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Spin and quadrupolar effects in the secular evolution of precessing compact
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We discuss precessing compact binaries on eccentric orbit with gravastar, black hole, neutron star, or
boson star components. We derive the secular evolution equations to second post-Newtonian—order
accuracy, with leading-order spin-orbit, spin-spin, and mass quadrupole-monopole contributions included.
The emerging closed system of first-order differential equations evolves the pairs of polar and azimuthal
angles of the spin and orbital angular momentum vectors together with the periastron angle. In contrast with
the instantaneous dynamics, the secular dynamics is autonomous. The validity of the latter is confirmed
numerically, showing that secular evolutions look like smoothed-out instantaneous evolutions over
timescales where radiation reaction is negligible. The secular evolution of the spin polar angles and the
difference of their azimuthal angles generates a closed subsystem, which, despite the apparent singularity
of spherical polar coordinates, remains well defined through aligned configurations. We study analytically
this system for the particular cases of one spin dominating over the other and for black hole - boson star
binaries of equal masses. In the first case, known large flip-flops of the smaller spin are reproduced, when
the larger spin is almost coplanar with the orbit. We also find new, quadrupole-induced flip-flops occurring
when the neutron star with dominant spin has a quadrupolar parameter w; =~ 3. Finally, we analyze the
evolutions of the spin angles numerically by comparing the cases when the black hole companion is either a
gravastar, another black hole, or a boson star with identical mass. We find that both the amplitude and
period of the flip-flop are the largest, when the companion is a black hole. In the case of a boson star
companion, the frequency of the flip-flop increases significantly. Further, while in the case of gravastars
and black holes a swinging-type azimuthal evolution occurs, with the spins of the components periodically

overpassing each other, their sequence is conserved when the companion is a boson star.
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I. INTRODUCTION

In the Ol and O2 runs of the Advanced LIGO
Detector, the LIGO Scientific Collaboration and the
Virgo Collaboration have announced a total of 11 gravi-
tational wave detections, ten of them produced by coa-
lescing stellar mass black holes [1], while in one case, the
source was a coalescing neutron star binary [2]. A much
larger event rate has been seen in the more sensitive O3 run,
with 39 compact binary mergers identified during its first
half [3], among them other plausible neutron star mergers
and neutron star - black hole mergers. The spin of the
merging black holes was identified with high significance
in two cases during the O1-O2 runs [1,4], while in the first
half of the O3 run, nine events were identified with the
effective spin parameter nonvanishing in the 90% sym-
metric credible interval [3]. The accurate description of
both the orbital and spin dynamics of compact binary
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systems is important for gravitational wave source model-
ing; however, the imprint of spin effects also occurs in radio
astronomy. From the analysis of Very Long Baseline
Interferometry (VLBI) radio data of a binary spanning
over 18 years, the spin precession of the dominant super-
massive black hole could be identified [5].

Whenever the black hole spins Sy, S,, and the Newtonian
orbital angular momentum Ly of the binary are not
aligned, they undergo precession [6-8]. The total angular
momentum J = L 4+ S; + S, composed of the total orbital
angular momentum L and the individual spins is conserved
up to the second post-Newtonian (2PN) order [9-12],
radiative dissipation appearing at 2.5PN orders [13].
Both conservative and dissipative contributions to dynam-
ics arising from leading 1.5PN-order spin-orbit (SO)
coupling have been thoroughly analyzed [14,15], as were
the 2PN spin-spin (SS) [16—18] and the 2PN mass quadru-
pole-mass monopole (QM) contributions [19-24]. The 2PN
self-interaction spin effect in the radiative losses, represent-
ing the 2PN correction to the 1.5PN-order Lense-Thirring
approximation, was first identified in Refs. [16,17] and
explored later to derive the respective contributions to the
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accumulated orbital phase [25]. The dynamics of compact
binary systems has been analyzed to 4PN-order accuracy
either in the nonspinning case [26,27], or in a conservative
approach at the Hamiltonian level [28]. Hamiltonian
methods applied for compact binaries generated several
notable results; see Ref. [29] and references herein.

Compact binary dynamics in the inspiral regime exhibit
three distinct timescales. The shortest is the radial time-
scale, defined by the period of the orbital motion of the
reduced mass. Under the precessional timescale, the orbital
angular momentum Ly and the spins S; and S, undergo a
full rotation about their precession axis. Over the gravita-
tional radiation reaction timescale, the effects of gravita-
tional dissipation become noticeable. Averaging the
dynamics over any of these timescales may be rewarding.
When precession-related effects are targeted, averaging
over a radial period will remove insignificant instantaneous
effects but keep the dominant precessional evolution.
Several interesting spin-related evolutions were identified
by this method. When the orbital angular momentum nearly
cancels the total spin, the orbital plane changes signifi-
cantly during a relatively short-lived transitional precession
period [30]. The direction of dominant spin relative to the
total angular momentum can change significantly over the
radiation reaction timescale in binaries where the compo-
nents have significantly different mass [31]. This spin flip
may explain the formation of X-shape radio galaxies [32].
By an additional averaging over the precession timescale,
the evolution of the magnitude of total angular momentum
over the radiation reaction timescale was investigated in
Refs. [33,34].

When the dominant spin vector is approximately
perpendicular to Ly and the smaller spin is closely aligned
with it, the smaller spin slowly evolves to be antialigned with
Ly, then periodically changes back and forth on a timescale
shorter than the gravitational radiation reaction timescale
[35]. This effect was investigated in a wider parameter range
for binaries moving on circular orbits [36,37]. This spin flip-
flop effect was first found qualitatively in Ref. [38] as a
harmonic “wooble” in the polar angle of the spin, which
evolves “from pole to pole.” Recently, a parameter range has
been identified where the flip-flop happens on relatively
short timescales, dubbed as wide precession [39]. Then, over
the period during which the magnitude of the total spin
changes from its minimum to its maximum and back to the
minimum value, one of the two spins evolves from complete
alignment with Ly to complete antialignment.

Kidder has derived the orbit-averaged (secular) spin-
precession equations [10] for circular orbits, with SO and
SS contributions included, but QM contributions omitted.
The QM couplings were included in the discussion of
angular evolutions in black hole binaries (where the
quadrupole parameters are w; = 1) by Racine [21], who
presented a new constant of motion 4 of the orbit-averaged
dynamics (or equivalently & = ALy, the last factor repre-
senting the magnitude of Ly).

Racine also solved analytically the averaged equations for
equal masses and derived approximate analytical solutions
in the unequal mass case. His analytical solution has been
generalized for arbitrary masses and spins (but still w; = 1
and circular orbits) in Ref. [40], which identified three
distinct regimes in the orbit-averaged precessional dynam-
ics: librations about the configurations of the two spin
projections to the orbital plane either aligned or antialigned
and a “circulating” configuration, when one of the spins
precesses much faster.

Because of the recent discovery of gravitational waves
from mergers of neutron stars [2,41], the interest in their
internal structure and equation of state [42], implying a
better constrained range of the parameter w;, has been
revitalized. In this work, we leave the quadrupole parameter
unspecified, including neutrons stars with w; € (2,14)
[43,44] and also other exotic compact objects, like boson
stars with w; € (10,150) [45] or gravastars with w; €
(—0.8, 1) [46] as compact binary components. Allowing for
w; # 1 complicates the dynamics, as for example, the
quantity conserved for black hole binaries, identified by
Racine, becomes dynamical, unless w; = 1.

Although gravitational radiation tends to circularize
the orbit of the binary [13], significant eccentricity can
be preserved at the end of the inspiral. This happens for
binaries in either dense galactic nuclei [47,48] or within
accretion disks [49,50]. Furthermore, because of the Kozai
mechanism, the relativistic orbital resonances in hierarchi-
cal triples can also retain eccentricity [51-54]. The inter-
action between supermassive black hole binaries and their
star populations results in significant eccentricity toward
the end of the inspiral, too [55,56]. Hence, allowing for
eccentricity in the dynamics may be rewarding.

The instantaneous dynamics (including SO, SS, and QM
effects, also eccentricity) in terms of dimensionless vari-
ables was discussed in Refs. [57-59], based on earlier
works on binary dynamics of Refs. [6-9,60-63]. The 2PN
conservative dynamics of compact binary systems was
given by Egs. (36)-(42) of Ref. [59] in terms of dimen-
sionless osculating orbital elements I,, e,, w,, @, and ¢,;
spin polar and azimuthal angles x; and ¢; (i = 1, 2); and
true anomaly parameter y,. The time evolution of y, is
governed by Eq. (43) of Ref. [59]. The polar angles «; of the
spin vectors are measured from Ly. The azimuthal angles
{; are measured from the Laplace-Runge-Lenz vector Ay
in the plane perpendicular to Ly. The argument of the
periastron, y, is defined by y, = arccos (1-Ay), with
1=Jx Ly, where J is the direction of the total angular
momentum, which is conserved in the 2PN dynamics. The
inclination « is the polar angle of Ly measured from J. The
last angle is the longitude of the ascending node —¢,,
spanned by the inertial axis X (arbitrarily chosen in the

plane perpendicular to J) and 1. This angle is related to the
azimuthal angle (/2 — ¢,,) of Ly, measured from % in the
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plane perpendicular to J. (The angles y,, ki, W; = §i — W),
¥,, a, and ¢, are shown in Fig. 2 in Ref. [57].)
The dimensionless orbital angular momentum

cLy

[, = 1
"= G (1)
and the eccentricity
A
e, = = (2)
Gmu

characterize the osculating ellipse of the orbit; hence, they
are shape variables. The total and reduced masses of the
binary are denoted as m = m; + m, and u = mym,/m,
respectively. We also employ the mass ratio v = m,/m; <
1 and the symmetric mass ratio 7 = u/m. The gravitational
constant, the speed of light, and the magnitude of Ay
are denoted by G, c, and Ay, respectively. The magnitudes
of the spins are characterized by the dimensionless
spin parameters y; = ¢S;/Gm? (i =1, 2). The dot will
denote the derivative with respect to the dimensionless time
variable t = tc3/Gm (with time 1) introduced in Ref. [59].
The PN parameter is defined as e = Gm/c?r.

