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Based on a recently derived secular spin evolution of black holes, neutron stars, gravastars, or boson stars
in precessing compact binaries on eccentric orbit, we carry out a linear stability analysis of fixed point
configurations. We identify the aligned and more generic coplanar configurations of the spins and orbital
angular momentum as fixed points. Through a dynamical system analysis, we investigate their linear
stability as function of the mass quadrupole parameter. Our most important results are as follows. Marginal
stability holds for the binary configurations with both spins antialigned to the orbital angular momentum,
for both spins aligned to the orbital angular momentum (with the exception of certain quadrupolar
parameter ranges of neutron stars and boson stars), and for the extremal mass ratio. For equal masses, the
configurations of one of the spins aligned and the other antialigned is stable for gravastar binaries, for
neutron star binaries in the high quadrupolar parameter range, and for boson star binaries. For some
unequal mass gravastar binaries, black hole binaries or neutron star binaries, a transition from stability to
instability can occur during the inspiral, when one of the spins is aligned, while the other is antialigned to
the orbital angular momentum. We also discover a transitional instability regime during the inspiral of
certain gravastar, neutron star, or boson star binaries with opposing spins. For coplanar configurations we
recover the marginally stable configurations leading to the libration phenomenon identified in previous
numerical investigations lacking mass quadrupole contributions, and we analyze how it is affected by the
quadrupolar structure of the sources. We also investigate the linear stability of black hole, neutron star, and
boson star binaries, also of mixed black hole - gravastar, black hole - neutron star and black hole - boson
star binaries. We find instabilities only for the gravastar - gravastar, boson star - boson star and black hole -
boson star binaries. For a given spin configuration, marginal stability strongly depends on the value of the
quadrupolar parameters. The stability region is larger for neutron star binaries than for black hole binaries,
while the mixed systems have a restricted stability parameter region.
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I. INTRODUCTION

Compact binaries are among the most probable sources
of gravitational radiation. All gravitational wave detections
by the Advanced LIGO and Virgo detectors up to now have
been from these type of sources, mostly from black hole -
black hole systems [1,2] but also neutron star - neutron star
[3] with multimessenger counterparts and a black hole -
lighter compact object (which is either the lightest black
hole or the heaviest neutron star yet discovered) [4].
Compact binary evolution can be well described ana-

lytically when the separation of the components is large as
compared to their Schwarzschild radius. During this
inspiral regime, the Keplerian evolution is modified by
general relativistic corrections at first and higher post-
Newtonian (PN) orders [5,6]. The spin of the compact
objects also contributes at 1.5PN orders through the

spin-orbit (SO) and at 2PN orders through the spin-spin
(SS) couplings [7–17]. The rotation of the compact object
also induces a mass deformation, characterized by its
quadrupole. The coupling of this to the mass of the other
component enters at 2PN orders in the dynamics [18–21].
The 2PN order accurate instantaneous dynamics has been
discussed in detail in Refs. [22–24]. Finally, gravitational
radiation kicks in at 2.5PN orders [25].
In this paper, we continue the study of the secular spin

dynamics in compact binaries on eccentric orbit during the
inspiral regime on the conservative timescale, thus to 2PN
order accuracy, commenced in our earlier work [26], which
will be referred as Paper I. The binary components are
compact objects with masses mi, dimensionless spins χi,
and quadrupolar parameter wi spanning over a wide range
of values, being 1 by definition for black holes, falling into
ð−0.8; 1Þ for gravastars [27], into (2, 14) for neutron stars
[28,29], and into (10, 150) for boson stars [30]. In Paper I,
we have derived a closed system of first-order differential
equations for the secular evolution of the spin polar angles
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κi (taken in the system with the orbital angular momentum
LN on the z axis) and the difference of their azimuthal angles
Δζ (measured in the orbital plane).1 We have analyzed both
analytically and numerically various particular situations
with special emphasis on the effect of the quadrupole
parameter (thus on the role of the companion of a black
hole) manifesting itself in the flip-flopping evolution of the
polar angles. In this paper,wewill concentrate on the stability
analysis of fixed points of the spin angle dynamics, again
emphasizing the role played by the quadrupole parameter.
The early analysis [11] of the orbit-averaged (secular)

spin-precession equations for circular orbits, with only the
SO and SS contributions included, identified four collinear
spin and angular momentum equilibrium configurations
(up-up, up-down, down-up, and down-down). Coplanar
configurations representing equilibrium solutions of the
instantaneous angular evolutions were also found [31].
There, a numerical study of the evolution of the phase shift
(the difference in the azimuthal angles of the spins)
revealed solutions librating about the equilibrium (inter-
preted as stable) and unstable solutions departing from the
equilibrium. The latter appeared as a sequence of “long
periods of stasis followed by short bursts of rapid diver-
gence away from equilibrium,” dubbed as quasistable. Both
these analyses disregarded the mass quadrupole–mass
monopole contributions, driven by the parameters wi.
When the rotation-induced quadrupole of black holes is

also taken into account (wi ¼ 1), the four above-mentioned
collinear configurations still represent equilibrium [21].
Among these, the up-down configuration was found
unstable in certain parameter regimes [33].
In this paper, we revisit the analysis of the fixed points

and their stability in the more generic context of compact
binaries with black hole, neutron star, gravastar, or boson
star components, thus allowing for an arbitrary value of the
quadrupole parameters wi.
In Sec. II, we sum up the closed system of evolution

equations of the spin angles, and we establish the notations.
In Sec. III, we discuss this system from the dynamical

systems point of view. We prove that the configurations of
spins aligned and antialigned to the orbital angular momen-
tum are still fixed points of the evolution in this more
generic setup. We analyze their linear stability by deriving
the marginal stability conditions. Then, we also discuss the
equal and unequal mass configurations. For the former, we
identify new types of instabilities, while for the latter, we

identify a new type of evolution during inspiral, encom-
passing a transitional instability.
We proceed with the analysis of the fixed points in

Sec. IV, investigating coplanar configurations, discussing
the dependence on the quadrupolar parameters of the
marginally stable configurations. Further, we investigate
here the linear stability of black hole, neutron star, and
boson star binaries and also of mixed black hole - gravastar,
black hole - neutron star, and black hole - boson star
binaries.
In Sec. V, we present the conclusions.

