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Killing vectors play a crucial role in characterizing the symmetries of a given spacetime. However,
realistic astrophysical systems are in most cases only approximately symmetric. Even in the case of an
astrophysical black hole, one might expect Killing symmetries to exist only in an approximate sense due to
perturbations from external matter fields. In this work, we consider the generalized notion of Killing
vectors provided by the almost Killing equation, and study the perturbations induced by a perturbation
of a background spacetime satisfying exact Killing symmetry. To first order, we demonstrate that for
nonradiative metric perturbations (that is, metric perturbations with nonvanishing trace) of symmetric
vacuum spacetimes, the perturbed almost Killing equation avoids the problem of an unbounded
Hamiltonian for hyperbolic parameter choices. For traceless metric perturbations, we obtain similar
results for the second-order perturbation of the almost Killing equation, with some additional caveats.
Thermodynamical implications are also explored.
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I. INTRODUCTION

Symmetries are central to our understanding of the
physical world and play a key role in describing a wide
range of physical systems, from the determination of the
Lagrangian for a mechanical system to the lattice structure
of crystalline substances. This extends to general relativity
and relativistic theories of gravity: Symmetries and the
Killing vectors that formalize them are useful for character-
izing the properties of spacetime and matter. For example,
the existence of a timelike Killing vector field ensures that
the spacetime is time-translation invariant, leading to
conserved definitions for energy for test particles and
matter. Similarly, the existence of a closed spacelike
Killing vector field ensures rotational invariance of the
spacetime geometry, leading to a conserved definition for
angular momentum. Moreover, many astrophysical sys-
tems are approximately described by spacetime geometries
admitting such Killing vectors. However, the exact nature
of these symmetries is lost in realistic systems due to
dynamical behavior of and irregularities in the matter
configurations. This scenario can arise in various contexts;
e.g., when one drops a cup of coffee into a black hole
(considering the gravitational backreaction), the resulting
perturbed spacetime no longer inherits the exact Killing
symmetry. Fortunately, one may still construct certain
generalizations of Killing vector fields in such circum-
stances, which are useful for understanding generalizations

of conserved quantities (such as energy and momentum) for
gravitating systems that lack exact symmetries.
The literature contains several approaches for defining

generalized Killing vectors and symmetries. Specific exam-
ples include Matzner’s eigenvector approach [1], which has
recently been of interest for studying quantum geometries
in causal dynamical triangulations [2], symmetry-seeking
coordinates [3], affine collineations [4], and the almost
Killing equation (henceforth, AKE) [5,6]. The latter
approach, the generalized Killing vectors defined by the
AKE, forms the subject of this paper.
The generalized Killing vector fields (henceforth,

GKVs) associated with the AKE may be used to define
conserved charges in spacetimes with no exact Killing
symmetries. Given some notion of the GKV, the general-
ized Komar current, as defined in [7,8], may be used to
construct generalizations of the usual Komar charges—
explicit examples have been constructed and studied in
[9,10] (see also [11] for further generalizations of the
Komar current). For example, in [12], it was shown that the
generalized Komar current for solutions of the AKE, which
are the GKVs, can provide a measure of the matter content
of the physical system under consideration. It was also
demonstrated in [12] that GKVs may be used with the
generalized Komar current to obtain a Gauss law for
systems of black holes in vacuum and matter distributions
with compact support if the GKV is divergenceless or for a
certain choice of parameters associated with the AKE.
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Though one might hope that, for sufficiently small
perturbations of symmetric spacetimes, the solutions of
the AKE are close to that of an exact Killing vector field,
GKVs do not necessarily approximate Killing vectors in the
sense that the components of ∇ðμχνÞ can be large compared
to that of χα (where χα is a GKV), even in Minkowski
spacetime. One might postulate that an appropriate choice
for initial data for the AKE will ensure that ∇ðμχνÞ is small
in the sense that the components of∇ðμχνÞ are much smaller
than that of χα for some normalization. This matter was
studied to some degree in [12], which examines the
hyperbolicity and Hamiltonian stability of the system
described by the AKE. There, parameter choices were
identified in which the AKE is strongly and weakly
hyperbolic, and also in which the system admits ghost
modes and unbounded Hamiltonians. Ghosts and
unbounded Hamiltonians are potentially dangerous, as they
may correspond to runaway behavior which can potentially
drive the solution far from the Killing condition
∇ðμχνÞ ¼ 0, even if the initial data approximately satisfy
this condition (and its time derivative). Though there is no
parameter choice for which the generic AKE system is both
hyperbolic and has a bounded Hamiltonian, it was shown in
[12] that in vacuum (Rμν ¼ 0) spacetime and for initial data
satisfying ∇ · χ ¼ 0 and its derivative, the system yields a
constraint which renders it dynamically equivalent to a
system with a bounded Hamiltonian and simultaneously
equivalent to a strongly hyperbolic system. Moreover, it
was argued that for appropriate initial data and falloff
conditions, the AKE can provide a notion of an approxi-
mate Killing vector in a neighborhood of spatial infinity of
asymptotically flat spacetimes.
Despite the promising results presented in [12] for the

vacuum case, these do not in general extend to the non-
vacuum (Rμν ≠ 0) case. Therefore, it is not immediately
apparent that the AKE can be simultaneously well posed
and equivalent to a system with a bounded Hamiltonian
for spacetimes containing matter. On the other hand, for
perturbations of spacetimes that admit an exact Killing
vector, one might expect the AKE for the perturbed
spacetime to admit solutions that approximate Killing
vectors. Thus, one of the primary aims of this article is
to construct perturbative solutions to the AKE for pertur-
bations of spacetimes which admit Killing vectors and to
study their properties and the interpretation of the resulting
generalized Komar currents and charges. Additionally, we
would like to explore the connection of the perturbed
Komar current and charges with the thermodynamic
behavior of black hole spacetimes, e.g., the first law. As
we will show, there is a close correspondence between the
AKE and black hole thermodynamics.
The paper is organized as follows: In Sec. II we will

review the AKE and shall present a physically interesting
scenario, namely, that of the Vaidya spacetime, where some

of the key aspects of the AKE will be demonstrated.
Subsequently, the evolution of the GKVs in the perturbed
spacetime will be presented in Sec. III from both the action
formalism and also from the perturbation of the AKE itself.
The stability of the perturbed AKE, as well as its hyper-
bolicity, will be studied in Sec. IV, before discussing the
nature of the solution of the AKE for both first- and second-
order perturbations in Sec. V. Finally, the thermodynamic
interpretation of the AKE will be depicted in Sec. VI,
before presenting the concluding remarks in Sec. VII.
Notations and conventions: Throughout this paper, we

will use the mostly positive signature convention, such that
the Minkowski metric in the Cartesian coordinates has
the following form: ημν ¼ diagð−1; 1; 1; 1Þ. The four-
dimensional spacetime indices will be denoted by the
greek letters μ; ν; α;…. We will work in units such that
the fundamental constants have the values G ¼ c ¼ ℏ ¼ 1.
Throughout the article, indices on quantities which
appear in arguments will be denoted with superscript
and subscript dots; for instance, the arguments in A½χ·�
and Oðh·· represent the quantities χμ and hμν.

II. THE ALMOST KILLING EQUATION:
A BRIEF REVIEW

In this section, we will briefly review the almost Killing
equation, where the motivation for its construction and its
various properties will be discussed in detail. In addition,
we will also present the Vaidya geometry as an example of
arriving at a solution of the almost Killing equation.

A. Motivation, construction, and properties

A Killing vector field ξμ is defined as one which satisfies
the Killing equation £ξgμν ¼ 2∇ðμξνÞ ¼ 0. The divergence
of the Killing equation takes the form

□ξα þ Rα
βξ

β ¼ 0: ð2:1Þ

As evident, Eq. (2.1) takes the form of a wave equation;
on geometries that do not admit Killing vectors, one can
nonetheless construct generalizations of the Killing equa-
tion by solving Eq. (2.1) for an appropriate set of initial
data. The AKE is a generalization of Eq. (2.1), and is given
by the following formula:

□χα þ Rα
βχ

β þ∇α½ð1 − μÞ∇ · χ� ¼ 0; ð2:2Þ

where μ is a scalar, which in previous literature is assumed
to be a constant; for generality, we do not assume this to be
the case here. The solution of Eq. (2.2), i.e., χα, is the GKV.
It is straightforward to verify that Killing vectors satisfy the
AKE; it is in this sense that solutions of the AKE may be
regarded as generalizations of Killing vectors. As discussed
in [12], GKVs are not necessarily approximate Killing
vectors in the following sense. The vector χα satisfies the
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AKE if the tensorQμν ¼ ∇ðμχνÞ is transverse and trace-free;
however, the components of transverse and trace-free
tensors need not be small.1

It is instructive to derive any evolution equation from an
action principle, and the AKE is no different. The AKE
presented in Eq. (2.2) may be derived from the following
action (see the Appendix for a derivation of the AKE from
this action functional):

A½χ ·� ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−∇ðαχβÞ∇ðαχβÞ þ

1

2
μð∇ · χÞ2

�
:

ð2:3Þ

Here, M denotes the spacetime volume of interest, and as
evident, it immediately follows that the action A½χ·�
vanishes if χα is a Killing vector field. It was shown in
[12] that the AKE is strongly hyperbolic when the
parameter μ ¼ 1; however, it fails to be hyperbolic when
μ ≠ 2, and is weakly hyperbolic for all other (constant)
values for μ. It was also argued that in general, the AKE
may suffer from dynamical instabilities; a Hamiltonian
analysis reveals the presence of ghosts for μ < 2, and
unbounded terms for μ > 1=3. There is no parameter choice
for μ in which the AKE avoids these potential instabilities
and is also hyperbolic. However, for vacuum spacetimes, at
least one exception exists, which we will discuss shortly.
In any spacetime manifold, given some vector field Vα, it

follows from differential geometry that it is possible to
construct a conserved current and hence a conserved
charge. This conserved current takes the following form:

Jα ¼ ∇βð∇αVβ −∇βVαÞ: ð2:4Þ

For Killing vector fields, the conserved current Jα is known
as the Komar current, and the associated charges are known
as the Komar charges, and we have so far referred to these,
respectively, as the generalized Komar current and the
generalized Komar charges. However, if the vector field Vα

is considered as a generator of the diffeomorphism, then Jα

is in fact the conserved current corresponding to the
invariance under said diffeomorphism.2 For this reason,
it is perhaps more appropriate to call this the Noether
current since it arises out of the diffeomorphism invariance
of the gravitational system [15–19]. For the remainder of
this article, we shall use this terminology and shall refer
to the conserved charges associated with Jα as Noether
charges. As [20–22] demonstrate, Noether charges defined
in this manner have interesting thermodynamical

interpretations when computed over certain spacelike
and null surfaces.
As emphasized before, the Noether current Jα defined in

Eq. (2.4) is identically divergence-free, which when evalu-
ated for solutions of the AKE takes the following form:

Jαχ ¼ 2Rα
βχ

β þ∇α½ð2 − μÞ∇ · χ�: ð2:5Þ

We note that when μ ¼ 2, the Noether current may be
interpreted as a measure of the energy and momentum
through the use of the trace-reversed Einstein field
equations:

Rαβ ¼ 8π

�
Tαβ −

1

2
gαβT

�
: ð2:6Þ

Moreover, the divergence-free property of the Noether
current yields the following expression:

□½ðμ − 2Þ∇ · χ� ¼ χβ∇βRþ 2Rαβ∇ðαχβÞ; ð2:7Þ

where the contracted Bianchi identity ∇αRα
β ¼ ð1=2Þ∇βR

has been used. The above evolution equation for ð∇ · χÞ
was used in [12] to show that in a vacuum spacetime, the
constraint∇ · χ ¼ 0 is propagated by the AKE; if the initial
data satisfy the constraint ∇ · χ ¼ 0 and its time derivative,
then the time development of the solution satisfies the
constraint. Under this constraint, the AKE becomes
strongly hyperbolic and is independent of μ, so that it is
no longer subject to the instabilities associated with ghosts
or unbounded terms in the Hamiltonian.

