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Killing vectors play a crucial role in characterizing the symmetries of a given spacetime. However,
realistic astrophysical systems are in most cases only approximately symmetric. Even in the case of an
astrophysical black hole, one might expect Killing symmetries to exist only in an approximate sense due to
perturbations from external matter fields. In this work, we consider the generalized notion of Killing
vectors provided by the almost Killing equation, and study the perturbations induced by a perturbation
of a background spacetime satisfying exact Killing symmetry. To first order, we demonstrate that for
nonradiative metric perturbations (that is, metric perturbations with nonvanishing trace) of symmetric
vacuum spacetimes, the perturbed almost Killing equation avoids the problem of an unbounded
Hamiltonian for hyperbolic parameter choices. For traceless metric perturbations, we obtain similar
results for the second-order perturbation of the almost Killing equation, with some additional caveats.

Thermodynamical implications are also explored.
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I. INTRODUCTION

Symmetries are central to our understanding of the
physical world and play a key role in describing a wide
range of physical systems, from the determination of the
Lagrangian for a mechanical system to the lattice structure
of crystalline substances. This extends to general relativity
and relativistic theories of gravity: Symmetries and the
Killing vectors that formalize them are useful for character-
izing the properties of spacetime and matter. For example,
the existence of a timelike Killing vector field ensures that
the spacetime is time-translation invariant, leading to
conserved definitions for energy for test particles and
matter. Similarly, the existence of a closed spacelike
Killing vector field ensures rotational invariance of the
spacetime geometry, leading to a conserved definition for
angular momentum. Moreover, many astrophysical sys-
tems are approximately described by spacetime geometries
admitting such Killing vectors. However, the exact nature
of these symmetries is lost in realistic systems due to
dynamical behavior of and irregularities in the matter
configurations. This scenario can arise in various contexts;
e.g., when one drops a cup of coffee into a black hole
(considering the gravitational backreaction), the resulting
perturbed spacetime no longer inherits the exact Killing
symmetry. Fortunately, one may still construct certain
generalizations of Killing vector fields in such circum-
stances, which are useful for understanding generalizations
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of conserved quantities (such as energy and momentum) for
gravitating systems that lack exact symmetries.

The literature contains several approaches for defining
generalized Killing vectors and symmetries. Specific exam-
ples include Matzner’s eigenvector approach [1], which has
recently been of interest for studying quantum geometries
in causal dynamical triangulations [2], symmetry-seeking
coordinates [3], affine collineations [4], and the almost
Killing equation (henceforth, AKE) [5,6]. The Ilatter
approach, the generalized Killing vectors defined by the
AKE, forms the subject of this paper.

The generalized Killing vector fields (henceforth,
GKVs) associated with the AKE may be used to define
conserved charges in spacetimes with no exact Killing
symmetries. Given some notion of the GKYV, the general-
ized Komar current, as defined in [7,8], may be used to
construct generalizations of the usual Komar charges—
explicit examples have been constructed and studied in
[9,10] (see also [11] for further generalizations of the
Komar current). For example, in [12], it was shown that the
generalized Komar current for solutions of the AKE, which
are the GKVs, can provide a measure of the matter content
of the physical system under consideration. It was also
demonstrated in [12] that GKVs may be used with the
generalized Komar current to obtain a Gauss law for
systems of black holes in vacuum and matter distributions
with compact support if the GKV is divergenceless or for a
certain choice of parameters associated with the AKE.
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Though one might hope that, for sufficiently small
perturbations of symmetric spacetimes, the solutions of
the AKE are close to that of an exact Killing vector field,
GKVs do not necessarily approximate Killing vectors in the
sense that the components of V) can be large compared
to that of y* (where y* is a GKV), even in Minkowski
spacetime. One might postulate that an appropriate choice
for initial data for the AKE will ensure that VWM is small
in the sense that the components of V., are much smaller
than that of y* for some normalization. This matter was
studied to some degree in [12], which examines the
hyperbolicity and Hamiltonian stability of the system
described by the AKE. There, parameter choices were
identified in which the AKE is strongly and weakly
hyperbolic, and also in which the system admits ghost
modes and unbounded Hamiltonians. Ghosts and
unbounded Hamiltonians are potentially dangerous, as they
may correspond to runaway behavior which can potentially
drive the solution far from the Killing condition
Vv =0, even if the initial data approximately satisfy
this condition (and its time derivative). Though there is no
parameter choice for which the generic AKE system is both
hyperbolic and has a bounded Hamiltonian, it was shown in
[12] that in vacuum (R,,, = 0) spacetime and for initial data
satisfying V - y = 0 and its derivative, the system yields a
constraint which renders it dynamically equivalent to a
system with a bounded Hamiltonian and simultaneously
equivalent to a strongly hyperbolic system. Moreover, it
was argued that for appropriate initial data and falloff
conditions, the AKE can provide a notion of an approxi-
mate Killing vector in a neighborhood of spatial infinity of
asymptotically flat spacetimes.

Despite the promising results presented in [12] for the
vacuum case, these do not in general extend to the non-
vacuum (R, # 0) case. Therefore, it is not immediately
apparent that the AKE can be simultaneously well posed
and equivalent to a system with a bounded Hamiltonian
for spacetimes containing matter. On the other hand, for
perturbations of spacetimes that admit an exact Killing
vector, one might expect the AKE for the perturbed
spacetime to admit solutions that approximate Killing
vectors. Thus, one of the primary aims of this article is
to construct perturbative solutions to the AKE for pertur-
bations of spacetimes which admit Killing vectors and to
study their properties and the interpretation of the resulting
generalized Komar currents and charges. Additionally, we
would like to explore the connection of the perturbed
Komar current and charges with the thermodynamic
behavior of black hole spacetimes, e.g., the first law. As
we will show, there is a close correspondence between the
AKE and black hole thermodynamics.

The paper is organized as follows: In Sec. II we will
review the AKE and shall present a physically interesting
scenario, namely, that of the Vaidya spacetime, where some

of the key aspects of the AKE will be demonstrated.
Subsequently, the evolution of the GKVs in the perturbed
spacetime will be presented in Sec. III from both the action
formalism and also from the perturbation of the AKE itself.
The stability of the perturbed AKE, as well as its hyper-
bolicity, will be studied in Sec. IV, before discussing the
nature of the solution of the AKE for both first- and second-
order perturbations in Sec. V. Finally, the thermodynamic
interpretation of the AKE will be depicted in Sec. VI,
before presenting the concluding remarks in Sec. VIL

Notations and conventions: Throughout this paper, we
will use the mostly positive signature convention, such that
the Minkowski metric in the Cartesian coordinates has
the following form: #,, = diag(—1,1,1,1). The four-
dimensional spacetime indices will be denoted by the
greek letters u, v, a,.... We will work in units such that
the fundamental constants have the values G = ¢ =% = 1.
Throughout the article, indices on quantities which
appear in arguments will be denoted with superscript
and subscript dots; for instance, the arguments in A[y’]
and O(h.. represent the quantities y* and /.

II. THE ALMOST KILLING EQUATION:
A BRIEF REVIEW

In this section, we will briefly review the almost Killing
equation, where the motivation for its construction and its
various properties will be discussed in detail. In addition,
we will also present the Vaidya geometry as an example of
arriving at a solution of the almost Killing equation.

