Q in factorized form in
terms of these roots we see that ∂Q=∂ξ0 ≠ 0when the roots
are nondegenerate. Hence, at a singular point of Q, the
roots of the quartic must be degenerate. From the dis-
cussion above we saw that such degeneracy occurs only
when ξμ lies on both the quartic and quadratic cone. Hence
(b) is a special case of (a). So ξμ is a singular direction of the
characteristic cone iff it lies on both the quadratic and
quartic cones.
To summarize, a singular point on the slowness surface

corresponds to a singular direction of the characteristic
cone, along which the quadratic cone touches the quartic
cone. The condition for (nonzero) ξμ to be such a direction
is the vanishing of (101). A generic background solution of
a nonfactorized theory will have Wμνρσ ≠ 0 and then (101)
vanishes for between 1 and 4 (generically 4) distinct
directions, corresponding to the (possibly coincident)
principal null directions (PNDs) of Wμνρσ. This is shown
in the left plot of Fig. 1. On the other hand, for a factorized
theory (or a nongeneric background of a nonfactorized
theory) we have Wμνρσ ¼ 0 and then the quadratic surface
is a subset of the quartic surface (which sheet it coincides
with may be different on different parts of the surface), so
all points on the quadratic portion of the slowness surface
are singular points. In either case, the analysis of the
previous subsection shows that if ξμ is a singular direction
then there exists a 2d space of “purely gravitational”
polarizations that (in geometric optics) can propagate in
this direction.

6A homogeneous polynomial pðξÞ is said to be a hyperbolic
polynomial with respect to a covector nμ iff pðnÞ ≠ 0 and, for any
ξμ, the polynomial pðξ − λnÞ has only real roots λ.
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As an example, consider a spherically symmetric sol-
ution, i.e., both the metric and scalar field are spherically
symmetric. Then Wμνρσ will be spherically symmeric.
Assume a nonfactorized theory and that the background
hasWμνρσ ≠ 0 so there are 4 (possibly degenerate) PNDs. A
PND must be invariant under the spherical symmetry (as
otherwise there would be a continuous family of PNDs)
hence it must coincide with either the “ingoing” or “out-
going” radial null direction. Hence, from the result just
established, any singular direction must coincide with one
of these radial null directions. We can relate our discussion
to the study of linear perturbations of static, spherically
symmetric, solutions in [24,25]. These perturbations can be
classified by their parity. Odd parity perturbations are
purely gravitational and reduce to a single ODE [24], with
kinetic term determined by our effective metric Cμν. The
even parity perturbations of [25] correspond to our quartic
polynomial. Reference [25] observed that one of the two
“radial velocities” for even parity perturbations coincides
with the radial velocity of odd parity perturbations; this
corresponds to our observation that the radial direction is a
singular direction belonging to both the quadratic and
quartic cones.
In algebraic geometry, a double point is a singular point

for which the Hessian ∂2p=∂ξμ∂ξν is nonvanishing. A
triple point is a singular point for which this Hessian
vanishes. At a singular point, this Hessian is proportional to
ξρðC−1Þρðμ∂Q=∂ξνÞ so a triple point is a singular point at
which ∂Q=∂ξμ ¼ 0, i.e., it is a singular point of the quartic
cone.7 Using this terminology, we can classify a singular

direction of the characteristic cone as either a double
direction or a triple direction, and we will refer to the
corresponding points on the slowness surface as double
points and triple points. We saw above that if the roots of
the quartic are nondegenerate then ∂Q=∂ξμ ≠ 0. Hence, the
roots of the quartic must be degenerate if ξμ is a triple
direction, so the two sheets of the quartic cone coincide
along such a direction. Since the quadratic cone lies
between these sheets, it follows that all three sheets of
the cone meet along a triple direction so this is a direction
for which “all three polarizations propagate at the
same speed”.
A triple direction must satisfy the conditions for a

singular direction, i.e., ξμ must be a PND of Wμνρσ.
Evaluating ∂Q=∂ξμ in the null basis of (82) and imposing

the PND condition W0î0ĵ ¼ 0 gives

∂Q
∂ξμ ¼ −2ðC−1ÞμνξνF00 þ 8Wμ0ĵ0W10ĵ0 ¼ δμ1S ð104Þ

where

S≡ 2F00 þ 8W10ĵ0W10ĵ0 ð105Þ

Thus ξμ is a triple direction iff ξμ is a PND which also
satisfies S ¼ 0. Note that S is independent of how the null
basis vectors are chosen: F00 ¼ Fαβξαξβ and it can be
shown that the second term in S is invariant under a change
of basis when ξμ is a PND.
For a double direction, S ≠ 0 so ∂Q=∂ξμ ∝ δμ1 ¼

−ðC−1Þμνξν which shows that, along a double direction,
the quartic cone and the quadratic cone have the same
normal, i.e., they touch smoothly as shown in Fig. 1 (left

FIG. 1. Slowness surface whenWμνρσ ≠ 0. The figures show the intersection of the slowness surface (inR3 with coordinates ξi) with a
plane passing through the origin and two of the four points (the green dots) corresponding to principal null directions (PNDs). The
dashed black curve shows the sphere corresponding to the null cone of ðC−1Þμν. The solid blue curve corresponds to the quartic surface.
The left sketch shows the generic behavior, where the quartic surface is nonsingular and the PNDs correspond to double points where the
quadratic surface touches the quartic surface smoothly at the green points. The right sketch shows nongeneric behavior where one of the
PNDs corresponds to a triple point at which the quartic surface is singular. (The figures are exaggerated for clarity; for a weakly coupled
theory, all surfaces will be close to each other and to the ellipsoid corresponding to the null cone of the physical metric.)

