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We compute numerically the Lorentzian Engle-Pereira-Rovelli-Livine spinfoam propagator on a
4-simplex, by adapting the Lefschetz thimble and Markov chain Monte-Carlo methods to oscillatory
spinfoam integrals. Our method can compute any spinfoam observables at relatively large spins. We obtain
the numerical results of the propagators at different spins and demonstrate their consistency with the
expected spinfoam semiclassical behavior in the large spin limit. Our results exhibit significant quantum
corrections at smaller spins. Our method is reliable and thus can be employed to discover the semiclassical
and quantum behaviors of the spinfoam model.
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I. INTRODUCTION

Computing and studying properties of the n-point
correlation functions are the core problem in quantum
field theory. As emphasized by Arthur Wightman, a
complete quantum field theory can be uniquely recon-
structed from its n-point correlation functions. The n-point
functions in loop quantum gravity (LQG) [1–4], which is
a promising candidate of the quantum gravity theory,
have been introduced in [5,6]. In [7–10], analysis has been
carried out on the 2-point correlation function for the

Penrose metric operators in the spinfoam model—the
covariant formulation of LQG [2,11–14]. This 2-point
functions are usually called the spinfoam propagator.
The analysis confirms that the semiclassical behavior of
the spinfoam propagators, determined by the large-spin
asymptotics, matches the one obtained from the Regge
calculus, and indicates that LQG recovers general relativity
in four dimensions in an appropriate limit. Asymptotic
analysis of the spinfoam amplitudes have drawn similar
conclusion [15–25]. Despite the existence of the novel and
crucial results brought in by these discussions of spinfoam
propagators, the computational complexity has been
obstructed further explorations in the spinfoam model.
Nevertheless, numerical approaches to spinfoams open*hzc881126@hotmail.com
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new windows to circumvent this obstruction. The works
[26–28] have attempted numerical computing of the spin-
foam amplitudes and obtained enlightening results. There
are also numerical results on the spinfoam renormalization
[29,30]. In early attempts, the numerical computations of
the spinfoam correlation function for 3D gravity [31] and
4D Barrett-Crane model [32,33] are done. Yet, the numeri-
cal computation of the spinfoam correlation function for
Engle-Pereira-Rovelli-Livine (EPRL) model has not been
well developed.
In this paper, we propose and employ a numerical

method that combines the Lefschetz thimble and Markov
chain Monte-Carlo methods to compute the spinfoam
propagator on a 4-simplex in the EPRL spinfoam model.
In contrast to the algorithm in [26–28], which is mostly
applicable to spinfoam amplitudes with small spins, our
algorithm is featured by computing spinfoams with rela-
tively large spins. We obtain the numerical results of
the propagators at different spins and compare with the
spinfoam large spin asymptotics. Our numerical results are
shown to be consistent with the spinfoam asymptotics in
the large spin limit while providing significant corrections
at smaller spins.
In the path integral formalism, the expectation value of

an arbitrary observable O½φ� can be expressed as

hÔi ¼
R
DφO½φ�e−S½φ�R
Dφe−S½φ�

; ð1Þ

where S is the action. The spinfoam propagator can be
expressed in terms of similar integral expressions [9]

Gabcd
mn ¼ hEa

n · Eb
nEc

m · Ed
mi − hEa

n · Eb
nihEc

m · Ed
mi; ð2Þ

where each Ea
n is the flux operator at the face shared by

tetrahedra n and a. The action S for the propagator is a
complex valued function depending on 54 real variables
(for one 4-simplex). Both the denominator and the nom-
inator in the right hand side of Eq. (1) are integrals of high-
dimensional oscillatory functions. Known as the sign
problem [34–36], these oscillatory integrals cannot be
evaluated in the conventional Monte-Carlo integral method,
thus have been difficult to be studied numerically.
In order to compute hOi, recent progresses (see e.g.,

[37–42]) suggest to apply the Picard-Lefschetz theory to
cure the sign problem, and have applied the theory to
numerical computations in lattice field theories. In our
work, we apply the theory to the numerical computation of
the spinfoam propagator and improve the numerical
method for handling higher dimensional oscillatory inte-
grals. The idea of the method is to deform the integration
contour to a class of specific integral cycles, called
Lefschetz thimbles J σ, each of which is defined as the
union of all steepest descent paths ending at a given critical
point of the analytic continued action. The deformation

does not change the value of the integral, while it has the
advantage that the imaginary part of S is constant on each
Lefschetz thimble J σ, so e−S becomes nonoscillatory on
the thimble. The integral on each J σ can be studied
numerically with the Monte-Carlo method.
Technically, the numerical integration on the Lefschetz

thimble J σ can be achieved by the Markov chain Monte-
Carlo (MCMC) method [43],1 which treats the hOi on the
thimble as the mean value ofOei argðdet JÞ among samples on
J σ given by the Boltzmann distribution e−ReðSÞþlog j det Jj
where det J is the measure factor on J σ . Specifically, in
order to do the numerical integration on a high-dimensional
thimble, we use a multichain MCMC method called the
differential evolution adaptive metropolis (DREAM) algo-
rithm [46] to compute the hOi on the thimble.
The stationary phase analysis shows that in the large spin

regime, Gabcd
mn receives the dominant contribution from a

single critical point corresponding to the Lorentizian
geometrical 4-simplex. This infers that for large spins,
the Lefschetz thimble attached to this geometrical critical
point dominates the integrals for computing the propagator,
while it turns out that the Lefschetz thimbles of other
critical point only give exponentially small contributions.
In the case where the contribution to hOi of certain

thimble is much larger than the contributions of the other
thimbles, one can compute the integral on the dominant
thimble and use it as a proper approximation of hOi. The
integral on the Lefschetz thimble can generate the same
perturbative expansion as the stationary phase analysis
[47]. Thus this approximation keeps all the perturbative
quantum corrections by integrating along the dominant
thimble, while neglecting nonperturbative corrections
from other thimbles whose contributions are exponentially
suppressed.
In our computation, the operators expectation values

hEa
n · Eb

nEc
m · Ed

mi, hEa
n · Eb

ni, hEc
m · Ed

mi are computed
numerically on the dominant thimble attached to the
geometrical critical point. This computation capture per-
turbative quantum corrections to all orders in the spinfoam
model, while neglecting nonperturbative corrections that
are exponentially small for large spins. Given that the
computational complexity is scaled exponentially large
when computing perturbative expansion to high orders,
our method with Lefschetz thimble is efficient and
powerful.
In practice, we compute the spinfoam propagator with

the coherent boundary state peaked at the boundary data of
a Lorentizian geometrical 4-simplex. We scale the boun-
dary spins by λ and numerically compute the propagator
with λ ∈ ½102; 5 × 107�. In the regime λ > 104, our numeri-
cal result strongly tends to comply with the expected
semiclassical limit. At smaller spins, the numerical results

1See [44,45] for some existing works on applying Monte-Carlo
method to LQG/spinfoam.
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provide significant quantum corrections. This consistency
supports the reliability of our algorithm and increases our
confidence to use the algorithm as a tool to discover
the semiclassical and quantum behaviors of the spin-
foam model.
We emphasize that our method applies to a much boarder

range of research areas involving the complex-valued
actions and oscillatory integrals, e.g., finite density lattice
QCD, Lee-Yang zeros, non-Hermitian systems, gauge
theory with topological θ term, etc. Similar methods have
been applied in these areas [39,48–53]. We look forward to
finding novel interesting results by applying our method to
these areas.
This paper is organized as follows: Sec. II discusses the

Lorentzian spinfoam propagator in the EPRL model, the
boundary state, and our parametrizations of the action
the observables. Section III explains our algorithm, includ-
ing reviewing the Picard-Lefschetz theory, MCMCmethod,
and DREAM. Section IV discusses the application of
Lefschetz thimble to the spinfoam model and a few
conceptual aspects. Section V discusses several optimi-
zations to improve the efficiency of the computation.
Section VI discusses the stationary phase approximation
and the large spin limit of the spinfoam propagator.
Section VII presents our numerical results from the
Monte-Carlo and Lefschetz-thimble theories and com-
pares with the large spin limit. Section VIII presents the
benchmarks the platforms that we use for testing our code.
In Sec. IX, we conclude and mention a few future
perspectives.
We tested our codes inMathematica™12. The codes are

posted in [54].

II. SPINFOAM PROPAGATOR

In this section, we review the EPRL spinfoam model,
including the definition of the vertex amplitude and the
definition of the spinfoam propagator, and we setup the
boundary data and critical point used in the numerical
computation. In the integral representation of the spinfoam
vertex amplitude, the integrand is a function depending on
54 real variables. Furthermore, we present four integrals to
be computed by our numerical algorithm for computing the
spinfoam propagator.

A. Boundary state

The boundary state is crucial in calculating the spinfoam
amplitude. Following the basic setup in [9], our boundary
state defined below is a Lorentzian semiclassical state
peaked at both intrinsic and extrinsic geometry. We con-
sider a four-dimensional Lorentzian spacetime region R
homeomorphic to a 4-ball whose three-dimensional boun-
dary ∂R is homeomorphic to a 3-sphere. Taking the
coarsest triangulation, R is a 4-simplex, and ∂R is
triangulated by five tetrahedra. Specifically, in this paper,

we use the boundary geometry introduced in [26,55].
Namely, we set the five vertices of the 4-simplex as

P1 ¼ ð0; 0; 0; 0Þ; P2 ¼ ð0; 0; 0;−2
ffiffiffi
5

p
=31=4Þ;

P3 ¼ ð0; 0;−31=4
ffiffiffi
5

p
;−31=4

ffiffiffi
5

p
Þ;

P4 ¼ ð0;−2
ffiffiffiffiffi
10

p
=33=4; −

ffiffiffi
5

p
=33=4;−

ffiffiffi
5

p
=31=4Þ;

P5 ¼ ð−3−1=410−1=2;−
ffiffiffiffiffiffiffiffi
5=2

p
=33=4;−

ffiffiffi
5

p
=33=4;−

ffiffiffi
5

p
=31=4Þ:

Then, the four-dimensional normal vectors of the tetrahe-
dra2 are given by

N1 ¼ ð−1; 0; 0; 0Þ; N2 ¼
�

5ffiffiffiffiffi
22

p ;

ffiffiffiffiffi
3

22

r
; 0; 0

�
;

N3 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;
2ffiffiffiffiffi
33

p ; 0

�
;

N4 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;−
1ffiffiffiffiffi
33

p ;
1ffiffiffiffiffi
11

p
�
;

N5 ¼
�

5ffiffiffiffiffi
22

p ;−
1ffiffiffiffiffi
66

p ;−
1ffiffiffiffiffi
33

p ;−
1ffiffiffiffiffi
11

p
�
: ð3Þ

The areas of the 10 faces are uniformly proportional to
the data shown in Table I, and the three-dimensional normal
of each face3 is shown in Table II.
The intrinsic and extrinsic geometry of the boundary

tetrahedra are given by the face areas, 3D normals, and
4D normals. The corresponding semiclassical boundary
quantum state is a superposition of coherent spin-network
states

jΨ0i ¼
X
λjab

ψλj0;ζ0 jjλjab; n⃗abi: ð4Þ

We have denoted the spins by λjab and λj0ab where j0ab are
recorded in Table I and λ is a scaling parameter. The large
spin limit corresponds to large λ. The five Livine-Speziale
coherent intertwiner jjλjab; n⃗abi are compatible with the
n⃗ab in Table II. The wave packet ψ j0;ζ0 reads

TABLE I. Each cell shows the area of the face shared by line
number tetrahedra and column number tetrahedra.

b

a 2 3 4 5

1 5 5 5 5
2 – 2 2 2
3 – – 2 2
4 – – – 2

2Here, the we use ið¼ 1;…; 5Þ to label the tetrahedron that
does not contain the vertex Pi.3We use the pair ðabÞ to indicate the face of the tetrahedron a
pointing to tetrahedron b.
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ψλj0;ζ0 ¼ exp
�
−i
X
ab

ζab0 ðλjab − λj0abÞ
�

× exp

�
−
X
ab;cd

αðabÞðcdÞ
λjab − λj0abffiffiffiffiffiffiffiffiffiffi

λj0ab
p λjcd − λj0cdffiffiffiffiffiffiffiffiffiffi

λj0cd
p

�
;

where ζab0 , whose values are given in Table III, is related to
the dihedral angles between the 4-normals (3) (see Sec. II D
for the way to determine ζab0 ). The spin variables λj0ab
correspond to the areas listed in Table I. The matrix αðabÞðcdÞ
has positive definite real part, and

αðabÞðcdÞ ¼ α1P
ðabÞðcdÞ
0 þ α2P

ðabÞðcdÞ
1 þ α3P

ðabÞðcdÞ
2 ;

where α1, α2, α3 are free parameters, and PðabÞðcdÞ
k ðk ¼

0…2Þ are defined as

(1) PðabÞðcdÞ
0 ¼ 1 if ðabÞ ¼ ðcdÞ and zero otherwise,

(2) PðabÞðcdÞ
1 ¼ 1 if a ¼ c, b ≠ d and zero otherwise,

(3) PðabÞðcdÞ
2 ¼ 1 if ðabÞ ≠ ðcdÞ and zero otherwise.