A. Motivation, construction, and properties

A Killing vector field & is defined as one which satisfies
the Killing equation £:g,, = 2V,&,) = 0. The divergence
of the Killing equation takes the form

0er + R“ﬁéﬂ =0. (2.1)
As evident, Eq. (2.1) takes the form of a wave equation;
on geometries that do not admit Killing vectors, one can
nonetheless construct generalizations of the Killing equa-
tion by solving Eq. (2.1) for an appropriate set of initial
data. The AKE is a generalization of Eq. (2.1), and is given
by the following formula:

O + R%” + V(1 =)V 4] =0,  (2.2)
where p is a scalar, which in previous literature is assumed
to be a constant; for generality, we do not assume this to be
the case here. The solution of Eq. (2.2), i.e., y“, is the GKV.
It is straightforward to verify that Killing vectors satisfy the
AKE; it is in this sense that solutions of the AKE may be
regarded as generalizations of Killing vectors. As discussed
in [12], GKVs are not necessarily approximate Killing
vectors in the following sense. The vector y* satisfies the
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AKE if the tensor Q,, = V,y,) is transverse and trace-free;
however, the components of transverse and trace-free
tensors need not be small.'

It is instructive to derive any evolution equation from an
action principle, and the AKE is no different. The AKE
presented in Eq. (2.2) may be derived from the following
action (see the Appendix for a derivation of the AKE from
this action functional):

1
Aly] = /M d“x\/—g<—V("xﬁ)V<axﬁ>+§M(V~x)2>-
(2.3)

Here, M denotes the spacetime volume of interest, and as
evident, it immediately follows that the action Aly]
vanishes if y* is a Killing vector field. It was shown in
[12] that the AKE is strongly hyperbolic when the
parameter u = 1; however, it fails to be hyperbolic when
u # 2, and is weakly hyperbolic for all other (constant)
values for p. It was also argued that in general, the AKE
may suffer from dynamical instabilities; a Hamiltonian
analysis reveals the presence of ghosts for y < 2, and
unbounded terms for > 1/3. There is no parameter choice
for y in which the AKE avoids these potential instabilities
and is also hyperbolic. However, for vacuum spacetimes, at
least one exception exists, which we will discuss shortly.
In any spacetime manifold, given some vector field V¢, it
follows from differential geometry that it is possible to
construct a conserved current and hence a conserved
charge. This conserved current takes the following form:
J* = Vy(Vavi — Vhye), (2.4)

For Killing vector fields, the conserved current J* is known
as the Komar current, and the associated charges are known
as the Komar charges, and we have so far referred to these,
respectively, as the generalized Komar current and the
generalized Komar charges. However, if the vector field V*
is considered as a generator of the diffeomorphism, then J¢
is in fact the conserved current corresponding to the
invariance under said diffeomorphism.2 For this reason,
it is perhaps more appropriate to call this the Noether
current since it arises out of the diffeomorphism invariance
of the gravitational system [15-19]. For the remainder of
this article, we shall use this terminology and shall refer
to the conserved charges associated with J* as Noether
charges. As [20-22] demonstrate, Noether charges defined
in this manner have interesting thermodynamical

lAlternatively, one can show that even on a Minkowskian
background, the AKE admits wavelike solutions for which the
components Q,,, > 0, so that they cannot be considered as appro-
ximate Killing vectors by any means.

%For further discussion of this point, see [13,14].

interpretations when computed over certain spacelike
and null surfaces.

As emphasized before, the Noether current J* defined in
Eq. (2.4) is identically divergence-free, which when evalu-
ated for solutions of the AKE takes the following form:

J% =2R%y? + VO[(2 = u)V - y]. (2.5)
We note that when p = 2, the Noether current may be
interpreted as a measure of the energy and momentum

through the use of the trace-reversed FEinstein field
equations:

1
Raﬁ = 87T<Taﬁ — Eg“ﬂT> . (26)

Moreover, the divergence-free property of the Noether
current yields the following expression:

Ol(u —2)V - x] = #’VsR + 2RV ). (2.7)
where the contracted Bianchi identity V,R*; = (1/2)V4R
has been used. The above evolution equation for (V- y)
was used in [12] to show that in a vacuum spacetime, the
constraint V - y = 0 is propagated by the AKE; if the initial
data satisfy the constraint V - y = 0 and its time derivative,
then the time development of the solution satisfies the
constraint. Under this constraint, the AKE becomes
strongly hyperbolic and is independent of y, so that it is
no longer subject to the instabilities associated with ghosts
or unbounded terms in the Hamiltonian.

B. Example: The Vaidya geometry

Here, we review and generalize the solution for the AKE
in the Vaidya spacetime, as presented in [10], to gain some
insight into the relationship between GKVs, the Smarr
relation, and the laws of thermodynamics. The line element
associated with Vaidya spacetime takes the following form
(dQ? being the round metric on the 2-sphere):

2M
ds? — — [1 - ﬂ] dv? +2dvdr + r?dQ?,  (2.8)
r

where M(v) is an arbitrary positive function of the
advanced null coordinate ». Following [10], here also
we construct a solution to the AKE in the Vaidya spacetime
presented in Eq. (2.8) for the y = 2 case, which has the
following form:

e (M) OEI0)  )

(2.9)

where f(v) is an arbitrary function of the advanced null
coordinate v, and 1/M, is a constant factor; a natural
choice for this factor is to set it equal to the ADM mass of
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the spacetime. The fact that the GKV »* depends on an
arbitrary function f(v) is due to the fact that for 4 = 2, the
AKE fails to be hyperbolic. Fortunately, the resulting
Noether current and Noether charge are unaffected by
the arbitrary function f(v), so that one can regard it as a sort
of “gauge” potential. There is, however, a criterion that one
may use to fix this arbitrary function f(v), which will be
discussed later. The Noether current associated with the
GKYV y“ then takes the following form:

Js = <0,W5W”)7Af(”>,o,o>. (2.10)

ol
In the Vaidya spacetime, the surface characterized by

ry = 2M(v) (2.11)
is a special surface, since the expansion of the outgoing
null generators vanishes on this surface and is the
apparent horizon. Moreover, it is straightforward to dem-
onstrate that »* = (1,0,0,0) is null on the surface
r = ry. Thus, expressing the surface element as dS,; =
Eapun€yelydd dp, where e = 5, and e, = & are the basis
vector components on the apparent horizon, the mass
within the apparent horizon is given by

1
My =— ¢ VYP4S ;. 2.12
H 87:]{, X AOap ( )

The above integrand turns out to be independent of the
radius of the surface on which it is being evaluated, and
thus, one obtains the following expression for the mass
enclosed by the apparent horizon:

(2.13)

Intriguingly, the area of the apparent horizon is given by
Ay = 4zxrd; [with ry given by Eq. (2.11)], so that one may
rewrite the mass within the apparent horizon as presented in
Eq. (2.13) as

AH K()AH 1
My = = = 2.14
H 167[M0 4 ’ ko 4M0 ’ ( )

where k; is the surface gravity associated with the surface
r=2M, corresponding to the event horizon of the
final black hole spacetime. The fact that k; is a constant
here is contradictory to the explicit formula x> =
—3 (V) (V¥y¥) for the surface gravity, since it depends
on the gauge function f(v). One may choose the gauge
function, such that f(v) = —2M(v)M'(v), which corre-
sponds to the requirement that y is null on the apparent
horizon, in which case, one obtains

= —V1_16M/(U)2 (2.15)

N 4M,

Even though it appears that the surface gravity is indeed
dependent on the mass function, it is straightforward to
verify that if the » dependence is treated as a perturbation,
such that M (v) = M, + e5M(v), then the v-dependent part
of k is a second-order term in the perturbation

1 26M'(v)?