7A triple point of the (degree 6) slowness surface is a double
point of the quartic surface but this is potentially confusing so we
will not use the latter terminology.
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plot). However, for a triple direction we have ∂Q=∂ξμ ¼ 0.
Generically this means that one cannot draw a tangent
plane to the slowness surface (or characteristic cone) at
such a point, as shown in the right plot of Fig. 1. Instead
one has a tangent cone at such a point. However, in special
cases this cone can degenerate to a plane, tangent to all
three sheets of the slowness surface, and so in such cases
one can draw a tangent. We will see below that this happens
at a Killing horizon.
If Wμνρσ ≠ 0 then, generically, there is no reason to

expect S ¼ 0 at one of the 4 PNDs. So, generically, the
PNDs correspond to double directions rather than triple
directions. In a generic spacetime, the condition that S ¼ 0
at one of the PNDs defines a (maybe disconnected)
hypersurface Σ in spacetime. At a point p ∉ Σ, the slow-
ness surface will have (generically) 4 double points.
However, for p ∈ Σ the slowness surface will have a triple
point as well as double points.
IfWμνρσ ¼ 0 (e.g., a factorized theory) then the condition

for a triple direction reduces to Fαβξαξβ ¼ 0, i.e., ξμ must
be null with respect to both ðC−1Þμν and Fμν. We have
already seen that when Wμνρσ ¼ 0, the quartic cone is the
union of the null cones of these two metrics. The slowness
surface is the union of the quadratic ellipsoids associated
with each of these cones. All points on the ellipsoid defined
by ðC−1Þμν are double points, and points that lie on both
ellipsoids are triple points. If the ellipsoids intersect trans-
versally then the lines of intersection are lines of triple
points on the slowness surface.

E. Characteristic surfaces

Consider linear perturbations around a background
solution. In the high frequency (geometric optics) limit,
a surface of constant phase is a characteristic surface. In the
2-derivative theory (87), a surface is characteristic iff it is
null. This corresponds to the fact that, in this theory, high
frequency disturbances propagate at the speed of light. For
a more general Horndeski theory, characteristic hyper-
surfaces are generically non-null and, at high frequency,
the 3 physical degrees of freedom propagate with different
speeds. For each speed, the above analysis above has
determined a corresponding “polarization eigenvector.”
Given a solution arising from initial data specified on

some surface Σ, if we disturb the data in a subregion Ω ⊂ Σ
then the resulting disturbance will propagate into spacetime
inside a region bounded by an “outgoing” characteristic
surface emanating from ∂Ω corresponding to the “fastest”
degree of freedom, i.e., a characteristic surface with normal
ξμ ∈ ∂Γþ. Conversely, the domain of dependence of Ω, the
region of spacetime where the solution is uniquely deter-
mined by initial data on Ω, will be the region inside the
future and past-directed ingoing fastest characteristic
hypersurfaces emanating from ∂Ω (see e.g., [26] for results
in this direction).

For the 2-derivative theory, a surfaces is characteristic iff
it is null, and such surfaces are generated by null geodesics.
In a more general theory, we have seen that ξμ is character-
istic if it is null with respect to Cμν hence a hypersurface
that is null with respect to Cμν is characteristic. Such
surfaces are generated by null geodesics of Cμν. A hyper-
surface is also characteristic if its normal ξμ lies on the
quartic cone. Such hypersurfaces are generated by bichar-
acteristic curves of the equation QðξÞ ¼ 0. These are
defined as follows [27]. A bicharacteristic curve is a pair8

ðxμðtÞ; ξνðtÞÞ satisfying Hamilton’s equations

_xμ ¼ ∂Q
∂ξμ

_ξμ ¼ −
∂Q
∂xμ ð106Þ

with initial condition ðxμð0Þ; ξνð0ÞÞ chosen to satisfy
Qðxμð0Þ; ξνð0ÞÞ ¼ 0. Hamilton’s equations then imply
QðxμðtÞ; ξνðtÞÞ ¼ 0, i.e., ξμðtÞ is everywhere characteristic.
One can also define bicharacteristic curves for the quadratic
cone by replacing Q with ðC−1Þμνξμξν. These curves are
simply the null geodesics of Cμν.
The tangent vector to a bicharacteristic curve is a

possible direction of propagation of a high frequency wave
packet. A characteristic covector ξμ can be regarded as
the wave vector of a high-frequency plane wave, with ξ0
fixed in terms of ξi by solving the quartic equation, as
discussed above. The group velocity can be defined as
cig ¼ −∂ξ0=∂ξi, viewed as a function of ξi. Consider the
tangent vector Xμ ≡ ∂Q=∂ξμ to a bicharacteristic curve
associated with the quartic cone. Differentiating QðξÞ ¼ 0

with respect to ξi gives −X0cig þ Xi ¼ 0. Hence a bichar-
acteristic curve travels at the group velocity. Generically,
for given ξi, we expect there to be three different group
velocities associated with the 3 degrees of freedom, i.e., the
three sheets of the characteristic cone.
We argued above that, for a generic background of a

nonfactorized theory, the two sheets of the quartic cone do
not meet except along triple directions which occur only on
some (possibly disconnected) hypersurface Σ in spacetime.
For points on Σ the slowness surface generically has an
isolated triple point. Away from Σ, the two sheets of the
quartic do not meet, so if ξμð0Þ ∈ ∂Γ� (the inner sheet)
then ξμðtÞ ∈ ∂Γ� as long as xμðtÞ does not intersect Σ.
Even when xμðtÞ does intersect Σ, the fact that the triple
points are isolated points on the 2-dimensional slowness
surface implies that a 2-parameter fine-tuning [of ξμð0Þ,
which fixes _xμð0Þ via the first equation of (106)] would be
required to hit a triple point. In other words, ξμð0Þ must
coincide with a particular point on the slowness surface in
order for the bicharacteristic curve to hit the triple point

8We sometimes will not distinguish between such a pair and its
projection xμðtÞ to spacetime e.g., in the statement that null
geodesics of Cμν are bicharacteristic curves.
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when it reaches Σ. Thus, for a generic solution of a
nonfactorized theory, a bicharacteristic curve will not
encounter a triple point of the quartic surface unless its
initial direction is fine-tuned such that ξμð0Þ coincides with
certain isolated points on the slowness surface.
What happens to a bicharacteristic curves that does

reach a triple point of the slowness surface? There is
now the possibility of the curve “crossing” from the
inner sheet to the outer sheet of the quartic surface, in
which case it no longer corresponds to the fastest degree
of freedom. However, when this happens, there will
also be bicharacteristic curves which cross from the outer
sheet to the inner sheet, so one can extend the original
curve by gluing it to one of the latter curves. The resulting
curve will be nonsmooth at the point where the curves
are glued.