In this paper, we will investigate precessing compact
binary systems on eccentric orbit subject to bound motion,
first establishing the 2PN secular dynamics in terms of the
above-mentioned dimensionless variables, then analyzing
the spin evolutions with the methods of dynamical systems,
with SO, SS, and QM contributions included. The PN
equations of motion depend on the choice of a spin
supplementary condition (SSC)."' we employ the Newton-
Wigner-Price [65,66] SSC, similarly as in Ref. [59]. This
system is valid for eccentric orbits and for binaries com-
posed of either black holes, neutron stars, or other exotic
compact objects (boson stars or gravastars).

The instantaneous dynamics described in Ref. [59] is
averaged over a suitably defined radial period in Sec. II,
obtaining the secular precessing compact binary dynamics
in terms of the dimensionless osculating orbital elements I,.,
e, Yy, @ ¢,, and spin angles «;, {; (i =1, 2). These
equations contain PN, SO, SS, QM, and 2PN contributions.
These are generalized Lagrangian planetary equations,
which become singular for vanishing e,; nevertheless,
the singularity can be eliminated by a transformation of
variables [67]. For completeness, we also give in this
section the secular precession angular velocities and con-
straints relating the variables.

For the purpose of averaging, the PN expansion of the
radial period is required. For clarity of presentation, we
deferred the tedious but straightforward bulk of

'A comparison of the three widely used SSCs has been
presented in Ref. [64], proving the SSC dependence of the
radiative multipole moments.

calculations leading to it to the lengthy Appendix A.
There, first, we derive the radial period in terms of the
variables evaluated at the periastron (characterized by the
value of the true anomaly parameter y, = 0). The y,
dependence of the shape variables is also derived by
integrating the corresponding first-order system given in
Ref. [59]. Then, we compute their time-averaged values f,,
e, over the radial period to 2PN accuracy, with the
inclusion of all spin and mass quadrupole effects to this
order. Next, we express the shape variables evaluated in the
periastron in terms of the corresponding averaged quan-
tities. With this, we can write the radial period as a PN
expansion expressed in terms of averaged quantities. We
also give there a similar expansion in terms of the chosen
variables of the PN parameter.

In Sec. IIl, we analyze the role of eccentricity in the
secular evolution by comparing low-eccentricity and
medium-eccentricity evolutions for the values of the PN
parameter 0.01 and 0.0005. We also prove that the secular
dynamics follows closely the instantaneous dynamics given
in Ref. [59] over the conservative timescale.

The secular evolution of the spin angles generates a
closed subsystem of three variables, discussed in Sec. IV.
Despite the apparent singularity of spherical polar coor-
dinates, we prove in Appendix B that the system remains
well defined through aligned configurations.

In Sec. V, we study analytically and numerically this
closed subsystem for the particular case of one spin
dominating over the other, concentrating on the flip-flop
effect of the polar angle of the smaller spin. We identify a
diamond-shaped region in the parameter plane span by the
dominant spin polar angle and quadrupolar parameter.
Along the horizontal axis of the diamond, the known
flip-flop effect for black hole binaries is reproduced;
however, the vertical axis signifies mass quadrupole-
induced flip-flops occurring for neutron stars with a
particular quadrupolar parameter.

In Sec. VI, we study the closed subsystem for the
particular case of black hole - boson star binaries. We
investigate the spin angle dynamics both analytically and
numerically. We also compare it to typical evolutions in
black hole - black hole and black hole - gravastar binaries,
pointing out the differences.

In Sec. VII, we present the conclusions.

II. SECULAR CONSERVATIVE DYNAMICS OF
PRECESSING COMPACT BINARIES

In this section, we present the orbital averaged evo-
lution equations of the dimensionless osculating orbital
elements [,, e,, w,, @, and ¢, and spin angles «;, {;
(i =1,2) at 2PN accuracy, with spin and mass quadru-
pole effects included from the instantaneous evolutions
derived in Ref. [59].
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A. Averaging method

For bounded motion, the separation r between the binary
components can be parametrized similarly to a Keplerian
orbit [59],

ctr 2
o G

Gm 1+e,cosy,

where y, is the true anomaly. However, unlike a Keplerian
orbit, both shape variables [, and e, are time dependent.

The dimensionless period < is defined as the change in
the dimensionless time t = #c?/Gm during the evolution of
the true anomaly over y, € [0, 27] as

~_/ dt = /d’f" (4)

The average f of any quantity f(t) with respect to t is
introduced by

If = /ng(t)dt _A

Then, as described in Appendix A, the period can be
rewritten in terms of the orbital averaged shape variables as

22 f(rp)
i d (5)

~ 1. 1 1 1 1
‘Z = S(l +ETPN + 13 TSO + I4TQM+ I4TSS + I4TQPN>
(6)

with the expressions g, TpNnsTsosToms Tss, and Topy also
given there. Here, 1/ I% stands for one relative PN order, as
indicated by Eq. (8) of Ref. [59].

B. Shape variables

Employing the averaging method described in the
previous section, long but straightforward calculations lead
to the secular evolutions of the dimensionless orbital
angular momentum [, and orbital eccentricity e, as

L A e e A A ¢

O < < 0 M
€, = efN = e“EO = eSS = e,Q %PN =0. (8)

As expected, the average shape of the orbit does not change
when dissipation by gravitational waves is neglected.

C. Euler angles

These evolutions are nontrivial, as discussed below.

1. Inclination «

The secular evolution of the inclination a=arccos (J-Ly)
emerges as the sum of the contributions:

aN =0, )
2
q~ B Z V7 4 3)yesinkg cos (y, + &), (10)
zI; k=1
- 3nrx
ass = ql4)(|)(2[51n’<1 cosk; cos(yr, +¢1)
+ cosk; sink, COS(I,I/p + )], (11)
- 3nzx
o= 2@142”2" Swirrsin2kgcos (w, +¢;).  (12)

a*tN = 0. (13)

As expected, the inclination only changes due to spin and
quadrupolar effects.

2. Longitude of the ascending node — ¢,

The longitude of the ascending node —¢,, is subtended
by the inertial axis & and the ascending node | = Ly x J. It
has the following contributions to its secular evolution:

oY =, (14)
=80 nr :
b == > (W7 4 3)psinksin(y, + ),
~br =1
(15)
3nx . .
o3 = T snat 2 [sink; cos k, sin(y, + ¢;)
+ cos k; sink, Sill(l//p + )l (16)
< OM 37777.’

n 2‘7[4sma2y2k Swrsin2kgsin (y, + &), (17)

=2PN
Again, only spin and quadrupolar effects contribute.

3. Argument of the periastron y,,

The secular evolution of Vs the angle between the node
line I, perpendicular to both Ly and J) and the periastron
(AN), is the sum of

(19)

’ =

2
_ 41243 1 3)

X Xk [2 cos ki +cot a sinkysin (y, + )], (20)

2
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. 3nx i i
Y, = q‘_iﬂwz{cota[smlq coskysin(y, +¢)
~%r

+cosk sinkysin(y, +&,)]

+2cosk; cosk, —sink; sink, cos($r — &)},

3nn
QM 2k— 3
¥p lss [4 Z

(21)

#lcot asin 2k sin(y, + ;)

— 3sin’k; + 2, (22)
< 3z
w, N = o]l [33¢2 — dn — 622 + 2]. (23)

All PN, spin, and quadrupolar corrections lead to periastron
precession.

D. Spin angles

The contributions to the secular evolutions of the spin
polar angles x; and the azimuthal angles {; are

PN =0, (24)
- nmw - . .
K30 = e (%73 + 3))(j Sink; sin (¢i— Cj), (25)
RS = — ’7[4;(,s1m< sin(¢§;—¢;) (LY =3 +3y,c08k;), (26)
. 3 . .
oM _ 2‘;7I4 - wj)(jz» sin2x;sin (; = ¢;),  (27)
RPN — 0, (28)
gl - _l//TPP ’ (29)
> SO nr ¢ —2i
G = @{Ir(“ +30°7%)
+3(4573 4 3)y; cos k; + (407 4 3)y;
X [2cosk; + cotk; sink; cos (§; — &)} (30)
EiSS: ;7;[3 v*73y[2cosk;+cotk; sink;cos(§; ¢ )]
3nm . i
—q—f“)(i)(j{COtKiB sink; cosk; +cosk;sink;cos(¢; ()]
—sink;sink;cos({; —¢;)} (31)
2
0 3nn 3nx 2%-3,2
¢; _‘sz -cosxi—@kgwkv Ak
x [2 = 3sin’k;+ cotk; sin (2k; ) cos (&; — &i)], (32)
T2PN z
&=y, (33)

Here, i # j,and i = 1, 2.