B. Example: The Vaidya geometry

Here, we review and generalize the solution for the AKE
in the Vaidya spacetime, as presented in [10], to gain some
insight into the relationship between GKVs, the Smarr
relation, and the laws of thermodynamics. The line element
associated with Vaidya spacetime takes the following form
(dΩ2 being the round metric on the 2-sphere):

ds2 ¼ −
�
1 −

2MðvÞ
r

�
dv2 þ 2dv drþ r2dΩ2; ð2:8Þ

where MðvÞ is an arbitrary positive function of the
advanced null coordinate v. Following [10], here also
we construct a solution to the AKE in the Vaidya spacetime
presented in Eq. (2.8) for the μ ¼ 2 case, which has the
following form:

χα ¼
�
MðvÞ
M0

;
rM0ðvÞ þ fðvÞ

M0

; 0; 0

�
; ð2:9Þ

where fðvÞ is an arbitrary function of the advanced null
coordinate v, and 1=M0 is a constant factor; a natural
choice for this factor is to set it equal to the ADM mass of

1Alternatively, one can show that even on a Minkowskian
background, the AKE admits wavelike solutions for which the
componentsQμν ≫ 0, so that they cannot be considered as appro-
ximate Killing vectors by any means.

2For further discussion of this point, see [13,14].
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the spacetime. The fact that the GKV χα depends on an
arbitrary function fðvÞ is due to the fact that for μ ¼ 2, the
AKE fails to be hyperbolic. Fortunately, the resulting
Noether current and Noether charge are unaffected by
the arbitrary function fðvÞ, so that one can regard it as a sort
of “gauge” potential. There is, however, a criterion that one
may use to fix this arbitrary function fðvÞ, which will be
discussed later. The Noether current associated with the
GKV χα then takes the following form:

Jαχ ¼
�
0;
4MðvÞM0ðvÞ

M0r2
; 0; 0

�
: ð2:10Þ

In the Vaidya spacetime, the surface characterized by

rH ≔ 2MðvÞ ð2:11Þ

is a special surface, since the expansion of the outgoing
null generators vanishes on this surface and is the
apparent horizon. Moreover, it is straightforward to dem-
onstrate that χα ¼ ð1; 0; 0; 0Þ is null on the surface
r ¼ rH. Thus, expressing the surface element as dSαβ ¼
εαβμνe

μ
θe

ν
ϕdθ dϕ, where eμθ ¼ δμθ and eνϕ ¼ δνϕ are the basis

vector components on the apparent horizon, the mass
within the apparent horizon is given by

MH ¼ 1

8π

I
H
∇αχβdSαβ: ð2:12Þ

The above integrand turns out to be independent of the
radius of the surface on which it is being evaluated, and
thus, one obtains the following expression for the mass
enclosed by the apparent horizon:

MH ¼ MðvÞ2
M0

: ð2:13Þ

Intriguingly, the area of the apparent horizon is given by
AH ¼ 4πr2H [with rH given by Eq. (2.11)], so that one may
rewrite the mass within the apparent horizon as presented in
Eq. (2.13) as

MH ¼ AH

16πM0

¼ κ0AH

4π
; κ0 ≔

1

4M0

; ð2:14Þ

where κ0 is the surface gravity associated with the surface
r ¼ 2M0 corresponding to the event horizon of the
final black hole spacetime. The fact that κ0 is a constant
here is contradictory to the explicit formula κ2 ¼
− 1

2
ð∇μχνÞð∇μχνÞ for the surface gravity, since it depends

on the gauge function fðvÞ. One may choose the gauge
function, such that fðvÞ ¼ −2MðvÞM0ðvÞ, which corre-
sponds to the requirement that χ is null on the apparent
horizon, in which case, one obtains

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16M0ðvÞ2

p
4M0

: ð2:15Þ

Even though it appears that the surface gravity is indeed
dependent on the mass function, it is straightforward to
verify that if the v dependence is treated as a perturbation,
such thatMðvÞ ¼ M0 þ ϵδMðvÞ, then the v-dependent part
of κ is a second-order term in the perturbation

κ ¼ 1

4M0

−
2δM0ðvÞ2
4M0

ϵ2 þOðϵ3Þ: ð2:16Þ

Therefore, it follows that to first order, the perturbation of
the surface gravity identically vanishes, and the first law
δM ¼ κδA=8π holds identically. Even then, at first sight,
Eq. (2.15) appears to be puzzling, as it seems to conflict
with the expected behavior for the surface gravity, which
must satisfy the exact Smarr relation MH ¼ κAH=4π
(neglecting angular momentum). However, upon closer
inspection, one notes that since the AKE is linear in χ,
the constant factor 1=M0 is not specified by the AKE.
In an asymptotically flat spacetime, a natural choice forM0

is the ADM mass MADM, and hence, the mass enclosed
by the apparent horizon may then be written as MH ¼
ðMðvÞ=MADMÞMðvÞ. This suggests that MH can be inter-
preted as a rescaling ofMðvÞ by the ratio ofMðvÞ toMADM.
To better understand this scenario, we assume that

M0ðvÞ has a compact support in v, such that at late time,
MðvÞ → M0 and fðvÞ → 0, yielding M0 → MADM, in
which case one has χα ¼ ð1; 0; 0; 0Þ. At early times,
again assuming M0ðvÞ → 0 and fðvÞ → 0, one has χα ¼
ðMearly=MADM; 0; 0; 0Þ, where Mearly is the mass of the
spacetime beforeM0ðvÞ becomes nonzero, and thus, χα will
differ from ð∂=∂tÞα. Since the early-time geometry of the
Vaidya spacetime approximates that of a Schwarzschild
black hole, then it is appropriate to rescale χα by a factor
MADM=Mearly; in doing so, one obtains an early-time horizon
mass consistent with the early-time “Schwarzschild mass.”
This is an indication that the horizon mass constructed from
the Komar integral for solutions of the AKE is not identical
to the “local” (in v) mass of the black hole.

III. EVOLUTION OF THE PERTURBED GKVs

In this section, we will consider the perturbation of a
background spacetime with Killing symmetry (e.g.,
Schwarzschild or Kerr), which may or may not be vacuum.
Since the perturbation need not respect the symmetry of the
background spacetime, the perturbed spacetime does not
admit an exact Killing vector field, but the perturbed
spacetime will admit GKVs, as long as solutions to
Eq. (2.2) exist in the perturbed spacetimes. The perturbed
AKE associated with the perturbation of the background
spacetime will be derived in two different ways: first from a
variational principle, where the perturbation of the action
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presented in Eq. (2.3) will be considered, and then from the
direct perturbation of the AKE itself. We will verify that the
results arising out of these two different approaches match.

A. Notations and conventions

Before proceeding further, it is perhaps appropriate to
settle the notations and the conventions that we will use for
this section and the remainder of this article. With the
exception of the GKVs, often denoted as χμ, “barred”
symbols will be used to denote exact quantities; for instance
ḡαβ, ∇̄α, and R̄αβ, respectively, denote the exact metric,
connection, and Ricci tensor. Unbarred geometric quantities
will be used to denote background quantities. Metric
perturbations will be denoted hαβ, and are defined by

hαβ ≔ ḡαβ − gαβ: ð3:1Þ

Indices are raised and lowered according to the background
metric gαβ. Killing vector fields for the background space-
time will be denoted ξμ, and we define δξμ to be the
difference between the GKV and the exact Killing vector in
the following manner:

δξα ≔ χα − ξα: ð3:2Þ

In general, the prefix δ will denote differences between the
exact and background quantities (which wewill later assume
to be small compared to background values), and the prefix
Δ will denote first-order variations.

B. Perturbation of the action principle yielding
the almost Killing equation

As emphasized before, we assume that the background
metric gμν admits a Killing vector field ξμ. Since hμν is a
perturbation over and above the background spacetime, it is
legitimate to assume that hμν ≪ gμν, and for some nor-
malization of the background Killing vector field ξμ,
we also assume δξμ ≪ ξμ.3 The action presented in
Eq. (2.3) may then be expanded in hμν, δξμ, and
δμ ≔ μ̄ − μ, keeping terms up to quadratic order in each.
We treat the expansions in hμν and δξμ independently, so
that we keep terms of the form h··h··δξ·δξ·. For simplicity,
we assume the quantity δμ to be independent of the
spacetime coordinates. It should be emphasized that
δξμ ≠ ḡμνðχν − ξνÞ, since indices are raised and lowered
with the background metric. We begin by writing down the
Lagrangian from the action functional presented in

Eq. (2.3), which has the following explicit form in the
spacetime with metric ḡμν:

L̄ ¼ −
1

4
ðḡνα∇̄μχ

α þ ḡμα∇̄νχ
αÞðḡμβ∇̄βχ

ν þ ḡνβ∇̄βχ
μÞ

þ μ̄

2
ð∇̄μχ

μÞ2: ð3:3Þ

We wish to express the Lagrangian presented above solely
in terms of the background metric gμν, the perturbation
hμν, and the perturbation δξμ along with δμ. Since the
Lagrangian depicted in Eq. (3.3) consists of terms quadratic
in χμ and its derivatives, it can be rewritten in the following
form:

L̄ ¼ χαχβLαβ þ χμ∇αχβLμαβ þ∇νχμ∇βχαLμναβ; ð3:4Þ

where the tensors Lαβ, Lμαβ, and Lμναβ depend on the
background metric gμν, the perturbation hμν, the derivatives
of hμν, and μ̄. Note that in writing Eq. (3.4), we make no
assumption about hμν; Eq. (3.4) should hold to all orders in
the metric perturbation hμν. Using the above decomposition
of the Lagrangian, the action can similarly be written down
in the following form:

A½δξ·� ¼
Z
V
d4x

ffiffiffiffiffiffi
−g

p ½χαχβMαβ þ χμ∇αχβMμαβ

þ∇νχμ∇βχαMμναβ�; ð3:5Þ

where we define

Mσ1σ2… ≔
ffiffiffiffiffiffiffi
ḡ=g

p
Lσ1σ2…: ð3:6Þ

One may at this point perform the variation of the action
with respect to δξα, the perturbed GKV, without explicit
knowledge of the tensors Mσ1σ2…. Up to boundary terms,
the first-order variation of the action takes the following
form:

ΔA ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ΔδξσEα; ð3:7Þ

where

Eα ≔
1

2

�
2∇βχν

�
1

2
ðLβνγα þ LγαβνÞðhστ∇γhστ −∇γhÞ

− ð∇γLβνγα þ∇γLγαβνÞ þ Lαβμ − Lνβα

�

þ 2χν
�
1

2
Lνβαðhγσ∇βhγσ −∇βhÞ −∇βLνβα

þ Lαν þ Lνα

�
− 2∇γ∇βχνðLβνγα þ LγαβνÞ

�
: ð3:8Þ

3Technically speaking, this is achieved by introducing two
parameters, ϵ1 and ϵ2, with ϵ1;2 ≪ 1 and then expanding the
metric as ḡμν ¼ gμν þ ϵ1hμν and the GKV as χα ¼ ξα þ ϵ2δξ

α.
Then, keeping terms linear in ϵ1 and ϵ2 will provide first-order
perturbation, while terms Oðϵ21;2Þ yield the second-order pertur-
bations.
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Keeping in mind χα ¼ ξα þ δξα, the perturbed AKE may
then be written as

ḡμαEαffiffiffiffiffiffiffi
ḡ=g

p ¼ 0: ð3:9Þ

The factor of 1=
ffiffiffiffiffiffiffi
ḡ=g

p
is included because one typically

factors out the volume element from the functional deriva-
tive when deriving field equations [as was done when going
from Eq. (A4) to Eq. (A5) in the Appendix]. Again, we
emphasize that the analysis presented here does not require
that hμν be small; the result in Eq. (3.9) holds to all orders
in hμν. Thus, one may expand the tensors Lσ1σ2::: in various
powers of the gravitational perturbation in the following
manner:

Lαβ ¼ L0
αβ þ L1

αβ þ L2
αβ þOðh3··Þ;

Lμαβ ¼ L0
μαβ þ L1

μαβ þ L2
μαβ þOðh3··Þ;

Lμναβ ¼ L0
μναβ þ L1

μναβ þ L2
μναβ þOðh3··Þ: ð3:10Þ

It turns out that to zeroth order, one has L0
αβ ¼ 0, L0

μαβ ¼ 0,
while

L0
μναβ ¼

1

2
ðμ̄ gαβgμν − gανgβμ − gαμgβνÞ: ð3:11Þ

To first order in hμν, the tensors L1
αβ, L

1
μαβ, and L1

μναβ can
be expressed as linear functions of the gravitational
perturbation hμν as

L1
αβ ¼ 0; L1

μαβ ¼
1

2
fμ̄gαβ∇μh − 2∇μhαβg;

L1
μναβ ¼

1

2
fhαμgβν − gαμhβνg: ð3:12Þ

Finally, we present the second-order terms in the perturba-
tion hμν as

L2
αβ ¼

1

8
fμ̄∇αh∇βh − 2∇αhστ∇βhστg;

L2
μαβ ¼

1

2
f2hασ∇μhβσ − μ̄gαβhστ∇μhστg;

L2
μναβ ¼

1

2
fhαμhβν − gβνhασhμσg: ð3:13Þ

In what follows, we consider in detail the expansion of
the Lagrangian to first order in the metric perturbation hμν,
and as we shall demonstrate, the resulting perturbed
AKE is consistent with the expansion coefficients deter-
mined above.

C. Explicit perturbation of the action
to first order in the metric

The expression for the AKE given in Eq. (3.8) is rather
complicated and somewhat opaque; it is perhaps more
illustrative to show explicitly that the derivation of the
perturbed AKE to first order in the metric perturbations hμν,
simplifying the expressions along the way. To obtain the
expansion of the Lagrangian to first order in hμν, one may
use Eqs. (3.11) and (3.12) to obtain the following
Lagrangian:

L̄ ¼ −
1

4
½ðgνα þ hναÞ∇μχ

α þ ðgμα þ hμαÞ∇νχ
α þ χρ∇ρhμν�

× ½ðgμβ − hμβÞ∇βχ
ν þ ðgνβ − hνβÞ∇βχ

μ þ χσ∇σhμν�
þ μ̄

2
½ð∇μχ

μÞ2 þ χα∇αhð∇μχ
μÞ�: ð3:14Þ

Having expressed the Lagrangian explicitly in terms of the
background metric gμν and the perturbation hαβ, we now
expand the GKV field in terms of the background Killing
field ξμ and the perturbation δξμ. One can see that
Eq. (3.14) has the form of Eq. (3.4), and it is not difficult
to verify that the Lagrangians are equivalent for the
coefficients given in Eqs. (3.10)–(3.12). Using the
Killing equation for ξμ, i.e., setting ∇μξν þ∇νξμ ¼ 0,
the Lagrangian presented in Eq. (3.14) can be further
simplified. In particular, it is worth emphasizing that the
on-shell value of the action for the background Killing
vector field identically vanishes, and thus, the Lagrangian
density given in Eq. (3.14) becomes

L̄¼ −
1

2
½gνα∇μδξ

α þ hνα∇μξ
α þ hνα∇μδξ

α þ gμα∇νδξ
α

þ hμα∇νξ
α þ hμα∇νδξ

α þ ðξρ þ δξρÞ∇ρhμν�

×
�
∇μδξν − hμβ∇βξ

ν − hμβ∇βδξ
ν þ 1

2
ðξσ þ δξσÞ∇σhμν

�

þ μ̄

2
½ð∇μδξ

μÞ2 þ ðξα þ δξαÞ∇αhð∇μδξ
μÞ� þOðh2··Þ:

ð3:15Þ

Even though the above Lagrangian density looks suffi-
ciently complicated, we can reduce it to a very simple form
by dividing the above into three categories: (a) terms
quadratic in the derivatives of δξα, (b) terms linear in the
derivatives of δξα, and (c) terms independent of derivatives
of δξα. The terms quadratic in the derivative of δξα yield

Quadratic terms¼1

2
½ðμþδμÞδμαδνβ−ðgαβþhαβÞðgμν−hμνÞ

−ðδναþhναÞðδμβ−hμβÞ�ð∇μδξ
α∇νδξ

βÞ;
ð3:16Þ

while the terms linear in the derivative of δξα become
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Linear terms ¼ μ̄

2
½ðξα þ δξαÞ∇αhð∇μδξ

μÞ� − 1

2
½gνα∇μδξ

α þ gμα∇νδξ
α� ×

�
−hμβ∇βξ

ν þ 1

2
ðξσ þ δξσÞ∇σhμν

�

−
1

2
∇μδξν½hνα∇μξ

α þ hμα∇νξ
α þ ðξρ þ δξρÞ∇ρhμν�: ð3:17Þ

Finally, as indicated in the expression for Lαβ in Eq. (3.12) the terms involving no derivatives of δξα is Oðh2··Þ, and hence,
will not contribute in our subsequent discussion regarding the determination of the action functional of the perturbed AKE.
Thus, we have computed the Lagrangian of the GKV field involving linear order terms in the perturbation hμν and up to
quadratic order terms in the perturbed GKV δξμ. However, computation of the action functional requires multiplication of
the above Lagrangian by a factor of

ffiffiffiffiffiffi
−ḡ

p
, where ḡ is the determinant of the perturbed metric ḡαβ. Therefore, the complete

action for the perturbed Killing vector field δξμ takes the following form:

A½δξ·� ¼
Z
V
d4x

ffiffiffiffiffiffi
−g

p ��
1

2
ðμδμαδνβ − gαβgμν − δναδ

μ
βÞ þ

1

4
hðμδμαδνβ − gαβgμν − δναδ

μ
βÞ

þ 1

2

�
1þ 1

2
h

�
δμδμαδνβ þ

1

2
ðgαβhμν − hαβgμν þ δναh

μ
β − hναδ

μ
βÞ
�
ð∇μδξ

α∇νδξ
βÞ

þ
�
μ̄

2
½ðξα þ δξαÞ∇αhð∇μδξ

μÞ� − ½ð∇μδξ
αÞhαβ∇μξβ þ ð∇μδξ

αÞhμβ∇αξβ�

− gνα∇μδξ
αðξσ þ δξσÞ∇σhμν

��
: ð3:18Þ

Having derived the action to linear order in the gravitational perturbation hμν, we can determine an arbitrary variation of the
action for variation of the perturbed Killing vector field δξμ, which when set to zero should yield the corresponding
perturbed AKE. The final expression for the variation, ignoring any boundary contribution, takes the following form:

ΔA ¼
Z
V
d4x

ffiffiffiffiffiffi
−g

p
δðδξαÞ

�
1þ 1

2
h

�
ðgαβ þ hαβÞ

�
½ð1 − μÞ∇βð∇νδξ

νÞ þ□δξβ þ Rβ
ρδξ

ρ�

− δμ∇β∇σδξ
σ − hμν∇μ∇νδξ

β þ 2ð∇ðμδξνÞÞ
�
∇μh

β
ν −

1

2
∇βhμν

�
− Rβ

ρσμhμρδξσ

þ
�
1 − μ − δμ

2

�
∇β½ðξρ þ δξρÞ∇ρh� − hβμð1 − μ − δμÞ∇μð∇νδξ

νÞ
�
; ð3:19Þ

where we have neglected all the terms quadratic in the gravitational perturbation hμν. Setting the variation ΔA to zero, for
arbitrary variation of the perturbation of the Killing vector field δξμ, we obtain the following dynamical equation for the
perturbed GKV field δξμ:

ð1 − μÞ∇βð∇νδξ
νÞ þ□δξβ þ Rβ

ρδξ
ρ ¼ Jβ; ð3:20Þ

Jβ ¼ δμ∇β∇σδξ
σ þ hμν∇μ∇νδξ

β − 2ð∇ðμδξνÞÞ
�
∇μh

β
ν −

1

2
∇βhμν

�
þ Rβ

ρσμhμρδξσ

−
�
1 − μ − δμ

2

�
∇β½ðξρ þ δξρÞ∇ρh� þ hβμð1 − μ − δμÞ∇μð∇νδξ

νÞ: ð3:21Þ

The above provides the dynamical equation for the per-
turbed Killing vector field δξα arising from the variation of
the action. One can verify that this expression is equivalent
to that obtained from Eq. (3.8); we have done this using the
xAct package for Mathematica. In the subsequent discus-
sion, we will discuss explicitly the derivation of this
equation from the perturbation of the AKE itself to first

order in the metric perturbations. This will depict the
internal consistency of the results derived in this work.