II. SECULAR SPIN ANGLE EVOLUTIONS

The secular evolution of the spin angles κ1, κ2, and
Δζ≡ ζ1 − ζ2 has been derived in Paper I in the form
of a closed first-order differential system,2

1

R
dκ1
dt

¼ ð1þ ν − x1 cos κ1 − νw2x2 cos κ2Þ
× x2 sin κ2 sinΔζ; ð1Þ

1

R
dκ2
dt

¼ −ð1þ ν−1 − x2 cos κ2 − ν−1w1x1 cos κ1Þ
× x1 sin κ1 sinΔζ; ð2Þ

1

R
dΔζ
dt

¼ ν−ν−1þð1þ2ν−1−w1−w1ν
−1x1 cosκ1Þx1 cosκ1

− ð1þ2ν−w2−w2νx2 cosκ2Þx2 cosκ2
− ð1þν−1−w1ν

−1x1 cosκ1Þx1 cotκ2 sinκ1 cosΔζ
þð1þν−w2νx2 cosκ2Þx2 cotκ1 sinκ2 cosΔζ

−x1x2

�
sinκ2
sinκ1

−
sinκ1
sinκ2

�
cosΔζ; ð3Þ

with the notations

R ¼ 3ηπ

Tl̄2r
; xi ¼

χi
l̄r
: ð4Þ

Here, ν ¼ m2=m1 ≤ 1 is the mass ratio, and η ¼ μ=m is the
symmetric mass ratio (with m ¼ m1 þm2 and μ ¼
m1m2=m the total and reduced masses of the binary,
respectively). Further, lr ¼ cLN=Gmμ is the dimensionless
orbital angular momentum, and l̄r is its average over a radial
period (G, c, andLN denoting the gravitational constant, the
speed of light, and the magnitude of LN, respectively).
Finally,T is the radial period expressed to 2 PN accuracy as
Eq. (6) of Paper I. In addition, the derivatives arewith respect
to a dimensionless time variable t ¼ tc3=Gm (with time t)
introduced in Ref. [24].

1If we were to use an alternative set of angular variables
defined with the direction of the total orbital angular momentum
L, rather than the Newtonian angular momentumLN, differences
would be induced only through the SO contribution to L (as the
PN and 2PN contributions lie in the direction of LN). For a
discussion in terms of angles related to L of the inspiral
waveforms for the coplanar resonant configurations [31] and
consequences in data analysis, see Ref. [32].

2For notational simplicity, we omit the overbar (present in
Paper I) from the secular time derivatives. We follow this
simplified notation in what follows, keeping in mind that the
equations describe secular dynamics.
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Note that 1=l2r represents one relative PN order, as
indicated by Eq. (8) of Ref. [24]. Hence, in the angular
evolutions (1)–(3), the OðRÞ, OðRxiÞ, and OðRxixjÞ terms
are PN, 1.5PN, and 2PN contributions, respectively.

III. COLLINEAR SPIN ORIENTATIONS: LINEAR
STABILITY ANALYSIS

The closed system (1)–(3) becomes ill behaved for the
aligned configurations sin κi ¼ 0. This is the usual singu-
larity of the polar angle in a spherical system of coordinates,
for which the azimuthal angles ζi become ill defined.
The case when only one of sin κi evolves through zero

is discussed in Appendix B of Paper I. We showed that,
despite the apparent coordinate singularity, the system
passes through such a configuration driven by a well-
defined dynamics.
When both sin κ1 and sin κ2 vanish, the spins remain

parallel or antiparallel to the orbital angular momentum, i.e.,
the angles κi being constant,3 as can be seen from Eqs. (1)
and (2). With these the aligned configurations fulfill the
conditions for the fixed points of the spin dynamics.
Remarkably, all terms containing the problematic angles
ζi in the evolution equations of the Euler angles vanish;
thus, their dynamics remains well defined. We proceed with
the linear stability analysis of these aligned configurations.
We denote the fixed points as κð0Þi and the points

obtained by a slight deviation ϵiδκiðtÞ as
κiðtÞ ¼ κð0Þi þ ϵiδκiðtÞ; ð5Þ

with ϵi ¼ cos κð0Þi representing a sign (this choice ensures
that the perturbed angle stays in the domain ½0; π�). To
leading order, the closed system becomes

dΔζ
dt

¼ Aþ
�
B1

δκ2
δκ1

− B2

δκ1
δκ2

�
cosΔζ; ð6Þ

dδκ1
dt

¼ B1δκ2 sinΔζ; ð7Þ

dδκ2
dt

¼ −B2δκ1 sinΔζ; ð8Þ

with the constants defined as

A
R
¼ ν − ν−1 þ ϵ1ð1þ 2ν−1 − w1 − ϵ1ν

−1w1x1Þx1
− ϵ2ð1þ 2ν − w2 − ϵ2νw2x2Þx2;

B1

R
¼ ½ϵ1ð1þ ν − ϵ2νw2x2Þ − x1�x2;

B2

R
¼ ½ϵ2ð1þ ν−1 − ϵ1ν

−1w1x1Þ − x2�x1: ð9Þ

Time derivatives of Eqs. (6)–(8) combined lead to the
simple second-order differential equation

d2Z
dt2

þ ðA2 þ 4B1B2ÞZ ¼ 0 ð10Þ

in the variable

Z ¼ δκ1δκ2 sinΔζ; ð11Þ

with independent solutions Z� ¼ e�iΩt, where Ω2 ≡
4B1B2 þ A2. Obviously, for Ω2 ≤ 0, there is a runaway
solution, and the fixed point is unstable,whereas forΩ2 > 0,
the independent solutions become harmonic functions,
which could be combined into

Z ¼ Q cos ðΩtþ GÞ; ð12Þ
with Q and G constants.
Then, Eq. (7) becomes

dðδκ1Þ2
dt

¼ 2B1δκ1δκ2 sinΔζ

¼ 2B1Q cos ðΩtþ GÞ; ð13Þ

which results in

ðδκ1Þ2 ¼ F1 þ
2B1Q
Ω

sin ðΩtþ GÞ; ð14Þ

with another integration constantF1≥ j2B1Q=Ωj. Similarly,

ðδκ2Þ2 ¼ F2 −
2B2Q
Ω

sin ðΩtþ GÞ; ð15Þ

with the integration constantF2 ≥ j2B2Q=Ωj. The solutions
(14) and (15) prove that the aligned configurations
sin κ1;2 ¼ 0 are marginally stable for Ω2 > 0.