It is easy to check that in the binary black hole
case the dynamics indeed provides the additional constant
of motion found by Racine [21], which in our notation
becomes

Gum
&= %[(1 + vy cosky + (14 v)y, cosky).

(34)
Its time derivative indeed vanishes as can be seen by
employing Eqgs. (24)—(28) with w; = 1. However, there is
no obvious way to generalize this constant for arbitrary
quadrupole parameter w; # 1.

E. Secular precession angular velocities

The averaged precession angular velocities are calcu-
lated from Eqs. (31)—(33) of Ref. [59]%

= 2 .
;- AN = QLEZ (V¥3y, sink;j cos §j+3wy; sink; cos &)
(35)
~— 2z 203
wi'QN—q«p( 1=y jsink;sing 3wy, sink;sing;)  (36)
r nr 3-2i 2j-3
w; - Ly = @[3 [1,(4 4+ 3°72) 420 yjcosk;l.  (37)

It is easy to see by checking the leading-order term of ¥
that as e, goes to 1 the precession becomes increasingly
small. It is explained by the fact that on parabolic orbits,
when e, = 1, the motion becomes unbound, and there is no
well-defined period, thus no precession.

F. Constraints

The 2PN dynamics of compact binaries (given by
Egs. (36)—(45) of Ref. [59]) have four first integrals which
are derived in Secs. V.A. and V.B. of Ref. [59]. The first
integrals give the conservation of total energy and total
angular momentum. Two first integrals which express the
direction of total angular momentum and given by Eq. (53)
and the ratio of Egs. (54) and (55) of Ref. [59] represent
two constraints among the variables occurring in the secular
evolution equations. As a result of this, the secular
dynamics given above is subject to two constraints among
the shape variables, the Euler angles, and spin angles,
which will be shown below.

’In Egs. (B34) of Ref. [58], the SS and QM terms have typos:
the 1/2 factors should be removed. We thank Krisztina Kévér for
pointing this out. Because of this, the second term of Eq. (33) of
Ref. [59] contains unnecessary 1/2 factors on the rhs (but
otherwise all conclusions remain unchanged). In the present
paper, these have been corrected, and both the instantaneous and
secular dynamics are represented correctly.

084024-5



KERESZTES, TAPAI, and GERGELY

PHYS. REV. D 103, 084024 (2021)

The constraints determining the direction of the total
angular momentum to leading order (see Eqgs. (58) and (62)
of Ref. [59]) read as

2
[, = Z V¥ y[sink; sin (&; +w,) cota —cosk;],  (38)
i=1

and

2
Z V¥ 3yisink; cos (8 +w,) = 0. (39)
i—1
Here, [, (y,) was changed to [,, an approximation valid to
leading order. These expressions do not depend explicitly
on the variable y, characterizing the position of the body
with reduced mass. Only the correction terms O(1;2) to the
above equations exhibit explicit y, dependence. Therefore,
we expect the constraints (38) and (39) to be conserved
under the secular evolution.

Since f, is a constant, the time derivative of the left-hand
side of (38) is zero. A long but straightforward computation
with the application of the secular evolution equations
shows that the time derivative of the right-hand side also
vanishes. Similarly, we checked that the time derivative of
Eq. (39) vanishes to 2PN order. These prove that Egs. (38)
and (39) are first integrals of the secular evolution equations
given in Secs. [ B-II D. They can be used to reduce the
order of the differential equation system or for checking the
accuracy of the numerical integration. In addition, Egs. (38)
and (39) have to be fulfilled when setting up initial
conditions.

II1. SECULAR AND INSTANTANEOUS DYNAMICS
OF BLACK HOLE BINARIES COMPARED

A. Conservative timescale

Because of gravitational radiation, the PN parameter
increases during the inspiral. During the time

5

. ( 4 4, \Gm
256n

g(in) - l"’(out)) ? ’ (40)

the PN parameter evolves from &g, t0 €gy [25]. For
numerical evolution purposes, we define the dimensionless
conservative timescale Qcom as a 1% increase in the PN
parameter:

5, 1\ 0195
=— ¢t l-——= | ~r—¢4. (41
cons 2561’] g(m) < 1014) 2567] g(m) ( )

Dividing this by (the leading-order dimensionless) orbital
period = 27e3/2 gives the number

Y

L0195 s

max — mg(in) (42)

of radial periods of the conservative timescale. Evolving
numerically for N, periods keeps the error of disregard-
ing the dissipation below 1%.

B. Accuracy of the secular dynamics

We check the long-term accuracy of the secular dynam-
ics by a numerical comparison over N, periods with
the instantaneous evolutions given by Eqgs. (36)—(42) of
Ref. [59]. The results are shown on Figs. 1-4. All figures
are for m =20 My, v=1/2, and high-spin parameter
values y; =y, = 0.9982. The initial value for the PN
parameter is £(0) = 1072 in Figs. 1 and 2, while £(0) =
5% 107 in Figs. 3 and 4. The initial value for the
eccentricity is e,(0)=0.1 in Figs. 1 and 3 and ¢,(0)=0.5
in Figs. 2 and 4.

For the instantaneous evolutions, the shape parameter
[,(0) emerged from the PN parameter £(0) and eccentricity
e,(0) cf. Eq. (8) of Ref. [59]. Then, y,(0) and a(0) were
computed from the constraints given by Eq. (53) and the
ratio of Egs. (54) and (55) of Ref. [59].

The initial values f(0) for the secular dynamics were
extracted from the instantaneous evolution during the first
orbit in the following manner,

F0) =7 =5 [(T) - F0)), (43)

where f represents the first orbital average. This method
corrects for the periodic component of the instantaneous
motion, leading to the proper initial condition for the
secular evolution representing the orbital average.

In the secular dynamics, the shape variables &, and [, are
conserved. Finally, the initial values of y, and a were
computed from the constraints (38) and (39).

The smaller pictures zoom into the first two radial
periods of the evolution. On the conservative timescale,
the secular evolution follows closely the instantaneous
evolutions. Certain evolutions even overlap, making them
hard to distinguish.

C. Effects of the eccentricity and PN parameter

The comparison of Figs. (1) and (2), and also (3) and (4),
yields to the remark that N, decreases with increasing
eccentricity, whereas comparing the evolutions of distant
binaries in Figs. (2) and (4) to the close binary evolutions
(1) and (3) yields that N, decreases with increasing PN
parameter.

While Figs. (3) and (4) represent the early stages of the
inspiral, Figs. (1) and (2) refer to the very end of it. While
the secular evolution of the spin azimuthal angles {;,
indicate more than 60 precessional cycles at low eccen-
tricity and more than 20 for high eccentricity in the early
inspiral regime, at the end of it, N, will not reach even
one single precessional cycle. Similarly, the number of
nutations (represented by the number of cycles of the polar
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FIG. 1.

The panels represent the secular (green) and instantaneous (red) evolutions of [, e, a, ¢,,, w,, k;, and {; (i = 1, 2) as functions

of the number of orbital periods N. The parameters and initial conditions for the instantaneous evolutions are total mass m = 20 M,

mass ratio v = 0.5, dimensionless spin parameters y;

> = 0.9982, eccentricity e,(0) = 0.1, spin polar angles «;(0) = z/6 and

k>(0) = /4, spin azimuthal angles {;(0) =0 and {,(0) = z/2, longitude of the ascending node ¢,(0) =0, and post-Newtonian
parameter £(0) = 0.01. Matching initial conditions for the secular dynamics have been chosen, as explained in the main text. On some of
the plots, the two evolutions overlap at the chosen resolution. On each panel, the first two periods are also shown in order to illustrate that

the match only occurs on the longer run.

angles k; between their maximal and minimal values) is 18
at low eccentricity and 5 at high eccentricity in the early
inspiral, while at the end of it, N, covers only a fraction
of the nutational period. The polar angle @ and azimuthal
angle ¢, of the orbital angular momentum exhibit similar
behavior to that of the spins.

IV. CLOSED SYSTEM FOR THE SECULAR SPIN
ANGLE EVOLUTIONS

Remarkably, the secular evolution of the spin angles x;
and k, and A{ = £, — {, discussed in Sec. II form a closed
subset:

1 dx,
E%: (14 —x1COSK] — W)X, COSKy )X, SiNk, SINAL,
(44)
1 dx,
}% =—(14+v' —xyc08ky — v~ lwx; cos k)
X x1 sink; sin A, (45)

1dA
Ed—f: v—v 4+ (14207 —w—w v~ 1x, cosk; )x; cosk;

— (1420 —wy — wyLx, COSK ) X COSKy
— (14+v7'=w v x| cosk; )x; cotk, sink; cos AL

+ (1 4+ v —wyx, COSKy ) X, COtKy Sink, cos AL

sink, sink
—x1x2< —2_2 1)cosAC, (46)
sink;  sink,
where we have introduced the notations
3nn Xi
R = —Czj% s X = f_r . (47)

In Appendix B, we prove that the evolutions remain regular
across manifest coordinate singularities.