=My am,

€2+ 0(e). (2.16)

Therefore, it follows that to first order, the perturbation of
the surface gravity identically vanishes, and the first law
OM = k6A/8x holds identically. Even then, at first sight,
Eq. (2.15) appears to be puzzling, as it seems to conflict
with the expected behavior for the surface gravity, which
must satisfy the exact Smarr relation My = kAy/4%
(neglecting angular momentum). However, upon closer
inspection, one notes that since the AKE is linear in y,
the constant factor 1/M, is not specified by the AKE.
In an asymptotically flat spacetime, a natural choice for M|,
is the ADM mass M ,py, and hence, the mass enclosed
by the apparent horizon may then be written as My =
(M(v)/M apm)M(v). This suggests that My can be inter-
preted as a rescaling of M(v) by the ratio of M(v) to M zpy-

To better understand this scenario, we assume that
M'(v) has a compact support in v, such that at late time,
M(v) > My and f(v) = 0, yielding My — Mpy, in
which case one has y* = (1,0,0,0). At early times,
again assuming M’'(v) — 0 and f(v) — 0, one has y* =
(Meaty/ M apm» 0,0,0), where M., is the mass of the
spacetime before M’(v) becomes nonzero, and thus, y* will
differ from (9/0¢)*. Since the early-time geometry of the
Vaidya spacetime approximates that of a Schwarzschild
black hole, then it is appropriate to rescale y* by a factor
M Apm/ M eyy; in doing so, one obtains an early-time horizon
mass consistent with the early-time “Schwarzschild mass.”
This is an indication that the horizon mass constructed from
the Komar integral for solutions of the AKE is not identical
to the “local” (in ») mass of the black hole.

III. EVOLUTION OF THE PERTURBED GKYVs

In this section, we will consider the perturbation of a
background spacetime with Killing symmetry (e.g.,
Schwarzschild or Kerr), which may or may not be vacuum.
Since the perturbation need not respect the symmetry of the
background spacetime, the perturbed spacetime does not
admit an exact Killing vector field, but the perturbed
spacetime will admit GKVs, as long as solutions to
Eq. (2.2) exist in the perturbed spacetimes. The perturbed
AKE associated with the perturbation of the background
spacetime will be derived in two different ways: first from a
variational principle, where the perturbation of the action
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presented in Eq. (2.3) will be considered, and then from the
direct perturbation of the AKE itself. We will verify that the
results arising out of these two different approaches match.

A. Notations and conventions

Before proceeding further, it is perhaps appropriate to
settle the notations and the conventions that we will use for
this section and the remainder of this article. With the
exception of the GKVs, often denoted as y#, “barred”
symbols will be used to denote exact quantities; for instance
Gaps va, and Raﬁ, respectively, denote the exact metric,
connection, and Ricci tensor. Unbarred geometric quantities
will be used to denote background quantities. Metric
perturbations will be denoted /4, and are defined by

haﬁ = gaﬁ = Yap- (31)
Indices are raised and lowered according to the background
metric g,4. Killing vector fields for the background space-
time will be denoted &, and we define 6&* to be the
difference between the GKV and the exact Killing vector in
the following manner:

5E = 4 — £ (3.2)
In general, the prefix 6 will denote differences between the
exact and background quantities (which we will later assume
to be small compared to background values), and the prefix
A will denote first-order variations.

B. Perturbation of the action principle yielding
the almost Killing equation

As emphasized before, we assume that the background
metric g, admits a Killing vector field &. Since &, is a
perturbation over and above the background spacetime, it is
legitimate to assume that h,, < g,,, and for some nor-
malization of the background Killing vector field &,
we also assume o0& <« !;”.3 The action presented in
Eq. (2.3) may then be expanded in h,, 6&, and
op = ji — u, keeping terms up to quadratic order in each.
We treat the expansions in /4, and 6§ independently, so
that we keep terms of the form h._h. 65 6& . For simplicity,
we assume the quantity du to be independent of the
spacetime coordinates. It should be emphasized that
88, # Gu (¥ — &), since indices are raised and lowered
with the background metric. We begin by writing down the
Lagrangian from the action functional presented in

Technically speaking, this is achieved by introducing two
parameters, ¢; and €, with €;, < 1 and then expanding the
metric as g,, = g, + €1h,, and the GKV as y% = &% + €,6£.
Then, keeping terms linear in €; and e, will provide first-order
perturbation, while terms O(e? ,) yield the second-order pertur-
bations. '

Eq. (2.3), which has the following explicit form in the
spacetime with metric g,,:

L=——(3,aVut® + 3V @ Vr* + ¢’Vr*)

5 (V')

=1 B -

+ (3.3)
We wish to express the Lagrangian presented above solely
in terms of the background metric g,,, the perturbation
h,,, and the perturbation 65 along with éu. Since the
Lagrangian depicted in Eq. (3.3) consists of terms quadratic
in y* and its derivatives, it can be rewritten in the following
form:

L =x%" Lo+ 1"V Lys + V' VYL s, (3.4)

where the tensors Lg,g, L,p, and L, depend on the
background metric g,,, the perturbation 4,,, the derivatives
of h,,, and ji. Note that in writing Eq. (3.4), we make no
assumption about ,,; Eq. (3.4) should hold to all orders in
the metric perturbation /,,. Using the above decomposition
of the Lagrangian, the action can similarly be written down

in the following form:

A[5§} = [)d4xv _gbfa)(ﬁMaﬂ +)(#va)(ﬁM;wcﬁ

+ VNP M ap).

(3.5)
where we define

Mm(rz‘.. = g/gLnlrrz.“' (36)

One may at this point perform the variation of the action
with respect to 6&%, the perturbed GKV, without explicit
knowledge of the tensors M, ,, . Up to boundary terms,
the first-order variation of the action takes the following
form:

AA = / d*x\/=gASEE,, (3.7)
where

1 By ! ot\Jy 4
lEa = E ZV )( E (Lﬁbya + Lyaﬁl/)(h V ho.T - V h)

- (vyLﬂW” + vyLya/;’u) + La/;’y - Lu/}a:|

1
+ 2}( |:§Lyﬁa(hy Vﬂhyo. - Vﬂh) - VﬁLl,ﬂa

+ L(w + sz:| - zvyvﬁ){y(L/ﬁ/ya + Lya/ﬁ/)}' (38)
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Keeping in mind y* = &* + 6£%, the perturbed AKE may
then be written as

7 =
a/9

0. (3.9)

The factor of 1/ \/% is included because one typically
factors out the volume element from the functional deriva-
tive when deriving field equations [as was done when going
from Eq. (A4) to Eq. (AS5) in the Appendix]. Again, we
emphasize that the analysis presented here does not require
that h,, be small; the result in Eq. (3.9) holds to all orders
in h,. Thus, one may expand the tensors L, ,, in various
powers of the gravitational perturbation in the following
manner:

Loy =LYy + Ly + L%+ O(hY),
leﬂ = Lga/} + Lllmﬁ + L;Zm/)’ + 0(h3)7

Lllbaﬁ = Lgvaﬁ + L;lwaﬁ + L;Qwaﬁ + 0(h3) (310)