A. Sufficient conditions for marginal stability

The above stability criterion depends on seven
parameters:

ν; xi; wi; ϵi: ð16Þ

We discuss their possible ranges below. The mass ratio is
ν ∈ ð0; 1�. The value of l̄r can be estimated by Eq. (8) of
Ref. [24], which for not too eccentric bound orbits is of
the order l̄r ≥ 1=

ffiffiffī
ε

p
(equality holds for circular orbits

[24]). Assuming χi ≤ 1 and that the PN approximation is
valid for the PN parameter ε̄ ∈ ð0; 0.1Þ gives for circular
orbits xi ¼ χi=l̄r ∈ ð0; 0.3Þ.
First, we note that the positivity of Bi implies

ϵ1ϵ2w3−i < ϵ1ϵ2
1þ ν2i−3ð1 − ϵixiÞ

ϵ3−ix3−i
: ð17Þ3A similar conclusion valid only for black holes (wi ¼ 1) also

emerges from Eqs. (3.2a) and (3.2b) of Ref. [21].
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The signs of B1 and B2 are shown in Table I. There, we
introduced the notations

W�
i ¼ 1þ ν3−2ið1� x3−iÞ

xi
; ð18Þ

which for the allowed parameter ranges are bound as

W−
1 >

10

3
; W−

2 >
17

3
;

Wþ
1 >

10

3
; Wþ

2 >
20

3
: ð19Þ

Note that as l̄−1r increases monotonically during the inspiral
the derivatives

dW�
i

dðl̄−1r Þ ¼ −
1þ ν3−2i

χi
l̄2r < 0 ð20Þ

ensure that the functions W�
i decrease monotonically.

For extreme mass ratios ν ≪ 1, we immediately obtain
jB1B2j ≪ A2, resulting in Ω2 > 0, and thus the fixed point
of the system is marginally stable. In addition, for
B1B2 > 0, the system is also marginally stable.
Finally, there is marginal stability also in the case when

at least one the Bi vanishes, unless A ¼ 0 also holds. When
both spins are nonvanishing, this occurs for the pair of
quadrupolar parameters

wi ¼
1þ ν3−2ið1 − ϵ3−ix3−iÞ

ϵixi
∈ f�W�

i g; ð21Þ

among which only wi ∈ fW�
i g are admitted on physical

grounds. Note that the vanishing of Bi and A also implies
the vanishing of B3−i. Hence, in order to have marginal
stability, both Bi cannot vanish simultaneously.
If only one spin is present,

x3−i ¼ 0

wi ¼
ν3−2i − ν2i−3 þ ϵið1þ 2ν2i−3Þxi

ðϵi þ ν2i−3xiÞxi
: ð22Þ

Note that in this case Ω2 ¼ A2 is a convex function,
everywhere positive outside its double degenerate root
wi, which represents its minimum.
For equal masses, Eq. (22) reduces to

x3−i ¼ 0

wi ¼
3

1þ ϵixi
: ð23Þ

There are the following cases to be discussed:
(i) When both spins are antialigned with the orbital

angular momentum, the system is marginally stable.
All other aligned configurations require additional
conditions to be imposed on the parameters.

(ii) In the configuration of the compact binary compo-
nents with both spins aligned, w1 < 10=3 together
with w2 < 17=3 implies wi < W−

i during the whole
inspiral; hence, marginal stability holds for all mass
ratios and spin values. Therefore, the aligned black
hole - black hole, gravastar - gravastar, and black
hole - gravastar binary systems are marginally
stable.

(iii) For neutron star binaries with both spins aligned, the
marginal stability depends on their equation of state.
For low wi values, both Bi ≥ 0 and B3−i > 0 could
hold true throughout the inspiral, in this case the
system being marginally stable. Similarly, marginal
stability could hold throughout the inspiral for larger
values of w of either aligned neutron star binaries or
aligned boson star binaries, when both Bi ≤ 0 and
B3−i < 0 hold. There could be cases when marginal
stability during the initial phases of the inspiral turns
into instability and possibly turns back to stability
again, or initial instability turns into marginal
stability, as W−

i evolve during the inspiral.
(iv) With one spin aligned and another antialigned, the

marginal stability criterion is wi > Wþ
i for the

aligned spin. This could hold either during the
whole inspiral or only at its latter stages, when
the decreasing Wþ

i may slide below a high enough
value of the quadrupolar parameter wi, even if it does
not hold in the earlier stages of the inspiral.

B. Equal masses

For equal masses,

Ω2

R2
¼
X2
i¼1

½ð1þx2i Þw2
i −6wiþ9þ2ϵiwiðwi−3Þxi�x2i

þ2ð2þw1w2Þx21x22−
X2

i¼1ðj≠iÞ
2ϵið4þwjþwiwjÞxix2j

−2ϵ1ϵ2x1x2

�
1þw1w2−

X2
i¼1

ð3þ2x2i Þwi

�
: ð24Þ

TABLE I. The positivity conditions for B1 and B2. A sufficient
condition for marginal stability is met when their signs agree.