In the next two sections, we will discuss applications for
this closed system.
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parameters being identical to those for Fig. 1.
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FIG. 4. The effect of an increased eccentricity e,(0) = 0.5, the rest of the parameters being identical to those for Fig. 3.

V. SPIN FLIP-FLOPS WHEN ONE SPIN and
DOMINATES OVER THE OTHER B |
WX

In this section, we consider the case of one spin 1? = _<1 +;—%COS K1>x1 sink;. (52)
dominating over the other, thus y, << y;. Under these
conditions, we will recover configurations with large spin For the values x; = {0, z}, the angle x, becomes a
flip-flop already discussed in the literature and an addi-  constant, and A = Ag t + constant.
tional flip-flop induced by a particular value of the quadru- For generic x;, the system has fix points given by
pole parameter, relevant for neutron star binaries. dAZ/dt =0 and dk,/dt = 0, resulting in either

Since

~

Bg
— — AL =0, K, = arctan <— —‘) (53)
@<@> /o (&) e (48) As,

dt dt X1 or
in this case, k; behaves as a quasiconstant. The system B
governing A and k, simplifies to Al =, Ky = arctan <A_51> (54)
1
dAg In the rest of the cases [other than k; = {0, 7} or the fix
dt As) + Bs, coti cos AL, (49) points (53) or (54)], we derive the following second-order
s differential equation from Egs. (49)—(50),
% — By, sin AC, (50) -
W(sin Ky sin AL) + Qf sinkysin AL =0, (55)
with coefficients
where

Ag 1 2 wix
?‘:y—;-i- <1+;—w1_ Llcosm)xlcosm, (51) Qs = /A§1+B§|' (56)

084024-9
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The color map represents the flip-flop angle Ak, as a function of the initial polar angle , (0) and the quadrupole parameter w,

of the dominant spin (y; > y,). From the top left to lower right panel, A{(0) is 0, #/4, /2, and 37 /4, respectively. The additional
parameters of the binary are m; = m, = 1.4 Mg, e, = 0.1, € = 0.0001, y; = 0.95, y, = 0.05, and ,(0) = z/10. In the small white
rectangle regions, Ak, does not reach its maximum within the conservative timescale. The flip-flop is large in the red diamond-shaped

regions.

Equation (55) represents a harmonic oscillator, and its
solution reads

sink, sin Al = K cos (Qs,t + Dy, ), (57)

with integration constants |K;| <1 and Dg, . Then, from
(50), we obtain

KB -
COSKy = —%Siﬂ (Qs,t+Ds,) + Ky, (58)
S1

where |K,| < 1 is an additional integration constant. Since
the system (49)—(50) of two first-order differential equa-
tions admits only two integration constants, K, K,, and
Dy, are not independent. Indeed, by taking the derivative of
Eq. (57) and using Eqgs. (49)—(50) and (58), we find that

. A% Q5
Ag, sink, cos AL = —=cosk, ——— K. (59)
Bg, Bg,

Hence, A, = 0 also implies K, = 0. We introduce a new
constant C as

K2 - ASIC (60)

with arbitrary value for Ag, = 0 and from (59) and (57)—(58),

K} =1-9Q} %, (61)

otherwise. Hence, the solutions (57) and (58) can be
rewritten as

€BS1
COSK, :ASIC-l-Q—
S

sink, sin AS = —ey /1 —QF C*cos (gt + Ds,),  (63)

where ¢ = 41 and —e gives the sign of K1.3
From Eq. (62), the maximal variation of cos k, during the
evolution is

2B
|A cosk,| = ' Qsl \/1—9Q5 C?

1
2
- '2\/—351 - B} C?
A5, +Bs,

*Note that the reverse case y; < y, can be obtained by the
following notational changes: y, — y,, v —v~\, w; = wy,
K] = Ky, and AL — —A(.

1-9Q3 C?sin(Qq E+Dy,).  (62)

. (64)

084024-10
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This is the largest when
A < B, (65)

As x; = y,/1, and 1/1, represents 1/2PN order (Ref. [59]),
anecessary condition for Eq. (65) is v & 1, since in this case
the leading-order term of Agl is negligible. Further the
condition (65), implying a large change in the polar angle
of the smaller spin cf. Eq. (64), holds in two cases,

1
[) COsk| = O(i—> (66)
and
i) 1 +%— wy — it COSK| = O(%) (67)

The condition (66) means that the larger spin vector is
almost perpendicular to Ly (with a deviation of 1/4PN
order allowed). This configuration, which results in large
flip-flops of the smaller spin, was analyzed first in Ref. [35]
for quasicircular orbits. By contrast, as k is contained in a
O(1/1,) term of Eq. (67), the second condition could hold
for a wide range of angles «; (i.e., almost independently of
the direction of the dominant spin), provided the binary
component with dominant spin has a quadrupole moment
w; ~ 3. This situation can be relevant for neutron star -
neutron star binary systems where one of the binary
components is spinning much faster than the other. Both
flip-flop situations arising under i) and ii) are represented
on Fig. 5 in a combined fashion as the red diamond-shaped
regions. Case i) occurs along the horizontal axis, while case
i) occurs along the vertical one.

VI. BINARIES WITH A BLACK HOLE AND
A GRAVASTAR, ANOTHER BLACK HOLE, OR
BOSON STAR COMPANION

A. Black hole - boson star binaries

In this subsection, we discuss analytically the case of
black hole - boson star binaries with w; = 1 and w, ~ 100,
also equal masses and at large separations, such that x| =
X, < 1 (as they are of the order of 1/2PN order; also, we
assume w,px, < 1). The closed system (44)—(46) can be
approximated as

1 dx,
E% — 2x, sin K, sin AL, (68)
1 dx,
E% = —2x, sink, sin AL, (69)
1dA
ﬁd_tg =2X| COSK| + WyX; COSKy —2X; COtk, sink; cos AL
+ 2, cotk sink, cos AL. (70)

The first two equations give

dcosk;  xp (71)
dcosk, x|
or
COSky = all (A —cosk), (72)
X2

with A a suitable constant to render cosk, in the allowed
range. If cosx, # 0, the first term of Eq. (70) can also
be dropped.

In the particular case A =0 and x, = x;, Eq. (72)
yields k, = 7 — k.

This is a highly symmetrical configuration, with the
evolutions of the two spin polar angles occurring symmet-
rically to the orbital plane. In this setup, Eqgs. (68)—(70)
reduce to

1d

E% = 2x, sink; sin AL, (73)
| dAC
Ed—t = —WpX| COSK]. (74)

These suitably combined integrate into

cos A = In|Csin? k,

, (75)

with C an integration constant. Inserting this into Eq. (73),
we obtain an ordinary differential equation,

] T wp

E% = +£2x, sink; [1 — (In |Csin?x, )22, (76)

with formal solution

dK'l

[1 — (In|Csin7k,|)?]"/* sink

2x,R(t — t) :i/ . (77)

where t, is another constant. Hence, the time evolution of
the spin polar angles is given by Eq. (77), while the
evolution of the difference of their azimuthal angles is
given by Eq. (75).

B. Comparing flip-flops in black hole - black hole,
black hole - gravastar, and black hole - boson
star binaries of equal mass

We wish to study here the effect of the quadrupole
parameter of the companion compact object to a black hole
in the spin flip-flop. The masses of all compact objects
were chosen equal; hence, v = 1. We monitored the
evolution at PN parameter € = 0.0001 and eccentricity

e, =0.1, leading to [, =99.5. We chose the spin

084024-11
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FIG. 6. The evolution of the spin polar angles (left column) and of the difference of their azimuthal angle (right column) as function of
the dimensionless time t in units of xR, for binaries consisting of a black hole and either a gravastar with w = —0.8 (first row), another
black hole (second row), or a boson star with w = 100 (third row). The mass ratio is ¥ = 1 in all cases. The plots are for the PN
parameter £ = 0.0001, eccentricity e, = 0.1, the parameters x = x; = x, = 0.01, and initial spin orientations x;(0) = x,(0) = 7/2,
A{(0) = 3z/4. The polar angles exhibit a flip-flopping behavior, with both the frequency and amplitude depending on the quadrupole
parameter of the compact companion. The difference of the azimuthal angles is also sensitive to w.

magnitudes y; = y, = 0.95, generating the parameters
x = x; = x, = 0.01. For initial values of the spin angles,
we picked «;(0) = k,(0) = z/2 (hence, the spins lying in
the orbital plane), separated by an azimuthal angle differ-
ence of A(0) = 3z/4. With these values, we monitored
the spin angle evolutions for the three distinct binary
systems. The results are represented in Fig. 6.

In all cases, the spin polar angles exhibit the flip-flopping
behavior, its amplitude and frequency being affected by the
nature of the companion (through the value of the quan-
drupolar parameter w). We found that the largest amplitude
and period occur when the companion is an identical black
hole. Both for gravastar and boson star companions, the
amplitude and period of the flip-flop decrease. The flip-flop
frequency is largely increased for boson star companions.