It turns out that to zeroth order, one has Lgﬂ =0, Lgaﬂ =0,

while

1 _
Lyvap =5 P Jap9y = Jou9pu = Jou9p)- (3:11)

To first order in h,,, the tensors LL,, L! - and L! . can

pvo ap’ “uap’ uvap
be expressed as linear functions of the gravitational

perturbation £, as

Ll

aﬁzo’

1,
Lyap = 5 {A9apV i = 2V uhap},

1
L}waﬁ = 5 {haygﬁv - g(mh/iy}- (312)

Finally, we present the second-order terms in the perturba-
tion h,, as

1
L2, = L (9= 20,7y}

1 17 oT
lemﬁ = E {Zhuﬂvyh[)’ﬂ - Mga/)’h vuho—r}’

1
L;%ua/)’ - E{haﬂh/ﬂ/ - gﬂuha h,m}- (313)

In what follows, we consider in detail the expansion of
the Lagrangian to first order in the metric perturbation 4,,,
and as we shall demonstrate, the resulting perturbed
AKE is consistent with the expansion coefficients deter-
mined above.

C. Explicit perturbation of the action
to first order in the metric

The expression for the AKE given in Eq. (3.8) is rather
complicated and somewhat opaque; it is perhaps more
illustrative to show explicitly that the derivation of the
perturbed AKE to first order in the metric perturbations £,,,,
simplifying the expressions along the way. To obtain the
expansion of the Lagrangian to first order in £,,, one may
use Egs. (3.11) and (3.12) to obtain the following
Lagrangian:

L =19+ Ma)Vx®+ Gua + 1) Vor* + x°V,h,,]

(g7 = WOV gr" + (¢ = WP )N + 2V ]

(V") 4+ 2V h(V ")

B

X

| =

+ (3.14)

2

Having expressed the Lagrangian explicitly in terms of the
background metric g,, and the perturbation h,s3, we now
expand the GKV field in terms of the background Killing
field & and the perturbation 6&*. One can see that
Eq. (3.14) has the form of Eq. (3.4), and it is not difficult
to verify that the Lagrangians are equivalent for the
coefficients given in Egs. (3.10)-(3.12). Using the
Killing equation for &, ie., setting V,& +V, £, =0,
the Lagrangian presented in Eq. (3.14) can be further
simplified. In particular, it is worth emphasizing that the
on-shell value of the action for the background Killing
vector field identically vanishes, and thus, the Lagrangian
density given in Eq. (3.14) becomes

- 1
L=- 5 [.gvavpééa + huavyéa + huavuéga + g;mvyééa

+ V& + hy V68" + (8 + 68°)V by, |

X | VHSE — WPV & — WPV g5 4 % (& +6£°)V h

+§ [(V,86")? + (& + 6£)V h(V,0¢")] + O(h2).
(3.15)

Even though the above Lagrangian density looks suffi-
ciently complicated, we can reduce it to a very simple form
by dividing the above into three categories: (a) terms
quadratic in the derivatives of 6£%, (b) terms linear in the
derivatives of 6£%, and (c) terms independent of derivatives
of 6&”%. The terms quadratic in the derivative of 6&* yield

Quadratic terms = % [(u+ 5/4)(%(5; ~(Gap +hop) (g —h*)
= (8 +hi) (8= )| (V,, 667V ,687),
(3.16)

while the terms linear in the derivative of 6% become
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Linear terms =

=

1 1
[(éa + 5§a)vah(vﬂ5§ﬂ)] - E [guavﬂéfa + gﬁavué‘fa] X _hﬂﬁvﬁéﬂ/ + 5 (‘fﬁ + agﬁ)vah”y
S VOE Y, BV E 4 (84 58T ) (317

Finally, as indicated in the expression for L, in Eq. (3.12) the terms involving no derivatives of 6% is O(h?), and hence,
will not contribute in our subsequent discussion regarding the determination of the action functional of the perturbed AKE.
Thus, we have computed the Lagrangian of the GKV field involving linear order terms in the perturbation 4, and up to
quadratic order terms in the perturbed GKV 6&*. However, computation of the action functional requires multiplication of
the above Lagrangian by a factor of \/—g, where g is the determinant of the perturbed metric g,5. Therefore, the complete
action for the perturbed Killing vector field 6&# takes the following form:

1 1
Aise1 = [ dte=a] [ oty = g = 1) + b - g - )
1 1 1
+5 <1 +3 h) OOy + 3 (Guph™ = hopt” + 82l = We3f) | (V,867,58)
(51064 85099, - (V08 g P9 + (3,069,

- guavyéga(éﬁ + aén)vvh’w] } (318)

Having derived the action to linear order in the gravitational perturbation /,,,, we can determine an arbitrary variation of the
action for variation of the perturbed Killing vector field 6&, which when set to zero should yield the corresponding
perturbed AKE. The final expression for the variation, ignoring any boundary contribution, takes the following form:

AA = / d*x\/=g5(5&%) <1 - ;h> (9ap + Pap) { [(1 = p)VA(V,68) + 06 + R 6]
v
— SuVPV ,,68° — WV, V888 + 2(VHsg) (vﬂhf - %vﬂhﬂy> —RP W0 5E°
+ (1_”%5’? VP& +88)V h) — WP (1 — p — 5ﬂ)vﬂ(vu5a)}, (3.19)

where we have neglected all the terms quadratic in the gravitational perturbation #,,,. Setting the variation AA to zero, for
arbitrary variation of the perturbation of the Killing vector field 6&#, we obtain the following dynamical equation for the
perturbed GKV field 6&+:

(1= pu)VP(V,68) + 06 + R 627 = JP, (3.20)

1
JP = suVPN 587 + 'V, V58 — 2(VIser) <vﬂh€ -3 vﬂh,w> + RP P 5E°

l—u—dp , y
- (LR WL+ 509+ (1 = = 809,(9,08) B21)
|
The above provides the dynamical equation for the per-  order in the metric perturbations. This will depict the

turbed Killing vector field §&* arising from the variation of ~ internal consistency of the results derived in this work.
the action. One can verify that this expression is equivalent

to that obtained from Eq. (3.8); we have done this using the D. Perturbation of the almost Killing equation
xAct package for Mathematica. In the subsequent discus- to first order in the metric
sion, we will discuss explicitly the derivation of this We have derived the evolution equation for the perturbed

equation from the perturbation of the AKE itself to first ~ GKYV field to first order in the metric perturbations, starting
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from the variation of the perturbed action for the GKYV field. As we will show in this section, the same equation can also be
derived from direct perturbation of the AKE itself. As before, we assume that the background metric g, admits a Killing
vector field & and also that /1, < g, and 6&" < & (see also footnote 2). Thus, we will expand the AKE given in Eq. (2.2)
in the perturbed spacetime with metric g,, to first order in 6&* and h,, each, again assuming that the expansions are
independent (so that we keep terms of the form £.6&). It is convenient to first present the expansion of the following
geometric quantities to linear order in the gravitational perturbation £,

OR,, =

== (=Ohyy =V, h + Y,V he + Y,V h% + Ry i) + Ry iy — 2R g, 1), (3.22)

aufv

N —

VoV = 8V, VgVt =V, (VsVP) + V(817 VP) + 615,V VP — 810 V VP =V, (VVP) + V, (T, V), (3.23)