B1 > 0 B2 > 0

κð0Þ1 ¼ 0 w2 < W−
2 w1 < W−

1

κð0Þ2 ¼ 0

κð0Þ1 ¼ 0 Always w1 > Wþ
1

κð0Þ2 ¼ π
κð0Þ1 ¼ π w2 > Wþ

2
Always

κð0Þ2 ¼ 0

κð0Þ1 ¼ π Never Never
κð0Þ2 ¼ π
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1. Equal spins and quadrupolar parameters

Equation (24) reduces for w1 ¼ w2 ¼ w and x1 ¼ x2 ¼
x ¼ χ=l̄r to

Ω2

R2
¼ 2½ð3 − wÞ2 þ 2ð1þ w2Þx2�x2

− 2ϵ1ϵ2ð1 − 6wþ w2 − 4wx2Þx2
− 8ðϵ1 þ ϵ2Þð1þ wÞx3: ð25Þ

For ϵ1 ¼ ϵ2 ¼ ϵ, Eq. (25) reduces to

Ω2

R2
¼ 4x2ðxþ wx − 2ϵÞ2; ð26Þ

and Ω2 vanishes for

w ¼ wcr1 ¼
2ϵ

x
− 1; ð27Þ

but apart from this critical value, it is always positive, and
thus the configuration is marginally stable. Then:
(a) For ϵ ¼ −1, wcr1 < −1, which is outside of the astro-

physically interesting range. The configuration with
both spins antialigned to the orbital angular momentum
is marginally stable.

(b) For ϵ ¼ 1,

dwcr1

dðl̄−1r Þ ¼ −
2

χ
l̄2r < 0 ð28Þ

shows that wcr1 decreases monotonically during
the inspiral, attaining its minimal value at the end
of it. The lowest value occurs at the end of the inspiral
on circular orbits, leading to the bound wcr1 > 17=3.
Thus, the critical value may fall into the possible range
of the quadrupole parameter for neutron stars and
boson stars. Apart from this value, the configuration
with both spins aligned to the orbital angular mo-
mentum is marginally stable.

(c) For ϵ1ϵ2 ¼ −1,

Ω2

R2
¼ 4x2ðw − 1Þðwþ wx2 − x2 − 5Þ ð29Þ

and Ω2 has two roots:

w− ¼ 1; wþ ¼ 1þ 4

x2 þ 1
∈ ð4.7; 5Þ: ð30Þ

The angular frequencyΩ2 > 0 for w > wþ and w < 1,
and Ω2 < 0 for 1 < w < wþ. Hence, for the configu-
rations with one spin aligned and another antialigned to
the orbital angular momentum, gravastar binaries are
marginally stable, while black hole binaries are un-
stable. For neutron star binaries, these configurations

can be either unstable or marginally stable (depending
on the equation of state), while for boson star binaries,
they are always marginally stable. These findings are
compatible with and expand those described under iv)
in Sec. III A for the case of equal masses, spins, and
quadrupole parameters.

2. Second spin negligible

In another limiting case, x2 ≪ x1, the expression (24)
reduces to

Ω2

R2
¼ x21ð3 − w1 − ϵ1w1x1Þ2; ð31Þ

which is positive, thus yielding marginal stability,
except for

w1 ¼ wϵ1
cr2 ¼

3

1þ ϵ1x1
; ð32Þ

which reproduces the earlier result (23). Thus, there is a
critical value of w1 as a function of x1 where the configu-
ration becomes unstable. The critical value ranges as wcr2 ∈
ð2.3; 3Þ for ϵ1 ¼ 1 and as wcr2 ∈ ð3; 4.3Þ for ϵ1 ¼ −1. Both
can emerge only in a neutron star binary.

C. Nonequal masses in the nonextreme
mass ratio regime

For simplicity, we set w1 ¼ w2 ¼ w and x1 ¼ x2 ¼ x.
Then, the configurations with ϵ1 ¼ ϵ2 are marginally stable.
Indeed, when both spins are counterrotating, ϵ1 ¼ ϵ2 ¼ −1,
and this has been already analytically proven in a more
generic context (see item i) in Sec. III A), while for the
corotating case, ϵ1 ¼ ϵ2 ¼ 1, the stability condition reads

Ω2

R2
¼ 4ð2þνþν−1Þð1−xÞð1−wxÞx2

þ4ð1−wÞ2x4þðν−ν−1Þ2ð1−2xþwx2Þ2> 0: ð33Þ

There are no real roots of the equation Ω2 ¼ 0, and
numerical analysis has proven that these configurations
aremarginally stable.We illustrate this for x ¼ 0.3 on Fig. 1.
The cases ϵ1 ¼ −ϵ2 are shown on Fig. 2, for the mass

ratio ν ¼ 0.9. The blue domain represents Ω2 < 0, thus
unstable configurations, while in the yellow area, Ω2 > 0.
For values of w not shown on the figures [w > 8 (left panel)
and w > 25 (right panel)], Ω2 > 0 holds (with the excep-
tion of the continuation of the red curve), and hence
marginal stability occurs.
The green horizontal lines on the panels represent black

hole binaries. The configuration with the larger mass black
hole spin aligned to the orbital angular momentum and the
smaller mass black hole antialigned (ϵ1 ¼ 1, ϵ2 ¼ −1) is
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initially marginally stable, becoming unstable as the
inspiral orbit shrinks, as found in Ref. [33].
For neutron star binaries in the quadrupole parameter

range w ∈ ð2; 4Þ, linear stability can disappear abruptly
during the inspiral for any of the (ϵ1 ¼ 1, ϵ2 ¼ −1) and
(ϵ1 ¼ −1, ϵ2 ¼ 1) configurations, similarly to the black
hole binaries.
By contrast, neutron star binarieswithw> 4 in the (ϵ1¼ 1,

ϵ2 ¼ −1) configuration are always marginally stable.
There are also configurations allowing for a sequence of

evolutions, which are stable, then unstable, then stable
again during the inspiral. In these cases, the instability is
only transitional. Such systems are:

(A) the gravastar binaries with w values in the lower
part of their allowed range, in the configuration
(ϵ1 ¼ 1, ϵ2 ¼ −1);

(B) neutron star binaries with w values in the higher
part of their allowed range, in the (ϵ1 ¼ −1, ϵ2 ¼ 1)
configuration;

(C) boson star binaries, also in the (ϵ1 ¼ −1, ϵ2 ¼ 1)
configuration. For the latter, the instability occurs
only for a very limited part of the evolution (across
the red curve in the right panel of Fig. 2).