The spinfoam amplitude with coherent spin networks as the
boundary state depends on the free parameters α. In our
numerical computation, we set α1¼0.2, α2 ¼ 0.3, α3 ¼ 0.4
for definiteness. Any other choice of α does not affect the
application of our algorithm.

B. Spinfoam action

In the boundary formalism [2,56,57], the spinfoam
amplitude for the boundary state jΨ0i can be written as

hWjΨ0i ¼
X
jab

ψλj0;ζ0hWjjλjab; n⃗abi; ð5Þ

where hWj is a C-valued linear functional providing the
sum over the bulk geometries with the weight that defines
our model for quantum gravity. The Lorentzian EPRL
vertex amplitude can be expressed as

hWjΨ0i ¼
X
jab

ψ j0;ζ0

Z
SLð2;CÞ5

Y
a

dga
Y
a>b

PabðgÞ; ð6Þ

with

PabðgÞ ¼ hλjab;−n⃗abjY†g−1a gbYjλjab; n⃗bai: ð7Þ

In (7), Y maps the spin-j SUð2Þ irreducible representation
Hj to the lowest level in SLð2;CÞ ðj; γjÞ-irreducible
representation Hðj;γjÞ ¼ ⊕∞

k¼j Hk (see [58,59] for alter-
native choices of the Y map).4 Using the fact that the
elements in Hðj;γjÞ can be expressed as homogeneous
functions on CP1, the inner product (7) is equivalent to
an integral [15,19]

Pab ¼
dλjab
π

Z
CP1

dz̃abhZba; Zbai−ð1−iγÞλjab

× hZab; Zabi−ð1þiγÞλjabhJξab; Zabi2λjabhZba; ξbai2λjab ;
ð8Þ

in which dj ¼ 2jþ 1, Zab ¼ g†azab, and Zba ¼ g†hzab. The
integral measure dz̃ab ¼ −ðhZab; ZabihZba; ZbaiÞ−1dzab
[with dz ¼ i

2
ðz0dz1 − z1dz0Þ ∧ ðz̄0dz̄1 − z̄1dz̄0Þ] is homo-

geneous on CP1. The bracket h; i is the Hermitian inner
product on C2. The spinors ξba and Jξab

5 are related to the
3-normal n⃗ba and −n⃗ba, respectively, by n⃗ba ¼ hξbajσ⃗jξbai
and −n⃗ab ¼ hJξabjσ⃗jJξabi. Table IV lists the spinors that
compatible with our boundary geometry.

TABLE II. Each cell shows the three-dimensional normal vector of the face shared by line number tetrahedra and column number
tetrahedra.

b

a 1 2 3 4 5

1 – (1, 0, 0) (−0.33, 0.94, 0) (−0.33, −0.47, 0.82) (−0.33, −0.47, −0.82)
2 (−1, 0,0) – (0.83, 0.55, 0) (0.83,−0.28, 0.48) (0.83, −0.28, −0.48)
3 (0.33, −0.94, 0) (0.24, 0.97, 0) – (−0.54, 0.69, 0.48) (−0.54, 0.69, −0.48)
4 (0.33, 0.47, −0.82) (0.24, −0.48, 0.84) (−0.54, 0.068, 0.84) – (−0.54, −0.76, 0.36)
5 (0.33, 0.47, 0.82) (0.24, −0.48, −0.84) (−0.54, 0.068, −0.84) (−0.54, −0.76, −0.36) –

TABLE III. The table of ζab0

b

a 2 3 4 5

1 −3.14þ 0.36γ 0.68þ 0.36γ 5.05þ 0.36γ 5.05þ 0.36γ
2 – 5.05 − 0.59γ −5.93 − 0.59γ −3.20 − 0.59γ
3 – – −2.81 − 0.59γ −5.54 − 0.59γ
4 – – – −4.37 − 0.59γ

4Our numerical algorithm is applicable to these alternative
choices of the Y map.

5For a spinor Z ¼ ðz1; z2Þ, JZ ¼ ðz̄2;−z̄1Þ.
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Using the integral expression of Pab, we can write the
amplitude as

hWjΨ0i¼
X
λjab

ψλj0;ζ0hWjjλjab;n⃗abi

¼
X
λjab

ψλj0;ζ0

Z
SLð2;CÞ5

Y
a

dga

Z �Y
a>b

dλjab
π

dz̃ab

�
eλS;

ð9Þ

with the spinfoam action S (without the scaling parameter
λ) given by

Sðj; g; zÞ ¼
X
a>b

½2jab logðhJξab; ZabihZba; ξbaiÞ

− ð1þ iγÞjab log hZab; Zabi
− ð1 − iγÞjab log hZba; Zbai�: ð10Þ

After gauge fixing g1 ¼ 1, the action is a function of four
SLð2;CÞ elements ga; ða ¼ 2…5Þ, ten spinors zab, and ten
area variables jab. Explicitly, we parametrize each SLð2;CÞ
element by six real parameters as

g ¼

0
BB@

1þ x1þiy1ffiffi
2

p x2þiy2ffiffi
2

p

x3þiy3ffiffi
2

p 1þx2þiy2ffiffi
2

p x3þiy3ffiffi
2

p

1þx1þiy1ffiffi
2

p

1
CCA; ð11Þ

and we parametrize each spinor by two real parameters in a
way that

z ¼ ð1; xþ iyÞ: ð12Þ

Each group variable is parametrized by six real parameters,
and each spinor variable is parametrized by two real
parameters. As such, the action S is a function depending
on 54 real parameters.

In this parametrization, the measure of the spinor dz
becomes

dz ¼ dxdy;

and the Haar measure dg of SLð2;CÞ is expressed as (see
Appendix A in [55])

dg ¼ 1

128π4
dx1dx2dx3dy1dy2dy3

j1þ xþiyffiffi
2

p j2 :

The amplitude (9) is indeed a superposition of multiple
44-dimensional integrals

hWjΨ0i ¼
X
jab

ψλj0;ζ0

Z
dϕUðj;ϕÞeλSðj;ϕÞ; ð13Þ

where ϕ stands for 44 real variables parametrizing g and z,
and

Uðj;ϕÞ ¼ 1

ð128π4Þ4
�Y

a>b

−
dλjab
π

ðhZab;ZabihZba;ZbaiÞ−1
�

×
Y
a

1

jðgaÞ1;1j2
:

C. Spinfoam propagator

Following the boundary formalism, the expectation value
of an observable Ô is defined by

hÔi ¼ hWjÔjΨ0i
hWjΨ0i

:

The spinfoam propagator Gabcd
mn is constructed as [5,7–9]

TABLE IV. Each cell indicates a spinor ξab corresponding to a 3-normal of a tetrahedron.

b

a 1 2 3 4 5

1 – (0.71, 0.71) (0.71, −0.24þ 0.67 i) (0.95, −0.17 − 0.25 i) (0.30, −0.55 − 0.78 i)
2 (0.71, −0.71) – (0.71, 0.59þ 0.39 i) (0.86, 0.48 − 0.16 i) (0.51, 0.82 − 0.27 i)
3 (0.71, 0.24 − 0.67 i) (0.71, 0.17þ 0.69 i) – (0.86, −0.31þ 0.40 i) (0.51, −0.53þ 0.68 i)
4 (0.30, 0.55þ 0.78 i) (0.96, 0.13 − 0.25 i) (0.96, −0.28þ 0.035 i) – (0.83, −0.33 − 0.46 i)
5 (0.95, 0.17þ 0.25 i) (0.28, 0.43 − 0.86 i) (0.28, −0.95þ 0.12 i) (0.57, −0.48 − 0.67 i) –
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Gabcd
mn ¼ hWjEa

n · Eb
nEc

m · Ed
mjΨ0i

hWjΨ0i
−
hWjEa

n · Eb
njΨ0i

hWjΨ0i
hWjEc

m · Ed
mjΨ0i

hWjΨ0i

¼
P

jabψλj0;ζ0hWjEa
n · Eb

nEc
m · Ed

mjjλjab; n⃗abiP
jabψλj0;ζ0hWjjλjab; n⃗abi

−
P

jabψλj0;ζ0hWjEa
n · Eb

njjλjab; n⃗abiP
jabψλj0;ζ0hWjjλjab; n⃗abi

P
jabψλj0;ζ0hWjEc

m · Ed
mjjλjab; n⃗abiP

jabψλj0;ζ0hWjjλjab; n⃗abi
: ð14Þ

where Ea
n · Eb

n is the spatial metric operator at the nth tetrahedron. By definition, each flux operator Ea
b
i can

only act on the corresponding face state jλjab; n⃗bai. Thus we can explicitly express hWjEa
n · Eb

nEc
m · Ed

mjjλjab; n⃗abi,
hWjEa

n · Eb
njjλjab; n⃗abi, and hWjEc

m · Ed
mjjλjab; n⃗abi in integral forms by inserting Ea

b
i into Pab. Since Pab appears in the

amplitude under the condition a > b,6 the operator Ea
b and the operator E

b
a are inserted in Pab in two different ways. When

inserting Ea
b
i into the right-hand side of Eq. (7), the Pab becomes

Qa
b
i ≡ hλjab;−n⃗abjY†g−1a gbYðEa

bÞijλjab; n⃗bai

¼ dλjab
π

Z
CP1

dz̃abhZba; Zbai−ð1−iγÞλjabhZab; Zabi−ð1þiγÞλjab × hJξab; Zabi2λjabhZba; ξbai2λjabλjabγ
hσiZba; ξbai
hZba; ξbai