F. Causal cone in the tangent space

At any point p of spacetime we define the causal
cone C�p in the tangent space as the dual of the Gårding
cone Γ�

p :

C�p ¼ fXμ∶Xμξμ ≤ 0∀ ξμ ∈ Γ�
pg ð107Þ

The sets C�p are convex and closed. In the 2-derivative
theory (87), Cþp is the set of future-directed causal (or zero)
vectors and C−p is the set of past-directed causal (or zero)
vectors. In a more general theory, causal properties of the
theory are not determined by the null cone of the metric but
instead by the cones C�p . Hence C�p should be used to define
basic notions of causality.
The strongest justification for this statement comes from

results for linear hyperbolic (systems of) PDEs on Rd with
constant coefficients. For such equations one can define Γ�
in essentially the same way as we did above. With constant
coefficients, one can identify the tangent space with
spacetime in the same way that one does in special
relativity, i.e., a vector in the tangent space corresponds
to the position vector of a point in spacetime relative to
some origin. We can now regard Cþp (which, for constant
coefficients, does not depend on p) as a cone in spacetime.
It can be shown that this cone is the smallest closed
convex cone containing the support of the retarded Green
function with delta function source at the origin [23,28].
The significance of convexity is that if one can send a
signal from the origin to points Xμ and Yμ then one can also
send a signal to λXμ and ð1 − λÞYμ for λ ∈ ½0; 1�. Hence
one can first send a signal to the point with position vector
λXμ, and then from there one can send a signal to
λXμ þ ð1 − λÞYμ. So the region that one can send a signal
to must be convex.
Another example is given by Christodoulou’s notion of a

“regularly hyperbolic” PDE, which encompasses equations
with nonconstant coefficients, and nonlinear equations,

such as a perfect fluid, or an elastic solid [29].9 For this
class of equations, results analogous to (108) below imply
that causality is determined by the cones C�p .
We now consider the cones C�p for the theories discussed

above. Consider first the case for which triple directions are
absent, so the sheets of the quartic do not intersect each
other (except at the origin). We now review an argument
(see e.g., [29]) which relates ∂C�p (the boundary of C�p ) to
the set of tangent vectors to bicharacteristic curves. The set
∂Γ�

p is the innermost sheet of the quartic surface, which is
nonsingular in the absence of triple points (except at the
origin). Now any nonzero Xμ ∈ C�p defines a supporting
hyperplane in the cotangent space, i.e., a plane through the
origin Xμξμ ¼ 0 such that Γ�

p lies entirely on one side of
this plane. If one considers how this plane varies as Xμ

varies then it is clear that Xμ belongs to the boundary ∂C�p
when this plane is a tangent plane to ∂Γ�

p . But since ∂Γ�
p

corresponds to a sheet of the quartic cone, it has normal
∂Q=∂ξμ. Hence if Xμ ∈ ∂C�

p then Xμ ∝ ∂Q=∂ξμ evaluated
at some ξμ ∈ ∂Γ�

p . To fix the sign of the constant of
proportionality, consider ξμ ∈ ∂Γ�

p and pick δξμ such that
ξμ þ δξμ ∈ Γ�

p . We argued above that Q < 0 in Γ�
p

in a weakly coupled theory. Hence 0 > Qðξþ δξÞ ¼
δξμ∂Q=∂ξμ þ � � � so Xμ must be a positive multiple of
∂Q=∂ξμ. Since ∂Q=∂xμ is a homogeneous cubic expres-
sion in ξμ, the freedom to rescale Xμ by a positive constant
just corresponds to the freedom to rescale ξμ by a positive
constant, which is already present in the definition of ∂Γ�

p .
Hence we have shown that10

∂C�p ¼f∂Q=∂ξμ∶ξμ ∈ ∂Γ�
p g ðif notripledirectionÞ ð108Þ

However, from the previous section, a (nonzero) vector
belongs to the set on the rhs iff it is tangent to a bichar-
acteristic curve associated with the innermost sheet of the
quartic surface in the cotangent space. Since this innermost
sheet corresponds to the “fastest” degree of freedom, the
associated bicharacteristic curves are the “fastest” curves.
Thus the boundary of C�p consists of tangent vectors to the
fastest possible curves, which helps explain why C�p should
be used to define notions of causality.
The rhs of (108) involves only the inner sheet of the

quartic cone. The wave cone is the analogous set defined
using all three sheets of the characteristic cone:

Wp ¼ f∂Q=∂ξμ∶QðξÞ ¼ 0g ∪ fXμ∶CμνXμXν ¼ 0g ð109Þ

9This class of equations consists of theories admitting an action
principle and such that high-frequency linearized perturbationshave
positive energy density. Unfortunately this class does not include
gravitational theories, for which positivity of energy is more subtle.

10Note that we allow ξμ to vanish on the rhs to recover the zero
element of ∂C�p .
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This can be divided into “future” and “past” cones W�
p .

The wave cone also has 3 sheets (each a double cone), with
the cones ∂C�p corresponding to the outermost, i.e.,
“fastest” sheet.11 For PDEs with constant coefficients,
the sheets of the wave cone correspond to the singular
support of the Green function, i.e., to “sharp” signals (see
[11] for a clear discussion of this for the case of waves in an
elastic solid). The three sheets of the wave cone are
associated with the three different group velocities dis-
cussed above.
To arrive at the result (108) we assumed that there are no

triple directions. If there is a triple direction then the result
(108) might not be true. In this case C�p is the convex hull of
W�

p . The reason is that a triple point is a singular point of
the quartic surface and, generically, one does not expect
a tangent plane to exist at such a point. Instead there is a
family of supporting hyperplanes, corresponding to a
family of vectors Xμ. If the slowness surface has an isolated
triple point then this family of vectors fills out a planar
section of the convex hull, with normal ξμ (the triple
direction). Thus if ξμ is a triple direction then it is associated
with a continuous family of directions Xμ, rather than with
a unique direction as in (108).
As an example of this, consider a factorized theory. In

such casesQðξÞ factorizes into the product of two quadratic
polynomials and Wp is the union of the null cones of the
two effective metrics Cμν and ðF−1Þμν. If these null cones
are concentric then C�p is simply the causal cone of the
effective metric with the outermost null cone. However, if
the cones of the two effective metrics have a nontrivial
intersection then C�p is the convex hull of the union of these
two cones.
Now consider a nonfactorized theory, with a background

solution for whichWμνρσ ≠ 0, and assume that the slowness
surface has an isolated triple point. In this case, the quartic
has an isolated singular point. This is similar to what
happens for electromagnetism in an electrically anisotropic
medium: a “biaxial” crystal has a quartic slowness surface
with 4 singular points [10]. As mentioned above, the
singular points are associated with flat (planar) sections
of the convex hull ofW�

p , with a singular direction ξμ of the
quartic surface corresponding to a family of vectors Xμ