D. Perturbation of the almost Killing equation
to first order in the metric

We have derived the evolution equation for the perturbed
GKV field to first order in the metric perturbations, starting
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from the variation of the perturbed action for the GKV field. As we will show in this section, the same equation can also be
derived from direct perturbation of the AKE itself. As before, we assume that the background metric gμν admits a Killing
vector field ξμ and also that hμν ≪ gμν and δξμ ≪ ξμ (see also footnote 2). Thus, we will expand the AKE given in Eq. (2.2)
in the perturbed spacetime with metric ḡμν to first order in δξμ and hμν each, again assuming that the expansions are
independent (so that we keep terms of the form h··δξ·). It is convenient to first present the expansion of the following
geometric quantities to linear order in the gravitational perturbation hμν:

δRμν ¼
1

2
ð−□hμν −∇μ∇νhþ∇μ∇αhαν þ∇ν∇αhαμ þ Rβμh

β
ν þ Rβνh

β
μ − 2RαμβνhαβÞ; ð3:22Þ

∇̄α∇̄βVβ ¼ δβμ∇̄α∇̄βVμ ¼ ∇αð∇βVβÞ þ∇αðδΓβ
βρV

ρÞ þ δΓβ
αρ∇βVρ − δΓρ

αβ∇ρVβ ¼ ∇αð∇βVβÞ þ∇αðδΓβ
βρV

ρÞ; ð3:23Þ

□̄Vμ ¼ ðgαβ − hαβÞ∇α∇βVμ þ
�
−
1

2
∇μhαρ þ∇αh

μ
ρ

�
ð∇αVρ þ∇ρVαÞ −∇ρVμ

�
∇αhαρ −

1

2
∇ρh

�

þ 1

2
Vρð□hμρ þ∇ρ∇βhβμ −∇μ∇βhβρ þ Rσρhσμ − RσμhσρÞ; ð3:24Þ

where Vμ is an arbitrary vector field. In deriving the above identities, we have used various properties of the Riemann tensor,
e.g., Rαβμν ¼ Rνμβα among others. Applying all these identities to the AKE in the perturbed spacetime and imposing the
Lorenz gauge condition ∇αhαρ ¼ ð1=2Þ∇ρh, we obtain

ðgαβ − hαβÞ∇α∇βχ
μ þ

�
−
1

2
∇μhαρ þ∇αh

μ
ρ

�
ð∇αχρ þ∇ρχαÞ þ Rμ

βχ
β þ ð1 − μ̄Þḡμα

�
∇αð∇βχ

βÞ þ 1

2
∇αðχρ∇ρhÞ

�

− Rμ
αβσhασχβ þ f∇αð1 − μ̄Þgḡμα

�
ð∇βχ

βÞ þ 1

2
ðχρ∇ρhÞ

�
¼ 0; ð3:25Þ

which is valid up to linear order in the gravitational perturbation hμν.
At this point, we have not yet expanded in the GKV field χμ; we do this now. We make use of the wave equation for the

background Killing vector field ξμ given in Eq. (2.1) and other properties of Killing vectors to obtain

ðgαβ − hαβÞ∇α∇βδξ
μ þ

�
−
1

2
∇μhαρ þ∇αh

μ
ρ

�
ð∇αδξρ þ∇ρδξαÞ þ Rμ

βδξ
β þ ð1 − μ̄Þḡμα

�
∇αð∇βδξ

βÞ

þ 1

2
∇α½ðξρ þ δξρÞ∇ρh�

�
− Rμ

αβσhασδξβ þ f∇αð1 − μ̄Þgḡμα
�
ð∇βδξ

βÞ þ 1

2
ðξρ∇ρhþ δξρ∇ρhÞ

�
¼ 0: ð3:26Þ

This is our result for the perturbed AKE. The above equation has been derived under very general conditions, without any
assumptions about the nature of the perturbation. Thus, it is possible to express the above equation in several different ways,
under different assumptions, which we will list below. First, we rewrite the above evolution equation for the perturbed GKV
field δξμ in the following form:

□δξμ þ Rμ
νδξ

ν þ gμα∇αfð1 − μÞð∇σδξ
σÞg ¼ jμ; ð3:27Þ

jμ ¼ hαβ½∇α∇βδξ
μ þ Rμ

αρβδξ
ρ þ δμα∇βfð1 − μ − δμÞð∇σδξ

σÞg� þ gμα∇αðδμ∇σδξ
σÞ − 2

�
∇αh

μ
ρ −

1

2
∇μhαρ

�
∇ðαδξρÞ

−
1

2
ð1 − μ − δμÞgμα∇α½ðξρ þ δξρÞ∇ρh� −

1

2
∇αð1 − μ − δμÞgμα½ðξρ þ δξρÞ∇ρh�: ð3:28Þ

Upon comparison, we find that this evolution equation for the perturbed GKV δξμ is identical to what we had derived from
the action, i.e., to Eq. (3.20), except for the terms involving derivatives of μ and δμ, respectively. This is because, while
deriving Eq. (3.20), we have assumed for convenience that μ and δμ are constants, while that is not the case for the
derivation presented above. If we assume that μ for the background spacetime is constant, and δμ to be a scalar function,
then the dynamics of the perturbed GKV is determined by
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ðgαβ − hαβÞ½∇α∇βδξ
μ þ Rμ

αρβδξ
ρ� ¼ jμ; ð3:29Þ

jμ ¼ −ð1 − μ − δμÞ
�
ðgμα − hμαÞ∇αð∇σδξ

σÞ þ 1

2
gμα∇αfðξρ þ δξρÞ∇ρhg

�
− 2

�
∇αh

μ
ρ −

1

2
∇μhαρ

�
∇ðαδξρÞ

þ ð∇αδμÞ
�
gμα∇αð∇σδξ

σÞ þ 1

2
gμα½ðξρ þ δξρÞ∇ρh� − ð∇σδξ

σÞhμα
�
: ð3:30Þ

As mentioned before, it will be useful if we write down
simplified versions of Eq. (3.29) for various scenarios of
physical interest. These can range from the use of the
transverse-traceless gauge to setting δμ ¼ constant. We
discuss below each of these limits explicitly.

(i) If we choose δμ ¼ constant, then the last term in
the expression for jμ in Eq. (3.29) identically
vanishes. In this context, the dynamical equation
for the perturbed GKV becomes identical to that
derived from the perturbation of the action, i.e.,
to Eq. (3.20).

(ii) If we assume that the background spacetime is
vacuum, and the perturbation involves no incoming
matter fields, then the use of the transverse-traceless
gauge [equivalently setting h ¼ 0 in Eq. (3.29)]
yields

ðgαβ − hαβÞ½∇α∇βδξ
μ þ Rμ

αρβδξ
ρ� ¼ jμ; ð3:31Þ

jμ ¼ −ð1 − μ − δμÞ½ðgμα − hμαÞ∇αð∇σδξ
σÞ�

− 2

�
∇αh

μ
ρ −

1

2
∇μhαρ

�
∇ðαδξρÞ

þ ð∇αδμÞfgμα∇αð∇σδξ
σÞ − ð∇σδξ

σÞhμαg:
ð3:32Þ

Note that any term involving Rαβ will not contrib-
ute, since for vacuum spacetime the Ricci tensor
identically vanishes. Also, if we assume δμ to
be constant, the above equation can be
simplified even more, as the last term in jμ will
be absent.

(iii) If we use the fact that the perturbed GKV is really a
consequence of the perturbation of the spacetime
geometry (we will examine this case in detail
later), then we will have χμ ¼ ξμ þ δχμ1 þ δχμ2,
where δχμ1 is linear in the gravitational perturba-
tion, while δχμ2 is quadratic in the gravitational
perturbation. An identical decomposition will
work for the μ̄ as well. If we keep terms linear
in the gravitational perturbation, we should also
ignore terms Oðδχμ1hαβÞ and so on. It follows that
perturbed AKE governing the evolution of the
vector δχμ1 takes the relatively simple form

□δχμ1 þ Rμ
ρδχ

ρ
1 þ ð1 − μÞ

�
∇μð∇σδχ

σ
1Þ

þ 1

2
∇μðξρ∇ρhÞ

�
¼ 0: ð3:33Þ

Note also that if we assume the background
spacetime to be vacuum with no incoming matter
perturbation, then the use of the transverse-
traceless gauge would reduce Eq. (3.33) to AKE
for the background spacetime gμν. The conse-
quences of this equation with or without matter
field will be discussed in a subsequent section.

Thus, we have derived the evolution equation for the
perturbed GKV field from the perturbed action and also
from the perturbed AKE to first order in the metric
perturbations. Both of these procedures yield identical
equations depicting the internal consistency of our analysis.
We have also verified using computer algebra (in particular,
the xAct package for Mathematica) that this consistency
holds to second order as well. The AKE is rather compli-
cated in the second-order case, so we do not present the
result here; the interested reader can view the Mathematica
file posted at [23]. In what follows, we will discuss the
structure of the Hamiltonian associated with the dynamical
equation for the perturbed AKE, leading to an under-
standing of the stability as well as its hyperbolicity.

IV. HAMILTONIAN STABILITY AND
HYPERBOLICITY

In this section, we will construct the Hamiltonian out
of the Lagrangian, whose variation yields the evolution
equation for the perturbed GKV. The stability of the
Hamiltonian and its bounded nature will also be examined.
In addition, the hyperbolicity of the perturbed AKE will
also be explored.