: ð15Þ

If inserting Eb
a
i into the right hand side of Eq. (7), the Pab becomes

Qb
a
i ≡ hλjab;−n⃗abjðEa

bÞi†Y†g−1a gbYjλjab; n⃗bai
dλjab
π

Z
CP1

dz̃abhZba; Zbai−ð1−iγÞλjabhZab; Zabi−ð1þiγÞλjab

× hJξab; Zabi2λjabhZba; ξbai2λjabð−λjabγÞ
hJξab; σiZabi
hJξab; Zabi

: ð16Þ

Defining

Ai
ab ¼ γλjab

hσiZba; ξbai
hZba; ξbai

; Ai
ba ¼ −γλjab

hJξba; σiZbai
hJξba; Zbai

; ð17Þ

we have

Qb
a
i ¼ PabAi

ab; Qa
b
i ¼ PabAi

ba: ð18Þ

Then we obtain the following integral expressions of the ingredients in (14)

hWjEa
n · Eb

nEc
m · Ed

mjΨ0i ¼
X
jab

ψλj0;ζ0

Z
dϕUðj;ϕÞ½Aanðj;ϕÞ · Abnðj;ϕÞ�½Acmðj;ϕÞ · Admðj;ϕÞ�eλSðj;ϕÞ; ð19Þ

hWjEa
n · Eb

njΨ0i ¼
X
jab

ψλj0;ζ0

Z
dϕUðj;ϕÞAanðj;ϕÞ · Abnðj;ϕÞeλSðj;ϕÞ; ð20Þ

hWjEc
m · Ed

mjΨ0i ¼
X
jab

ψλj0;ζ0

Z
dϕUðj;ϕÞAcmðj;ϕÞ · Admðj;ϕÞeλSðj;ϕÞ: ð21Þ

D. Large spin approximation

Equations (19), (20), and (21) are all expressed as summations of the Jab ≡ λjab in the domain of non-negative half
integers. This type of the summation can be rewritten as

6We assume a is always greater than b here.
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X
J∈Zþ

2
∪0

fðJÞ ¼ 1

2

X
J∈Z

fðjJ=2jÞ þ 1

2
fð0Þ

¼ 2
X
k∈Z

Z
∞

0

dJfðJÞe4πikJ þ 1

2
fð0Þ; ð22Þ

where use of the Poisson summation formula is made in the
second step. Applying this formula to (19)–(21), the term
1
2
fð0Þ is exponentially small when all the λj0ab are large in

ψλj0;ϕ0
because the term contains a Gaussian peaked at

jab ¼ j0ab. By neglecting 1
2
fð0Þ, (19)–(21) are expressed

as integrals

hWjΨ0i ¼ ð2λÞ10
X

fkabg∈Z10

Z
∞

0

d10j
Z

dϕUe−λS
ðkÞ
tot ; ð23Þ

hWjEa
n · Eb

nEc
m · Ed

mjΨ0i

¼ ð2λÞ10
X

fkabg∈Z10

Z
∞

0

d10j

×
Z

dϕUe−λS
ðkÞ
tot ðAan · AbnÞðAcm · AdmÞ; ð24Þ

hWjEa
n · Eb

njΨ0i

¼ ð2λÞ10
X

fkabg∈Z10

Z
∞

0

d10j
Z

dϕUe−λS
ðkÞ
tot ðAan · AbnÞ;

ð25Þ

hWjEc
m · Ed

mjΨ0i

¼ ð2λÞ10
X

fkabg∈Z10

Z
∞

0

d10j
Z

dϕUe−λS
ðkÞ
tot ðAcm · AdmÞ;

ð26Þ

with the total action SðkÞtot written as

SðkÞtot ¼ Stot þ 4πi
X
a>b

jabkab; ð27Þ

Stot ¼ i
X
ab

ζab0 ðjab − j0abÞ

þ
X
ab;cd

αðabÞðcdÞ
jab − j0abffiffiffiffiffiffiffiffi

j0ab
p jcd − j0cdffiffiffiffiffiffiffiffi

j0cd
p − Sðj;ϕÞ; ð28Þ

where S is given in (10). Recall that when λjab ∈ Z=2, λS is
defined up to 2πiZ because it contains logarithms which
are multivalued, so eλS is single valued. Nonetheless, when
replacing the sums over jab by the integral

R
d10j, eλS

becomes multivalued since jab becomes continuous. The

integrands in (23)–(26) are understood as being defined on
the covering space of the logarithms in S, while the
integration domain of

R
dϕ is in the principle branch

ImðlogðxÞÞ ∈ ð−π; π� of the covering space.

The critical point of SðkÞtot satisfies the following equations

ReðStotÞ ¼ 0; ∂jabStot ¼ −4πikab; ∂ϕS ¼ 0: ð29Þ

The real part of the second equation above implies
jab ¼ j0ab at the critical point (α has a positive definite
real part). Then, ReðStotÞ ¼ ReðSÞ ¼ 0 and ∂ϕS ¼ 0 are
the standard critical equations extensively studied in the
asymptotics of 4-simplex amplitude (see e.g., [15,19]).
Given the boundary data in Sec. II A, there are
two solutions (up to gauge freedom) of ReðSÞ ¼ 0 and
∂ϕS ¼ 0 in the integration domain, corresponding to the
Lorentzian 4-simplex geometry with opposite orienta-
tions. The 4-simplex geometry is consistent with the
boundary data in Sec. II A. We denote these two solutions
by ðj0;ϕ0Þ and ðj0;ϕ0

0Þ.
In order for Eq. (29) to have a solution, we demand that

ζab0 in Table III satisfies the following relation

iζab0 ¼ ∂Sðj;ϕÞ
∂jab

����
j0;ϕ0

: ð30Þ

Here, ζab0 is defined modulo 4πZ in ψλj0;ζ0 when
λjab; λj0ab ∈ Z=2. When we replace the sums over jab
by integrals over continuous jab, this 4πZ gauge symmetry
is broken in each integral, so we fix the values of ζab0 as in
Table III.
The ζab0 satisfying (30) gives ∂jabStot ¼ 0 at one solution

ðj0;ϕ0Þ and ∂jabStot ≠ 0 but ∂jabStot ∉ 4πZ at the other
solution ðj0;ϕ0

0Þ.7 Therefore, any kab ≠ 0 leads to Eq. (29)
with no solution. When λ is large, the integrals in (23)–(26)
are suppressed exponentially, unless all kab ¼ 0. When
kab ¼ 0, Eq. (29) has a unique solution ðj0;ϕ0Þ, which is
the critical point of the integral.
Furthermore, because of the Gaussian in ψλj0;ζ0 , the

integrals (23)–(26) are dominant in the neighborhood
where jab is close to the j0ab. When λ is large, we can
approximate the

R∞
0 in these integrals to

R∞
−∞, while their

differences are exponentially suppressed.
We rewrite (23)–(26) as below:

hWjΨ0i ≃
Z

∞

−∞
d10j

Z
dϕŨe−λStot ; ð31Þ

7The spinfoam action S ¼ i
P

a>b jabð�γΘab þ 2θabÞ at two
solution [15]. Θab are the dihedral angles of the 4-simplex, and
θab ¼ ψab − ψba give the overall phase of the asymptotics. When
we set ζab0 ¼ γΘab þ 2θab, we have ∂jabStot ¼ 0 at one solution
and ∂jabStot ¼ 2γΘab ∉ 4πZ at the other solution.
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hWjEa
n · Eb

nEc
m · Ed

mjΨ0i

≃
Z

∞

−∞
d10j

Z
dϕŨe−λStotðAan · AbnÞðAcm · AdmÞ; ð32Þ

hWjEa
n ·Eb

njΨ0i≃
Z

∞

−∞
d10j

Z
dϕŨe−λStotðAan ·AbnÞ; ð33Þ

hWjEc
m · Ed

mjΨ0i ≃
Z

∞

−∞
d10j

Z
dϕŨe−λStotðAcm · AdmÞ;

ð34Þ

where Ũ ≡ ð2λÞ10U. Our numerical program computes
expectation values

hWjEa
n · Eb

nEc
m · Ed

mjΨ0i
hWjΨ0i

;
hWjEa

n · Eb
njΨ0i

hWjΨ0i
;

hWjEc
m · Ed

mjΨ0i
hWjΨ0i

ð35Þ

by their approximate integral expressions in (31)–(34).
Comparing to the original definition in (14), we have
neglected 3 types contributions, 1

2
fð0Þ in (22), kab ≠ 0, andR

0
−∞ djab, that are exponentially suppressed when λ is large.
In order to apply the method of Lefschetz thimble, in

(31)–(34), we extend the integration domain of
R
dϕ on the

cover space beyond the principle branch to allow
ImðlogðxÞÞ ∈ ð−∞;∞Þ, so that

R
dϕ is along the integra-

tion cycle connecting to the infinity of the cover space.
Equations (31)–(34) have no critical point beyond the
principle branch (by fixing the values of ζab0 ). Therefore,
extending the integrals only add contributions that are
exponentially suppressed at large λ.

E. Critical point

Finding the critical point of the total action Stot is
important for both the asymptotic expansion method and
our Lefschetz thimble method. The action Stot has only
one critical point corresponding to the aforementioned
4-simplex geometry. As the solution to the critical equa-
tions ReðStotÞ ¼ 0, ∂ϕStot ¼ 0, and ∂jStot ¼ 0, the critical
values of the group elements g0a; ða ¼ 2…5Þ are the spinor
representations of the Lorentz transformations converting
N2 � � �N5 in (3) to (1, 0, 0, 0).8 Table V lists the explicit
values of g0a; ða ¼ 2…5Þ.
Having had the critical values of the group elements, we

can plug them into the critical equations ReðStotÞ ¼ 0,
which is equivalent to

jξabi ¼
eiψab

kZabk
g†ajzabi; and jJξbai ¼

eiψba

kZbak
g†bjzabi;

ð36Þ

with kZabk ¼ jhZab; Zabij1=2, in order to determine the
spinors zab and the phase factors ψba, ψab. The normalized
components of the spinors zab are recorded in Table VI.
Based on the critical g0ab and z0ab, we apply our

parametrizations (11) and (12) but left them centered at
the critical point:

g ¼ g0

0
B@

1þ x1þiy1ffiffi
2

p x2þiy2ffiffi
2

p

x3þiy3ffiffi
2

p 1þx2þiy2ffiffi
2

p x3þiy3ffiffi
2

p

1þx1þiy1ffiffi
2

p

1
CA; and

z ¼ ð1; z0 þ xþ iyÞ; ð37Þ

TABLE VI. Each cell indicates a spinor z0ab.

b

a 1 2 3 4 5

1 – (1, 1) (1, −0.333þ 0.942 i) (1, −0.184 − 0.259 i) (1, −1.817 − 2.569 i)
2 (1, 1) – (1, 0.685 − 0.729 i) (1, 1.857þ 0.989 i) (1, 0.420þ 0.223 i)
3 (1, 0.333 − 0.943 i) (1, 0.685 − 0.729 i) – (1, 0.313þ 2.080 i) (1, 0.071þ 0.470 i)
4 (1, −0.184 − 0.259 i) (1, 1.857þ 0.989 i) (1, 0.313þ 2.080 i) – (1, 0.058þ 0.082 i)
5 (1, −1.817 − 2.569 i) (1, 0.420þ 0.223 i) (1, 0.071þ 0.470 i) (1, 0.058þ 0.082 i) –

TABLE V. Each cell of the table is the critical point of ath group element.

a 1 2 3 4 5

g0a
�
1 0

0 1

� �
0.18i 1.01i
1.01i 0.18i

� �
0.18i 0.96 − 0.34i

−0.96 − 0.34i 0.18i

� �
1.01i −0.48 − 0.34i

0.48 − 0.34i −0.65i

� �
−0.65i −0.48 − 0.34i

0.48 − 0.34i 1.01i

�

8More details are found in [26,55].
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where g0 stands for the critical value of the group variable
in Table V and z0 is the second component of the spinor
variable in Table VI. When all the parameters are zero, the
group variables and spinors take their critical values.
To conclude, here comes two main points of this section:

first, the total action Stot in (27) depends on 54 real
parameters, and specifically we parametrize the four group
variables ga and the ten spinor variables zab as (37).
Second, the spinfoam propagator Gabcd

mn can be computed
by the integrals (31)–(34). In the next section, we will show
the algorithm to evaluate these integrals.