As concerning the difference of the azimuthal angles A,
the evolutions are similar for low values of w, thus for
gravastar and black hole companions. The spins of the
binary components exhibit precessions during which they
overpass each other periodically (A{ evolves through a
sequence of positive and negative values). Nevertheless,
when the companion is a boson star, this swinging behavior
disappears (A{ remains positive). The amplitude of the
periodical evolution in A{ is also decreased.

VII. CONCLUSIONS

In this paper, we derived the conservative secular
evolution of precessing compact binaries on eccentric
orbits, to second post-Newtonian—order accuracy, with

084024-12
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leading-order spin-orbit, spin-spin, and mass quadrupole-
monopole contributions included. Our approach relies on
employing a properly chosen set of dimensionless varia-
bles, advanced in Ref. [59] and a method of averaging over
the radial period. The secular dynamics emerged by
applying this to the instantaneous dynamics discussed in
Ref. [59]. The inclusion of the mass quadrupole parameter
allows us to apply the formalism for binaries with arbitrary
compact components, like black holes, neutron stars, boson
stars, or gravastars.

The derived secular dynamics generalizes previous results
from the literature. In Ref. [15], the dynamics was only
expressed to 1.5PN order by employing different shape
variables. In Ref. [30], the precession was examined with
leading-order SO and SS effects for orbits with negligible
eccentricity. Reference [60] investigates the PN dynamics
with eccentricity, but without spins. Reference [68] dis-
cusses the dynamics of small mass ratio binaries with
only the smaller body having spin. The seminal review
on gravitational radiation from compact binary sources by
Blanchet [61] discusses the SO effect in its last section but
omits the SS and QM contributions to the dynamics. The
secular dynamics where the leading-order SO, SS, and QM
coupling are included is investigated analytically in
Ref. [21] only for black holes.

The secular evolution equations emerged as a closed
system of first-order differential equations, which in
contrast with the instantaneous evolutions presented in
Ref. [59], is autonomous. The dependent variables are the
polar (x; and k) and the azimuthal angles ({; and {,) of the
spin vectors, the angles « and ¢, giving the orientation of
the orbital angular momentum vector, together with the
periastron angle vy, the dimensionless magnitude of the
orbital angular momentum I,, and the eccentricity e,. Over
the conservative timescale, the secular dynamics can be
regarded as some sort of smoothed-out intantaneous
evolution, as illustrated in Figs. 1-4.

Moreover, we have shown that the spin polar angles and
the difference of their azimuthal angles in the system
defined by the orbital plane evolve according to a closed
subsystem of the secular dynamics. In spite of the apparent
singularity of spherical polar coordinates, the evolutions
remains well defined through aligned configurations. We
studied in detail this closed subsystem in two significant
cases. First, we assumed that the masses are comparable,
but one of the spins dominates over the other. In this case,
we 1) derived analytically that large flip-flops of the smaller
spin emerge when the larger spin is almost coplanar with
the orbit (a known result) and ii) found new flip-flop
configurations arising for the quadrupole parameter w; = 3
of the neutron star with dominant spin.

We also studied black hole - boson star binaries. In this
case, the huge quadrupolar parameter of the boson star
allows for significant simplification of the closed subsys-
tem, allowing us to derive a formal analytical solution.

Finally, we analyzed the evolutions of the spin angles
numerically by comparing the cases when the black hole

companion is either a gravastar, another black hole, or a
boson star with identical mass. We found that the amplitude
and period of the flip-flop is maximal, when the companion
is a black hole. In the case of a boson star companion, the
frequency of the flip-flop increased significantly. The
precession of the spins is also sensitive to the quadrupolar
parameter of the companion. While in the case of gravastars
and black holes a swinging-type evolution occurs, when the
spins of the components regularly overpass each other, their
sequence is conserved when the companion is a boson star.

In a related paper [41] we will discuss the equilibrium of
the spin configurations and their linear stability in precess-
ing compact binaries with black hole, neutron star, grav-
astar, or boson star components.
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APPENDIX: THE PN EXPANSION OF THE
RADIAL PERIOD

When averaging instantaneous variables over one radial
orbit in order to obtain their secular counterpart, the expres-
sion of y, given by Eq. (43) of Ref. [59] is needed, as ex-
plained in Sec. II A, with both its Newtonian and PN contri-
butions expressible by the true anomaly y, and the shape
variables [, (y,,) and e, (y,) alone. Hence, [,(y,) and e, (v ,)
will be required to 2PN-order accuracy, while the rest of the
orbital elements y,, @, and ¢,, and spin angles x; and
g; (i =1, 2) only to leading order, where they are constants.

In this Appendix, first we derive the y, dependence of
the dimensionless orbital angular momentum [, and the
dimensionless orbital eccentricity e, to 2PN order, in terms
of their values at the periastron (characterized by the true
anomaly y, =0). Next, employ these expressions to
compute the radial period to 2PN accuracy. The derivation
of the time-averaged values [, and &, over the radial period
follows, again to 2PN accuracy, with the inclusion of all
spin and mass quadrupole effects to this order. This enables
us to express the shape variables evaluated at the periastron
in terms of the corresponding averaged quantities. This is
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employed for rewriting the radial period as a PN expansion
in terms of averaged quantities. At the end of the Appendix,
we also give a similar expansion of the averaged PN
parameter.

1. x, dependence of |,

A lower index 0 indicates values taken at y, = 0:
Ir()(p =0) =Ly,
e,(;(p =0) = ey.

The expressions [, and X p given by Egs. (36) and (43) of
Ref. [59] allow for deriving

(A1)
(A2)

Xp il’
Ir()(P) = IrO + / _d)(p
0 Xp
[, [ L,
_ Iro + PN(){p) + SOZ()(p) + QM3()(p)
Lo IrO IrO
rSS()(]J) Ir2PN()(]7)
& * 1% ’ (A3)
r0 r0
with
IrPN()(p) = 2(2—1’])6,0(1 _COSZp)’ (A4)
4
Lopn(xp) = Z ZLZPNsm 2,08y, (A5)
Lso(ry) = =2 (cosz, — 1)
rso\Xp 5 )
2
x Z (4%3 4 3)y, cosk,,  (A6)
=
3
Lss(x,) = ny i sink, sink, {cos ¢ ZLfScosk;(,,
k=0
2
+sin{, siny, Z Kﬁscosk)(p] , (A7)
pa

IrQM (Zp

2
Z w;¥3sin’k; {cos 2%, ZL Meosty,

k=0

l\)l&

+sin2¢; siny, Z Kk cos )(p} ; (A8)
k=0

where the coefficients L2V, LSS, K35, LY and K2 are
enlisted in Table I.

2. x, dependence of e,

From ¢, and y, given by Egs. (37) and (43) of Ref. [59],
respectively, we find

TABLEL The coefficients of I, (y,) in Eqs. (A5), (A7), and (A8).
Coefficient Expression
LN o [432€3m + €% (= 1177% 4 545 + 48)
+32e,0(2n* — 831 + 50)
—48(n* = 57+ 6)]
L™ S [(2n = 33)ned,
—1165% + 2561 — 160]
LY §lero (9 =3n—4)
+4(n* = 51+ 6)]
L3N S [=3(2n + 3)ned,
+321% — 1045 + 80]
L2PN 32 (n=2)n
40 e
L s1e2(=9* +3n +4)
—4(* = 51+ 6)]
LN 321 + 3)ned,
—321% + 1045 — 80]
2PN _ 9egy(n=2)n
16
L3N 0
L 0
L2PN 3e? (n-2)n
02 5
L¥N 0
LN 0
L3PV 0
L 0
Lgs 28,0 =+ 3
LSS 0
LSS -3
L§S —26,0
K3 —€r
K5S -3
K%S —26,0
L —(2e,0+3)
LM 0
L -3
L?’QM —26,,0
KgM —€,0
KM -3
KgM —26,,0
Ip €
er()(p) _er0+/ -_rd)(p
Xp
=€y + €PN (Zp) I3 €50 ()(p) 4 erQM (Zp)
r0
1 1
+[T€rss()(p) +ITer2PN(Zp)’ (A9)
) )
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with
3

erPN(Zp) = Z EfNCOSkZp’

k=0

(A10)

2
erso()(p)zg( —e%))(1—=cosy,) Z (4743 4 3)y; cosk;,

i=1

(A1)
36
€PN ()(p = Z EZPNCOSk)(pSiHZIva (AIZ)
1=0 k=0
5
erss(tp) =nxin [Z EiSCOSk)(p
=0
4
+sink; sink, sin¢, siny,, Z Ffscosk;(p] ,
k=0
(A13)
o\ om
eom(Xp) 22)(2 VA [ZEQ cosy,,
k=0
4
+sin2¢;sin’k; sin;(pZF,gMcosk)(p]. (A14)
k=0

The coefficients EZFN, ESS, F3S, E,?M, and F,?M of e,(x,)
for the PN, SS, and QM contributions are collected in
Table II. The coefficients EZ"Y and F;”V are enlisted in
Table III.