Finally note that the location and extension of the blue
domain depends on the mass ratio.
We discuss the marginal stability for other mass ratio

values below. For

ϵ2 ¼ −ϵ1; w1 ¼ w2 ¼ w; x1 ¼ x2 ¼ x; ð34Þ

stability is determined by the sign of

Ω2

R2
¼ ðν − ν−1Þ2 þ ½2 − wðνþ ν−1Þ�2x4

þ 4ϵ1ðν − ν−1Þð1þ νþ ν−1 − wÞð1þ wx2Þx
− 4ϵ1ðν − ν−1Þð1þ wÞx3 þ 2½2w2

þ 2ðν2 þ νþ 1þ ν−1 þ ν−2Þ
þ wðν2 − 4ν − 6 − 4ν−1 þ ν−2Þ�x2: ð35Þ

The roots of the Ω2 ¼ 0 equation are

wðϵ1;ϵ2¼−ϵ1Þ
� ¼ U1 þ ϵ1U2 � V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ1xðν−1 − νÞ

p
W1 þ ϵ1W2

ð36Þ

with

FIG. 1. Marginal stability generically holds in the nonequal
mass case with both spins aligned to the orbital angular
momentum, irrespective of the values of ν, w (shown) and x
(represented for x ¼ 0.3).
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FIG. 2. Marginal stability regions for the quadrupolar parameter w represented by positive Ω2 (shown in yellow) as opposed to
instability regions (blue) for ϵ1 ¼ 1, ϵ2 ¼ −1 (left panel) and ϵ1 ¼ −1, ϵ2 ¼ 1 (right panel). The horizontal green lines are for black hole
binaries. Various transitions from stability to instability and back to stability are possible as the inspiral proceeds (with increasing PN
parameter and x).
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U1 ¼ ½−1þ 4νþ 6ν2 þ 4ν3 − ν4þ2x2νð1þ ν2Þ�x;
U2 ¼ −2νð1 − ν2Þ þ 2ð1 − ν4Þx2;
V ¼ 2ν½ð1þ νÞ2 − ϵ1ð1 − ν2Þx�x;

W1 ¼ ½4ν2 þ ð1þ ν2Þ2x2�x;
W2 ¼ 4νð1 − ν2Þx2: ð37Þ

The two Ω2 ¼ 0 surfaces are represented on Fig. 3 (left
panel for ϵ1 ¼ 1 and right panel for ϵ1 ¼ −1). In the region
between the surfacesΩ2 < 0, they are unstable regions. For
lower values of ν, either there are no real roots, hence no
Ω2 ¼ 0 surfaces [for ϵ1 ¼ −1, this happens below
ν ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 þ 1

p
− 1Þ=2x], or the roots are outside the

physically allowed region for the quadrupolar parameter
(for ϵ1 ¼ 1Þ; thus, marginal stability holds irrespective of
the value of w. For larger values of ν, a similar structure of
the stability and instability regions as for ν ¼ 0.9 emerges,
with the lower stability region possibly missing for certain
parameter combinations.

IV. COPLANAR SPIN ORIENTATION: FIXED
POINTS AND LINEAR STABILITY ANALYSIS

There are additional fixed points of the system (1)–(3)
given by

dκi
dt

¼ 0;
dΔζ
dt

¼ 0: ð38Þ

The first condition is satisfied for i ¼ 1 and i ¼ 2,
respectively, with

0¼ð1þν−x1 cosκ1−νw2x2 cosκ2Þx2 sinκ2 sinΔζ ð39Þ

and

0¼ð1þν−1−x2 cosκ2−ν−1w1x1 cosκ1Þx1 sinκ1 sinΔζ;
ð40Þ

while the second one is satisfied with

0 ¼ ν − ν−1 þ ð1þ 2ν−1 − w1−ν−1w1x1 cos κ1Þx1 cos κ1
− ð1þ 2ν − w2 − νw2x2 cos κ2Þx2 cos κ2
− ð1þ ν−1 − ν−1w1x1 cos κ1Þx1 cot κ2 sin κ1 cosΔζ
þ ð1þ ν − νw2x2 cos κ2Þx2 cot κ1 sin κ2 cosΔζ

− x1x2

�
sin κ2
sin κ1

−
sin κ1
sin κ2

�
cosΔζ: ð41Þ

To investigate the stability about the fixed point (κð0Þ1, κð0Þ2,
Δζð0Þ) under the perturbations of the angles, we parametrize
them as

κ1ðtÞ ¼ κð0Þ1 þ δκ1ðtÞ; ð42Þ

κ2ðtÞ ¼ κð0Þ2 þ δκ2ðtÞ; ð43Þ

ΔζðtÞ ¼ Δζð0Þ þ δΔζðtÞ: ð44Þ

The perturbations jδκ1j, jδκ2j, and jδΔζj are initially much
smaller than 1, and if they stay so, the configuration is
stable or marginally stable. Equations (39) and (40) are
solved by sin κ1;2 ¼ 0 or sinΔζ ¼ 0. The first condition

FIG. 3. Marginal stability regions for the quadrupolar parameter w represented by positive Ω2 regions lying outside the two surfaces
Ω2 ¼ 0, for ϵ1 ¼ 1, ϵ2 ¼ −1 (left panel) and ϵ1 ¼ −1, ϵ2 ¼ 1 (right panel). Marginal stability generically holds for low mass ratios ν,
while for higher values of ν, regions of stability and instability alternate, depending on the value of the quadrupolar parameter w.
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represents collinear spin configurations discussed earlier,
while the second yields the coplanar case. In this latter case,
Eq. (41) reduces to the constraint

0¼ ν−ν−1þð1þ2ν−1−w1−ν−1w1x1 cosκð0Þ1Þx1 cosκð0Þ1
− ð1þ2ν−w2−νw2x2 cosκð0Þ2Þx2 cosκð0Þ2
− ϵΔζð1þν−1−ν−1w1x1 cosκð0Þ1Þx1 cotκð0Þ2 sinκð0Þ1
þ ϵΔζð1þν−νw2x2 cosκð0Þ2Þx2 cotκð0Þ1 sinκð0Þ2
− ϵΔζx1x2