III. THEORY AND ALGORITHM

The total action Stot is a complex valued, such that the
integrands in (31)–(34) are highly oscillatory, especially
when λ is large. This fact plagues the attempts of using the
conventional Monte-Carlo method to compute the spin-
foam propagator. In this section, we review how to use
Picard-Lefschetz theory to transform these types of inte-
grals to be nonoscillatory (see e.g., [37,39] for reviews),
and we present the algorithm that combines the thimble and
MCMC methods and can compute the expectation value of
an observable when the action is complex valued.

A. Lefschetz thimble

The thimble method is a high-dimensional generalization
the elementary saddle point integration along the steepest
descent. The thimble method can be further generalized as
follows.
The starting point of computing the integral

A ¼
Z

dnxfðx⃗Þe−Sðx⃗Þ; ð38Þ

is to analytically continue both fðx⃗Þ and Sðx⃗Þ to be
holomorphic functions f̂ðz⃗Þ and Ŝðz⃗Þ, such that (38)
becomes an integral of analytic functions f̂ðz⃗Þ and Ŝðz⃗Þ
of complex variables on the real domain

A ¼
Z
Rn

dnzf̂ðz⃗Þe−Ŝðz⃗Þ; ð39Þ

where dnzf̂ðz⃗Þe−Ŝðz⃗Þ is a holomorphic n form restricted
on Rn.
The Picard-Lefschetz theory shows that the integral A

can be decomposed into a linear combination of integrals
over real n-dimensional integral cycles J σ; σ ¼ 1; 2; 3;…Z

Rn
dnzf̂ðz⃗Þe−Ŝðz⃗Þ ¼

X
σ

nσ

Z
J σ

dnzf̂ðz⃗Þe−Ŝðz⃗Þ; ð40Þ

when Rn is homologically equivalent to
P

σ nσJ σ . The
holomorphic n form dnzf̂ðz⃗Þe−Ŝðz⃗Þ is restricted in a class of
J σ on the right-hand side. This decomposition is given by

the n-dimensional real submanifolds J σ, each attached to a
critical point pσ satisfying ∂zŜðpσÞ ¼ 0.9 Each J σ, called a
Lefschetz thimble, is a union of SD paths that are solutions
to the SD equations

dza

dt
¼ −

∂ ¯Ŝðz⃗Þ
∂z̄a ; ð41Þ

and falls to the critical point pσ when t → ∞. Here we call t
the flow time.
Since

dŜ
dt

¼ ∂Ŝ
∂za

dza

dt
¼ −

���� ∂Ŝ∂za
����2; ð42Þ

ReðŜÞ monotonically decreases along each SD path and
approaches its minimum at the critical point, while ImðŜÞ is
conserved along each path. Thus, on each thimble J σ ,Z
J σ

dnzf̂ðz⃗Þe−Ŝðz⃗Þ ¼ e−iImðŜðpσÞÞ
Z
J σ

dnzf̂ðz⃗Þe−ReðŜðz⃗ÞÞ ð43Þ

becomes a nonoscillatory integral times a constant phase
e−iImðŜðpσÞÞ. On J σ , ReðŜÞ grows when moving far away
from the critical point, so the integrand is exponentially
suppressed at the infinity, and the integral on J σ is
convergent.
The Lefschetz thimbles fJ σg presents a good basis of

relative homology group for the integral (43) [60]. Using
this basis, the integral (40) is valid for a specific set fnσg of
the weights of the thimbles. Consider f̂ as an observable.
The expectation value hfi is given by

hfi ¼
R
Rn dnzf̂ðz⃗Þe−Ŝðz⃗ÞR

Rn dnze−Ŝðz⃗Þ
¼
P

σnσ
R
J σ

dnzf̂ðz⃗Þe−Ŝðz⃗ÞP
σnσ

R
J σ

dnze−Ŝðz⃗Þ
: ð44Þ

Aweight nσ is the intersection number between the original
integration cycleRn and the manifold of the steepest ascent
(SA) paths approaching the critical point pσ as t → ∞. The
SA paths are solutions to the SA equations

dza

dt
¼ ∂Ŝðz⃗Þ

∂za : ð45Þ

Along each SA path, ReðŜÞ monotonically increases and
approach the maximum at the critical point, while ReðŜÞ
is conserved along the path. Computing these weights
are challenging in general (see e.g., [61,62] for some
recent progresses). Nevertheless, in the cases where one
of the thimble, denoted by J σ0, dominates the integral,

9We do not impose ReðŜÞ ¼ 0 for critical points in the
complex space.
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we may neglect the contribution of other thimbles and
reexpress (44) as

hfi ≃
nσ0e−iImðSðpσ0 ÞÞ

R
J σ0

dnzf̂ðz⃗Þe−ReðŜðz⃗ÞÞ
nσ0e−iImðSðpσ0 ÞÞ

R
J σ0

dnze−ReðŜðz⃗ÞÞ

¼
R
J σ0

dnzf̂ðz⃗Þe−ReðŜðz⃗ÞÞR
J σ0

dnze−ReðŜðz⃗ÞÞ
; ð46Þ

which can be considered as a mean value provided by a
sampling on the thimble J σ0 with a Boltzmann factor
e−ReðŜðz⃗ÞÞ. Then, it is possible to use the MCMC method to
numerically compute hfi. Each integral involved in the
spinfoam propagator has a single critical point in its
integration domain. The Lefschetz thimble of the critical
point is dominant. Thus the computation of the spinfoam
propagator is the case where Eq. (46) applies.

B. Thimbles generated by flows

As the first step to apply the Lefschetz thimble frame-
work to numerics, we need to find the Lefschetz thimble
J σ for a given critical point pσ [Fig. 1(a)]. By definition,
one might try to decide if a point is on the thimble by
checking if it falls to pσ after flowing infinitely long time
described by the SD equation; however, it is hard in
practice due to the infinite flow time. Naively, we might
also use pσ as the initial point and using SA equation to
generate the thimble as the union of the paths going away
from the pσ , but this way is also problematic because pσ is
a fixed point of the SA equation.
We follow the method reviewed in [39] to bypass the

difficulty of generating J σ numerically. We consider a
small real n-dimensional neighborhood Vσ of the critical
point pσ and a slightly different integral cycle denoted by

Ĵ σ. Ĵ σ is the union of solutions to the SD equations (41)
flowing to Vσ after infinite time evolution. Ĵ σ has also real
n dimensions. Ĵ σ is a good approximation of the true
thimble J σ when the size of Vσ is small, as all the SD paths
on Ĵ σ connect with Vσ. Ĵ σ [Fig. 1(b)] approaches J σ

when Vσ shrinks to the critical point pσ. Since the integrand
is analytic, and Ĵ σ is a deformation of J σ, the integral

Z
Ĵ σ

dnzf̂ðz⃗Þe−Ŝðz⃗Þ ð47Þ

is the same as (43); however, since ImðŜÞ is no longer
constant in Ĵ σ , the above integral becomes oscillatory in
contrast to the integral on J σ . If Vσ is small enough,
however, the fluctuation of the ImðŜÞ on Ĵ σ is so small that
the oscillation of the integral is weak enough to keep the
Monte-Carlo method accurate.
Since infinite time evolution is involved, finding the

entire Ĵ σ is not numerically practical. A practical integral
cycle J̃ σ is the union of the solutions to the SD equa-
tions (41) falling to Vσ after finite but sufficiently long flow
time. The thimble J̃ σ approaches Ĵ σ when the flow time is
infinite. Similar to the method in [61], we can find the
approximate J̃ σ in an inverse process. Namely, we choose
a small real n-dimensional neighborhood Vσ of the critical
point, and flow upward from points in Vσ according to the
SA equation with a finite time T. The end points of these
flows form a real n-dimensional manifold J̃ σ (Fig. 1). The
thimble J̃ σ does not reach the infinity of the Lefschetz
thimble J σ. The size of J̃ σ depends on the choice of T.
Our two-step approximation of J σ is illustrated in the

following diagram:

FIG. 1. (a) A Lefschetz thimble J σ (purple surface) is the union of all the SD paths falling to the critical point pσ (red dot) when
t → ∞. (b) Ĵ σ (green transparent surface) is defined as the union of points that can flow to Vσ (green disk at the bottom) after an infinite
time evolution by the SD equation. For example, the cross sections of Ĵ σ (illustrated by the blue, yellow, and red circles in Ĵ σ) flow to
the cross sections in Vσ (blue, yellow and red circles in the green disk). (c) J̃ σ (red transparent surface) is generated by upward flowing
every points in Vσ with a finite time evolution by the SA equation. The cross sections in Vσ (blue, yellow, and red circles in the green
disk) flow upward to the cross sections in J̃ σ (blue, yellow, and red circles in J̃ σ).

HAN, HUANG, LIU, QU, and WAN PHYS. REV. D 103, 084026 (2021)

084026-10



J σ !FixVσĴ σ !FixTJ̃ σ:

In the first step, we use the Ĵ σ as the union of all the
steepest decent paths falling to Vσ to approximate J σ. In
our computation, we set the size of Vσ by setting a tolerance
of the fluctuation of the ImðŜÞ on Ĵ σ . In the second step,
we use J̃ σ as the union of the finitely evolved steepest
ascent paths starting from the points in Vσ to approximate
Ĵ σ. Thus, the longer T and smaller Vσ are, the better
approximation of J σ is achieved as Ĵ σ.
Another remark is that in the second step of the

approximation, making J̃ σ very large is actually unnec-
essary. When computing (47), we sample the points on the
thimble with the probability distribution e−ReðSÞ, and the
contributions to the integral from points far away from
the critical point are exponentially suppressed. Thus, we
can choose the T parameter, which provides sufficiently
large J̃ σ containing points that contribute dominantly to
(47), while ensuring increasing T only add negligible
contribution to the integral. The result should converge
when further increasing T. In fact, experiences from our
computation and other existing results [39,42,63] suggest
even T < 1 is sufficient to result in good accuracy.
The choice of real n-dimensional Vσ depends on the

local behavior of the SA equations (45) around the critical
point pσ. Consider a small holomorphic variation
ωk ¼ δzk, we linearize (45):

dωk

dt
¼ ∂2Ŝ

∂zk∂zl · ω
l: ð48Þ

In the neighborhood of pσ ,
∂2Ŝ

∂zk∂zl can be approximated

by the Hessian H̄ of Ŝðz⃗Þ at pσ , and solution of (48) is
given by

ω ¼
X2n
a¼1

eλ
atωa;

where λa and ωa are the eigenvalues and the corresponding
eigenvectors of the generalized eigenvalue equation:

Hω ¼ λω̄: ð49Þ

Using the Takagi factorization [64], we convert (49) to a
real 2n-dimensional eigenvalue equation:

�
HR HI

HI −HR

��
ωR

ωI

�
¼ λ

�
ωR

ωI

�
; ð50Þ

where HR and HI are the real and imaginary parts of the
HessianH. The eigenvalues λ in (50), which are equivalent

to λ in (49), come in pairs f�λig. The eigenvectors
ðωiR;ωiIÞ, called the Takagi vectors, can reconstruct the
eigenvectors fωig by

ωi ¼ ωiR þ iωiI:

The flow given by (45) is repulsive along the eigenvectors
ωa with positive eigenvalues, and is attractive along the
eigenvectors ωa with negative eigenvalues. The paths along
the attractive directions converge to the critical point pσ, so
they are not the paths that can form J̃ σ. Only the paths
flowing along the repulsive directions can form J̃ σ . We
denote ω̂a as the normalized eigenvectors with positive
eigenvalues. The space V̂σ understood as a local neighbor-
hood in the z⃗-coordinate chart at pσ is expressed as