lying on such a planar section. In crystal optics, if one
considers plane waves with wave vector ξμ then the
associated Xμ corresponds to the direction of energy
transport, i.e., to the direction of a ray. This leads to the
phenomenon of conical refraction [10] in which a ray of
electromagnetic waves with wave vector ξi corresponding
to a singular point on the slowness surface enters a crystal
and is split into a family of rays, filling out a cone, with the

associated Xμ lying on the planar section of ∂Cþp . This
contrasts with what happens for generic (nonsingular) ξi
where the incident ray is split into just two rays inside the
crystal, corresponding to the two sheets of the slowness
surface.
In a generic background of a nonfactorized theory, we

have argued that the quartic surface is nonsingular except
on some hypersurface in spacetime. This hypersurface
seems analogous to the case of a layer of a biaxial crystal
of vanishing thickness, which is unlikely to lead to
observable effects. However, there may be symmetrical
(hence nongeneric) solutions (perhaps stationary axisym-
metric black hole spacetimes) for which the slowness
surface admits a triple point everywhere. In such space-
times, conical refraction may lead to interesting effects.

G. Causal structure and black holes

I will use capital letters (e.g., “Causal”, “Timelike”) to
distinguish notions defined with respect to C�p from the
same notions defined in the traditional way using the
metric. So we say a vector is future-directed Causal iff it
is a nonzero element of Cþp and future-directed Timelike iff
it belongs to the interior of Cþp . Past directed Causal or
Timelike vectors are defined by replacing Cþp with C−p . We
say that a smooth curve is future-directed Causal (Timelike)
iff its tangent vector is everywhere future-directed Causal
(Timelike). Past directed Causal and Timelike curves are
defined similarly. We define the Causal future of a setW as
the set J þðWÞ consisting of points p for which there exists
a future-directed Causal curve from W to p. Similarly the
Chronological future IþðWÞ is defined as the set of points
p for which there exists a future-directed Timelike curve
from W to p. The Causal and Chronological past are
defined similarly.
To define the notion of asymptotic flatness in the usual

way, via conformal compactification, we need the space-
time curvature and scalar field derivatives to decay suffi-
ciently rapidly that the causal structure near infinity is
determined by the light cone of the metric in the usual way.
More precisely, we need Cμν to approach gμν, and the
quartic polynomial to approach (102), at appropriate rates
at infinity. Then, near infinity, the causal structure of our
theory will reduce to the causal structure defined using the
metric in the usual way, which is preserved by conformal
compactification. In the compactified spacetime we define
the black hole region ℬ of the spacetime manifold M as
MnJ −ðIþÞ. The future event horizonHþ is defined as the
boundary of ℬ. We expect this to be a “fastest” outgoing
characteristic hypersurface. In particular, when Hþ is
differentiable, its normal will belong to ∂Γþ (the inner
sheet of the quartic). It would be very interesting to know
whether this surface satisfies a version of the second law of
black hole mechanics, i.e., is there some quantity that is
nondecreasing along the bicharacteristic curves that gen-
erate this surface?

11Note that the fastest degree of freedom corresponds to the
innermost sheet of the characteristic cone in the cotangent space
but to the outermost sheet of the wave cone in the tangent space.
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Now consider a stationary (i.e., time-independent) black
hole solution. In a 2-derivative theory with suitable matter,
it is known that the event horizon of such a black hole must
be a Killing horizon. It would be interesting to try to prove
such a result for theories of the type considered here, at
weak coupling. Some evidence that such a result may exist,
and some properties of a Killing horizon, are provided by
the following proposition.
Proposition: Consider a smooth solution ðgμν;ΦÞ

which has a symmetry generated by a vector field ξμ,
i.e., ξμ is a Killing vector field and

ξμ∇μΦ ¼ 0 ð110Þ

Assume that this solution admits a Killing horizonN of ξμ,
i.e., N is a null hypersurface with normal ξμ, and assume
that the theory is weakly coupled on N . Then N is a
characteristic hypersurface and ξμ is a triple direction of the
characteristic cone. Furthermore, the Hessian of Q at that
point is a nonzero multiple of ξμξν.
This first part of this proposition is similar to previous

results for Lovelock [15,30] and Horndeski theories
[31,32]. In the Horndeski case, the interpretation of terms
of the characteristic cone and the result for the Hessian are
new. This proposition is proved in the Appendix.
The significance of ξμ being a triple direction is that it

implies that N is characteristic for all three physical
polarizations. In particular, this implies that N is a fastest
outgoing characteristic hypersurface (for a suitable defi-
nition of “outgoing”). So this is consistent with the
possibility that N is the event horizon of a stationary
solution.
To understand the significance of the above result for the

Hessian, consider the quartic polynomial QðωÞ (we write
ωμ here since we are using ξμ for the normal to our Killing
horizon). SinceQ is a homogeneous quartic polynomial we
have

QðωÞ ¼ 1

4!
Qμνρσωμωνωρωσ ð111Þ

for some symmetric tensor Qμνρσ which can be read off
from (97). Since ξμ is a singular direction of the quartic,
∂Q=∂ωμ vanishes for ωμ ¼ ξμ hence

Qμνρσξνξρξσ ¼ 0 ð112Þ

The Hessian of Q at ξμ is

Hμν ¼ 1

2
Qμνρσξρξσ ð113Þ

From (112) we have Hμνξν ¼ 0 hence Hμν is degenerate,
with rank at most 3. For a generic triple direction we expect
that the rank will equal 3. However, in the circumstances

covered by our proposition we see that Hμν has rank 1, so
this triple direction is nongeneric. Consider the behavior of
Q in a neighborhood of ξμ:

Qðξþ δξÞ ¼ 1

2
Hμνδξμδξν þ � � � ð114Þ

where the ellipsis denotes terms cubic or quartic in δξμ.
Since Hμν ∝ ξμξν, the quadratic term vanishes if, and only
if, ξμδξμ ¼ 0. This is the equation of a plane in the
cotangent space with normal ξμ. Hence in a neighborhood
of ξμ, both sheets of the quartic cone degenerate to this
plane with normal ξμ (which is also the normal to the
quadratic cone as ðC−1Þμνξν ∝ ξμ on N : see (A6) in the
Appendix). In particular, even though ξμ is a singular
direction of the quartic cone, one can still define a unique
tangent plane to the cone at this point. This has the
following corollary:
Corollary: If p ∈ N then a vector in Cþp ∪ C−p is

tangent to N if, and only if, it is a multiple of ξμ.
Proof.—Assume (by adjusting the sign if necessary) that