3. Dimensionless 2PN orbital period

We insert the expressions of [,(y,) and e,(y,) into the
integral (4) and expand it in Taylor series to 2PN order.
The integral (4) leads to the PN expansion

ToPN Toso Toss , Toom | To2PN
(s <1+ 12 I3 + I4 T I4 + I4 >, (AIS)

where the lower index 0 stands for y, = 0. As explained in
the main text, 7opy /(% and 7p,py /L4 give PN- and 2PN-
order contributions, respectively.

The terms (’SO’ TopNs T0so> T0sS> TooM» and ToopN are
found by exploring the expressions [,(y,) and e,(y,)
derived above. They read as

271[3
T, = m, (A16)
(=) (Tn=6)+2en(5=3) + =13
0PN e 1V ,
7950 =0, (A17)

TABLE II.  The coefficients of e,(y,) in Eqs. (A10), (A13),
and (A14).
Coefficient Expression
EN 3—n+(5—4n)e,n+ e%(7—6n)
ETY —[3—n+e(7-4n)
E§N _(5 - 411)6,0
ESN felo
ESS — cos Ky cos ky(e2y + 3¢, + 3)
+3sink; sink,[(e%) + 3e, + 3) cos {_
+(7€%, + 15e,0 + 5) cos { ]
ESS 3sink; sinky(3cos ¢y —cosd)
+3 cosk| cosk,
ESS 3 e, sink; sini,(cos . —cos{_)
2 3€r0 1 2 + -
+3e,( COS K| COS Ky
ESS —1eZ sink; sinky(cos &, + cos(_)
—7sink; sink, cos ¢,
+e%, cos k| €O Ky
ESS —9e,q sink; sink, cos £
E$S —3e% sink; sink, cos &,
Fgs 1-e2
F‘ISS —3€r0
F5S —(2¢2,+7)
ng —9(3,0
F3S -3¢2,
ES (7e%) + 15¢e,9 + 5) cos? ¢; sin’ k;
+(2€%, + 3e,9 — 2) cos? k;
—3e%) —6e,o— 1
EM 9cos?k; sin? &; + 3(3cos> {; — 2)
EzQM 3e,0(2 — cos? ;) cos? k;
—3e,qsin*¢;
ESM €%, cos? k;
+[—(e%) + 14) cos? {; + 7] sin’ k;
E?M —9e, sin’ k; cos 2¢;
EM —3e?, sin’ k; cos 2¢;
F&" (1= ef)
FIQM —3ey
PO 26 +7)
F3QM _961'0
F?M -3¢2,

% 2 7
To2PN = 20( 2 7 [ZUkero 1—€r0 kaer():|

_erO €0 k=0
(A18)

S (1 +eq)’n
0SS (1 _ ero)[io

X (sing; sing, —2cos cos )],

[cos k| cos k, + sink; sink,

(A19)
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TABLE III.  The coefficients of e,(y,) in Eq. (A12). TABLE IV. The coefficients U, and V; of 7g,py in Eq. (A18).
Coefficient Expression Coefficient Expression
+e4,(—1845n* + 88805 + 1800) Uy 10(=5597 + 2975% + 228)
+3263,(232% — 28257 + 1740) U 5(~2674n + 1289%* + 1336)
—1806’30(2922 + 89 + 60) U, —4(=235n + 1865> — 280)
+160€r(l‘(88g - 1§72ﬂ ~60) Us —4829> + 257 + 1120
- o (1'76; ) ]477 Us 2(—17245n + 54965> + 12200)
10 ~gilenn(161n +477) Uy 2(=2240n + 79 + 3350)
e (136 — 8497 +564) U —4(=70755 + 213752 + 5300)
+16n(87 — 85)] 3 g 1
2PN L[t (2692 — 13127 —256) U2 2(-39157 + 13175* + 2050)
2 26en 10 U 40(=254y + 6752 + 210
+32¢2 (517 + 1097 + 20) 1 (=254n + 67y 2+ )
+64(n — 3)?] Uo —20(—238n + 651* + 180)
2
BN i [=3esn(53n + 73) Vi 5(=932n + 509 2+ 504)
+8¢2,(2087% — 2697 + 300) Ve =5(=2700n + 13991° + 1352)
+128(4p% — 175+ 15)] Vs 142757% 4 9205 — 4240
E2EN e [¢2) (— 1312 + 645 + 8) Vs 120797% — 358807 + 25680
126817 — 6765 + 400] vV, —4(=68751 + 26061 + 3650)
EZPN _ % [5¢2,(3n—1) —64n +80] V2 —4(—4735n + 998n* + 4850)
g2 360 v 40(=746n + 1991* + 600)
256 2
o o Vo —40(—2385 + 657* + 180)
01 20
£ e _
E3PN —3E¥N 4. Secular shape variables I, and e,
E3PN -0 E50Y Next, we calculate the time averages of the shape
EPN —9EXN variables [, and e, during one radial period,
EZY 0 1 f22L.(y,)
E2PN 0 [, = g/o r)_( P dy,. (A21)
~ P
£ Y 2
ERN sERY g, — é / ”e’%)dh, (A22)
E%gN 9E%(}))N ~ JO )(p
E35N 0 . o .
ngw 0 in terms of their initial values at y, = 0, with the decom-
‘z‘iN position of ¥ given in Eq. (A15). Their PN expansion can
Esy 0 be formally written as
E2PN 0
62 B B B B B
EGEN —EgN [ — Lov +Lpy + Liso + Liss + Loy + Laopy (A23)
EXN 0 r T )
2PN
E;;N 0 _ €N T epy Tt €0t €5t €oy T Eapy
E3 0 = T . (A24)
B 0
EXN 0 The contributions to the integral in Eq. (A21) become
2PN 0
63 - 2all
3,1(1 4 er0)2 2 ) ( erO)
TOQM = — ﬁ Z}(?l/b_g’wi(l - 3Sln2K,~COSZ§i). N
( - erO) 0 j=1 - 71'[,0 )
[er0(377 + 2)

(A20)

The coefficients U and V, of 7y, py are enlisted in Table I'V.

Lpy =—
' (1-e)*V/1-eq

+ lde,o(n—1) + 4y — 18], (A26)
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TABLE V. The coefficients of f, in Egs. (A28) and (A29).

Coefficient Expression
L2en 15(467n* — 5801 + 296)
2w 480(4n> —3n +5)
2N —4(30015* — 94457 + 6610)
LN —480(n* — 85 + 15)
L2PN 120(651* — 2381 + 180)
RPN 1517(295 — 3)
R2PN —60(1297* — 188y + 74)
K2 —15(1165> — 7115 + 304)
KN 2(55161% — 151555 + 5420)
K3PN —4(5347n% — 137207 + 6400)
RPN 8(1> + 2735y — 4265)
K3PN 2030852 — 816107 + 71380
K2y —720(225% — 825 + 65)
K3PN 60(657° — 238n + 180)
iss de,o(4et) +29¢3
+30e2, + 48e, + 24)
KSS cos (£ + &,)[96€3, — 2362
—171e}y + 95€3, + 56¢,9 — 32
=32\/1 =€y (e%) — ey + e,0— 1)]
—2e,9 08 ({ — ) (4efy +29¢),
+30€2, + 48e, + 24)
_ e, onl
{o0— r077 r0 Z 4%=3 4 3y cosky,  (A27)
- erO r
4 2
_ pid - 1-
i — " NT 2PNk __viT6y K2PN k.
r2PN 1206% pa k r0 60(6,0 _ 1)4 éj - rO
(A28)

i XM
88 16(1 — e,9)e% (1 — €%,)3/?

X (cosk; cos ko L3S+ sink; sin k, K55),

(A29)

2
eqt2)n 2%-3,,,
256e,0 (1— e2 )5/2 Z X
X [—4(47¢3,+ 10502, +488e,( +480)sin’k; cos2¢,
+16(5€3,+21e%)+ 15¢,+6)(3cos2k; +1)].
(A30)

erM

The coefficients L7V, K3PN, LS5, and K55 are collected in
Table V.

The integral of Eq. (A22) results in

_ 27[6,0[30
N = (1730)3/27 (A31)
ﬂIrO 1/ 1- 620
e.py = —=3203n—=5)+ r 4e4 2
PN e { ( n ) (1 _ er0)3( €0 =+ 1) [ rO(n )
—20e,(n—1) + €%,(22 — 91)
+2e,0(5n—="7)—6n+ 10]} (A32)
- 7[(6,0 + 1)’7 d 2k—3
€rs0 = 5 Z (4%7 4+ 3)xcos Ky, (A33)
I—ep &=
. E2PN
2PN 480e}01,0 Z
/1 —é2 LN
— F2PN gk | A34
60(e,o — 1)4630Ir0 ; ko ( )
TABLE VI. The coefficients of e, in Eqs. (A34) and (A35).
Coefficient Expression
E2PN 15(11115% — 16245 + 528)
E3PN 4800(4n*> — Ty + 4)
E3PN —4(1515* = 75501 + 5640)
E3PN 2880(17 — 3)n
EZPN 8(15017% — 8090, + 7260)
F3PN 120(n — 3)n
F3PN —60(44n%> — 1075 + 44)
F2PN —15(317n%> — 5375 + 96)
F2PN 4(457n% — 14305 — 960)
F3PN —53625 + 183355 — 4380
F3PN —6(714n% — 43155 + 5420)
F3PN 21(3915% — 21105 + 2100)
F3PN —4(14115% — 78201 + 7260)
F3PN 15015% — 80907 + 7260
B 1668 (1+ e)/T= (e +2)
F33 ~[8(eq + 1)*\/1 = e5

x(ejy +2)ejgcos(Cy = &)
+cos (&) + &) [3176€3, — 3176¢%,
+1552¢%, — 1552¢3) — 35¢€5,
1 — €2,(2376€%, — 2328¢3,
—468¢%) 4 606¢%, — 35¢5,
+92e, + 1600¢,, — 1600)]
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o 3y xan
B5T6(1 = e,9)e3, (1 — €2))2L0
X (cosk; cos k, ESS+sink; sink, F55),  (A35)
_ ery+2)n
Zrom = 0 sz 2k=3,,,

128 l—e 2)721

x [-4(10e3, + 609e%, +260e o + 336)sin’k; cos 28,

+8(4ed, +27e%) + 15,9+ 12)(3cos 2k, + 1)].
(A36)

0 k=1

The coefficients EZPN, F2PN | ESS| and F5S are collected in
Table VI.