V̂σ ¼
�
z⃗jz⃗ ¼

Xn
a¼1

ω̂ixi þ z⃗σ; each xi ∈ R is small

	
; ð51Þ

where z⃗σ are coordinates of pσ . V̂σ turns out to be the best
choice of Vσ.
By δzk ¼ ð∂zk=∂xiÞδxi for the coordinates fxig on V̂σ,

and assuming dδxi=dt ¼ 0, Jki ≡ ∂zk=∂xi satisfies the same
equation as (48), i.e.,

dðJki Þt
dt

¼
Xn
l¼1

∂2Ŝ
∂zk∂zlðJ

l
iÞt: ð52Þ

The solution Jt is the Jacobian matrix of a flow of
coordinate changes from fxig to fzig. The initial condition
J0 is the constant n × n matrix, whose columns are the
vectors ω̂a. In what follows, J ≔ JT is the Jacobian for
changing from fxig to fzig on J̃ σ.
By the coordinate change, for any holomorphic function

ψðzÞ, its integral on J̃ σ can be expressed by the integral of
fxig in V̂σZ

J̃ σ

dnzψðzÞ ¼
Z
V̂σ

dnx detðJðxÞÞψðzðxÞÞ: ð53Þ

In the active point of view, for a fixed flow time T, every
point in V̂σ flows upward to J̃ σ according to the SA
equation (45). We define the local diffeomorphism

CT∶ V̂σ → J̃ σ;

that can map the initial point p ∈ V̂σ to the end point
CTðpÞ ∈ J̃ σ of the SA path with the finite evolution time T.
The coordinate change from fxig to fzig is induced by CT.
As a result, for any given observable f, its expectation

value can be computed by

SPINFOAM ON A LEFSCHETZ THIMBLE: MARKOV CHAIN … PHYS. REV. D 103, 084026 (2021)

084026-11



hfi ≃
R
J̃ σ

dnzf̂ðzÞe−ŜðzÞR
J̃ σ

dnze−ŜðzÞ

¼
R
V̂σ

dnx detðJðxÞÞf̂ðCTðxÞÞe−ŜðCT ðxÞÞR
V̂σ

dnx detðJðxÞÞe−ŜðCT ðxÞÞ
;

¼
R
V̂σ

dnxeiðargðdetðJÞÞ−ImðŜÞÞf̂e−ReðŜÞþlogðj detðJÞjÞR
V̂σ

dnxeiðargðdetðJÞÞ−ImðŜÞÞe−ReðŜÞþlogðj detðJÞjÞ ; ð54Þ

where in the second step we apply (53). Note that detðJÞ
is a complex number, and that logðdetðJÞÞ is given by
logðj detðJÞjÞ þ i argðdetðJÞÞ.
We define ReðŜÞ − logðdetðJÞÞ≡ Seff as the purely real

effective action. For any observable O, we define its
expectation with respect to the effective action as

hOieff ¼
R
V̂σ

dnxOe−SeffR
V̂σ

dnxe−Seff
: ð55Þ

We define argðdetðJÞÞ − ImðŜÞ as the residual phase θres,
and rewrite (54) as

hfi ≃
R
V̂σ

dnxf̂eiθres e−SeffR
V̂σ

dnxe−Seff
×

R
V̂σ

dnxe−SeffR
V̂σ

dnxeiθrese−Seff
¼ heiθres f̂ieff

heiθresieff
:

ð56Þ

Note that ImðŜðz⃗ÞÞ is not a constant in V̂σ . The fluctuation
of ImðŜðz⃗ÞÞ tends to vanish when shrinking V̂σ. In our
computation, we set a maximal tolerance E of the
fluctuation of ImðŜðz⃗ÞÞ. The tolerance determines the
size of V̂σ, such that at any point p ∈ V̂σ ,
jImðŜðpÞÞ − ImðŜðpσÞÞj ≤ E. Similarly, argðdetðJÞÞ does
not have strong fluctuation in our case of the spinfoam
expectation values. When the integrands are weakly oscil-
latory functions, both heiθres f̂ieff and heiθresieff can be
accurately computed by the MCMC method.

C. DREAM Algorithm

By now, we have converted the problem of computing
hfi to the problem of how to sample on the tangent space
V̂σ0 with a Boltzmann factor e−Seff to compute heiθresieff and
hf̂eiθresieff . The latter problem can be numerically solved by
MCMC method [43].
The MCMC method is a class of algorithms designed

for sampling from a posterior probability distribution
e−Seff . Each Markov chain can be regarded as generated
by a random ‘walker’ moving in the integration
domain. In general, in each step of the “walker,”
MCMC methods use the accept/reject scheme to adjust
the transition distribution that dictates the orientation

and the length of the step, such that the points sampled
by the “walker” converge to a desired posterior dis-
tribution after a “long march.”
Since in our computation of the integrals (31)–(34), e−Seff

is high-dimensional and complicated, we choose a MCMC
method—the DREAM [46,65]. The DREAM algorithm
has not been combined with the Lefschetz thimble method
in the literature.
The DREAM algorithm runs multiple Markov chains in

parallel. This algorithm is able to sample in different
regions of the integration domain simultaneously. In case
that Seff has some local minima other than the critical point
(global minimum), unlike the one-chain scheme, this
multichain scheme prevents a sampling procedure from
being trapped in the neighborhood of any local minimum
[46]. Besides, this multichain scheme is more adaptable to
the architecture of high performance computers designed
for multitasking.
The performance of a MCMC method also depends on

the quality of the candidates of each update provided by the
method. On the one hand, at each update, if a candidate is
too far from the current location of the chain, the candidate
is rejected and wastes the computation resource. On the
other hand, if a candidate is too close to the current location
of the chain, although it is highly probable to be accepted,
the Markov chain may take numerous updates to explore
the whole integration domain. In order to balance the
progress of the chain in each step and a reasonable
acceptance rate, the DREAM algorithm possesses the
following features
(1) At each update, the DREAM algorithm uses a

genetic algorithm to provide a candidate for each
chain based on the current location of other chains.

(2) Similar to the Gibbs sampling, the DREAM algo-
rithm does not update all the components in one
update. Instead, it implements a randomized sub-
space sampling strategy. For each update of each
chain, the algorithm does not update all the compo-
nents of the sample. There is a probability, called the
crossover ratio CR, to decide whether a component
needs to be updated or not.

(3) The algorithm suggests to do test runs, called burn-in
runs, before the formal sampling. In the burn-in runs,
the crossover ratioCR and the parameters used in the
genetic algorithm are adapted. Furthermore, in the
burn-in runs, the unwanted chains can be removed
by using interquartile range method.

Explicitly, after a proper burn-in run, we can compute the
hfi in the following steps.
(1) Compute the Hessian of the action Ŝðz⃗Þ at the critical

point pσ. Use (50) to compute the basis vectors fω̂ig
of the thimble’s tangent space V̂σ . As claimed
before, the action Ŝðz⃗Þ is defined in Cn, and V̂σ is
real n dimensional.
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(2) Choose M points in Rn close to the critical point,10

and denote them as xð0Þ
s ; ðs ¼ 1;…;MÞ, where

the index (0) indicates the initial step. Then,

xð0Þ
s · ω̂; ðs ¼ 1;…;MÞ are the initial points of the

M Markov chains on V̂σ (some more details of our
choice of the initial points are shown in Sec. V).

(3) Generate CR from a given multinomial distribution
constructed in a burn-in run. Construct a n-element
series fuig, where each ui is drawn from a
uniform distribution Uð0; 1Þ. Then, construct a
n-dimensional vector v whose components are
given by

vi ¼
�
0 If ui > CR;

1 otherwise:

(4) Create xcands of each chain by

xcand
s ¼ xðt−1Þ

s þ v · ð1n þ eÞβðδ; d0Þ

×

�Xδ
j¼1

xðt−1Þ
R1ðjÞ −

Xδ
d¼1

xðt−1Þ
R2ðdÞ

�
þ ϵ;

s ¼ 1; � � �M; ð57Þ

where d0 is the total number of nonzero components
in v, δ is the number of the pairs used to generate
the candidates, and R1ðjÞ; R2ðdÞ ∈ f1;…;Mg, with
R1ðjÞ ≠ R2ðdÞ ≠ s for j ¼ 1; � � � δ and d ¼ 1;…; δ.
The values of ϵ and e are drawn from the Gaussian
distribution Nð0; b�Þ and uniform distribution
Uniformð−b; bÞ with jbj < 1, respectively. The
parameter b� is chosen to be very small compared
with the width of the target posterior distribution.
The scaling factor is βðδ; d0Þ. At every fifth gen-
eration, we set β ¼ 1. Denote the candidate update
for the sth chain, i.e., xcand

s · ω̂, as x̂cand
s .

(5) Compute x̃cand
s ¼ CTðx̂cand

s Þ as the candidate sample
on the thimble, and compute the corresponding
Jacobian by solving (48). Then, use the Jacobian
and x̃cand

s to compute Seffðx̂cand
s Þ.

(6) For each chain, construct an acceptance rate as

rðtÞs ¼ min

�
1;
eSeffðx̂cands Þ

eSeffðx̂
ðt−1Þ
s Þ

�
:

Nevertheless, the following two exceptions where
we let the rate become 0 exist:
(a) When jImðŜðx̂cand

s ÞÞ − ImðŜðx̂0
sÞÞj > E, where

E is the preset tolerance of the fluctuation
of ImðŜÞ.

(b) When numerically CTðx̂cand
s Þ cannot be accu-

rately computed.
The second exception is due to that the SA equations
become unstable when it flows to the region far from the
critical point; however, such far points contribute very little
to the final result due to the exponential suppression eReðŜÞ.
Hence, we ignore the contributions of such far points.
(7) Create a number a ∈ ½0; 1� from uniform distribu-

tion, and then use it to decide whether a candidate
can be accepted or not:

xðtÞs ¼
(
xcands If a < rðtÞs ;

xðt−1Þs otherwise:

(8) Return to step 3 until a sufficiently large number of
samples are collected.

(9) Use the collected samples to compute

hfi ¼ heiθres f̂ieff
heiθresieff

:

When we have a large number of samples, hOieff is
equivalent to arithmetic mean among the samples

hOieff ¼
X

samples

OðsampleÞ; ð58Þ

since the above procedure has produced the desired
probability distribution e−Seff for the samples.

We provide a more detailed discussion of the MCMC
methods in the Appendix. In order to perform better,
several optimizations exist, such as choosing a better the
flow-time T, effectively solving the SA equations to get CT ,
and properly tuning the multinomial distribution of CR and
the scale factor β during the burn-in runs. We provide the
details of these optimizations in Sec. V.