Xμ ∈ Cþp and that Xμ is tangent to N so Xμξμ ¼ 0. We
know that ξμ is characteristic and corresponds to a singular
direction of the quartic cone. Hence ξμ belongs to both
sheets of the quartic cone. In particular it belongs to the
inner sheet ∂Γþ

p ∪ ∂Γ−
p . By choosing the appropriate sign

we have �ξμ ∈ ∂Γþ
p . Consider the plane Xμωμ ¼ 0 in the

cotangent space. We know that this plane contains �ξμ.
But, by definition of Cþp , this plane is a supporting hyper-
plane of Γþ

p . So it is a supporting hyperplane that touches
∂Γþ

p (at �ξμ). For a generic singular direction there could
be many such supporting hyperplanes because a tangent
plane is not defined at a generic singular point. However,
we have just seen that our result for the Hessian implies that
there is a unique tangent plane to ∂Γþ

p at�ξμ, and this plane
has normal ξμ. Hence Xμ must be a multiple of ξμ.
Conversely, if Xμ ∝ ξμ then the plane Xμωμ ¼ 0 is tangent
to ∂Γþ

p ∪ ∂Γ−
p at �ξμ and so either Γþ

p or Γ−
p lies in the

region with Xμωμ ≤ 0 so Xμ ∈ Cþp ∪ C−p . ▪
The point here is that, for a generic triple direction, we

saw in Sec. IV F that the absence of a well-defined tangent
plane implies that one might have e.g., a flat “convex hull”
section of ∂Cþp (say) and this gives rise to the phenomenon
of conical refraction. If ξμ had been a generic triple
direction then conical refraction would occur within N ,
i.e., from any point p of N there would have been a cone
(with narrow opening angle and containing ξμ) of directions
in which causal propagation tangential to N was possible.
But, in fact this does not happen because the triple direction
is nongeneric: the above result shows that causal propa-
gation withinN occurs only along the integral curves of ξμ,
i.e., the usual generators of N . If the Killing horizon is
axisymmetric as well as stationary then this means that the
angular velocity can be defined in the usual way.
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Since ξμ is a singular direction, N is a null hypersurface
with respect to Cμν (as well as with respect to gμν).
Furthermore, since ξμ generates a symmetry of the solution,
it follows that ξμ is a Killing vector field of Cμν and hence
N is a Killing horizon with respect to Cμν. What is the
surface gravity of this Killing horizon? In the Appendix
we prove:
Proposition: Under the same assumptions as the

previous proposition, the surface gravity of N is constant
(if N is connected) and the surface gravity of N with
respect to Cμν is the same as the surface gravity with
respect to gμν.
The first part of this proposition says that the horizon

obeys the zeroth law of black hole mechanics. The second
part of the proposition ensures that the Hawking temper-
ature defined with respect to Cμν is the same as that defined
with respect to gμν. If the solution admits a Euclidean
section then there is a simpler way of seeing this: Cμν is
built from gμν and Φ so if these fields are smooth on the
Euclidean section with a certain period for Euclidean time
then Cμν must also be smooth with the same choice of
period.

H. Causality in effective field theory

As explained in the Introduction and in Sec. IVA,
some of the theories we have been considering can be
motivated by EFT. In this section we will discuss briefly the
question of whether the difference between the character-
istic cone of the 4-derivative theory and the characteristic
cone of the 2-derivative theory (i.e., the null cone of the
metric) is actually observable in EFT. This is an issue that
has been discussed several times in the literature, see
e.g., [33–35]. A particularly detailed account has appeared
recently [36].
Consider the EFT of gravity coupled to a scalar field. As

described in Sec. IVA, the EFT action consists of the
2-derivative action (87) supplemented by an infinite set of
higher-derivative terms. The leading higher-derivative
terms have 4 derivatives and, after field redefinitions,
can be written as in (89). The coefficients α, β of (89)
are dimensionful with dimensions of length squared. In
EFT these coefficients will be Oðl2Þ where l is a length
scale associated with “UV physics”, e.g., the scale at which
new massive fields start to play a role in the physics.
Consider a field configuration that, in some coordinate
chart, varies over a length scale L, i.e., derivatives of the
fields areOðL−1Þ. Validity of EFT requires L=l ≫ 1; if this
does not hold then one requires a full UV description of the
physics. Then the 4-derivative terms in the equations of
motion are suppressed relative to the 2-derivative terms by
a factor or order ðl=LÞ2. Higher derivative terms are
suppressed by higher powers of ðl=LÞ2. So in EFT, the
2-derivative theory provides the leading order description
of the physics and the 4-derivative theory provides an

improved description. The 4-derivative theory is weakly
coupled, as we have assumed repeatedly above.12

Since the 4-derivative theory should provide a better
description of physics than the 2-derivative theory, one
would expect that the characteristic cone of the 4-derivative
theory, which we studied above, should provide a better
description of causality than the characteristic cone of the
2-derivative theory (which is simply the null cone of the
metric). However, as emphasized in [36], the difference
between these two cones may not be observable in EFT.
One way of seeing this is to consider how one might

“send a signal” from one point of spacetime to another. This
can be done by using geometric optics to construct wave
packets which propagate along bicharacteristic curves. So
consider a linear perturbation with wavelength λ, i.e.,
derivatives of the linearized fields are of order λ−1. To
apply the geometric optics approximation to the 4-deriva-
tive theory we assume that λ is much shorter than any other
length scale in the problem. One then finds that surfaces of
constant phase are characteristic surfaces as defined above.
However, the assumption that λ is shorter than any other
length scale is incompatible with the condition l=λ ≪ 1
required for validity of EFT.
Let us consider more carefully the size of different terms

in the linearized equations. In the 2-derivative theory, the
equation of motion gives us terms of order λ−2, L−1λ−1 and
L−2, where L is the scale over which the background
solution varies (for example the linearized Einstein equa-
tion contains a term Rμρνσδgρσ which is of order L−2).
In geometric optics we assume that first set of terms
dominates, which requires λ=L ≪ 1. When we include
4-derivative terms, the equation of motion now gives us
additional terms of order λ−2ðl=LÞ2, L−1λ−1ðl=LÞ2 and
L−2ðl=LÞ2 (there are no terms involving λ−3 or λ−4 because
the equations of motion are second order). In applying
geometric optics to the 4-derivative theory, we retain the
terms of order λ−2ðl=LÞ2. But λ−2ðl=LÞ2 ¼ L−2ðl=λÞ2 ≪
L−2 because validity of EFT requires l=λ ≪ 1. So within
the regime of validity of EFT the terms of order λ−2ðl=LÞ2
are negligible compared to the “dispersive” 2-derivative
terms of order L−2 which are neglected in geometric optics.
Thus, for consistency, we should also neglect the terms of
order λ−2ðl=LÞ2, in which case we retain just the terms of
order λ−2, which is just geometric optics of the 2-derivative
theory (although applied to a background solution of the
4-derivative theory). Hence, within the regime of validity of
EFT, geometric optics cannot distinguish between the