5. Initial shape variables in terms of the
secular shape variables

The contributions to the averaged shape variables in
terms of [, and e,(, Eqs. (A23) and (A24), were presented
in the previous subsection. Here, we invert these relations
to generate [, and e, in terms of [, and é,.

We do this in two steps. First, we take the perturbations
to linear order. Using Eqs. (A23), (A25), and (A16) for L,
we find

1

Ir() = Ir T

Loy + Lsotliss + Lom).  (A37)

R
(=]

Using Egs (A24), (A31), and (A16), for e,q, we get Lopy = 7 , (A41)
—‘E—i(‘ + 2,50 +8n5s + &om).  (A38) e(1-2ny
€0 _er‘zo T, €rPN T €rsOTCrss T €rom)- Loso = — —— r_22(42k—3 +3)ycosky,  (A42)
2(e, — 1)} =
In the perturbation terms, we can insert the leading-order XN ss 55 - )
terms of [, and e,(, which are Loss T32(1—¢,)0 (Lg cosk; cosky =Ky sink, sinky),
Lo=1, (A39) (A43)
2, 2k=3,,, 3
Logw = S @I Z v 4(4725 + 133827 + 14462 +3444e2 + 1264e, + 960)
x sin’k; cos 28, + 16(52) + 33et+-61e} + 8422 + 42¢, + 12)(3 cos 2k, + 1)), (A44)
where the coefficients L3S and K3° are listed in Table VIL. For e,q, we have
1 5213/2 (1+e) ., 5
€/ 0PN = PR —(1=27)"*(3n=5) + 2 [e7(11n — 14)=22,(5n = 7) + 6n — 10] ¢, (A45)
er r
g, +1)(1 -2 3
€, 0s0 — — ( ;%3 ) Z (42k 3 + 3)}(]{ COS Ky, (A46)
r k=1

TABLE VII. The coefficients in Eqgs. (A43) and (A51).
Coefficient Expression
L%ﬁ” 3(7517%> — 17657 + 216)
LEN 48(3n* — 11y + 10)
L3RV 86> — 2600 + 176
K%ZN 12(1257% — 395 + 28)
K3 —6(18n* — 63n + 64)
KN 3(179% = Tn +28)
KN =2(T* + 27— 32)
K%%N 435 — 1305 + 88
LS 4z, (4et + 538}
+78e2 + 72¢, + 24)
K3S [-958&) + 171¢&} — 96&}

+236&2 — 56¢, + 32
-32(1-¢,)(l-¢ )3/2}

x cos(¢) + &) + 9682
x(1 4 &,)*(2cos¢ cos,
—sin¢, sing,) + 2@, (4et

+2923 + 3022 + 48e, + 24)
xcos(¢1 = &)

€,) = ér'

(A40)

The results are
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3x1xom

55 = —————2"1—— (E3S cos ky cos k,—F33 sink, sink,), A47
0SS 32(1 _ é,)éflﬁ ( 0 1 2 0 1 2) ( )
e, — 2023y, x [—4(108) + 7538 + 712234198622 + 664¢e, + 672
00M = 256(22 —1)142)( kX [=4( )
x sin’k; cos 28, + 8(4&) + 39&} + 5923 + 10222 + 42&, + 24)(3 cos 2k, + 1)]. (A48)
|
where the coefficients E3° and F3S can be found in (1= 2 (2, +1)2<
Table VIIL Lioopy = 2I3 Z L3er+ 122213 Z r
The second step is to derive the 2PN terms. For this, we erir =0
use Egs. (A23), (A25), and (A16) for [,, and Eqgs. (A24), (A51)
(A31), and (A16) for e,q:
(1-27)3? : 2PN G (1+e,) 2PN 5k
- < | - €r02PN = T 02374 EO.k S374 £y 0k ©re
Lo=Lg -5 (Lpn + Lapn), (A49) 960e;1; ; 120 i ;
0 (A52)
T 1, - The coefficients L2:Y and K20V are given in Table VII,
€0 =¢g T (e:pn + &12pN)- (A50) . 2191’\;( 2p18’k 2 .
T I while the terms Eg’;™ and F§;™ can be found in Table VIIL

This time, in order to get the 2PN terms, we need the
previously calculated 1PN expressions of [, and e . After
the Taylor expansion to 2PN order, we find

TABLE VIII. The coefficients in Eqs. (A47) and (A52).
Coefficient Expression

EGEN 15(29151% — 89047 + 6192)
EgEY 960(3672 — 102 + 65)
EgtY 4(767312 — 201107 + 15360)
EghN 960(27% — 115 + 15)
EggY —8(45592 — 133909 + 9540)
FFeN 15(38312 — 9897 + 560)
F2EN =30(515> — 2615 + 224)
FeiY —15(6842 — 3015 + 232)
FhY 2(8935% — 35051 + 3360)
FgoN —2(175617 — 64251 + 5250)
F§fY 93582 — 28100 + 20880
F3Y —4559% + 13390 — 9540
Ep 1683(1 +e,) (e} + 322 +4e, +2)
F(S)S cos (¢, +C2)[92@Z —352°

+6062) — 4682% — 232823
+2376&2 + 1600e, — 1600
+8(2, + 1)(32 +200)(1 — &,)>/?]
+32(e, + 1)%e}
x(2cos{jcosl, —sin{; sind,)
+8(e, + 1)*(e2 +2)e;

x cos({y = {s)

The full expressions of [,, and e,, are the sum of the
corresponding above contributions Egs. (A39), (A41)-
(A44), and (AS1) and Egs. (A40), (A45)-(A48), and
(AS52), respectively.

6. Radial period in terms of time averages
of shape variables

Here, we finally are able to express the radial period in
terms of averaged quantities by replacing the initial values

at the periastron with time averages over y,, € [0, 2z]. The
various order contributions to Eq. (6) become
< 28x
T=—"To7, AS53
(1 —e )3 /2 ( )

oy =2/ 1 —22(15=9n) + (1 = &2)(Tn —6), (A54)

750 =0, (ASS)
VIi-8& o o @t
TopN = 64zt ZUker— Py ZVke’,‘, (A56)
r k=0 r k=0
3n Sy 3
oM =515z, (1= 222 Z’(
x [U9Msin? KkCOSZCk+VQM(3cos2Kk+ 1)], (A57)

3xixan

Tgs = =5 (COS K| €O ko U+ sink sink, V55).
8(1 - er) €r

(AS8)
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TABLE IX. The coefficients in Eqs. (A56)—(A58).

Coefficient Expression

Us —437n% + 33365 — 1008

Us —64(8n* —6n—5)

U, —8(2115% — 1595 + 336)

U, 64(4n> + 11n = 5)

U, —8(791% — 600y + 528)

U, —128(n* — 8n + 15)

Uy 32(657> — 2381 + 180)

V5 22417 — 6901 + 360

Ve 2(64n% — 11— 12)

Vs 13917% — 410n + 452

V4 —1797% + 2661 — 308

78 =27 + 287+ 8

v, 67> —4n + 172

v, —12(237* = 905 + 80)

Vo 2601% — 9521 + 720

uem —4(2782] — 722% + 2632}

—1674e% — 1702&; — 4116¢?
1360z, — 960)
yem 16(e] —22% + 9&; — 43¢}
—69¢; — 10822 — 46, — 12)

Uss —82) 4 21e&t — 15¢3
—38¢2 — 56¢, — 24

Vs o626 (8g3 — 216

+152% + 3822 + 562, + 24)

+ it 371 - 27688

+e; (=482, + 104+/1 — 22 + 1771)
—e}(48e, + 1044/1 — &2 + 1517)

+8e3(24e, + 5834/1 — &2 — 854)
+422(482, — 1166+/—22 + 1 + 1881)
—8(5964/1 — &2 — 593)e,

+4768(1/1—2% — 1)]

The coefficients in the above expressions are listed in
Table IX.

7. Expansion of the averaged PN parameter

The PN parameter associated to the averaged dynamics
is given by

&= Eopy + E1pN + Erpy + Eso t Ess T Eous  (AS9)
with
_ 2f,ﬂ
EopN = W, (A60)
_ T _
Bipy = — g7 [(6=Tn)(1 = e)'?=9(2-n)], (A61)

TABLE X. The coefficients M55, M2M NSS and N2M of € in
Egs. (A63) and (A64).