IV. SPINFOAM ON LEFSCHETZ THIMBLE

In the above section, we have described the general
algorithm of integrals on Lefschetz thimbles. In this section,
we apply the Lefschetz thimble to the spinfoam model.
We need to first complexify the spinfoam variables

jab; ga; zab and analytically continue the integrands in
(31)–(34). The analytic continuation makes g†a and hzabj
independent of ga and jzabi. Equivalently, using the para-
metrizations (11) and (12), we complexify x⃗ and y⃗ and
analytically continue the integrands to holomorphic func-
tions of x⃗ and y⃗. The spin variables jab are also com-
plexified, and the integrands are holomorphic in jab. The
real scaling parameter λ is kept real. The analytical
continuation render the integrands and in particular, the
action denoted by S̃tot, holomorphic functions of 54
complex variables. The thimble is a real 54-dimensional
submanifold in the space of complexified spinfoam10As suggested in [46],M should be greater than or equal to n.
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variables. Note that the analytic continuation of the
spinfoam integrand has been discussed in [18] (see
also [66]).
After analytical continuation, S̃tot may have more critical

points than Stot does. Complex critical points may exist in
addition to the real critical points discussed above. The
complex critical points are away from the real integration
domain, where the spinfoam integrals (31)–(34) are
defined. These spinfoam integrals admit decompositions
as in (40), where σs may contain both real and complex
critical points. A complex critical point pσ̃ contributes to
the integrals if nσ̃ ≠ 0; i.e., there exist SA paths approach-
ing pσ̃ from the space of real variables. Thus, nσ̃ ≠ 0

implies that ReðS̃totðpσ̃ÞÞ > 0 because on the space of
real variables, ReðS̃totÞ ¼ ReðStotÞ ≥ 0. Strictly positive
ReðS̃totðpσ̃ÞÞ implies that when the spinfoam integrals
are decomposed as in Eq. (40), J σ̃ contributes exponen-
tially small at large λ.
At large λ, the single geometrical critical point pgeo

dominates the spinfoam integrals (31)–(34), as discussed
in Sec. II E. Hence, the single Lefschetz thimble J geo

associated to pgeo dominates the decomposition (40) of the
spinfoam integrals. Therefore, (46) is applicable to the
expectation values in (35) at large λ. As a result, we pass
from (31)–(34) to integrals on J geo

hWjΨ0i ≃
Z
J geo

djdϕÛe−λŜtot ; ð59Þ

hWjEa
n · Eb

nEc
m · Ed

mjΨ0i

≃
Z
J geo

djdϕÛe−λŜtotðÂan · ÂbnÞðÂcm · ÂdmÞ; ð60Þ

hWjEa
n · Eb

njΨ0i ≃
Z
J geo

djdϕÛe−λŜtotðÂan · ÂbnÞ; ð61Þ

hWjEc
m · Ed

mjΨ0i ≃
Z
J geo

djdϕÛe−λŜtotðÂcm · ÂdmÞ; ð62Þ

where all Û; Ŝtot; Âan are holomorphic functions of com-
plexified spinfoam variables. The expectation values in (35)
reduce to the desired forms as hfi in (46) and can be
computed by MCMC methods.
Equations (59)–(62) capture the contributions of the

dominant critical point pgeo to (31)–(34) and include all
orders of perturbative 1=λ corrections. Namely, when we
expand (31)–(34) as 1=λ power series at the critical point
pgeo, under the stationary phase approximation, the power
series are the same as expanding (59)–(62) in 1=λ (see e.g.,
[47] for a general argument). Nevertheless, the approxi-
mation leading to (59)–(62) from (23)–(26) neglect the
contributions that are exponentially suppressed at large λ.
These contributions are (1) integrals with kab ≠ 0 in

(23)–(26), (2) extending some integrals to infinite such
as

R
djab and

R
dϕ on the cover space, and (3) the complex

critical points and corresponding Lefschetz thimbles.
What we have shown so far is that each quantity in (13),

(19)–(20) and the spinfoam propagator can be expressed as
the power series

P
s asð1λÞs plus contributions exponentially

suppressed [or namely suppressed faster than Oð1=λNÞ for
any integer N] at large λ. Equations (59)–(62) capture the
power series while neglecting the exponentially suppressed
contributions. The power series contain all the perturbative
quantum corrections. The exponentially suppressed con-
tributions may be called nonperturbative corrections, as
they contain the subdominant thimbles associated with the
complex critical points generated by the analytical con-
tinuation. In this language, Eqs. (59)–(62) capture all
perturbative quantum corrections in (13), (19)–(20) while
neglecting nonperturbative corrections.
It is known that in the traditional stationary phase

expansion, the computational complexity grows exponen-
tially when computing as—the coefficient of Oð1=λsÞ
correction—with larger s, so it is very difficult to sum
the power series

P
s asð1λÞs in the traditional approach. In

this sense, our method with the Lefschetz thimble is a
powerful way to compute the spinfoam propagator con-
taining perturbative quantum corrections to all orders.
Besides, similar to the idea in [38,47], we can consider

the integral (59) with the Lefschetz thimble as a new
definition of the spinfoam model. When generalizing to
arbitrary simplicial complex K, we define the spinfoam
model on Lefschetz thimble by

ZJ ¼
Z
J
djdϕÛKe−λŜK ; ð63Þ

where ŜK is the analytic continuation of the spinfoam
action on K [18]. Here,

R
dj integrates all internal spins,

and J is the Lefschetz thimble associated with a single
critical point. Applying the Lefschetz thimble to spinfoam
model has been proposed earlier in the context of coupling
to cosmological constant [67–69]. Equation (63) has the
advantage to focus on the contributions from a single
critical point and excludes other critical points. In particu-
lar, when J is the thimble of the critical point correspond-
ing to the Lorentzian Regge geometry, it excludes
contributions from vector geometries and the geometries
with flipping orientations (see e.g., [19,70] for the classi-
fication of critical points). In addition, Eq. (63) is a better
formulation from the computational point of view, as the
main point of this paper.
Given the critical point, the spinfoam model on

Lefschetz thimble has the same perturbative 1=λ expansion
as the usual definition of the spinfoam amplitude and in
particular has the same semiclassical limit as the usual
spinfoam amplitude, as shown in the numerical results in
Sec. VII. The small λ behavior of (63) is different the usual
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spinfoam amplitude because nonperturbative corrections
are not negligible at small λ.

V. OPTIMIZATIONS

In this section, we provide some technical details of the
optimizations used in our computation.

A. Optimizations of solving SA equations

One crucial step of our algorithm is to solve the SA
equation (45) for a given initial condition. For spinfoam
model, the action is written as λS̃tot after analytic continuion
[λS̃tot plays the role of Ŝðz⃗Þ]. The right-hand side of the SA
equation is proportional to the scaling parameter λ. The idea
of the ordinary differential equation (ODE) numerical
solvers is to use a difference equation to approach the
given differential equation. In our case, the difference
equation is given by

dza

dt
¼ λ

∂S̃tot
∂z̄a ∼ Δza ¼ λ

∂S̃tot
∂z̄a Δt;

where the Δza in the left hand side is supposed to be small
to bound the numerical error at each update. For a fixed
error tolerance in each time step, the time step Δt has to be
small at large λ, or at large j∂S̃tot=∂zaj. This fact has two
indications. First, at large λ, in order to keep the accuracy,
the total evolution can not be too long. Second, at large
j∂S̃tot=∂zaj, the numerical solver may be inaccurate.
In view of the first implication, we would let the total

evolution time T be an element of fτ=λjτ ∈ ½0.1; 1�g. In our
computation, we have λ ∈ ½102; 107� and set the tolerance
E ¼ 0.1=λ of the fluctuation of ImðŜtotÞ. The tolerance E
determines the shape and size of V̂σ . The value of T
determines the size the J̃ σ in which the MCMC method is
actually carried out. Thanks to the fast decaying e−λReðŜtotÞ
when the Markov chains are moving far from the critical
point pσ, we find that a relatively small T is sufficient to
generate a J̃ σ large enough, where the Markov chain can
sample all dominantly contributing points. The points
outside J̃ σ contribute exponentially small and are
neglected.
The second implication usually happens when the initial

point x is not close to the critical point. In this case, CTðxÞ is
very far away from the critical point and j∂S̃tot=∂zaj at
CTðxÞ will be large. The real part ReðS̃totÞ is large at CTðxÞ.
These points contribute exponentially small to the final
integral and are negligible. In our work, we use the
embedded Runge-Kutta-Fehlberg method to be the numeri-
cal solver of the steepest ascent equation (45).11 The solver
can automatically determine the step size based on the

given tolerance of the total error. In the accept/reject step of
the DREAM algorithm, we can directly reject a candidate
xcand if one of the following two events occurs in
solving CTðxcandÞ
(1) The adaptive ODE step size Δt is smaller than a

threshold.
(2) jImðS̃totðCTðxcandÞÞÞ − ImðS̃totðxcandÞÞj exceeds the

tolerance E.
To be concrete, we set the tolerance of the total error for
the ODE as 10−20, set the threshold for the smallest ODE
step size as 10−6, and the maximum error tolerance on the
imaginary part of the action as 0.1.

B. Optimizations of the DREAM

To make our sampling procedure in the DREAM
algorithm more efficient, we can optimize the choice initial
points, the evolution time T, and burn-in runs.

1. Optimizing the choice of the initial points

In our work, we use 108 parallel chains to run the
DREAM algorithm, so we need 108 initial points at the
beginning. Although in principle, the initial points can be
randomly chosen, a good choice may possibly reduce the
number of burn-in runs to save time and computational
resources. Our choice of the initial points is given by the
following scheme:
(1) Compute the basis vectors fω̂ig of the thimble’s

tangent space,
(2) For each ω̂i, use enumeration method to find a

number ηi so that Seffðηiω̂iÞ is valued in between 1
and 0.1,

(3) Use f�ηiω̂i; i ¼ 1;…; 54g as the initial points.
Since we treat e−Seff as a Boltzmann factor, we can consider
Seff as the energy. By this scheme, our choice covers more
directions and synchronizes the energy of the initial points.

2. Optimizing the flow time T

The flow time T is an undetermined parameter of the
algorithm. The setting of T cannot be too large or too small.
If T is too small, the fluctuation of ImðS̃totÞmay be too large
to keep the result accurate. If T is too large, only a very
small portion of V̂σ contributes to the integrals because
e−Seff decays faster at larger T. Then the shape of the target
distribution e−Seff is too sharp when T is too large. In
principle, in contrast to the “moderate” distributions, this
sharp distribution can only be approximated by a longer
Markov chain. In other words, too large T make the
algorithm less efficient. In practice, we suggest the follow-
ing scheme to deal with the choice of T:
(1) Run the algorithm with several trials with different

time T.
(2) Update the Markov chains in each T trial similar

number of times.
11In principle, other embedded Runge-Kutta method should

also work.
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(3) Sort the computational results of the propagator
(or at least one component of the propagator) from
the T trials in decreasing order of T.

(4) The results from many T trials are close to one
another. As such, increasing T only adds negligible
contribution to the integral. We take the mean value
of these results as the final result.

For example, we show our results of the component G2315
14

of the spinfoam propagator, in the case of λ ¼ 100 and
λ ¼ 105 in Figs. 2 and 3, respectively.
In the case where λ ¼ 100, the set of flow times T ¼

f0.3; 0.35; 0.4; 0.425; 0.35; 0.475; 0.5; 0.6; 0.7g is used for
the computations. In each T trial, the value of G2315

14 is
computed based on roughly 107 samples. The results on
the blue line in Fig. 2 indicate that, given the number
of samples, the results from the T trials with T ¼
f0.425; 0.35; 0.475; 0.5; 0.6g are close to one another, so
their mean value ð28373� 610Þeið2.83�0.006Þ (shown as the
green line in Fig. 2) is taken as the numerical result of
G2315

14 . This result has ð37.90� 0.6Þ% percentage differ-
ence comparing with the result from the asymptotic

expansion up to Oð1=λÞ (shown as the yellow line
in Fig. 2).
Similarly, in the case where λ ¼ 104, we choose the set

of flow times T¼f0.4;0.5;0.52;0.55;0.57;0.6;0.65;0.7g.
Figure 3 depicts the results based on over 106 samples.12

Except the results from the T trials with T ¼ f0.4; 0.7g, the
results are close to one another and their mean value is
ðð4.548� 0.015Þ × 1010Þeið2.913�0.0017Þ (the green line in
Fig. 3). This value differs from that due to the asymptotic
expansion (the yellow line in Fig. 3) by ð13.22� 0.28Þ% of
the latter.

3. Optimizing the burn-in stage

As mentioned before, the multinomial distribution deter-
mining the crossover ratio CR and the scale factor β of the
DREAM can be tuned during the burn-in runs. Following

FIG. 2. The absolute values and arguments of G2315
14 ðλ ¼ 100Þ computed by the thimble algorithm with different T.