12This does not imply that a solution of the 4-derivative theory
must remain close to a solution of the 2-derivative theory. Secular
effects, gradually accumulating over time, might cause a solution
of the 4-derivative theory to diverge from a solution of the
2-derivative theory over a long enough time [37]. If this happens
then the solution of the 4-derivative theory should provide the
better description of the physics.
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characteristic cone of the 4-derivative theory and that of the
2-derivative theory.
This raises the question of whether the analysis of

this paper can tell us anything about EFT. The answer
(probably) is yes, because the characteristic cone is relevant
not just for geometric optics, but for many other properties
of the 4-derivative theory. Since the (weakly coupled)
4-derivative theory makes sense as a self-contained
classical theory, one might hope that some of the important
theorems of general relativity can be extended from the
2-derivative theory to the 4-derivative theory. The proofs of
many of these theorems are based on causal properties of
the theory. If these theorems can be extended to the
4-derivative theory then it seems likely that the character-
istic cone, as defined in this paper, will provide the relevant
notion of causality. So even if this notion of causality is not
directly observable, it might provide instead a technical tool
for establishing a result that does tell us something
interesting in EFT. For example perhaps there exists an
extension of the Penrose singularity theorem to the
4-derivative theory which involves a slightly modified
definition of a trapped surface.13 Or, as we have mentioned
above, maybe there is an extension of the second law of
black hole mechanics to these theories.

V. DISCUSSION

The results of this paper suggest several opportunities for
future research. I have considered in detail the class of
theories consisting of gravity coupled to a scalar field, with
second order equations of motion. It would be interesting to
perform a similar analysis for other theories with second
order equations of motion. The class of theories of gravity
coupled to an electromagnetic field will be discussed
elsewhere.
It would be interesting to determine the characteristic

cone for some particular solutions of theories of the type
(89) or more general Horndeski theories, for example black
hole solutions. Stationary black hole solutions have been
constructed numerically both in the spherically symmetric
case (see e.g., [38]) and in the rotating case (see e.g.,
[39,40]). Our result on Killing horizons implies that, on the
horizon of such a solution, the characteristic cone will
admit a triple direction. But how does the cone behave in
other directions? What happens for points not on the
horizon? Also very interesting would be to study the
characteristic cone for time-dependent solutions without
symmetries, such as the solutions constructed numerically
in [41]. In particular one could study the properties of the
event horizon, as defined above, of these dynamical
solutions.

Our definition of the characteristic polynomial provides
a notion of (weak) hyperbolicity for Horndeski theories that
is independent of any gauge-fixing procedure. The idea is
that the characteristic polynomial pðξÞ should be a hyper-
bolic polynomial (see footnote 6). We have seen that this is
the case at weak coupling but it might fail for stronger
coupling. Away from weak coupling, the effective metric
Cμν might not be invertible and so our definition of pðξÞ
can break down. However, this can be dealt with by
defining

p̃ðξÞ ¼ ðC=gÞpðξÞ ¼ CμνξμξνQðξÞ

Cμν ¼ −
1

3!
ϵμρ1ρ2ρ3ϵνσ1σ2σ3Cρ1σ1Cρ2σ2Cρ3σ3 ð115Þ

which is alwayswell defined. The polynomialsp and p̃ have
equivalent properties at weak coupling (when C=g ≈ 1). It
seems very unlikely that a well-posed formulation of the
equations of motion will exist if p̃ðξÞ is not a hyperbolic
polynomial. Conversely, if p̃ðξÞ is a hyperbolic polynomial
for some generic class of backgrounds of interest then one
might expect such a formulation to exist in these back-
grounds. The formulation of [6,8] was proved to be well
posed at weak coupling. It would be interesting to know if it
remains well posed at strong coupling whenever p̃ðξÞ is a
hyperbolic polynomial. It seems possible that this will be the
case provided the auxiliary metrics g̃μν and ĝμν of this
formulation are chosen so that their null cones lie strictly
outside the characteristic cone defined by p̃ðξÞ.
Reference [42] considered spherically symmetric gravi-

tational collapse in a theory of the form (89). The spheri-
cally symmetric reduction of the theory was found to
violate weak hyperbolicity when the fields become suffi-
ciently strong. It is possible that a failure of hyperbolicity in
the full theory occurs before the failure of hyperbolicity of
the reduced theory. Computing the polynomial p̃ðξÞ for
these backgrounds would provide a fairly simple way of
determining whether or not this happens.
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APPENDIX: PROOF OF PROPOSITIONS ON
KILLING HORIZONS

1. Proof of first proposition

From (110) we have

0 ¼ ∇μðξν∇νΦÞ ¼ ξν∇μ∇νΦþ∇νΦ∇μξ
ν ðA1Þ

contracting with ξμ gives

13Such a theorem might assert that if there exists a trapped
surface then either there exists an incomplete bicharacteristic
curve or the solution becomes strongly coupled.
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ξμξν∇μ∇νΦjN ¼ −κξν∇νΦ ¼ 0 ðA2Þ

where κ is the surface gravity ofN . Using this, and the fact
that ξμ is null with respect to gμν we obtain from (91) or (96)
thatCμνξ

μξν ¼ 0 onN , i.e., ξμ is null with respect to Cμν on
N . Next we want to show that ξμ is null with respect to
ðC−1Þμν. Note that

∇μξν ¼ ∇½μξν� ¼ 2ξ½μην� ðA3Þ

for some ημ. The first equality is Killing’s equation and the
second equality, which holds only on N , follows because
ξμ is hypersurface orthogonal. Substituting into (A1) we
have, on N ,