Coefficient Expression

M5S —2e, +4e% —4et + 28
—(16224190+96—192> —20324—1102})+/1 —&2
NSS cos (&) + ¢£){512 + 2048¢?
—-30722} + 20482 — 51228
+[5312 — 5696¢, — 1608¢?
+62482> + 2208% — 199422
—50312% + 1244¢!
+(—4800 + 472822 + 722%)
x(1-2,)?]y/1 -2}
+8e,(e, + 1)cos (£ — &)
[-2¢, — 422 — 4&} + 28}
(=96 — 190¢, — 176&% — 82¢3
+2032% + 1927)4/1 — &2]
27e] — 4028 + 167e) — 2122¢&%
—1990&; — 3700&2 — 976e, — 960
162] + 4162 + 1104&) — 816&*
—206423 — 204822 — 736e, — 192
+(64e, + 648 — 1282})4/1 — &2
—-256(7e} + 15¢; — 2¢2
—15¢, — 5)&2sin’k;cos*¢;
+16{32] — 342° — 121&% — 30422
—138¢, — 332} — 14723 — 36
+(=24 + 12¢, + 12&2)/1 — &2] cos 2x;

_ 3n 2 142\ < v
8S0_ﬁ<1_§ 1—é,> ;xicosm(% > 4 3),

(A62)

MeM

NoM

_ wavei _
16¢2(e,—1)3(e, + 1)’

x {16¢,(e,+ 1)cosk; cosk,M35+sin(k; ) sin(x, )NS5}

Ess

(A63)
2
Eom= i 2i-3,2
8QM_256E,(1—€%)5/ZI§‘EZIU XiWi
x {MM[cos(2x; —2¢;) +cos(2x;42¢;)
—2¢082¢;|+N2M} (A64)

The coefficients of &g and &g, are given in Table X.

_ -

2PN = 4915200(1 - 22)5 /%8 13T
—2457600(1+ ¢, )3e; M3PN —10240e2(1 + e,)>M3PN

{158 Mm3PN

+2(1+e,)8(1-e,—e; +e})\/1-e;
—8+8¢,+ 1222 — 14e; —e}|M3PN
+5[152% —2022 —8(1 —22)3/2 +-8|M2PN}  (A65)

The coefficents of &,py are enlisted in Table XI.
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TABLE XI. The coefficients M2V of & in Eq. (A65).

Coefficient

Expression

2PN
M 1

2PN
M 2

2PN
M 3

2PN
My

2PN
M 5

—151(989675 + 118819)2°
+1920(5(8399n — 17134) + 12016)2°

+4(n(5837763n — 15119020) + 8076560)&;

—5120(n(2431n — 13254) + 662)&;
+160(417(307157 — 11629) + 502740)¢?
+40960(5(6817 + 1067) — 408)e,
+1482240(5 — 3)?
8(4n* — 11n + 6)&>
+(16157% — 3945 + 256)¢*
+(49n% — 1661 + 148)e}
+2(=251% + 59 — 48)22
—2(=337* + 83y - 52)e,
+4(97 — 361 + 35)
+/1 = &2[(=12n* + 565 — 64)&*

+(2417 — 112 + 128)&}
+2(397% — 951 + 48)&2
—2(275%* = 515 + 10)e,
—4(957% — 361 + 35)]
120(1337% — 3495 + 168)28
—240(334> — 1551 + 96)é!
+15(—2304,* + 5856n — 3680)2
—2(172565> 4 37 520 + 27 520)e;
+(=14856n% + 737205 — 47360)2*
—8(—83121> + 240501 — 18 080)2>
+4(—65541 + 122601 — 8720)e?
—16(37097% — 113105 + 8660)e,
+8(30495% — 84905 + 5660)
++/1 = 22[15(5871% — 26961 + 1264)
—2(88051> — 40440 + 21360)e>
+(61777% — 17840 + 27280)&4
—8(558357 — 121105 + 12280)e?
+4(308517% — 16107 + 360)22
+16(37097% — 113105 + 8660)e,
—8(3049,> — 84901 + 5660)]
12004(851y — 3617)&°
+15(17318017% — 3339132y + 1884800)é3
+800(378751% — 1191807 + 33904)z*
—96(460104,> — 13552551 + 1016100)é}
—25600(11771% + 5202 — 2962)22
—9600(3997> — 18145 + 1851)e,
—153600(435> — 1747 + 135)
1517(98967n + 118819)&°
—1920(83995% — 171345 + 12016)e3
—4(58377635% — 151190207 + 8076560)&}
+5120(243 1% — 132545 + 662)e?
—160(12591 1% — 476789y + 502740)&2
—40960(681> + 1067 — 408)é,
—1482240(n — 3)?

6
r
ES

APPENDIX B: REGULAR EVOLUTION DESPITE
A JUMP IN A¢ WHEN ONE OF THE SPINS
CROSSES THE ORBITAL ANGULAR
MOMENTUM

We note that when either of the spins becomes
perpendicular to the orbit Eq. (46) blows up due to the
sin~! k; and cotk; factors, the angle Al becoming ill
defined. We show in this subsection that this is but a
coordinate singularity.

To illustrate this, we assume that sink, < 1, i.e.,

K2 (1) = k()2 + k2 (1), (B1)

with k(g € {0,7} and |6k,| < 1. As said before, we are
interested in the evolution of S, across the orbital angular
momentum direction. During this, x; behaves as a quasi-
constant (since k; & sink,),

ki (t) = k()1 + ki (1), (B2)

with k() a constant value and éx; < 1. In addition, we
assume that S; points away from Ly; thus, sink(); >
cos k()1 6k1. Then, the evolution equations for Af, 6k, and
0K, to leading order become

dAl cos AL
i AxT B (B3)
5
8L Ay, 0k, sin AL, (B4)
dt
s
—E?::—BﬁnAQ (B5)

with € = cos k), = £1 and the coefficients

A 1
% =v———eQu+1)x, + (€ + vxy)wrx,
v

2 wix
+ <;+ 1 —w— L ! COSK(())l)xl cos k(). (B6)
B 1 X1 .
S (14 —ex— . (B7
R ( + b €Xy v COS K(0)1>X1 Sin K(O)l ( )
A5K] _
R = (14 v — evwyxy—x| COSK(g)1 ) X2 (B8)

Note that for notational simplicity we omitted the overbar
form the secular time derivatives.
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From (B3) and (B5), we find

2

d
Tl (6K, sin AL] + AR 6k, sin AL = 0, (B9)

which gives
Ky sin Al = Q; cos (Apct + G), (B10)

with constants Q; > 0 and G. Then, Eq. (B5) results in

2BO, .
(6K,)? = — AAgl sin (Apct + G) + 03,

(B11)

with an integration constant Q3. By substituting the
solutions (B10) and (B11) into Egs. (B3) and (BS), we
find the following relation:

B2
Q%ZQ%LAT- (B12)
A¢
With the notation
A
C, = % 0. (B13)
Egs. (B10) and (B11) become
B2
(6K,)% = yen [+ C}—2C;sin(Apct + G)],  (B14)
AL
BC At +G
sinag = BG1eosAact £6) (B15)

AAC 51(2

The minimum value of (5k,)? is given by B>(1 — C,)?/
Aig and when this does not vanish, we find from Eq. (B15)
the following restriction for the integration constant C:

C 2
( ! ) < 1.
c -1
In the other case when 0k, can vanish, the expression
(B15) is regular for dx, — 0 only if cos (AME +G) - 0at

the same time. From Eq. (B14), we find that these
conditions can be satisfied only if sin (At +G) — 1

(B16)

for 6k, — 0 and the integration constant C; is 1. Then,
the solutions read as

2

(6K,)% = e [1 —sin (Aact + G)], (B17)
Ag
B Apt +G
SinAgz_M‘ (B18)
AAé' (31('2
With this expression, from (B4), we have
A5, B .
Sk =€ 22 sin (Apst +G)+ D, (B19)

AL

with D an integration constant.
For Apct + G — Mn/2, where the integer M is chosen
such that 6k, — 0 at the same time, we find

2 B ) Y 4
I) = — 1 —— B2
o= g (1-fr00). B
32
Sin?A¢ = 1 =2+ O(*), (B21)
with
7

2

Equations (B20) and (B21) show that, with the exception of
the case when k; vanishes but otherwise for general
configurations, A{ — £x/2 as k, — {0,z}. According
to the definition of polar spin angle, ok, does not change
sign when the spin crosses the axis. Thus, from Eq. (B18),
we find that sin A must change sign as ok, vanishes,
implying a jump of A{ by z whenever S, goes through the
axis defined by L.

Thus, we have proven that both cos A « y and k, « y;
thus, those terms in Eq. (46) which contain a factor of
cos A{/ sink, remain finite as sink, vanishes.

The reverse case, when k is close to 0 or 7 but sin x, 220,
can be obtained by interchanging the indices 1 <2
and v < v\

This results shows that the dynamics of the spin angles is
well described even if one of sink; evolves through zero.
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