FIG. 3. The absolute values and arguments of G2315
14 ðλ ¼ 104Þ computed by the thimble algorithm with different T.

12Compared with the case of λ ¼ 100, 106 is already a
sufficiently large number of samples to make the results at λ ¼
104 converge because the contributed region in V̂ at λ ¼ 104 is
smaller and thus easier to be simplified than that at λ ¼ 100.
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the Ref. [46], one can adopt Algorithm 1 in the burn-in runs
to tune the multinomial distribution ð:;p1;…; pmÞ.
For the scale factor, as mentioned in Ref. [46], if the

target distribution is Gaussian, the optimal β ¼ 2.4=
ffiffiffiffiffiffiffiffiffi
2d0δ

p
yields the acceptance rate equal to 0.44 for d0 ¼ 1, around
0.2 for larger d0. But based on our test, this choice is not
suitable for our case. In order to optimize the performance
of the algorithm, we tune β based on the acceptance rate
during the burn-in runs. At the beginning of the burn-in
stage, we set β ¼ 2.4C=

ffiffiffiffiffiffiffiffiffi
2d0δ

p
with C ¼ 1. In each update

during the burn-in, we count the number of accepted
candidates as α, then we compute the acceptance rate in
this update as α=108. If the acceptance rate is greater than
0.4, we multiply C by 1.2, whereas if the acceptance rate is
greater than 0.1, we multiply C by 0.5.13 After a long burn-
in stage, we expect that the β is tuned such that the
acceptance rate is round 0.3, which is a optimal value for
high-dimensional problem.

VI. THE LARGE SPIN LIMIT OF SPINFOAM
PROPAGATOR

In this section, we depart from Lefschetz thimbles and
discuss the standard stationary phase analysis in the large-λ
limit of the spinfoam propagator. We are going to compare
between the large-λ limit the results from the MCMC
method on the Lefschetz thimble method in Sec. VII.
As in Refs. [5,7–9], the spinfoam propagator can be

computed by the asymptotic expansion following the
stationary phase analysis in Ref. [71]:

����
Z
K
uðxÞeiλfðxÞdx − eiλfðx0Þ

�
det

�
λf00ðx0Þ
2πi

��
−1
2

×
Xk−1
s¼0

�
1

λ

�
s
Lsuðx0Þ

���� ≤ C

�
1

λ

�
k X
jαj≤2k

sup jDαuj; ð64Þ

with

gx0ðxÞ ¼ fðxÞ − fðx0Þ −
1

2
Habðx0Þðx − x0Þaðx − x0Þb;

and

Lsuðx0Þ ¼ i−s
X
l−m¼s

X
2l≥3m

ð−1Þl2−l
l!m!

�Xn
a;b¼1

H−1
ab ðx0Þ

∂2

∂xa∂xb
�l

× ðgmx0uÞðx0Þ;

where HðxÞ ¼ f00ðxÞ is the Hessian matrix. Using the
parametrization mentioned in Sec. II, we use
Mathematica™ to compute the Hessian of the spinfoam
action and derivatives of Ai

ab and U defined in Sec. II C.
Then following (64), we compute the 1=λ expansion of
hEa

n · Eb
nEc

m · Ed
mi, hEa

n · Eb
ni, and the spinfoam propagator

Gabcd
mn . The code of this computation is shared in [72]. The

results are used as the reference data in comparison with the
Lefschetz thimble Monte-Carlo computations.
For example, if we keep the expansion (64) to the first

order of 1=λ (keeping the terms of s ¼ 0, 1), the compo-
nents hE2

1 · E
3
1E

1
4 · E

5
4i, hE1

4 · E
5
4i, hE2

1 · E
3
1i, and G2315

14 are
given by

hE2
1 · E

3
1E

1
4 · E

5
4i

λ4

¼ 0.006944þ 0.03659 − 0.009716i
λ

þO

�
1

λ2

�
; ð65Þ

hE2
1 · E

3
1i

λ2
¼ −0.08333þ 2.292 − 0.5092i

λ
þO

�
1

λ2

�
;

ð66Þ

hE1
4 · E

5
4i

λ2
¼ −0.08333þ 1.242 − 0.2599i

λ
þO

�
1

λ2

�
;

ð67Þ

G2315
14 ∼ −ð0.05087 − 0.01106iÞλ3 þOðλ2Þ: ð68Þ

We choose the Barbero-Immirzi parameter as γ ¼ −0.1 in
the above numerics.
The λ3 behavior of the spinfoam propagator can be seen

analytically, by the known leading order formula [5,7–10]:

Gabcd
mn ∼ λ−1H−1

αβ∂αðAan · AbnÞ∂βðAbm · AdmÞ; ð69Þ

where H is the Hessian of Stot at the critical point pgeo, and
the indices α, β correspond to the variables j and ϕ defined
in Sec. II. By definition (17), Aan is proportional to λ,
so (69) is at the order of λ3. This result turns out to be

Algorithm 1. DREAM burn-in.

1: initial t ← 1, Lm ← 0, pm ¼ 1=ncr; m ¼ 1;…; ncr
2: while burn-in steps t < K do
3: for chains i ¼ 1;…;M do
4: m ∼multinomialð:;p1;…; pmÞ
5: CR ← m=nCR and Lm ¼ Lm þ 1
6: Create a candidate
7: Accept/reject the candidate
8: Δm ← Δm þP

d
j¼1ððxðtÞi Þj − ðxðt−1Þi ÞjÞ2=r2j , where r denotes

the standard deviation current locations of the chains
9: end for
10: pm ← tN · ðΔm=LmÞ=

PnCR
j¼1 Δj

11: t ← tþ 1
12: end while

13The threshold and the multiple rate here is chosen by hand.
One may need to adjust them for other computing tasks.
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FIG. 4. The absolute values and the arguments of hE2
1 · E

3
1E

1
4 · E

5
4i. The results of the asymptotics are shown in the yellow lines, and

the numerical results are indicated by the blue lines.

FIG. 5. Absolute values and arguments of hE2
1 · E

3
1i. The results of the asymptotics are shown in the yellow lines, and the numerical

results are indicated by the blue lines.

FIG. 6. Absolute values and arguments of hE1
4 · E

5
4i. The results of the asymptotics are drawn in yellow lines, and the numerical results

are indicated by the blue lines.
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consistent with our numerical result from the Lefschetz
thimble Monte-Carlo method in the large-λ limit.

VII. NUMERICAL RESULTS

Recall (14) that the spinfoam propagator is obtained by
computing the expectation values hEa

n · Eb
nEc

m · Ed
mi and

hEa
n · Eb

ni. We choose the Barbero-Immirzi parameter
γ ¼ −0.1 in this computation and compute these expectation
values and the propagator in the situations where λ ¼ 50,
100, 1000, 10000, 50000, 100000, 500000, 1000000,
5000000, 10000000, and 50000000. In the first and second
parts of this section, we show the numerical results respec-
tively of the expectation values and of the propagator.

A. Expectation values

The expectation value of hEa
n · Eb

nEc
m · Ed

mi is a tensor
with 1275 nonzero components, and the expectation
value of hEa

n · Eb
ni consists 50 nonzero components. We

numerically compute these components depending on a
sufficiently large number (over 107) of samples obtained by
the MCMC method. As an example of our computation,
Figs. 4–6 plot the absolute values and the arguments of
the components hE2

1 · E
3
1E

1
4 · E

5
4i, hE1

4 · E
5
4i, and hE2

1 · E
3
1i,

respectively. In all these plots, the numerical results are
shown on the blue lines, and the results given by the
asymptotic expansion (65)–(68) are shown on the yellow
lines. Tables VII–IX record the percentage difference
between the numerical results and the asymptotic results.
On the one hand, our results match the results from the

asymptotics very well in the large spin limit. For the
components we show here, the percentage differences
between the asymptotic results and the numerical results
are smaller than 0.03% when λ is greater than 105, and the
percentage differences tend to become smaller at larger λ.
On the other hand, when λ is small, the percentage
differences become large because the higher order 1=λ
corrections become important in this realm.

TABLE VII. The difference between the numerically computed and asymptotically expanded hE2
1 · E

3
1E

1
4 · E

5
4i

λ 102 103 104 5 × 104 105 5 × 105 106 5 × 106 107 5 × 107

Difference (%) 8.71 0.79 0.12 0.052 0.036 0.017 0.0062 0.0018 0.00037 0.00069

TABLE VIII. The difference between the numerically computed and asymptotically expanded hE2
1 · E

3
1i

λ 102 103 104 5 × 104 105 5 × 105 106 5 × 106 107 5 × 107

Difference (%) 22.32 2.00 0.31 0.078 0.022 0.016 0.012 0.0022 0.000047 0.0016

TABLE IX. The difference between the numerically computed and asymptotically expanded hE1
4 · E

5
4i

λ 102 103 104 5 × 104 105 5 × 105 106 5 × 106 107 5 × 107

Difference (%) 18.66 1.18 0.18 0.026 0.017 0.00054 0.0037 0.00035 0.00036 0.00083

FIG. 7. Absolute values and arguments of G2315
14 corresponding to different λ. The results of the asymptotics are drawn in yellow lines,

and the numerical results are indicated by the blue lines.
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B. Spinfoam propagator

The propagator Gabcd
mn also has 1275 nonzero compo-

nents. Figure 7 plots the absolute values and the arguments
of the component G2315

14 . The percentage differences
between the asymptotic limit (68) and numerical results
from the Lefschetz thimble Monte-Carlo method are shown
in Table X. For the results with λ > 106, the percentage
difference is smaller than 4%. This comparison shows that
the asymptotic expansion and numerical Lefschetz thimble
Monte-Carlo method are consistent in the large spin limit.
Similar to the computation of the expectation values, their
differences become large in small spin realm because of
the non-negligible contributions of the higher order 1=λ
corrections.
We compute all the 1275 components of the propagator

Gabcd
mn and compare them with the results from the leading

order asymptotics (69). Figure 8(a) shows the histograms of
the percentage differences of the components of Gabcd

mn
between the asymptotic limit (69) and the results from the
Lefschetz thimble Monte-Carlo method, at λ ¼ 106, based
on 8985600 samples, 9504000 samples, and 12787200
samples. As we can see, the percentage differences for most
of the components (1067 components for the result of
8985600 samples, 1095 components for the result of
9504000 samples and 1144 components for the result
of 12787200 samples) are smaller than 10%. There are
however several components with percentage differences
greater than 100%, one of which is nearly as much as 120%
in the 12787200 samples case. But a strong tendency that
the percentage differences become smaller with respect to
the increasing number of the samples (the maximum
difference decreasing from 147% in the 8985600 samples
cases to 120% in the 16761600 samples case) implicates

that when λ ¼ 106, 12787200 samples may not be enough
to make the Markov chains perfectly converging to the
desired distribution and cause such big differences. The
percentage differences of these components will further
decrease when the number of the samples increases.
Figure 8(b) draws a comparison between the histogram

of the percentage differences of the components when
λ ¼ 107 and when λ ¼ 106. The results are all achieved
with 12787200 samples. In the case of λ ¼ 107, the
percentage differences of most of the components are less
than 10% and the maximum difference is around 45%. The
comparison shows that the Markov chains converge to the
desired distribution faster than they do in the case of
λ ¼ 106, and the Lefschetz thimble Monte-Carlo results for
λ ¼ 107 are more consistent to the asymptotic limit (69).
This fact might suggest that when λ ¼ 107, the less
important 1=λ correction and the easier converging
Markov chains are correlated.
In summary, the expectation values of the metric operators

and the propagator obtained from the Lefschetz thimble
Monte-Carlo method show their compatibility to the asymp-
totics from the stationary phase analysis in the large-λ limit.
As λ increases, the compatibility to the asymptotics tends to
be improved. These results fulfill our expectation about the
semiclassical behavior of the spinfoam propagator and
validates our algorithm and coding.