EIVe = (¢ — h)V,V,VH + (-%whaﬂ n Vahﬁ> (VaVe + VPye) — v, vu (Vah"/) - %vrm)

1

+ 3 V2 (Ol + V, Vg = Py, + R b = RO

op {7/))7 (324)

where V* is an arbitrary vector field. In deriving the above identities, we have used various properties of the Riemann tensor,
e.g., Rypu = Ryup, among others. Applying all these identities to the AKE in the perturbed spacetime and imposing the
Lorenz gauge condition Vi = (1/2)V,h, we obtain

1 1
(gu/)’ - haﬁ)vavﬂ)(ﬂ + <_2v”h(m + Va%) (va)(/} + v/)){rx) + Rﬂﬁ)(/} + (1 - ﬁ)g/m va(v/}}(ﬂ) + Eva(){pvﬂh)
1
- Rl + (9,1 = )| (T + 3 7V, | =0, (3.29

which is valid up to linear order in the gravitational perturbation 4, .
At this point, we have not yet expanded in the GKV field y#; we do this now. We make use of the wave equation for the
background Killing vector field & given in Eq. (2.1) and other properties of Killing vectors to obtain

(gaﬁ _ h‘lﬁ)vavﬁ&f" =+ <—;V”h(w 4 vahz> (VasEr + VPSE) + R/‘ﬁéfﬁ + (1= ﬁ)@”"{va(vﬁfsfﬁ)
+ %va[(éﬂ + 5§ﬂ)vph]} — R 15 h®SE0 + {V (1 — ) } g {(vﬂagﬂ) + % (&V,h + 55/’Vph)] =0. (3.26)

This is our result for the perturbed AKE. The above equation has been derived under very general conditions, without any
assumptions about the nature of the perturbation. Thus, it is possible to express the above equation in several different ways,
under different assumptions, which we will list below. First, we rewrite the above evolution equation for the perturbed GKV
field 6&* in the following form:

D6g + R, 66" + ¢ Vol (1 = 1) (V867)} = J¥, (3.27)
J = W0 I8 4 R0 + 6695 {(1 = = 30) (V,06)}] + ¢ V.6V ,067) =2 (Vah% - %V"hap> vies)

3 (1= k= )PV [(& -+ 62)T ] =3 0,1 = = ) [(& + 59 ] (3.28)

Upon comparison, we find that this evolution equation for the perturbed GKV 6&* is identical to what we had derived from
the action, i.e., to Eq. (3.20), except for the terms involving derivatives of u and du, respectively. This is because, while
deriving Eq. (3.20), we have assumed for convenience that x and ou are constants, while that is not the case for the
derivation presented above. If we assume that u for the background spacetime is constant, and du to be a scalar function,
then the dynamics of the perturbed GKV is determined by
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(g7 = hP) NV Vol + R, p087] = j*.

1 1
= =1 == 00) (= WOVT,067) + LV, + 0T, | =2Vt = 3V, ) VO

(V00 Tl9,58) 4 36 + ) V0] = (Vs

As mentioned before, it will be useful if we write down
simplified versions of Eq. (3.29) for various scenarios of
physical interest. These can range from the use of the
transverse-traceless gauge to setting ou = constant. We
discuss below each of these limits explicitly.

(i) If we choose 6u = constant, then the last term in
the expression for j# in Eq. (3.29) identically
vanishes. In this context, the dynamical equation
for the perturbed GKV becomes identical to that
derived from the perturbation of the action, i.e.,
to Eq. (3.20).

(ii) If we assume that the background spacetime is
vacuum, and the perturbation involves no incoming
matter fields, then the use of the transverse-traceless
gauge [equivalently setting 7~ =0 in Eq. (3.29)]
yields

(ga[)’ - haﬁ) {vavﬁéfﬂ + RZ/)/}éf/)} =J" (331)

JF#==(1—pu—ou)(g"* — W)V, (V,6¢)]
-2 <vahg - %Vﬂhap> Vieggr)

+ (Vo) {9"*Va(V,0687) = (V,667) e}
(3.32)

Note that any term involving R, will not contrib-
ute, since for vacuum spacetime the Ricci tensor
identically vanishes. Also, if we assume Ju to
be constant, the above equation can be
simplified even more, as the last term in j* will
be absent.

(iii) If we use the fact that the perturbed GKV is really a
consequence of the perturbation of the spacetime
geometry (we will examine this case in detail
later), then we will have y* = & + Sy + 5xh,
where 8y is linear in the gravitational perturba-
tion, while 8y is quadratic in the gravitational
perturbation. An identical decomposition will
work for the i as well. If we keep terms linear
in the gravitational perturbation, we should also
ignore terms O(8yh,s) and so on. It follows that
perturbed AKE governing the evolution of the
vector 8yy takes the relatively simple form

(3.29)
(3.30)

ot + R + (1= )| VAT,
+ %V”(fﬂvph)} =0. (3.33)

Note also that if we assume the background
spacetime to be vacuum with no incoming matter
perturbation, then the use of the transverse-
traceless gauge would reduce Eq. (3.33) to AKE
for the background spacetime g,,. The conse-
quences of this equation with or without matter
field will be discussed in a subsequent section.
Thus, we have derived the evolution equation for the
perturbed GKV field from the perturbed action and also
from the perturbed AKE to first order in the metric
perturbations. Both of these procedures yield identical
equations depicting the internal consistency of our analysis.
We have also verified using computer algebra (in particular,
the xAct package for Mathematica) that this consistency
holds to second order as well. The AKE is rather compli-
cated in the second-order case, so we do not present the
result here; the interested reader can view the Mathematica
file posted at [23]. In what follows, we will discuss the
structure of the Hamiltonian associated with the dynamical
equation for the perturbed AKE, leading to an under-
standing of the stability as well as its hyperbolicity.

IV. HAMILTONIAN STABILITY AND
HYPERBOLICITY

In this section, we will construct the Hamiltonian out
of the Lagrangian, whose variation yields the evolution
equation for the perturbed GKV. The stability of the
Hamiltonian and its bounded nature will also be examined.
In addition, the hyperbolicity of the perturbed AKE will
also be explored.

A. Hamiltonian for the perturbed AKE

We have derived the evolution equation for the perturbed
GKVs in the preceding section in two different ways: first
by varying the perturbed action from which the AKE can
be derived, and then by direct perturbation of the AKE. In
this section, we will discuss the stability and the hyper-
bolicity of the perturbed AKE, restricting (for simplicity) to
first order in the metric perturbations £,,. First, we will

084020-9



SUMANTA CHAKRABORTY and JUSTIN C. FENG PHYS. REV. D 103, 084020 (2021)

construct the Hamiltonian for the perturbed GKV field and discuss its stability. Subsequently, we will discuss the
hyperbolicity of the perturbed AKE and its consequences. The starting point for the Hamiltonian analysis is the action for
the perturbed GKYV field 6&*; in particular, the zeroth component of the boundary term in the variation will provide the
Hamiltonian. The action for the perturbed GKV simplifies considerably to first order in the metric perturbations. Neglecting
all terms of O(h?) and using symmetry properties of the resulting expression, the structure of the action can be simplified to

1 1 l
A3e] = [ atxy=ay (1 5 ) 10005 — s = bt + g = 3,37)(V,05°9,58)

- (4.1)