A. Hamiltonian for the perturbed AKE

We have derived the evolution equation for the perturbed
GKVs in the preceding section in two different ways: first
by varying the perturbed action from which the AKE can
be derived, and then by direct perturbation of the AKE. In
this section, we will discuss the stability and the hyper-
bolicity of the perturbed AKE, restricting (for simplicity) to
first order in the metric perturbations hμν. First, we will

PERTURBATIONS OF THE ALMOST KILLING EQUATION AND … PHYS. REV. D 103, 084020 (2021)

084020-9



construct the Hamiltonian for the perturbed GKV field and discuss its stability. Subsequently, we will discuss the
hyperbolicity of the perturbed AKE and its consequences. The starting point for the Hamiltonian analysis is the action for
the perturbed GKV field δξμ; in particular, the zeroth component of the boundary term in the variation will provide the
Hamiltonian. The action for the perturbed GKV simplifies considerably to first order in the metric perturbations. Neglecting
all terms ofOðh2··Þ and using symmetry properties of the resulting expression, the structure of the action can be simplified to

A½δξ·� ¼
Z
V
d4x

ffiffiffiffiffiffi
−g

p �
1

2

�
1þ 1

2
h

�
fμ̄δμαδνβ − gαβgμν − hαβgμν þ gαβhμν − δναδ

μ
βgð∇μδξ

α∇νδξ
βÞ

þ μ̄

2
fðξα þ δξαÞ∇αhð∇μδξ

μÞg − ð∇μδξ
αÞfhαβ∇μξβ þ hμβ∇αξβg − gνα∇μδξ

αðξσ þ δξσÞ∇σhμν�: ð4:1Þ

Note that the Lagrangian density associated with the above action is identical to Eq. (3.15), though written in a different
form. Collecting all the total derivative terms that we have thrown away in the derivation of the field equation for δξμ in the
previous section, we obtain (recalling the notation Δ for the first-order variation)

Total derivative terms ¼ ffiffiffiffiffiffi
−g

p
ΔðδξαÞ

�
ðμδμαδνβ − gαβgμν − δναδ

μ
βÞ∇νδξ

β þ 1

2
hðμ δμαδνβ − gαβgμν − δναδ

μ
βÞ∇νδξ

β

þ
�
1þ 1

2
h
�
δμδμαδνβ∇νδξ

β þ ðgαβhμν − hαβgμνÞ∇νδξ
β þ μ̄

2
fðξσ þ δξσÞ∇σhgδμα

− fhαβ∇μξβ þ hμβ∇αξβg − gναðξσ þ δξσÞ∇σhμν
�
≡ ffiffiffiffiffiffi

−g
p

ΔðδξαÞPμ
α; ð4:2Þ

where the last equality defines the quantity Pμ
α, which is the polymomentum conjugate to the perturbed GKV field δξα. In

particular, starting from the perturbed action presented in Eq. (4.1), one can immediately verify that Pμ
α has the following

expression in terms of the perturbed Killing vector field δξα and its derivatives:

Pμ
α ≡ 1ffiffiffiffiffiffi−gp ΔA

Δð∇μδξ
αÞ

¼
��

1þ 1

2
h

�
ðμ̄δμαδνβ − gαβgμν − δναδ

μ
β þ gαβhμν − hαβgμνÞ∇νδξ

β

þ μ̄

2
fðξσ þ δξσÞ∇σhgδμα − fhαβ∇μξβ þ hμβ∇αξβg − gναðξσ þ δξσÞ∇σhμν

�
: ð4:3Þ

Wewrite the variation of the action for the perturbed Killing
vector field δξα (incorporating the variation of the boundary
surface) in the Weiss form [24]:

ΔA ¼
Z
V
d4x

ffiffiffiffiffiffi
−g

p
EαΔðδξαÞ

þ
Z
∂V

dΣμ½Pμ
αΔðδξαÞ þ LΔxμ�; ð4:4Þ

where dΣα ¼ d3x
ffiffiffiffiffiffi−gp ∇αϕ is the volume measure on the

boundary surface ∂V denoting the ϕðxμÞ ¼ constant hyper-
surface. If we instead use the unit normal vector nα, then the
volume measure of the boundary hypersurface ∂V becomes
dΣα ¼ ϵd3x

ffiffiffi
h

p
nα, where ϵ ¼ −1ðþ1Þ for spacelike (time-

like) hypersurfaces, respectively. Defining dΣ ¼ d3x
ffiffiffi
h

p
and choosing the hypersurface to be t ¼ constant and using
the (1þ 3) decomposition for the metric, we find the
boundary Hamiltonian to be

H ¼
Z

dΣH; H ¼ ϵPμ
αnμ _δξ

α − NL; ð4:5Þ

where N is the lapse function and the “overdot” denotes
derivative with respect to time. For the spacelike hyper-
surface we are considering, and using orthonormal coor-
dinates, e.g., in the synchronous frame, the Hamiltonian
density H takes the following form:

H ¼ P0
α
_δξα − L: ð4:6Þ

We now consider terms which are quadratic in the time
derivative as well as terms which are quadratic in the spatial
derivative of the perturbed GKV field δξα. Collecting these
terms, the time derivative part of the Hamiltonian density
quadratic in the perturbed Killing vector field becomes
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Hð2Þtime ¼ 1

2

�
1þ 1

2
h

�
fμ̄ − 2gð _δξ0 _δξ0Þ

þ 1

2

�
1þ 1

2
h

�
fgij þ hij þ gijh00gð _δξi _δξjÞ

þ
�
1þ 1

2
h

�
h0ið _δξ0 _δξiÞ: ð4:7Þ

Here we have performed a (1þ 3) decomposition of the
Hamiltonian density and have collected terms quadratic in
the time derivative of the perturbed GKV field. In the limit
of vanishing perturbation, the above quadratic contribution

to the Hamiltonian coincides with that presented in [12].
Though the kinetic term of the zeroth component of the
perturbed Killing vector field, i.e., δξ0 in the Hamiltonian
density harbors a negative sign in the unperturbed space-
time for μ < 2 (see [12]), we see that in Eq. (4.7), the
corresponding kinetic term in perturbed GKV has positive
sign for μ < 2 < μ̄. Thus, ghost modes can be avoided. The
other quadratic terms in the time derivative have positive
sign. Similarly, terms quadratic in the space derivatives of
the perturbed Killing vector field yield the following
expression for the Hamiltonian density:

Hð2Þspace ¼ 1

2

�
1þ 1

2
h

�
f1 − μ̄gð∂iδξ

i∂jδξ
jÞ þ 1

2

�
1þ 1

2
h

�
f−gij þ h00gij þ hijgð∂iδξ

0∂jδξ
0Þ

þ 1

2

�
1þ 1

2
h

�
fgabgij þ habgij − gabhijgð∂iδξ

a∂jδξ
bÞ þ

�
1þ 1

2
h

�
h0agijð∂iδξ

0∂jδξ
aÞ: ð4:8Þ

In the above expression involving spatial derivatives of the
perturbed GKV, the first two terms can provide a negative
contribution to the Hamiltonian, thereby making it un-
bounded from below. In the second term, even though the
metric perturbations try to keep this term positive, the
background metric drives it to negative values. Similarly, if
we want the theory to be ghost-free, the first term will turn
negative, leading to an unbounded Hamiltonian. As argued
in [12], in the unperturbed case, an unbounded Hamiltonian
is potentially dangerous, as it can result in runaway
behavior that drives the GKVs far from the Killing
condition. Thus, the problems associated with the Hamil-
tonian density for the AKE in the exact case remain for the
perturbed GKV δξα as well.

B. Hyperbolicity

We now turn our attention to the hyperbolicity of the
perturbed AKE. For this purpose, we employ the methods
of hyperbolicity analysis for second-order systems, par-
ticularly that presented in [25,26] (see also [12]). In this
approach, we compute the principal symbol for the system

of equations; if the principal symbol has real eigenvalues,
the system is weakly hyperbolic, and if the principal
symbol has a complete set of eigenvectors, the system is
strongly hyperbolic. Collecting all the terms involving
double derivatives of δξα, we obtain from Eq. (3.29),

ðgαβ − hαβÞ∂α∂βδξ
μ þ ð1− μ− δμÞðgμα − hμαÞ∂α∂σδξ

σ ≈ 0;

ð4:9Þ

where the symbol ≈ denotes equality up to terms not
included in the principal part. In order to express the above
equation in the desired form, we can decompose the metric
as gαβ ¼ qαβ − nαnβ þ sαsβ, where nα is a timelike unit
vector and sα is a spacelike unit vector. Further, defining
nα∂α ¼ ∂n, sα∂α ¼ ∂s, and qαβ ¼ qABδαAδ

β
B, we can rewrite

the above equation into three separate equations; we obtain
one by contraction of Eq. (4.9) with nμ, another by
contraction of Eq. (4.9) with sμ, and the last by the projection
of Eq. (4.9) along transverse directions. Keeping only the
principal parts of these equations, we obtain

ð2 − μ − δμÞð1þ hnnÞ∂2
nδξ

n ≈ ð1 − hssÞ∂2
sδξ

n þ ð3 − μ − δμÞhns∂n∂sδξ
n þ ð1 − μ − δμÞð1þ hnnÞ∂n∂sδξ

s

− ð1 − μ − δμÞhns∂2
sδξ

s: ð4:10Þ

Note that since nμ is the timelike unit vector, ∂2
nδξ

n corresponds to a double time derivative of the time component of the
perturbed GKV. A similar analysis yields the following equation for ∂2

nδξ
s, i.e., for the double time derivative of the spatial

component of the perturbed GKV,

ð1þ hnnÞ∂2
nδξ

s ≈ ð2 − μ − δμÞð1 − hssÞ∂2
sδξ

s þ ð3 − μ − δμÞhns∂n∂sδξ
s − ð1 − μ − δμÞhsn∂2

nδξ
n

− ð1 − μ − δμÞð1 − hssÞ∂s∂nδξ
n: ð4:11Þ
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Finally, the double time derivative of the transverse component of the perturbed GKV yields

ð1þ hnnÞ∂2
nδξ

A ≈ ð1 − hssÞ∂2
sδξ

A þ 2hns∂n∂sδξ
A þ ð1 − μ − δμÞhAs∂s∂nδξ

n − ð1 − μ − δμÞhAn∂2
nδξ

n

þ ð1 − μ − δμÞhAn∂n∂sδξ
s − ð1 − μ − δμÞhAs∂2

sδξ
s: ð4:12Þ

Therefore, we can read off the principal symbol Ps for this
system of second-order differential equations, which takes
the following form:

Ps ¼
�
O4×4 I4×4
A B

�
; ð4:13Þ

where O4×4 and I4×4 are the ð4 × 4Þ null and unit matrix,
respectively. The entries A and B are also ð4 × 4Þ matrices
with the following expressions:

A ¼

2
64
A B 0

E F 0

IA J A KI2×2

3
75;

B ¼

2
64

C D 0

G H 0

LA MA N I2×2

3
75; ð4:14Þ

where the unknown quantities appearing in the matrices
A and B have the following expressions,

A ¼ ð1 − hssÞ
ð2 − μ − δμÞð1þ hnnÞ ;

B ¼ −
ð1 − μ − δμÞhns

ð2 − μ − δμÞð1þ hnnÞ ; ð4:15Þ

C ¼ ð3 − μ − δμÞhns
ð2 − μ − δμÞð1þ hnnÞ ;

D ¼ ð1 − μ − δμÞ
ð2 − μ − δμÞ ; ð4:16Þ

E ¼ −
ð1 − μ − δμÞhsn

ð2 − μ − δμÞð1þ hnnÞ2 ;

F ¼ ð2 − μ − δμÞð1 − hssÞ
ð1þ hnnÞ ; ð4:17Þ

G ¼ −
ð1 − μ − δμÞð1 − hssÞ

ð1þ hnnÞ ;