VIII. BENCHMARKS

We have tested our code [54] in three different platforms
shown in Table XI. On platforms (1) and (2), the code runs
with 54 parallel Mathematica™ kernels, and for platform
(3), the code runs with 16 parallel Mathematica™ kernels.

TABLE X. The difference between the numerically computed and asymptotically expanded G2315
14 .

λ 102 103 104 5 × 104 105 5 × 105 106 5 × 106 107 5 × 107

Difference (%) 37.90 27.00 13.22 2.76 10.09 8.86 1.89 1.13 3.90 2.06

FIG. 8. Histogram of the percentage errors of the components of Gabccd
mn for (a) λ ¼ 106 and (b) λ ¼ 107.
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Both platforms (1) and (2) can update 60000 samples per
hour, and platform (3) can update 20000 samples per hour.

IX. CONCLUSION

In this paper, we propose a numerical method (combin-
ing the methods of Lefschetz thimble and DREAM) that
can compute the expectation value of any observable in a
quantum system described by a complex-valued action. We
apply our method to compute the EPRL spinfoam propa-
gator on a 4-simplex. Our computation focuses on the
spinfoam propagator with relatively large spins λ ≥ 100.
Our results not only comply with the expected spinfoam
semiclassical behavior but also gives rise to a quantum
correction. The theory of Lefschetz thimble indicates that
the quantum correction due to our computation sums 1=λ
corrections to all orders.
In principle, the method is applicable to all types of the

spin foam model with Lorentzian or Euclidean signature,
with different choices of the Y map and with the different
values of the Barbero-Immirzi parameter γ. Although the
explicit propagator components are different with respect to
these choices, the conclusion that the numerical results
comply with the semiclassical behavior holds for all these
choices.
Our method is efficient and scalable for the numerical

computation of the spinfoam model. We are capable of
numerically computing spinfoams with relatively large
spins. Our method can also compute the spinfoam model
with multiple 4-simplices. The Lefschetz thimble and
Monte-Carlo methods are able to compute oscillatory
integrals of a few hundreds variables (see e.g., [39,73]
and the references therein). For instance, the EPRL
spinfoam model (with the coherent intertwiner boundary)
on the complex Δ3 of three 4-simplices and an internal face
is a 133-(real)dimensional integral (see [70] for the integral
formula on multiple 4-simplices), and thus can be handled
by our method. Therefore, a future task is to compute the
correlation functions of the spinfoam model on Δ3. An
interesting aspect of the spinfoam model on Δ3 is its
relation to the flatness problem: the spinfoam integral is
dominated by the flat geometry (with vanishing deficit
angle) when spins are large [18,27,74–76]. Hence, it is
interesting to compute the spinfoam expectation value of
the deficit angle on Δ3 and demonstrate its dependence on
spins. Our method is suitable for computing expectation
values and especially for studying their behaviors with
large spins.

As another interesting future work, we can apply the
Pachner 1-5 move and subdivide a 4-simplex into five
4-simplices, the spinfoam model on the resulting complex
Δ5 is a 230-(real)dimensional integral, and is expected to be
handled by our method. Our method can compute spinfoam
expectation values and correlation functions on Δ5, compare
them with the results on a 4-simplex, and understand their
behaviors under the 1-5 move. Similar studies should be
applied to the other elementary Pachner moves. The result-
ing behaviors should be useful for studying the renormal-
ization of spinfoam model under changing triangulation.
As an efficient way to compute oscillatory integrals, our

method has wide applications and is not restricted to LQG/
spinfoam. In addition to lattice field theory, where similar
methods have been extensively applied, our method also
applies to topological field theory and knot Theory. The
analytically continued Chern-Simons theory and colored
Jones polynomial are related to the finite dimensional
integrals on Lefschetz thimbles. These finite dimensional
integrals are known as holomorphic blocks [37,77] (see
also [69] for the relation with spinfoams). It is natural to
apply our method to compute holomorphic blocks because
they are defined on Lefschetz thimbles.
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APPENDIX: MARKOV CHAIN
MONTE-CARLO METHODS

MCMC methods comprise a class of algorithms
designed for sampling from a posterior probability distri-
bution πðxÞ on a given space V. In this Appendix we review
the main idea of the MCMC methods and several specific
algorithms

1. Markov chain Monte-Carlo methods in general

A Markov chain is defined as a stochastic model
describing a sequence of random variates in which the

TABLE XI. The computer platforms.

Platform CPU RAM OS Mathematica™ Version

(1) AMD EPYC™7742x2 512G DDR4-3200 Ubuntu™20.04.1 LTS 12
(2) AMD EPYC™7642x2 512G DDR4-3200 Ubuntu™20.04.1 LTS 12
(3) AMD Ryzen™3800XT 32G DDR4-3200 Windows™10 version 2004 12

SPINFOAM ON A LEFSCHETZ THIMBLE: MARKOV CHAIN … PHYS. REV. D 103, 084026 (2021)

084026-21



probability distribution of each variate only depends on the
value of the previous one variate attained. For a Markov
chain sequentially comprises N sampled data, the Markov
chain central limit theorem [43,78] guarantees that, when
N → ∞, the Markov chain will reach its equilibrium state
so that sampled points by the Markov chain will converge
to a posterior probability distribution. An equilibrium chain
must follow the Bayes local balance condition:

πðyÞKðxjyÞ ¼ πðxÞKðyjxÞ; ðA1Þ

where πðxÞ is the posterior probability distribution and the
transition kernel KðxjyÞ is the conditional probability
distribution of a random variate on the chain if its previous
random variate is sampled as a value y.
Imagine that a Markov chain as a “walker” moving on a

phase space. Once a point being reached by the “walker,” it
is considered being sampled once. Then the Bayes local
balance condition means that the marginal probability
distribution of the “walker” first appears on x then moves
to y is the same as the one that the “walker” appears on y
then moves to x. Thus the future movement of the “walker”
has no bias. The distribution of the sampled point will
converge to the static probability distribution πðxÞ.
The idea of the MCMC integral method is to simulate

such a “walker” randomly walking on phase space. If each
step of the “walker’s” random movement is designed to
satisfy the transition kernel KðxjyÞ, after a long march, the
history of “walker’s” random movement will follow a
posterior distribution, e.g., expðSeffÞ. Then one can com-
pute the mean value of the function fðxÞ among the
sampled history points to approximate hfieff .

2. Metropolis algorithm

Following the idea of the MCMC method, one important
question is how to construct the transition kernel KðxjyÞ so
that the Markov chain can sample from a desired posterior
distribution like expðSeffÞ. In Metropolis algorithm [79]
[ [43], Chapter 1.12], which is a type MCMC method, the
transition kernel KðxjyÞ is constructed as

KðxjyÞ ¼ αðx; yÞpðxjyÞ; ðA2Þ

where pðxjyÞ can be any proposal transition distribution
and the acceptance rate αðx; yÞ is defined as

αðx; yÞ ¼ min

�
1;
πðxÞpðyjxÞ
πðyÞpðxjyÞ

	
: ðA3Þ

One can easily check the validation of the algorithm by
plugging (A2) back to the Bayes local balance condition.

3. Metropolis-Hastings algorithm

As an improvement of the Metropolis algorithm, the
Metropolis-Hastings (MH) algorithm uses symmetric

proposal transition distributions to construct transition
kernels KðxjyÞ. When a transition distribution is symmet-
ric, pðxjyÞ ¼ pðyjxÞ and the acceptance rate αðx; yÞ
reduces to

αðx; yÞ ¼ min

�
1;
πðxÞ
πðyÞ

	
: ðA4Þ

In details, the MH algorithm generate the samples in the
steps shown in Algorithm 2.
WhenN goes to be large, the sampled data fxðiÞg follows

the posterior distribution πðxÞ.

4. Adaptive Metropolis-Hastings algorithm

The simplicity of the MH algorithm make it easy to be
applied; however, the performance of the algorithm
depends on the tuning of some internal variables, such
as, the scale and orientation of the proposal distribution. On
one hand, if the proposal distribution is too wide, most of
the candidates will be rejected and the chain’s convergence
to the target distribution will be delayed. On the other hand,
if the proposal distribution is too narrow, although most of
the candidate will be accept, it may take a very large
number of updates to make the Markov chain move to the
most probable region and converge to the target distribu-
tion. One improved MH is the adaptive Metropolis-
Hastings (AM) algorithm [80,81]. The AM algorithm uses
single Markov chain, but it is a powerful algorithm that
can automatically select the appropriate proposal distribu-
tion. For a d-dimensional phase space, by using the
sampled data, AM continuously adapt the covariance,
denoted by Ct, of the Gaussian proposal distribution
pðxjxði−1ÞÞ ¼ Nðxði1Þ; CtÞ. Explicitly,

Ct ¼ SdCovðxð0Þ;…; xði−1ÞÞ þ ϵId; ðA5Þ

where the Sd is the scaling factor depending on d, Id is the
d-dimensional identity matrix, and ϵ is a very small data
comparing to the scale of fxðiÞg. If the target distribution is
a Gaussian distribution, the optimal Sd is 2.42=d so that the

Algorithm 2. MH algorithm.

1: initial xð0Þ
2: for iteration i ¼ 1; 2;…N do
3: Propose candidate xcand from pðxjxði−1ÞÞ
4: Acceptance rate α ← min f1; πðxcandÞ

πðxði−1ÞÞg
5: u ∼ Uniformðu; 0; 1Þ
6: if u < α then
7: xðiÞ ← xcand

8: else
9: xðiÞ ← xði−1Þ
10: end if
11: end for
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acceptance rate α can stay around 0.3. The detailed steps of
AM (Algorithm 3) is similar to MH.

5. Differential evolution Markov chain algorithm

The AM algorithm works fine for many simple inference
problems, but its efficiency becomes low when dealing
with complicated posterior distribution, especially for
high-dimensional problems. In order to deal with these
limitations, Differential evolution Markov chain (DE-MC)
[82] is developed. In DE-MC, M different Markov chains

fxðtÞs ; s ¼ 1;…;Mg are run in parallel. In stead of using the
covariance of the previous samples, i.e., Covðxð0Þ;…;
xði−1ÞÞ, DE-MC uses the current location of the chains to
generate the candidates. At each updating step, instead of
using proposal distribution to generate candidates, DE-MC
uses a genetic algorithm, called differential evolution
algorithm, to generate the candidates as

xcands ¼ xðt−1Þs þ γðxðt−1Þs1 − xðt−1Þs2 Þ þ ϵ; s ¼ 1; � � �M;

ðA6Þ

where γ is a scaling factor, s1 and s2 are labels of another
two chains different from the chain s, and ϵ is a number
draw from the uniform distribution uniformð−b; bÞ with

jbj < 1. Similar to the AM algorithm, when the posterior
distribution is d-dimensional Gaussian, the optimal choice
of γ is 2.4=

ffiffiffiffiffiffi
2d

p
. For every 10 update steps, γ ¼ 1 to allow a

direct jumps between the chains. When dealing with
multimodal posterior distribution, this brings in a huge
of advantage comparing to single chain AM algorithm. In
AM algorithm, it is hard to make the Markov chain tunnel
between two distinct possible regions, while in DE-MC,
different chains can “explore” different regions simulta-
neously and the jumps between the regions are allowed so
that the samples from different regions are well mixed to
satisfy the target posterior distribution. The steps of the DE-
MC algorithm is shown in Algorithm 4.
The DE-MC is efficiently accommodate to the situation

when the target posterior distribution is complicated, and
high dimensional. The efficiency can be further enhanced
by making several modifications on the algorithm. These
modifications brings in the DREAM algorithm used in our
paper to compute the propagator.
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