=

{(éa + 5§a)vah(vﬂégﬂ)} - (vﬂ5§a){haﬂvﬂ§/} + hﬂﬂvaéﬂ} - gvavﬂ6§a(§6 + 556)vo‘hﬂy}'

Note that the Lagrangian density associated with the above action is identical to Eq. (3.15), though written in a different
form. Collecting all the total derivative terms that we have thrown away in the derivation of the field equation for 6&" in the
previous section, we obtain (recalling the notation A for the first-order variation)

1
Total derivative terms = /—gA(5&%) [(/46&5; — 9apd" — 840, V,68 + Eh(,u a0l = Gupg” — 8493)V, 68

1 U v v H o o
+ <1 + Eh) 5ﬂéﬁéﬁvv6§ﬂ + (gaﬂhﬂ - haﬂgﬂ )vyéfﬁ + 5{(5 + 55 )vah}g&

- {ha}vﬂfﬂ + hﬂﬁvaéﬁ} - gu(l(§6 + 556)v6hﬂb = \/__gA(ééa)Pﬂm (42)

where the last equality defines the quantity P¥,, which is the polymomentum conjugate to the perturbed GKV field 6£%. In
particular, starting from the perturbed action presented in Eq. (4.1), one can immediately verify that P#, has the following
expression in terms of the perturbed Killing vector field 6£* and its derivatives:

1 AA
Pl = T
V=9A(V,587)
1
= (1 +5 h) (G4 — Gup™ — 345y + G = ™)V, 68"
'[t {0} {0} 4 c (o} v
+ 5{(5 + 55 )vah}&; - {haﬂvﬂgﬁ + h;ﬂvag[f} - gmx(f + 55 )vahﬂ . (43)
|
We write the variation of the action for the perturbed Killing B _opn o sea
vector field 6% (incorporating the variation of the boundary i = / drh, H = ePlan,5¢" - NL.  (4.5)

surface) in the Weiss form [24]:

where N is the lapse function and the “overdot” denotes
derivative with respect to time. For the spacelike hyper-
surface we are considering, and using orthonormal coor-
dinates, e.g., in the synchronous frame, the Hamiltonian
density H takes the following form:

AA= / d*x/=GE A (627
4
+ / 45, [P*A(SE) + LAY],  (4.4)
[9)%

where dX, = d3x\/—_gva¢ is the volume measure on the
boundary surface 9V denoting the ¢(x*) = constant hyper-
surface. If we instead use the unit normal vector 7n,, then the
volume measure of the boundary hypersurface 9 becomes

H = P05 — L. (4.6)

dx, = ed*x\/hn,, where ¢ = —1(+1) for spacelike (time-
like) hypersurfaces, respectively. Defining d = d*xvh
and choosing the hypersurface to be t = constant and using
the (1 + 3) decomposition for the metric, we find the
boundary Hamiltonian to be

We now consider terms which are quadratic in the time
derivative as well as terms which are quadratic in the spatial
derivative of the perturbed GKYV field 6&”. Collecting these
terms, the time derivative part of the Hamiltonian density
quadratic in the perturbed Killing vector field becomes
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e _ 1 <1 ; %h) (-2} (5262")

1 1 o e .
+§ (1 + §h> (g + Iy + gh™) (5E'SE)

1 co e
+ (1 +5 h) hoi (6E°68"). (4.7)
Here we have performed a (1 + 3) decomposition of the
Hamiltonian density and have collected terms quadratic in
the time derivative of the perturbed GKV field. In the limit

of vanishing perturbation, the above quadratic contribution
|

2)space __ % ( % >{1 _”}(a 55’8 55/) 1 < 4o h){ glj + hoog” + h’l}(a 5508 550)
1
*3

1 1 y
< 5 ){g 597 + hapg = gaph'7 }(9;66°0,6E") + (1 +3 h> hoag” (0;66°0,6£%).

In the above expression involving spatial derivatives of the
perturbed GKYV, the first two terms can provide a negative
contribution to the Hamiltonian, thereby making it un-
bounded from below. In the second term, even though the
metric perturbations try to keep this term positive, the
background metric drives it to negative values. Similarly, if
we want the theory to be ghost-free, the first term will turn
negative, leading to an unbounded Hamiltonian. As argued
in [12], in the unperturbed case, an unbounded Hamiltonian
is potentially dangerous, as it can result in runaway
behavior that drives the GKVs far from the Killing
condition. Thus, the problems associated with the Hamil-
tonian density for the AKE in the exact case remain for the
perturbed GKV 6£% as well.

B. Hyperbolicity

We now turn our attention to the hyperbolicity of the
perturbed AKE. For this purpose, we employ the methods
of hyperbolicity analysis for second-order systems, par-
ticularly that presented in [25,26] (see also [12]). In this
approach, we compute the principal symbol for the system

|

(2= = (1 + H)ORE (1 = ) REr
— (1 = p = Su)h™ 2585,

+ <3 —HKH— 5ﬂ>hnsanas5§n +

to the Hamiltonian coincides with that presented in [12].
Though the kinetic term of the zeroth component of the
perturbed Killing vector field, i.e., 5&° in the Hamiltonian
density harbors a negative sign in the unperturbed space-
time for 4 < 2 (see [12]), we see that in Eq. (4.7), the
corresponding kinetic term in perturbed GKV has positive
sign for 4 < 2 < ji. Thus, ghost modes can be avoided. The
other quadratic terms in the time derivative have positive
sign. Similarly, terms quadratic in the space derivatives of
the perturbed Killing vector field yield the following
expression for the Hamiltonian density:

(4.8)

|

of equations; if the principal symbol has real eigenvalues,
the system is weakly hyperbolic, and if the principal
symbol has a complete set of eigenvectors, the system is
strongly hyperbolic. Collecting all the terms involving
double derivatives of &%, we obtain from Eq. (3.29),

(g% = h)DoDp5E" + (1 = p = S) (¢ — ) D,,6E° ~ 0,
(4.9)

where the symbol =~ denotes equality up to terms not
included in the principal part. In order to express the above
equation in the desired form, we can decompose the metric
as g% = g — nn + 5P, where n® is a timelike unit
vector and s is a spacelike unit vector. Further, defining
n%d, = 8,, %9, = 0, and ¢ = ¢*B525),, we can rewrite
the above equation into three separate equations; we obtain
one by contraction of Eq. (4.9) with n,, another by
contraction of Eq. (4.9) with s,,, and the last by the projection
of Eq. (4.9) along transverse directions. Keeping only the
principal parts of these equations, we obtain

(I —p—36p)(1 + h"™)0,0,6E°

(4.10)

Note that since n* is the timelike unit vector, 925£" corresponds to a double time derivative of the time component of the
perturbed GKV. A similar analysis yields the following equation for 925&, i.e., for the double time derivative of the spatial

component of the perturbed GKYV,

(14 h")0R88° = (2 — p = u)(1

— h)ReE +
— (1 =p—=6u)(1 —h*)0,0,5E".