H ¼ ð3 − μ − δμÞhns
ð1þ hnnÞ −

ð1 − μ − δμÞ2hsn
ð2 − μ − δμÞð1þ hnnÞ ; ð4:18Þ

I ¼ −
ð1 − μ − δμÞhAn

ð2 − μ − δμÞð1þ hnnÞ2 ;

J ¼ −
ð1 − μ − δμÞhAs

ð1þ hnnÞ ; ð4:19Þ

K ¼ ð1 − hssÞ
ð1þ hnnÞ ; L ¼ ð1 − μ − δμÞhAs

ð1þ hnnÞ ; ð4:20Þ

M ¼ −
ð1 − μ − δμÞ2hAn

ð2 − μ − δμÞð1þ hnnÞ þ
ð1 − μ − δμÞhAn

ð1þ hnnÞ ;

N ¼ 2
hns

ð1þ hnnÞ : ð4:21Þ

Note that as the perturbations vanish, we obtain A ¼ 1=
ð2 − μÞ, B¼0¼C, D¼ð1−μÞ=ð2−μÞ, E ¼ 0, F ¼ 2 − μ,
G ¼ −ð1 − μÞ, H ¼ 0 ¼ I ¼ J , K ¼ 1, and L ¼ 0 ¼
M ¼ N . Thus, our result agrees with that derived in
[12]. If one chooses μþ δμ ¼ 1, one has a complete set
of eigenvectors, and if one chooses μþ δμ ¼ 2, the
principal symbol becomes singular. Setting μ ¼ 1 and
expanding the eigenvalues to first order in metric pertur-
bations and second order in δμ, one obtains the
following expression for the eigenvalues of the principal
symbol4:

�
1

2
ðhnn − 2hns þ hss − 2Þ;− 1

2
ðhnn þ 2hns þ hss − 2Þ;

1

4
ð−δμ2hns þ ðδμ2 þ 4Þhns − 2hnn − 2ðhss − 2ÞÞ;

1

4
ð−δμ2hns þ ðδμ2 þ 4Þhns − 2hnn − 2ðhss − 2ÞÞ;

1

4
ð−δμ2hns þ ðδμ2 þ 4Þhns þ 2hnn þ 2ðhss − 2ÞÞ;

1

4
ð−δμ2hns þ ðδμ2 þ 4Þhns þ 2hnn þ 2ðhss − 2ÞÞ

�
:

ð4:22Þ

Since the eigenvalues presented above are real, this implies
that to first order in the metric perturbation and second
order in δμ, the perturbed AKE is weakly hyperbolic. This
is consistent with the result in [12], in which the AKE for

4These calculations were performed using the packagexAct in
Mathematica.
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the background spacetime was found to be weakly hyper-
bolic for general μ ≠ 1, 2.

V. INDUCED PERTURBATIONS: IMPLICATIONS
FOR THE ALMOST KILLING EQUATION

So far, we had considered the metric perturbation and
the perturbation of the GKV to be independent.
However, in most of the physical scenarios of interest,
e.g., perturbation of the black hole spacetime due to
matter fields entering the horizon, the metric perturba-
tion sources the perturbation of the almost Killing
equation. Thus, we may consider the perturbation of
the GKV to be induced by the metric perturbation. In
what follows, we will consider such induced perturba-
tion of the GKV and hence determine their evolution
equations order by order.

A. First-order perturbation

As emphasized before, we will imagine a class of
nontrivial perturbative solutions to the AKE which are
induced by the metric perturbations. This may be quantified
by assuming that δξα and hαβ are implicitly proportional
to the same expansion parameter ϵ (see footnote 2), and
then solving the perturbed AKE order by order in ϵ. In
particular, for the GKV χα we write

χα ¼ ξα þ δχα1 þ δχα2 þOðϵ3Þ; ð5:1Þ

where we have assumed δχαi ∝ ϵi. As before, the back-
ground spacetime is assumed to admit a Killing vector
field ξα, which satisfies the AKE presented in Eq. (2.2)
exactly. Further, imposing the Lorenz gauge condition,
∇βhαβ ¼ ∇αh=2, and choosing the background value of the
parameter μ to be constant, the expansion of the perturbed
AKE presented in Eq. (3.29) to OðϵÞ reduces to the
following equation for δχα1:

□δχα1 þ Rα
βδχ

β
1 þ ð1 − μÞ∇α½∇ · δχ1 þ ðξβ∇βhÞ=2� ¼ 0:

ð5:2Þ

Note that this reduces to the background AKE when μ ¼ 1

or, when ξβ∇βh is a constant; in those cases, one must
consider higher-order corrections to the AKE. In the cases
where ξβ∇βh is nontrivial, for instance, if the perturbations
are the result of an energy-momentum tensor with non-
trivial trace, one can apply the expression Eq. (2.4) for the
Noether current defined with respect to the background
derivatives directly to δχα1 and substitute Eq. (5.2) to obtain
the following current:

Jα1 ¼ 2Rα
βδχ

β
1 þ∇α½ð2 − μÞ∇ · δχ1 þ ð1 − μÞξα∇αh=2�;

ð5:3Þ

which satisfies the identity ∇ · J1 ¼ 0. If the background
spacetime is vacuum, setting Rα

β ¼ 0, this identity yields

□Φ1 ¼ 0; ð5:4Þ

where

Φ1 ≔ ð2 − μÞ∇ · δχ1 þ
1

2
ð1 − μÞðξα∇αhÞ: ð5:5Þ

It follows that if the initial data satisfy the constraint
Φ1 ¼ 0 and its first time derivative also vanishes, then the
constraint Φ1 ¼ 0 is preserved by the evolution of
Eq. (5.4). Under this constraint, Eq. (5.2) may be
rewritten as

□δχα1 −∇αð∇ · δχ1Þ ¼ 0; ð5:6Þ

which is equivalent to the AKE for μ ¼ 2 in vacuum
spacetime. It was demonstrated in [12] that the μ ¼ 2
parameter choice avoids ghosts and is dynamically equiv-
alent to the Maxwell theory, thus avoiding the problems
arising from an unbounded Hamiltonian. Furthermore,
recall that to first order in the gravitational perturbation,
imposing the Lorenz gauge condition, the trace h of the
gravitational perturbation satisfies the following evolution
equation on a vacuum background:

□h ¼ 16πδ1T; ð5:7Þ

where δ1T is the first-order perturbation of the trace of the
matter energy-momentum tensor. If one assumes δ1T ¼ 0,
i.e., the matter field perturbing the spacetime is dilute
radiation and the background is vacuum, one can impose
the condition that h ¼ 0, in which case, from Eq. (5.5), it
follows that the constraint Φ1 ¼ 0 implies ∇ · δχ1 ¼ 0.
Subsequently, substituting this result in Eq. (5.6) simplifies
to □δχα1 ¼ 0, which is satisfied by the background Killing
vector field ξα. Thus, one may expect that in this case, the
perturbed spacetime will respect the symmetries of the
background spacetime. On the other hand, if δ1T ≠ 0, then
the background Killing vector field does not, in general,
satisfy the constraint Φ1 ¼ 0, and the resulting solutions
for Eq. (5.6) differ nontrivially from the background
Killing vector.
We have therefore derived that if the spacetime pertur-

bation hαβ is being sourced by an energy-momentum tensor
with a nonvanishing trace, then the evolution equation
for the first-order perturbation δχα1 must differ from the
background Killing vector field in a nontrivial manner.
Furthermore, we find that for the weakly hyperbolic
parameter choices, i.e., μ ≠ 1 and μ ≠ 2, and initial data
satisfying the constraint Φ1 ¼ 0 and ∂tΦ1 ¼ 0, the AKE
propagates the constraint Φ1 ¼ 0 and avoids the dynamical
instabilities associated with ghosts and unboundedness in
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the Hamiltonian. First-order perturbations of the AKE
are therefore different from the background Killing vector
field and are well suited for describing the perturbations
of the vacuum spacetimes induced by dilute matter in
which δ1T ≠ 0.

B. Second-order perturbations

As the previous section demonstrates, perturbations of
the AKE to OðϵÞ are insensitive to the metric perturbations
in scenarios with δ1T ¼ 0. This is the case if the perturba-
tions consist of weak gravitational radiation, or dilute

matter source encompassing radiation or null dust. In such
situations, one should consider the evolution equation for
the second-order correction δχν2. Assuming constant μ and a
vacuum background spacetime, the homogeneous part of
the equation is the same as that of the first-order case

□δχν2 þ ð1 − μÞ∇νð∇ · δχ2Þ ¼ −ðjν2 þ kν2 þ lν2 þmν
2Þ;

ð5:8Þ

and the inhomogeneous part jν2 takes the explicit form

jν2 ¼ 2ξαhβσfhντRαβτσ − hβτRν
σατ −∇σ∇αhνβg − ξα∇αhβσ∇νhβσ þ 2∇νðξαhβσ∇αhβσÞ − 2hβσ∇νξα∇σhαβ

þ 2hασ∇βξαf∇βhνσ −∇νhβσ þ∇σhνβg;
kν2 ¼ 2hνβ∇β∇αδχ

α
1 − 2hαβ∇β∇αδχν1 þ 2∇βδχα1f∇αhνβ þ∇βhνα −∇νhαβg − 2δχα1h

βσRν
βασ;

lν2 ¼ hνβ∇βξ
α∇αh −∇ν½δχα1∇αhþ ð2∇αδχ

α
1 þ ξα∇αhÞδμ� þ ðμ − 2Þfhνβ∇βðξα∇αhÞ −∇νðδχα1∇αhÞg;

mν
2 ¼ ðμ − 2Þf∇νðξαhβσ∇αhβσÞ þ 2hνβ∇β∇αδχ

α
1g: ð5:9Þ

The terms in Eq. (5.9) are organized so that kν2 ¼ 0, if
δχμ1 ¼ 0 or, if δχμ1 satisfies the Killing equation, and lν2 ¼ 0
if h ¼ 0 ¼ δμ. As pointed out in the first-order case, for
h ¼ 0, the relevant solutions for δχα1 are essentially those of
the background Killing vector; in that case, one may choose
δχμ1 ¼ 0, as one can absorb it into the background Killing
vector field.
Further understanding of the second-order perturbation

can be achieved by computing the second-order perturba-
tion of the Noether current assuming constant μ and a
vacuum background Rμν ¼ 0:

Jν2 ¼ 4δχα1δ1R
ν
α þ 2ξαðδ2Rν

α − 2hνβδ1Rα
βÞ

þ ðμ − 2Þ½∇αhστðξα∇νhστ þ hστ∇νξαÞ
þ ξαhστ∇ν∇αhστ þ 2hνβ∇βð∇ · δχ1Þ −∇νð∇ · δχ2Þ
− f∇νðδχα1∇αhÞ − hνβ∇βðξα∇αhÞg�; ð5:10Þ

where δ1Rαβ and δ2Rαβ are the respective first- and second-
order perturbations of the lowered index Ricci tensor. Note
that the quantity within the curly brackets vanishes when
h ¼ 0. We further see that when μ ¼ 2, most of the terms in
the Noether current, except for the first two terms,
identically vanish. Therefore, for μ ¼ 2, the Noether
current depends on the perturbations of the Ricci tensor
alone, as one might expect.
We then turn to the second-order perturbations of the

identity presented in Eq. (2.7). Assuming vacuum space-
time along with transverse-traceless gauge h ¼ 0, and
setting μ to be a constant, the perturbation of the Komar
identity takes the following form:

ðμ − 2ÞΨL ¼ ΨR; ð5:11Þ

where

ΨL ≡□½∇ · δχ2 þ δχα1∇αh − hστ∇αðξαhστÞ�
þ 2hστð∇ν∇σ∇τδχ

ν
1 þ Rαστβ∇βδχα1Þ

þ∇β½∇αðhβαξσ∇σhÞ� þ∇βh∇βðξα∇αhÞ; ð5:12Þ

ΨR ≡ ξαð∇αδ2R − 2hστ∇αδ1RστÞ − 4δ1Rασhβσ∇βξα

þ 2ðδχα1∇αδ1Rþ 2δ1Rαβ∇βδχα1Þ: ð5:13Þ

Note that the quantity ΨR is independent of the second-
order perturbation of the GKV δχμ2, and when μ ¼ 2, it
follows from Eq. (5.11) that ΨR ¼ 0. For vacuum space-
time, in the transverse-traceless gauge, at first order, one
may choose δχα1 to satisfy the background Killing equation,
and hence, the terms dependent on δχα1 disappear from ΨR,
so that ΨR depends only on the background quantities and
the perturbation hμν. It follows that to second order, ΨR

must be zero for vacuum perturbations (in which R̄μν ¼ 0)
or any metric perturbation hμν which satisfies h ¼ δ1R ¼ 0

and permits a solution to the μ ¼ 2 AKE.
If ΨR ¼ 0, the second-order perturbations should satisfy

the following:

□Φ2 ¼ 0; ð5:14Þ

where
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Φ2 ≔ ðμ − 2Þf∇ · δχ2 − hστ∇αðξαhστÞg: ð5:15Þ

It follows that when ΨR ¼ 0, the field equations propa-
gate the constraint Φ2 ¼ 0 for the second-order perturba-
tions (assuming initial data satisfying ∂tΦ2 ¼ 0). On a
vacuum background, one may (assuming μ ≠ 2) use the
constraint Φ2 ¼ 0 to rewrite Eq. (5.8)

□δχν2 −∇νð∇ · δχ2Þ
¼ −jν2 −mν

2 − ð2 − μÞ∇νfhστ∇αðξαhστÞg; ð5:16Þ

so that the equation for δχν2 resembles the μ ¼ 2 equation
with a source. For second-order perturbations, the question
of whether the perturbations suffer from dynamical insta-
bilities due to the unboundedness of the Hamiltonian
depends on the behavior of the rhs of Eq. (5.16).
The claim that ΨR ¼ 0 for transverse-traceless metric

perturbations of vacuum spacetimes that admit Killing
vectors suggests an identity for such perturbations.
However, the arguments we have presented so far do not
yet constitute a proof of such an identity, as they depend on
the existence of solutions for the exact μ ¼ 2AKE. Though
the AKE fails to admit a well-posed initial value problem
for the μ ¼ 2 parameter choice, there is some reason to
expect that the failure is primarily due to nonuniqueness,
rather than existence. For instance, it is straightforward to
show that on vacuum spacetimes, the exact AKE becomes
an identity for the gradient of an arbitrary function.
Furthermore, one can show that in locally flat coordinates,
the time derivatives for the time component of χμ disappear,
so that the AKE is an underdetermined dynamical system.
One might therefore expect the existence of solutions to the
exact μ ¼ 2 AKE (and consequently, Φ2 ¼ 0) to hold for a

large class of transverse-traceless metric perturbations of
vacuum spacetimes which admit Killing vectors.

VI. PERTURBATIONS OF THE NOETHER
CHARGE AND ITS THERMODYNAMICAL

INTERPRETATION

In this section, we will discuss how the Noether charge
associated with the GKV χα associated with the AKE is
affected by the perturbation of the metric. As we will
demonstrate, the perturbed Noether charge will have an
interesting thermodynamical interpretation. Applying
Eq. (2.4) to the solutions of the AKE, which correspond
to the GKV field χμ, the Noether current for the GKVs in
the perturbed spacetime takes the following form:

J̄μ ¼ 2R̄μ
νχ

ν þ ð2 − μ̄Þ∇̄μ½∇̄σχ
σ� þ ð∇̄σχ

σÞḡμα∇αð2 − μ̄Þ;
ð6:1Þ

where the AKE presented in Eq. (2.2) has been used. Let us
now use the fact, following Eq. (3.1), that the spacetime
metric can be expressed as ḡμν ¼ gμν þ hμν, where hμν is
the perturbation, possibly due to some matter field entering
the background spacetime geometry. As a consequence, we
also have ξσ → ξσ þ δξσ ¼ χσ , where χσ is the GKV, with
the associated Noether current being given by Eq. (6.1).
Thus, the Noether current associated with the GKV

field can be decomposed into the Komar current for the
background Killing vector field ξα and a part containing
additional corrections arising out of the gravitational
perturbation hμν and the perturbation of the Killing vector
field δξα. We then obtain the following expression for the
Noether current associated with the GKV field χα:

J̄ν ¼ 2Rν
σχ

σ þ ð−□hνσ þ Rνμhμσ − Rσμhμν − 2Rν
μσρhμρÞχσ þ ð2 − μ̄Þðgνα − hναÞ∇α

�
∇σχ

σ þ 1

2
χσ∇σh

�

þ ðgνα − hναÞ
�
∇σχ

σ þ 1

2
χσ∇σh

�
∇αð2 − μ̄Þ; ð6:2Þ

where we have used the Lorenz gauge condition to simplify the expression further. The above provides the expansion of the
Noether current in terms of the gravitational perturbation; further expressing χσ ¼ ξσ þ δξσ , we obtain the following
expression for the change in the Noether current:

δJν ¼ 2Rν
σδξ

σ þ ð−□hνσ þ Rνμhμσ − Rσμhμν − 2Rν
μσρhμρÞðξσ þ δξσÞ þ ð2 − μ̄Þðgνα − hναÞ∇αð∇σδξ

σÞ

þ 1

2
ð2 − μ̄Þgνα∇α½ðξσ þ δξσÞ∇σh� −

�
gνα

�
∇σδξ

σ þ 1

2
ðξσ þ δξσÞ∇σh

�
− hναð∇σδξ

σÞ
�
ð∇αδμÞ: ð6:3Þ

Here we have assumed that the background spacetime inherits Killing symmetry, and hence, ξσ is a Killing vector field, such
that ∇σξ

σ ¼ 0, which we have used in deriving the above expression. Using the expressions for the perturbations of the
Ricci tensor and the Einstein tensor in the Lorenz gauge, the above change in the Noether current may be expressed in
several ways, among which we quote the expression involving the Einstein tensor below
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δJν ¼ 2Rν
σδξ

σ þ 2δGν
σðξσ þ δξσÞ −

�
1

2
□hþ Rμρhμρ

�
ðξν þ δξνÞ þ ð2 − μ̄Þðgνα − hναÞ∇αð∇σδξ

σÞ

þ 1

2
ð2 − μ̄Þgνα∇α½ðξσ þ δξσÞ∇σh� −

�
gνα

�
∇σδξ

σ þ 1

2
ðξσ þ δξσÞ∇σh

�
− hναð∇σδξ

σÞ
�
ð∇αδμÞ: ð6:4Þ

Observe that, using the perturbed Einstein equations, one
can replace the perturbation of the Einstein tensor appear-
ing in the above expression with the perturbation of the
matter energy-momentum tensor. In that case, the object
ðδGν

σξ
σÞ will correspond to the flux of the matter energy-

momentum tensor through the Killing horizon, to which the
Killing vector field is orthogonal. Wewill come back to this
point later in this section, but we first discuss a couple of
interesting limits:

(i) Even though we have treated the gravitational
perturbation and the perturbation of the Killing
vector field separately, the perturbation δξα we are
interested in is induced by the perturbation of the
background spacetime. Thus, it is natural to decom-
pose the perturbed Killing vector field as δξμ ¼
δχμ1 þ δχμ2 [cf. Eq. (5.1)], where δχμ1 is linear in the
gravitational perturbation and δχμ2 is quadratic in the
gravitational perturbation. Then to the linear order in
the gravitational perturbation, the perturbed Noether
current from Eq. (6.4) takes the following form5:

δJν ¼ 2Rν
σδχ

σ
1 þ 2δ1Rν

σξ
σ þ ð2 − μÞ∇νð∇ · δχ1Þ

þ 1

2
ð2 − μÞ∇νðξσ∇σhÞ ð6:5Þ

¼ 2Rν
σδχ

σ
1 þ 2δ1Gν

σξ
σ −

�
1

2
□hþ Rμρhμρ

�
ξν

þ 1

2
∇νðξσ∇σhÞ; ð6:6Þ

where the Lorenz gauge condition has been used. In
the first line of the above expression, we have
expressed the change in the Noether current in terms
of the change in the Ricci tensor. In the second line,
we express the change in Noether current in terms
of the change in the Einstein tensor, and apply the
constraint Φ1 ¼ 0 [with Φ1 given in Eq. (5.5)],
which follows from the fact that δχμ1 satisfies
Eq. (5.2), which as we showed earlier propagates
the constraint Φ1 ¼ 0 for an appropriate choice of
initial data.

(ii) For spacetimes which may contain a dilute amount
of nongravitational radiation on vacuum back-
grounds, i.e., with Rμν ¼ 0, one can use the

transverse-traceless gauge (effectively setting h¼0),
and hence, the above expression for the change in the
Noether current simplifies considerably:

δJν ¼ 2δ1Gν
σξ

σ: ð6:7Þ

Thus, using the perturbed Einstein equations, we find
that given the constraint Φ1 ¼ 0, the change in the
Noether current to first order is simply equal to
16πðδTν

σξ
σÞ, which corresponds to the matter field

flowing into the Killing horizon. This will have
thermodynamical interpretation, as we compute the
associated change in the Noether charge.

(iii) For spacetimes which contain a dilute amount of
matter on vacuum backgrounds, one can instead
employ the μ ¼ 2 parameter choice, in which case,
the Noether current also simplifies to

δJν ¼ 2δ1Rν
σξ

σ ¼ ð2δ1Gν
σ þ δνσδ1RÞξσ: ð6:8Þ

We see that for matter fields, the Noether current
does not measure energy and momentum in the
sense of the energy-momentum tensor, due to the
term containing δ1R. However, one may nonetheless
still regard the Noether current and its associated
charge as a measure of the matter content, and an
analysis [27] comparing Komar integrals for radia-
tion with that of matter in cylindrical symmetry
suggests that charges constructed from Noether
currents measure the effective gravitating mass.