ξν∇μ∇νΦ ¼ −ξμην∇νΦ ðA4Þ

Now, for either the theory (89) or for a general Horndeski
theory we have

Cμν ¼ agμν þ b∇μ∇νΦþ c∇μΦ∇νΦ ðA5Þ

for certain coefficients a, b, c. Hence, on N ,

Cμνξ
ν ¼ Aξμ A≡ a − bην∇νΦ ðA6Þ

Non-degeneracy of Cμν (for a weakly coupled theory)
implies that the lhs is nonzero so A ≠ 0. Rearranging we
have ξμ ¼ AðC−1Þμνξν so contracting with ξμ we have, on
N , 0 ¼ ξμξ

μ ¼ AðC−1Þμνξμξν. Hence, on N , in a weakly
coupled theory,

ðC−1Þμνξμξν ¼ 0 ðA7Þ

so the hypersurface N is null with respect to Cμν as well as
with respect to gμν. It follows that N is a characteristic
hypersurface associated with the quadratic cone.
We will now show that ξμ also corresponds to a singular

point of the quartic surface. We first show that certain
components of the Riemann tensor vanish on N . A Killing
vector field satisfies

∇μ∇νξρ ¼ Rρνμσξ
σ: ðA8Þ

Contract this equation with vectors rρ, sν, tμ that are tangent
to N to obtain, on N ,

Rρνμσrρsνtμξσ ¼ rρsνtμ∇μ∇νξρ

¼ rρtμ∇μðsν∇νξρÞ − rρðtμ∇μsνÞ∇νξρ ðA9Þ

On the rhs the first term involves a derivative with respect to
tμ. Since tμ is tangential to N , we can use (A3) (which
holds only on N ) to obtain

rρtμ∇μðsν∇νξρÞ ¼ rρtμ∇μ½sνðξνηρ − ξρηνÞ�
¼ −rρtμ∇μðsνηνξρÞ
¼ −sνηνrρtμ∇μξρ

¼ −sνηνrρtμðξμηρ − ξρημÞ
¼ 0 ðA10Þ

where we have used the fact that rμ, sμ and tμ have
vanishing contracting with ξμ because ξμ is normal to N .
The second term on the rhs of (A9) is

rρðtμ∇μsνÞ∇νξρ ¼ ðtμ∇μsνÞrρðξνηρ − ξρηνÞ
¼ rρηρξνtμ∇μsν

¼ −rρηρsνtμ∇μξν

¼ −rρηρsνtμðξμην − ξνημÞ
¼ 0 ðA11Þ

we have again used (A9) and the fact that rμ, sμ and tμ have
vanishing contracting with ξμ. Hence we have shown that,
on N ,

Rρνμσrρsνtμξσ ¼ 0 ðA12Þ

for any vectors rρ, sν, tμ that are tangent to N .
We will now introduce a basis of vectors on N that is

null with respect to gμν.
14 We choose eμ1 ∝ ξμ. We pick eμ

î

(î ¼ 2, 3) to be a pair of orthonormal spacelike vectors
that are tangent to N (and hence orthogonal to ξμ). Finally
we pick eμ0 to be the unique null vector that is orthogonal to
eμ
î

and satisfies gμνe
μ
1e

ν
0 ¼ −1. This defines a basis

feμ0; eμ1; eμî ; î ¼ 2; 3g such that the nonzero metric compo-
nents are g01 ¼ g10 ¼ −1 and gî ĵ ¼ δî ĵ. Note that the dual
basis has e0μ ∝ ξμ.
Next we recall the concept of boost weight. A boost is a

rescaling of the null basis vectors e0 → λe0, e1 → λ−1e1.
A tensor component that scales by a factor of λB has boost
weight B. For example under this rescaling we have

∇1∇îΦ≡ eμ1e
ν
î
∇μ∇νΦ → λ−1eμ1e

ν
î
∇μ∇νΦ ðA13Þ

hence the lhs has B ¼ −1. The boost weight of a tensor
component can be written as a sum where each subscript 0
index contributes þ1, each subscript 1 index contributes
−1, each superscript 0 index contributes −1 and each
superscript 1 index contributes þ1. Indices î; ĵ do not
contribute to B. So in the above example B ¼
−1þ 0 ¼ −1. Note that boost weight is additive: if we
consider the outer product of two tensors then the boost

14This should not be confused with the basis of (82) that is null
with respect to Cμν.

CAUSALITY IN GRAVITATIONAL THEORIES WITH SECOND … PHYS. REV. D 103, 084027 (2021)

084027-23



weight of a given component is the sum of the boost
weights of the terms appearing in the product.
Our strategy now will be to show that, onN , the negative

boost weight components of all relevant tensors are zero.
First consider (110) and (A4). In our basis these give

∇1Φ ¼ 0 ∇1∇1Φ ¼ ∇1∇îΦ ¼ 0 ðA14Þ

hence the negative boost weight components of ∇μΦ and
∇μ∇νΦ vanish on N . Note also that nonvanishing com-
ponents of gμν have B ¼ 0.
Taking r ¼ eî, s ¼ e1, t ¼ eĵ or r ¼ eî, s ¼ eĵ, t ¼ ek̂ in

(A12) we now obtain

Rî1ĵ1 ¼ 0 Rî ĵ k̂ 1 ¼ 0 ðA15Þ

So far we have not used any equations of motion. We
now consider the Einstein equation on N which can be
written as

Gμν ¼ � � � ðA16Þ

where the rhs is a polynomial in ∇μΦ, ∇μ∇νΦ, Rμνρσ, gμν
and gμν (with coefficients that are scalar functions of Φ),
where Rμνρσ appears only with degree 0 and 1 (see
Appendix A of [18]). Consider the negative boost weight
components of this equation. The B ¼ −2 component can
be seen to be trivial so we consider the B ¼ −1 component.
The second equation of (A15) implies that the lhs is
R1î ¼ −R011î. The negative boost weight components of
all tensors on the rhs vanish, except possibly for Rμνρσ

which has possibly nonzero negative boost-weight compo-
nents R011î (and those related by symmetry). Hence the
Einstein equation reduces to

−R011î ¼ Xî ĵR011ĵ ðA17Þ

for some quantity Xî ĵ with B ¼ 0. Now in the 2-derivative
theory (87) the rhs of the Einstein equation does not involve
the Riemann tensor hence Xî ĵ ¼ 0 in this theory. Hence, in
a general weakly coupled theory, Xî ĵ must be small and so
the determinant of the above linear system is nonzero and
the Einstein equation implies

R011î ¼ 0 ðA18Þ

Combined with (A15) this shows that all negative boost
weight components of the Riemann tensor vanish on N .
From (A14) and (91) or (96) we see that the negative

boost weight components of Cμν must all vanish on N .
Using ðC−1ÞμνCνρ ¼ δμρ we obtain ðC−1Þμ0 ∝ δμ1 and hence
negative boost weight components of ðC−1Þμν must also
vanish on N .