(3 K- 5ﬂ)hnsan83555 -

(1 = p = )" 9,68
(4.11)
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Finally, the double time derivative of the transverse component of the perturbed GKV yields

(1+ h™)RSEA m (1 = hS)PSEN + 21 0,0,05 + (1 — j — Su)hA50,0,08" — (1 — p — ) WA D25E"

+ (1= p = Su)h0,0,68° — (1 — p — Su) WA D2

Therefore, we can read off the principal symbol P* for this
system of second-order differential equations, which takes
the following form:

ps — |:04><4 I4><4:| .

o (4.13)

where Oy, 4 and 1,4 are the (4 x 4) null and unit matrix,
respectively. The entries A and B are also (4 x 4) matrices
with the following expressions:

A B 0
A=|& F 0 |,
|74 T Ky
[C D 0
B=|G6 H 0 |, (4.14)
| LA MA Ny,

where the unknown quantities appearing in the matrices
A and B have the following expressions,

A= T
F=-2 Elﬂ__ﬂa;)(z?f;"") ’ (*.15)
c—_ B-u=gnn
@ o)1+ 1)
D— M’ (4.16)
=
R 1
e )
L Py e v SR

(4.12)
7o (—p—gunt
(2= p=ou)(1+hm)*’
7--% (ks hi/f’))hm ’ )
(=) (L—p— skt
K=t E= a0
(=g =dupnt (1= p =)t
(2—p—36u)(1+h™) (L4 nmmy
N = 2(1@) (4.21)

Note that as the perturbations vanish, we obtain A =1/
(2-p), B=0=CD=(1-p)/2-p),E=0,F =2—p,
G=—(1=-p), H=0=ZI=7J, K=1, and L=0=
M = N. Thus, our result agrees with that derived in
[12]. If one chooses u + du = 1, one has a complete set
of eigenvectors, and if one chooses u+ ou =2, the
principal symbol becomes singular. Setting y =1 and
expanding the eigenvalues to first order in metric pertur-
bations and second order in Ju, one obtains the
following expression for the eigenvalues of the principal
symbol4:

1 1
{E(hnn_2hns+hss_2>’_§(hnn+2hns+hss_2),

1

(—5/42]1}” + (5/'42 + 4)hns — 2 2(/’1” _ 2))’

(_5ﬂ2hns + (5/42 + 4)hn.\' —2pm Z(hn _ 2))’

(_5ﬂ2hns + (5/42 + 4)hns + 2 + 2(hss _ 2))’

A= Bl= A= BN

(_5M2hns + (5”2 + 4)hns + 2K 2<hss _ 2))}
(4.22)

Since the eigenvalues presented above are real, this implies
that to first order in the metric perturbation and second
order in Jy, the perturbed AKE is weakly hyperbolic. This
is consistent with the result in [12], in which the AKE for

“These calculations were performed using the packagexAct in
Mathematica.
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the background spacetime was found to be weakly hyper-
bolic for general u # 1, 2.

V. INDUCED PERTURBATIONS: IMPLICATIONS
FOR THE ALMOST KILLING EQUATION

So far, we had considered the metric perturbation and
the perturbation of the GKV to be independent.
However, in most of the physical scenarios of interest,
e.g., perturbation of the black hole spacetime due to
matter fields entering the horizon, the metric perturba-
tion sources the perturbation of the almost Killing
equation. Thus, we may consider the perturbation of
the GKV to be induced by the metric perturbation. In
what follows, we will consider such induced perturba-
tion of the GKV and hence determine their evolution
equations order by order.

A. First-order perturbation

As emphasized before, we will imagine a class of
nontrivial perturbative solutions to the AKE which are
induced by the metric perturbations. This may be quantified
by assuming that 65* and h,; are implicitly proportional
to the same expansion parameter € (see footnote 2), and
then solving the perturbed AKE order by order in €. In
particular, for the GKV y* we write

X =E St + s + O(ed), (5.1)
where we have assumed §y¢ o« €. As before, the back-
ground spacetime is assumed to admit a Killing vector
field &%, which satisfies the AKE presented in Eq. (2.2)
exactly. Further, imposing the Lorenz gauge condition,
VPh,s = V,h/2, and choosing the background value of the
parameter u to be constant, the expansion of the perturbed
AKE presented in Eq. (3.29) to O(e) reduces to the
following equation for oy{:

Doy + Reyot + (1= ) VeIV - by + (&Vph) /2] = 0.
(5.2)

Note that this reduces to the background AKE when y = 1
or, when fﬂvﬁh is a constant; in those cases, one must
consider higher-order corrections to the AKE. In the cases
where & Vﬂh is nontrivial, for instance, if the perturbations
are the result of an energy-momentum tensor with non-
trivial trace, one can apply the expression Eq. (2.4) for the
Noether current defined with respect to the background
derivatives directly to oy{ and substitute Eq. (5.2) to obtain
the following current:

J§ = 2R + V(2 = )V - 81 + (1 = 0)E*V,h /2],
(5.3)

which satisfies the identity V - J; = 0. If the background
spacetime is vacuum, setting R“; = 0, this identity yields

where

1
@)= 2—-u)V -3y +5 (1 = u)(E*Vsh).

: (5.5)

It follows that if the initial data satisfy the constraint
®; = 0 and its first time derivative also vanishes, then the
constraint ®; =0 is preserved by the evolution of
Eq. (5.4). Under this constraint, Eq. (5.2) may be
rewritten as
Oéy§ — V*(V - 8y,) =0, (5.6)
which is equivalent to the AKE for ¢ =2 in vacuum
spacetime. It was demonstrated in [12] that the y =2
parameter choice avoids ghosts and is dynamically equiv-
alent to the Maxwell theory, thus avoiding the problems
arising from an unbounded Hamiltonian. Furthermore,
recall that to first order in the gravitational perturbation,
imposing the Lorenz gauge condition, the trace h of the
gravitational perturbation satisfies the following evolution
equation on a vacuum background:
Uh = 1676, T, (5.7)
where 6,7 is the first-order perturbation of the trace of the
matter energy-momentum tensor. If one assumes 6,7 = 0,
i.e., the matter field perturbing the spacetime is dilute
radiation and the background is vacuum, one can impose
the condition that 7 = 0, in which case, from Eq. (5.5), it
follows that the constraint ®; = 0 implies V - &y, = 0.
Subsequently, substituting this result in Eq. (5.6) simplifies
to Loy{ = 0, which is satisfied by the background Killing
vector field £&%. Thus, one may expect that in this case, the
perturbed spacetime will respect the symmetries of the
background spacetime. On the other hand, if 6;7 # 0, then
the background Killing vector field does not, in general,
satisfy the constraint ®; = 0, and the resulting solutions
for Eq. (5.6) differ nontrivially from the background
Killing vector.

We have therefore derived that if the spacetime pertur-
bation A, is being sourced by an energy-momentum tensor
with a nonvanishing trace, then the evolution equation
for the first-order perturbation &y must differ from the
background Killing vector field in a nontrivial manner.
Furthermore, we find that for the weakly hyperbolic
parameter choices, i.e., ¢ # 1 and p # 2, and initial data
satisfying the constraint ®; = 0 and 0,®; = 0, the AKE
propagates the constraint ®; = 0 and avoids the dynamical
instabilities associated with ghosts and unboundedness in
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the Hamiltonian. First-order perturbations of the AKE
are therefore different from the background Killing vector
field and are well suited for describing the perturbations
of the vacuum spacetimes induced by dilute matter in
which §;T # 0.