�
sinκð0Þ2
sinκð0Þ1

−
sinκð0Þ1
sinκð0Þ2

�
ð45Þ

between κð0Þ1 and κð0Þ2, where ϵΔζ ¼ �1 represents the sign
of cosΔζð0Þ. The simplest case of ν ¼ 1, w1 ¼ w2, and
x1 ¼ x2 is solved for κð0Þ1 ¼ κð0Þ2.
To linear order in the perturbations about the fixed point,

the evolution equations (1)–(3) give

dδκ1
dt

¼ A1δΔζ; ð46Þ

dδκ2
dt

¼ −A2δΔζ; ð47Þ

dδΔζ
dt

¼ A3δκ1 − A4δκ2; ð48Þ

with

A1

R
¼ ð1þ ν − x1 cos κð0Þ1 − νw2x2 cos κ̄2Þx2 sin κ̄2; ð49Þ

A3

R
¼ −ð1þ 2ν−1 − w1−2ν−1w1x1 cos κð0Þ1Þx1 sin κð0Þ1
− ϵΔζð1þ ν−1Þx1 cot κð0Þ2 cos κð0Þ1
þ ϵΔζν

−1w1x21 cot κð0Þ2 cos 2κð0Þ1

− ϵΔζð1þ ν − νw2x2 cos κð0Þ2Þx2
sin κð0Þ2
sin2 κð0Þ1

þ ϵΔζx1x2
cos κ̄1ðsin2 κð0Þ1 þ sin2 κð0Þ2Þ

sin2 κð0Þ1 sin κð0Þ2
: ð50Þ

The additional constants A2 and A4 are obtained from A1

and A3, respectively, with the changes 1 ↔ 2 and ν → ν−1.
From this system, a second-order decoupled differential
equation for δΔζ can be derived as

d2δΔζ
dt2

¼ ðA1A3 þ A2A4ÞδΔζ: ð51Þ

For ω2 ≡ −ðA2A4 þ A1A3Þ > 0, the evolutions of δΔζ, δκ1,
and δκ2 are described by harmonic functions yielding
marginally stable fixed points. (In the terminology of
Ref. [31], the configuration is stable when Δζ evolves

through a harmonic function about the equilibrium con-
figuration.) Deviations from such marginally stable con-
figurations generate the librations.
Fixed points with ω2 ≤ 0 are unstable. The sign of ω2

depends on the parameters

ν; xi; wi; κð0Þi; ϵΔζ; ð52Þ

which are subject to the constraint (45).

A. Early inspiral limit

At sufficiently large separations, where w1x1=ν ≪ 1 and
νw2x2 ≪ 1 hold, ω2 reduces to

l̄2rω2

R2
¼ ½3ð2þν−1þνÞ− ð1þνÞw1

− ð1þν−1Þw2�χ1χ2 sinκð0Þ1 sinκð0Þ2
þ2ϵΔζð2þν−1þνÞχ1χ2 cosκð0Þ1 cosκð0Þ2

þ ϵΔζð1þν−1Þ2χ21
sin2 κð0Þ1
sin2 κð0Þ2

þ ϵΔζð1þνÞ2χ22
sin2 κð0Þ2
sin2 κð0Þ1

:

ð53Þ

Note that l̄2r has factored out. For χ2=χ1 ≪ 1, there is
stability for Δζð0Þ ¼ 0 and instability for Δζð0Þ ¼ π. For
generic spins, but w1¼w2¼w and sgnðκð0Þ1Þ ¼ sgnðκð0Þ2Þ,
there is stability for Δζð0Þ ¼ 0 if w ≤ 3 (including grav-
astars, black holes, and some of the neutron stars) and
instability forΔζð0Þ ¼ π if w ≥ 3 (the complementary set of
neutron stars and boson stars).

B. Numerical investigation for high spins

The stability of coplanar fixed points emerging as
solutions of the constraint (45) depends on the sign of
ω2. Both the location and number of fixed points and their
stability depend severely on the parameters (52). By fixing
ν, xi, wi, and ϵΔζ, the constraint (45) reduces to curves in
the parameter plane of spin polar angles κð0Þi.
Instead of xi we may also fix the spin magnitudes χi, but

then l̄r emerges as a third parameter. We represent then the
constraint as contour curves of constant l̄r in the parameter
plane ðκð0Þ1; κð0Þ2Þ.
By Eq. (8) of Ref. [24] to leading order, l̄2r ¼ ð1 − ē2rÞ=ε̄.

For ε̄ < 0.1, on circular orbits, l̄r > 3. For a nonvanishing
eccentricity, ē2r < 0.75, the limit l̄r > 2 still holds. We do
not discuss higher eccentricities, as gravitational radiation
is supposed to consume it efficiently toward the end of the
inspiral. This implies that in Figs. 4–7 we will visualize
contour curves for l̄r > 2 only.
For Fig. 4, Δζð0Þ ¼ 0, χi ¼ 1, and ν ≈ 0.82 were chosen.

The first panel, representing gravastar binaries with wi ¼ 0
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reproduces the contour lines from Fig. 2 of Ref. [31], where
the mass quadrupole was disregarded. The purple, blue,
green, olive, orange, and red contour lines emerge for the
values 2 (0.5), 4 (1), 8 (2), 12 (3), 16 (4), and 40 of l̄r. The
numbers in brackets (where applicable) are the correspond-
ing LN , given for easier comparison with Fig. 2 of
Ref. [31]. In the white region, the fixed points are margin-
ally stable (with any deviation leading to libration), while in
the yellow area, there are no fixed points (the deviations
increase monotonically). The second panel represents black
hole binaries, i.e., wi ¼ 1, with the same color codes and
contour lines. They are slightly deformed as compared to
the gravastar binary. The third panel represents a neutron
star - neutron star binary with masses mNS1 ¼ 1.7 M⊙ and
mNS2 ¼ 1.4 M⊙. According to Table VII of Ref. [28], the
respective quadrupole parameters of the neutron stars with

a FPS (Friedman-Pandharipande + Skyrme) equation of
state are wNS1 ¼ 2.55 and wNS2 ¼ 4.3. The fourth panel
represents a boson star - boson star binary with quadrupole
parameters wBS1 ¼ 17 and wBS2 ¼ 22. These quadrupole
parameters roughly correspond to the values on the bottom
two curves of Fig. 4 in Ref. [30] at χi ¼ 1. These two
curves represent a system with mass ratio ν ¼ 0.82, as on
our figure. The contour lines of l̄r cross each other in
certain regions for the boson star - boson star system.
However, this is no problem, as the crossing lines corre-
spond to different values of l̄r and thus to distinct phases of
the inspiral. It is clear from a comparison of the four panels
that the contour lines of l̄r depend significantly on the
quadrupole parameter. They run on a white background,
representing the parameter regions with linear stability. The
red patch on the fourth panel represents the unstable