Now we consider Cμνρσ. This is another polynomial in
∇μΦ, ∇μ∇νΦ, Rμνρσ, gμν and gμν with coefficients that are
scalar functions of Φ. This can be seen from (92) [for the
theory (89)] or from the expressions in Appendix B of [18].
We have shown that the negative boost weight components
of all of these tensors vanish and so it follows that all
negative boost weight components of Cμνρσ must vanish
on N :

C0î0ĵ ¼ 0 C010î ¼ 0 C0î ĵ k̂ ¼ 0 ðA19Þ

Since all negative boost weight components of Cμνρσ and
Cμν vanish, it follows that so must the negative boost
weight components of Dμν and Wμνρσ:

D00 ¼ D0i ¼ 0 W0i0j ¼ W010i ¼ W0ijk ¼ 0 ðA20Þ

We can write our quartic polynomial for a general covector
ωμ as in (111). The tensor Qμνρσ is a polynomial in Dμν,
Wμνρσ, Cμν, ðC−1Þμν, ∇μΦ, ∇μ∇νΦ, gμν and gμν. (Here we
use the expression for Pmm in (94) or the corresponding
expression in Appendix B of [18].) We have shown that
negative boost weight components of all of these tensors
vanish onN . Hence the negative boost weight components
of Qμνρσ must vanish on N . In particular we have

QðξÞ ∝ Q0000 ¼ 0 ðA21Þ

so ξμ lies on the quartic cone. Furthermore

� ∂Q
∂ωμ

�
ω¼ξ

¼ 1

3!
Qμνρσξνξρξσ ∝ Qμ000 ¼ 0 ðA22Þ

hence ξμ is a singular direction of the quartic surface.
Finally we have

Hμν ≡
� ∂2Q
∂ωμ∂ων

�
ω¼ξ

¼ 1

2!
Qμνρσξρξσ ∝Qμν00 ¼ δμ1δ

ν
1Q

1100

ðA23Þ

For the 2-derivative theory (87) we know that Q takes the
form (102) for which Q1100 < 0. Hence, by continuity, we
will haveQ1100 < 0 in a weakly coupled theory. So we have
shown that, at weak coupling, the Hessian of Q at ξμ has
rank 1: Hμν ∝ ξμξν.

2. Proof of second proposition

The surface gravity ofN with respect to gμν is defined by

∇μðgνρξνξρÞjN ¼ −2κξμ ðA24Þ

which is equivalent to
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ξν∇νξ
μjN ¼ κξμ ðA25Þ

To prove the first part of the proposition (the zeroth law of
black hole mechanics), contract (A8) with ξν and rearrange
to obtain

Rρ
νμσξ

νξσ ¼ ∇μðξν∇νξ
ρÞ − ð∇μξ

νÞ∇νξ
ρ ðA26Þ

Now let tμ be tangent to N . Contracting with tμ and using
(A25) gives, on N

Rρ
νμσξ

νtμξσ ¼ tμ∇μðκξρÞ − tμð∇μξ
νÞ∇νξ

ρ

¼ ðtμ∇μκÞξρ þ κtμ∇μξ
ρ − tμð∇μξ

νÞ∇νξ
ρ

¼ ðtμ∇μκÞξρ − κtμημξρ − tμημξνηνξρ ðA27Þ

using (A3) in the final line. Now contracting (A3) with ξμ

and using (A25) gives

κ ¼ −ημξμ ðA28Þ

hence the final two terms cancel above, giving

Rρνμσξ
νtμξσ ¼ ðtμ∇μκÞξρ ðA29Þ

Evaluating this equation in the null basis used in the proof
of the previous proposition gives

ðtμ∇μκÞδ0ρ ∝ Rρ1μ1tμ ⇒ tμ∇μκ ∝ R01î1t
î ðA30Þ

using t0 ¼ 0 as tμ is tangent toN . The rhs vanishes because
of (A18). Hence κ is constant on each connected compo-
nent of N .
Now consider the surface gravity κC of N defined with

respect to Cμν:

∇μðCνρξ
νξρÞjN ¼ −2κCCμνξ

ν ðA31Þ

We want to show κC ¼ κ.
Using (110), (A1) and (A5) we have

Cνρξ
νξρ ¼ agνρξνξρ − bðξν∇νξ

ρÞ∇ρΦ ðA32Þ

Hence on N using (A25) gives

∇μðCνρξ
νξρÞ ¼ a∇μðgνρξνξρÞ− κξρð∇μb∇ρΦþb∇μ∇ρΦÞ

−b∇μðξν∇νξ
ρÞ∇ρΦ

¼−2aκξμþbκ∇μξ
ρ∇ρΦ−bðξν∇μ∇νξ

ρÞ∇ρΦ

−bð∇μξ
νÞð∇νξ

ρÞ∇ρΦ ðA33Þ

where in the second line we have used (110) and (A1)
again. Now we use (A3) to obtain

bκ∇μξ
ρ∇ρΦ ¼ bκðξμηρ − ημξ

ρÞ∇ρΦ

¼ bκðηρ∇ρΦÞξμ ðA34Þ

and

bð∇μξ
νÞð∇νξ

ρÞ∇ρΦ ¼ bðξμην − ημξ
νÞξνηρ∇ρΦ

¼ bξνηνðηρ∇ρΦÞξμ
¼ −bκðηρ∇ρΦÞξμ ðA35Þ

where the final equality follows from (A28). Using (A8) we
have

bðξν∇μ∇νξ
ρÞ∇ρΦ ¼ bRρνμσξ

νξσ∇ρΦ ðA36Þ

∇μΦ is tangential to N because ξμ∇μΦ ¼ 0 from (110).
Hence the rhs vanishes by (A29).
Putting these results together we have

∇μðCνρξ
νξρÞ¼−2κða−bηρ∇ρΦÞξμ ¼−2Aκξμ ¼−2κCμνξ

ν

ðA37Þ

where we used (A6) in the final two equalities. Comparing
with (A31) we see κC ¼ κ.
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