Thus, we have discussed situations of physical interest and
how the change in the Noether current can be simplified
and interpreted in these scenarios. We will now proceed to
compute the change in the Noether charge due to the
gravitational perturbation and the perturbation of the
Killing vector field.
In order to determine the Noether charge, we have to

integrate the Noether current over a three-surface. One may
define such a hypersurface as a level surface of some scalar
function Φ ¼ ΦðxÞ; defined in this way, the surface is held
fixed in the manifold and does not change under metric
perturbations. However, the measure on the surface will
change. In particular, for a Φ ¼ constant surface, the
integration measure is dΣα ¼ d3x

ffiffiffi
h

p
nα, where nα is the

normalized normal on this surface, and h is the determinant
of the induced metric on the Φ ¼ constant surface. It is
also possible to express the integration measure on a
Φ¼ constant surface as dΣα ¼ d3x

ffiffiffiffiffiffi−gp ∇αΦ, where ∇αΦ

5One should be careful not to confuse this expression with
Eq. (5.3), which satisfies the identity∇ · J1 ¼ 0. δJα, on the other
hand, satisfies ∇̄ · ðJ þ δJÞ ¼ 0.
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is the unnormalized normal to the Φ ¼ constant surface.
Under metric perturbations, the measure changes asffiffiffiffiffiffi−gp

→
ffiffiffiffiffiffi
−ḡ

p ¼ ffiffiffiffiffiffi−gp f1þ ð1=2Þhg. Thus, the Noether
charge associated with the GKV field χα ¼ ξα þ δξα

becomes

Q̄½ξ· þ δξ·� ¼
Z

dΣ̄αJ̄α ¼
Z

dΣα

�
1þ 1

2
h

�
ðJα þ δJαÞ

¼ Q½ξ·� þ
Z

dΣα

�
1

2
h

�
Jα þ

Z
dΣαδJα

þ
Z

dΣα

�
1

2
h

�
δJα; ð6:9Þ

where Q½ξ·� denotes the Komar charge of the background
Killing vector field. It is straightforward to read off the
change in the Noether charge, which takes the following
form:

δQ≡ Q̄½ξ· þ δξ·� −Q½ξ·�

¼
Z

dΣα

�
1

2
h

�
Jα þ

Z
dΣαδJα þ

Z
dΣα

�
1

2
h

�
δJα:

ð6:10Þ

Note that the first term is due to the perturbation of the
integration measure, while the second and third terms result
from a change in the Noether current. As in the case of the
Noether current, this expression can be simplified further
if we assume that the perturbations correspond to dilute
radiation in vacuum background spacetime. The transverse-
traceless gauge condition can then be imposed, and thus,
the trace of the perturbation h can be set to zero. Therefore,
the above expression for the change in the Noether charge
becomes

δQ ¼ 2

Z
dΣαδGα

βξ
β: ð6:11Þ

As we will discuss below, this expression can be under-
stood from a physical as well as thermodynamical
perspective.
We consider the case where the metric gμν is a vacuum

black hole spacetime, with a Killing vector field ξα defining
the Killing horizon, to which the Killing vector is orthogo-
nal. Since the Killing horizon is a null surface, it follows
that we can consider the surface on which the Noether
charge is computed to be the Killing horizon, which is
bound to have a thermodynamic interpretation. In particu-
lar, for a generic null surface, the Noether charge associated
with a Killing-like vector corresponds to Q ¼ 16π T S,
where T is the temperature associated with the null surface,
and S is the associated entropy, which for general relativity
is simply (area=4) [21,28]. As evident from the Vaidya
solution considered in Sec. II and it follows that to first

order, under the assumptions considered here, the temper-
ature does not change, and hence, the above change in the
Noether charge may be interpreted as

T δS ¼
Z

dΣαδTα
βξ

β; ð6:12Þ

which is the Clausius relation. In brief, this suggests that
due to radiation falling into the Killing horizon, the
spacetime is perturbed, and the Killing vector also ceases
to be Killing, rather it becomes a GKV. This perturbation
under the appropriate limit yields the Clausius relation.
Thus, the formalism developed here for the case of
radiation provides a close correspondence with the thermo-
dynamic nature of gravity. One may make a similar
argument for the case of nonradiative matter with the
μ ¼ 2 parameter choice for null surfaces, provided that
dΣαξ

α ¼ 0, or by interpreting the Noether charge in terms
of gravitating mass, as suggested in [27].

VII. FINAL REMARKS

Killing vectors play a central role in characterizing
spacetime symmetries, which are crucial in determining
the conserved quantities that can be constructed in a given
spacetime geometry. Systems of astrophysical interest are
often symmetric only in a first approximation, and the
spacetime geometries for such systems are often more
accurately described in terms of a symmetric spacetime
background with perturbations (the latter due to gravita-
tional radiation or inhomogeneities and highly dynamical
behavior in matter fields) which explicitly break the
symmetry of the background. This motivates the perturba-
tive study of the AKE, the solutions of which provide the
generalizations of Killing vectors (which we refer to as
GKVs) appropriate for the perturbed spacetime.
In this article, we have examined in detail the con-

struction and behavior of these GKVs as perturbative
solutions to the AKE associated with the metric perturba-
tions of vacuum and nonvacuum spacetimes, which admit a
Killing vector field. This has been achieved in two steps:
(a) by considering the perturbation of the action yielding
the AKE and then varying the same with respect to the
perturbed GKV and (b) by perturbing the AKE and hence
determining the evolution equation of the perturbed GKV.
The matching of both of these equations explicitly dem-
onstrates the internal consistency of these results.
Additionally, it turns out that the hyperbolicity and

Hamiltonian stability of the perturbed GKV remains
unchanged compared to its unperturbed counterpart if
the GKVand the metric perturbations are kept independent.
However, we have found that in the case where the
perturbations of the GKV are sourced by the metric
perturbation, the problem of an unbounded Hamiltonian
can be avoided at first order, and at second order, the
problem may also be avoided if the metric perturbations are
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transverse and traceless (assuming the perturbations remain
well behaved), and perturbative solutions to the μ ¼ 2AKE
exist to second order. We have found that the first-order
equations trivialize (they reduce to the background AKE)
for traceless metric perturbations; for dilute radiation, the
second-order case is necessary. We have also examined
the first-order behavior of the Noether current constructed
from a GKVand its associated charge. Intriguingly, it turns
out that the conservation of the Noether current introduces
additional constraints in the theory, which helps signifi-
cantly to simplify the evolution equation for the perturbed
GKV. In particular, if the perturbed matter energy-
momentum tensor is traceless, i.e., the perturbation is
due to null matter field, it follows that the first-order
perturbation of the GKV can be absorbed within the
background Killing vector field. To second order, we find
that the second-order perturbation always yields nontrivial
modifications to the background Killing vector field.
Finally, the perturbation of a background spacetime

respecting Killing symmetry also has interesting thermo-
dynamic implications. In particular, as we have demon-
strated, the perturbation of the Noether charge to first order
can be expressed as T δS. This is because to first order in
the perturbation, under these assumptions, the surface
gravity does not change. This is also apparent from the
example of Vaidya spacetime considered in this work,
which further corroborates our claims regarding the
thermodynamic interpretation for the perturbed Noether
charge and currents associated with the generalized Killing
vector fields.
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APPENDIX: VARIATIONAL PRINCIPLE
FOR AKE

Here, we review the derivation of the AKE from a
variational principle, following the notation and conven-
tions of Sec. III A. We rewrite here the action given in
Eq. (2.3) in expanded form:

A½χ ·� ¼
Z
V
d4x

ffiffiffiffiffiffi
−ḡ

p �
−
1

4
ð∇̄μχν þ ∇̄νχμÞð∇̄μχν þ ∇̄νχμÞ

þ μ̄

2
ð∇̄μχ

μÞ2
�
; ðA1Þ

where ḡαβ is the metric of the perturbed spacetime, and
μ̄≡ μ̄ðxÞ is an arbitrary function of the spacetime coor-
dinates. Varying the above action with respect to arbitrary
variations of χμ, including endpoint contributions, we
obtain

ΔA ¼
Z
V
d4x

ffiffiffiffiffiffi
−ḡ

p ½−ḡμαḡνβð∇̄μχν þ ∇̄νχμÞð∇̄αΔχβÞ þ μ̄ð∇̄μχ
μÞð∇̄αΔχαÞ�

þ
Z
∂V

d3x
ffiffiffiffiffiffi
−ḡ

p �
−
1

4
ð∇̄μχν þ ∇̄νχμÞð∇̄μχν þ ∇̄νχμÞ þ μ̄

2
ð∇̄μχ

μÞ2
�
Δxα∇̄αϕ; ðA2Þ

where ∂V is the boundary surface of the full spacetime volume V described by some arbitrary scalar function,
ϕðxÞ ¼ constant. By performing integration by parts, the above expression for the variation of the action can be further
simplified and it will yield several boundary terms. Since these boundary terms will not play any significant role
immediately, we will neglect all the boundary contributions, and hence, the above variation of the action functional can be
expressed in the following manner:

ΔA ¼
Z
V
d4x

ffiffiffiffiffiffi
−ḡ

p ½Δχβḡνβð□̄χν þ ½∇̄μ; ∇̄ν�χμ þ ∇̄ν∇̄μχ
μÞ − Δχβ∇̄βðμ̄∇̄σχ

σÞ�

¼
Z
V
d4x

ffiffiffiffiffiffi
−ḡ

p
ḡνβΔχβ½□̄χν þ R̄ν

μχ
μ þ ∇̄νfð1 − μ̄Þ∇̄σχ

σg�: ðA3Þ

Here we have used the fact that the commutator of covariant derivatives acting on a vector is given by the Riemann
tensor. Thus, setting the variation of the action functional ΔA to be zero, for arbitrary variations of the GKV field χβ,
we obtain

ffiffiffiffiffiffi
−ḡ

p
ḡνβ½□̄χν þ R̄ν

μχ
μ þ ∇̄νfð1 − μ̄Þ∇̄σχ

σg� ¼ 0: ðA4Þ
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Since we are interested in nondegenerate spacetime, i.e., spacetimes with a metric ḡαβ with nonzero determinant and
nontrivial inverse, the above equation can be casted in the following form:

□̄χν þ R̄ν
μχ

μ þ ∇̄νfð1 − μ̄Þ∇̄σχ
σg ¼ 0: ðA5Þ

The above equation corresponds to the AKE satisfied by the GKV χμ in the exact spacetime, with metric ḡμν. Note that, in
the above expression we have kept μ̄ inside the derivative terms since it is a function of the spacetime coordinates.
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