FIG. 4. Linear stability of the coplanar fixed-point configurations with Δζð0Þ ¼ 0 as function of κð0Þ1 and κð0Þ2, represented for χi ¼ 1
and ν ≈ 0.82. White regions are marginally stable, and pastel pink are unstable. Yellow regions do not have fixed points. The purple,
blue, green, olive, orange, and red contour lines refer to the 2, 4, 8, 12, 16, and 40 values of l̄r, respectively. The panels show binaries
composed of gravastar - gravastar with wi ¼ 0 (top left), black hole - black hole with wi ¼ 1 (top right), neutron star - neutron star with
mNS1 ¼ 1.7 M⊙, wNS1 ¼ 2.55, mNS2 ¼ 1.4 M⊙, wNS1 ¼ 4.3 (bottom left), and boson star - boson star with wBS1 ¼ 17, wBS2 ¼ 22,
respectively.
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FIG. 5. Linear stability analysis for the coplanar configuration with Δζð0Þ ¼ π. The panels and color codes are identical to
those of Fig. 4.

FIG. 6. Linear stability of the coplanar fixed-point configurations with Δζð0Þ ¼ 0 as function of κð0Þ1 and κð0Þ2, represented for χi ¼ 1
and ν ≈ 0.82. White regions are marginally stable, and pastel pink are unstable. Yellow regions do not have fixed points. The purple,
blue, green, olive, orange, and red contour lines refer to the 2, 4, 8, 12, 16, and 40 values of l̄r, respectively. The panels show binaries
composed of black hole - gravastar with wGS ¼ 0 (left), black hole - neutron star with mNS ¼ 1.4 M⊙, wNS ¼ 4.3 (middle), and black
hole - boson star with wBS ¼ 17, respectively.
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parameter region. Note the contour lines which extend on
both stable and unstable regions. On the yellow back-
ground, there are no fixed points.
In the four panels of Fig. 5, the contour lines for all four

above-mentioned binary systems are shown for Δζð0Þ ¼ π,
all other parameters identical. In this case, the value of the
quadrupole parameter affects even more the stability
analysis. Unstable regions appear both for the gravastar -
gravastar and boson star - boson star binaries. The stability
region is much larger for neutron stars than black holes.
Overlapping contour curves appear only for the boson star
binaries.
The regions which contain unstable patches embedded in

a linearly stable region deserve additional investigation. We
have checked numerically that whenever linear stability
holds in these regions generic nonlinear perturbations
confirm the stability up to perturbations of 0.5% but can
destroy stability if the perturbation is roughly larger than
1%. This happens as second- and higher-order perturbative
effects become important. This feature is in agreement with
the analysis of Ref. [31] intended to be performed for black
holes, but as the mass quadrupole was disregarded, they
rather hold for gravastars with wi ¼ 0).
In Fig. 6, Δζð0Þ ¼ 0, χi ¼ 1, and ν ≈ 0.28 were chosen.

The first, second, and third panels represent black hole -
gravastar, black hole - neutron star, and black hole - boson
star binaries, respectively. The quadrupole parameters for
the gravastar, neutrons star, and boson star are wGS ¼ 0,
wNS ¼ 4.3 (corresponding to the massmNS ¼ 1.4 M⊙) and
wBS ¼ 17. These systems are also visualized in Fig. 7 for
Δζð0Þ ¼ π. As a generic rule, the stability regions are
smaller than for binaries of identical nature.

V. CONCLUSIONS

In this paper, we investigated the closed system of first-
order differential equations for the spin orientations derived
in Paper I from the dynamical system analysis point of

view, by performing a linear stability analysis of the
evolutions of spin polar angles and the difference of their
azimuthal angles.
By investigating a sufficient condition of stability:
(i) systems with both spins antialigned with the orbital

angular momentum were found marginally stable.
(ii) systems of black hole - black hole, gravastar -

gravastar, and black hole - gravastar binaries with
both spins aligned with the orbital angular mo-
mentum were also found marginally stable. Bina-
ries with neutron star and boson star components
and aligned spins could be marginally stable in
various stages of the inspiral depending on how
their quadrupolar parameter compares to the func-
tions W−

i which decrease monotonically during the
inspiral.

(iii) in the configurations with one spin aligned and
another antialigned, marginal stability could hold
either during the whole inspiral for sufficiently large
values of wi or only at the latter stages of the inspiral.

In the analysis of the case of equal masses, spins, and
quadrupole parameters, we investigated a necessary con-
dition for marginal stability. This has resulted in:
(a) the confirmation of our earlier finding that the con-

figurations with the spins antialigned to the orbital
angular momentum are marginally stable.

(b) the aligned configurations also turned out marginally
stable, with the exception of a critical quadrupolar
parameter value allowed for neutron stars and boson
stars only.

(c) for black holes and gravastars, the configurations with
one spin aligned and another antialigned to the orbital
angular momentum being found unstable. For neutron
stars, these configurations were found either margin-
ally stable or unstable (depending on the equation
of state), while for boson stars they turned out margin-
ally stable.

FIG. 7. Linear stability analysis for the coplanar configuration with Δζð0Þ ¼ π. The panels and color codes are identical to those of
Fig. 6.
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These results generalize the stability analysis result
performed earlier for black hole binaries (which had the
mass quadrupolar contributions neglected, hence rather
holding for gravastars with wi ¼ 0).
For nonequal masses, we found that marginal stability

occurs for all values of the quadrupolar parameter (for
gravastars, black holes, neutron stars, or boson stars in
binary configurations) when both spins are either anti-
aligned or aligned to the orbital angular momentum. Other
cases were represented in Fig. 2.
For black hole binaries, we recovered the transition from

stability to instability during the inspiral occurring when
the spin of the larger black hole is aligned to the orbital
angular momentum and that of the smaller mass black hole
is antialigned, discussed in Ref. [33]. In the opposite
alignment case, the evolution was marginally stable.
We identified similar evolutions leading to the abrupt

disappearance of stability for neutron star binaries in the
quadrupole parameter range w ∈ ð2; 4Þ. Contrary to black
hole binaries, this can happen if any of the neutron star
spins is aligned to the orbital angular momentum, while the

other is antialigned. Neutron star binaries with w > 4, with
the larger mass neutron star spin aligned to the orbital
angular momentum, are always marginally stable.
We also identified configurations allowing for a

sequence of evolutions, which are stable, then unstable,
then stable again during the inspiral. In the following cases,
a transitional instability occurs:
(A) gravastar binaries with w values in the lower part of

their allowed range, in the configuration of the larger
mass gravastar spin aligned to the orbital angular
momentum;

(B) neutron star binaries with w values in the higher part
of their allowed range, with the smaller mass neutron
star spin aligned to the orbital angular momentum;

(C) boson star binaries, also in the configuration of the
smaller mass boson star spin aligned to the orbital
angular momentum (in this case, the instability
occurs only for a brief part of the evolution).

We summarize these results in Table II.
Marginal stability holds generically, when one of the

spins is collinear with the Newtonian angular momentum

TABLE II. Summary of results on marginal stability (þ) or instability (−) of the collinear spin configurations in compact binary
systems (B) composed of gravastars (GS), black holes (BH), neutron stars (NS), and boson stars (BS) for various mass ratios ν ¼
m2=m1 ≤ 1 and spin orientations. The first spin in the name of a binary (for example BBH↓↑) refers to the higher mass component. The
stability may be different for lower values (low) or higher values (hiw) of the allowed quadrupolar parameter range [wi ∈ ð−0.8; 1Þ for
GS, wi ¼ 1 for BH, wi ∈ (2, 14) for NS, and wi ∈ ð10; 150Þ for BS]. For example, BNS↑↓low denotes a binary system of neutron stars
with the spin of the more (less) massive neutron star parallel (antiparallel) to the Newtonian angular momentum LN and with
quadrupolar parameter in the lower range w≳ 2.

↑LN ↑S1 ↑S2 ↑Si ↓Sj≠i ↓S1 ↓S2

ν ≪ 1 þ þ þ
ν≲ 1, χ1 ¼ χ2 ¼ χ,
w1 ¼ w2 ¼ w

þ (illustrated for x≡ χ
l̄r
¼ 0.3 in Fig. 1) þ (BGS↓↑;BBH↓↑;BNS↑↓hiw;BBS↑↓)

þ

Evolves during the inspiral as
þ− (BGS↑↓hiw;BBH↑↓;BNS↑↓low;BNS↓↑low)

Evolves during the inspiral as
þ −þ (BGS↑↓low;BNS↓↑hiw;BBS↓↑)
(shown for ν ¼ 0.9 in Fig. 2, for
arbitrary ν in Fig. 3)

ν ¼ 1, χ1 ¼ χ2 ¼ χ,
w1 ¼ w2 ¼ w

þ for BGS, BBH þ for BGS, BBS

þ
þ for BNS and BBS if w ≠ wcr1,
where wcr1 ¼ 2

x − 1 > 17
3

decreases during the inspiral

þ for BNS with w > wþ, where
wþ ≡ 1þ 4

x2þ1
∈ ð4.7; 5Þ decreases

during the inspiral

− for BBH, BNS with w < wþ

Sufficient conditions
in all other cases

þ for BGS, BBH, GS-BH

þ for binaries with a NS or BS as the ith

component, obeying wi > Wþ
i , where Wþ

i
decrease during inspiral according to Eq. (18),
bound as Wþ

1 > 10
3
, Wþ

2 > 20
3

þ

þ for BNS with w1 < 10
3
, w2 < 17

3

þ for BNS or BBS with wi ≤ W−
1 and

w3−i < W−
3−i or with wi ≥ W−

1 and
w2 > W−

2 , where W−
i decrease during

inspiral according to Eq. (18),
bound as W−

1 > 10
3
, W−

2 > 17
3
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LN, while the second spin is negligible, with the single
exception of a particular value of the quadrupolar parameter
of a spinning neutron star or boson star in a binary with
comparable masses. The details are summarized in
Table III.
Coplanar configurations (of the spin vectors and orbital

angular momentum) also allow for fixed points. We
discussed the linear stability of them in the parameter
plane of the spin polar angles, fixing all other parameters
with the exception of the monotonously decreasing l̄r
during the inspiral, the different values of which were
represented as level curves. We reproduced earlier results
holding for gravastar binaries. We also investigated the
linear stability of black hole, neutron star, and boson star
binaries, also of mixed black hole - gravastar, black hole -
neutron star, and black hole - boson star binaries. In the
particular numerical examples discussed, we found that

instabilities occur only for the gravastar - gravastar, boson
star - boson star, and black hole - boson star binaries.
Our analysis highlights that the marginal stability of the

spin configurations strongly depends on the value of the
quadrupolar parameter, as shown in Figs. 4–7. We illustrate
this statement in Table IV for four particular coplanar
configurations. Any configuration in the ðκ1; κ2Þ parameter
plane could be marginally stable only for the corresponding
value of l̄r, represented by level curves. Fixing l̄r (for
example the blue curve), in other words picking a particular
phase of the inspiral and the value of κ1 in Figs. 4–7 allows
us to read the value(s) of κ2 of the marginally stable
configuration at the respective phase of the inspiral.
The stability region is much larger for neutron star

binaries than for black hole binaries in the coplanar
configuration. Finally, themixed systems exhibit a restricted
stability parameter region.
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