B. Second-order perturbations

As the previous section demonstrates, perturbations of
the AKE to O(¢) are insensitive to the metric perturbations
in scenarios with 6;7 = 0. This is the case if the perturba-
tions consist of weak gravitational radiation, or dilute
|

matter source encompassing radiation or null dust. In such
situations, one should consider the evolution equation for
the second-order correction dy%. Assuming constant ¢ and a
vacuum background spacetime, the homogeneous part of
the equation is the same as that of the first-order case

O6xs + (1 = u)VH(V - 8xy) = =(j5 + k5 + 15 + m}),

(5.8)

and the inhomogeneous part j4 takes the explicit form

.112/ = 2§(Ih/36{hDTRu/ha - h/fTRDO'(lT - v(rvahbﬂ} - é(lvah/}o’vyhﬂﬁ + 2vy(§ah/}ﬂvah/}o') - 2hﬂo—vyéav6haﬁ

+ 2ha"vﬂ.§"{vﬂh’“” = Vihg, +V, 0¥},

Ky = 21 )PV (815 = 2hagVPVeS5Y + 2V Sy NV gl g+ Vght o = Vhop} — 2655 WP R g,
15 = WPV 480V b — V¥ [543V o + (Vo + 9V h)op] + (1 — 2){ PV 5(£,Vh) — V¥ (5¢2V ) },

mlé = (/’t - 2){vy(§ahﬂavahﬂa) + 2hb/}vﬂva5)(T}'

The terms in Eq. (5.9) are organized so that k4 =0, if
8yl = 0 o, if &y satisfies the Killing equation, and /5 = 0
if h =0 = opu. As pointed out in the first-order case, for
h = 0, the relevant solutions for y{ are essentially those of
the background Killing vector; in that case, one may choose
oy7 = 0, as one can absorb it into the background Killing
vector field.

Further understanding of the second-order perturbation
can be achieved by computing the second-order perturba-
tion of the Noether current assuming constant ¢ and a
vacuum background R,, = 0:

J5 = 46496, RY o + 26%(5,R" o — 21" 45, R,
+ (1 = 2)[ Ve (E7VIT 4 h047)
+ E RN yhy, + 20 NP (V - S1) = VUV - 8a)
—{V¥ (&) = PN 4(£7V 4h) Y], (5.10)

where 6, R4 and 5, R 5 are the respective first- and second-
order perturbations of the lowered index Ricci tensor. Note
that the quantity within the curly brackets vanishes when
h = 0. We further see that when u = 2, most of the terms in
the Noether current, except for the first two terms,
identically vanish. Therefore, for p =2, the Noether
current depends on the perturbations of the Ricci tensor
alone, as one might expect.

We then turn to the second-order perturbations of the
identity presented in Eq. (2.7). Assuming vacuum space-
time along with transverse-traceless gauge & =0, and
setting u to be a constant, the perturbation of the Komar
identity takes the following form:

(5.9)
(u—2)¥L = g, (5.11)
where
lPL = D[v : 6)(2 + 5){{{v(1h - hﬁrv(l(gahm’)]
+ th(vuvnvfﬁ)ﬁ + R(m‘rﬂvﬂé)((f)
+ vﬂ [v(l(hﬁaémvﬂh)] + vﬁhvﬁ(éavah)’ (512)
\PR = 5“(Va52R - 2h"TVa51RUT) - 45|R,mhﬁ"vﬁ§“
+2(872V,81 R + 26, Ry VP 51%). (5.13)

Note that the quantity W is independent of the second-
order perturbation of the GKV 5;(’5, and when py =2, it
follows from Eq. (5.11) that g = 0. For vacuum space-
time, in the transverse-traceless gauge, at first order, one
may choose 8y to satisfy the background Killing equation,
and hence, the terms dependent on oy disappear from W,
so that Wy depends only on the background quantities and
the perturbation #,,. It follows that to second order, ¥
must be zero for vacuum perturbations (in which R/w =0)
or any metric perturbation 4, which satisfies 1 = 6;R = 0
and permits a solution to the y =2 AKE.

If W, = 0, the second-order perturbations should satisfy
the following:

Od, =0, (5.14)

where
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CI)Z = (/’t - 2>{v ’ 5)(2 - horva(fahzﬂ)}’ (515)

It follows that when Wy = 0, the field equations propa-
gate the constraint ®, = 0 for the second-order perturba-
tions (assuming initial data satisfying 0,®, = 0). On a
vacuum background, one may (assuming u # 2) use the
constraint ®, = 0 to rewrite Eq. (5.8)

Odys = V¥(V - 8x2)

— —jy =y — (2= VAR (ERy) ). (5.16)
so that the equation for dy% resembles the y = 2 equation
with a source. For second-order perturbations, the question
of whether the perturbations suffer from dynamical insta-
bilities due to the unboundedness of the Hamiltonian
depends on the behavior of the rhs of Eq. (5.16).

The claim that W, = 0 for transverse-traceless metric
perturbations of vacuum spacetimes that admit Killing
vectors suggests an identity for such perturbations.
However, the arguments we have presented so far do not
yet constitute a proof of such an identity, as they depend on
the existence of solutions for the exact 4 = 2 AKE. Though
the AKE fails to admit a well-posed initial value problem
for the y = 2 parameter choice, there is some reason to
expect that the failure is primarily due to nonuniqueness,
rather than existence. For instance, it is straightforward to
show that on vacuum spacetimes, the exact AKE becomes
an identity for the gradient of an arbitrary function.
Furthermore, one can show that in locally flat coordinates,
the time derivatives for the time component of y* disappear,
so that the AKE is an underdetermined dynamical system.
One might therefore expect the existence of solutions to the
exact 4 = 2 AKE (and consequently, ®, = 0) to hold for a
|

large class of transverse-traceless metric perturbations of
vacuum spacetimes which admit Killing vectors.

VI. PERTURBATIONS OF THE NOETHER
CHARGE AND ITS THERMODYNAMICAL
INTERPRETATION

In this section, we will discuss how the Noether charge
associated with the GKV y“ associated with the AKE is
affected by the perturbation of the metric. As we will
demonstrate, the perturbed Noether charge will have an
interesting thermodynamical interpretation. Applying
Eq. (2.4) to the solutions of the AKE, which correspond
to the GKV field y#, the Noether current for the GKVs in
the perturbed spacetime takes the following form:

jﬂ = 21—2”1/)(” + (2 _ﬁ)vﬂ {voﬂfﬁ] + (va)((’)gﬂava(z _ﬁ)?
(6.1)

where the AKE presented in Eq. (2.2) has been used. Let us
now use the fact, following Eq. (3.1), that the spacetime
metric can be expressed as g,, = g,, + h,,, where h,, is
the perturbation, possibly due to some matter field entering
the background spacetime geometry. As a consequence, we
also have &% — &% 4 6£° = y°, where y° is the GKV, with
the associated Noether current being given by Eq. (6.1).
Thus, the Noether current associated with the GKV
field can be decomposed into the Komar current for the
background Killing vector field £&* and a part containing
additional corrections arising out of the gravitational
perturbation £, and the perturbation of the Killing vector
field 6£%. We then obtain the following expression for the
Noether current associated with the GKV field y*:

- 1
P 2R (<O Ry Rt = 2R ) 4 (2= 1 = 109, (Tt 4 327V,

1
+ (g — ) (V,,;(" +5 )("Vgh> V.2 - ).

(6.2)

where we have used the Lorenz gauge condition to simplify the expression further. The above provides the expansion of the
Noether current in terms of the gravitational perturbation; further expressing y° = &° + 6£°, we obtain the following

expression for the change in the Noether current:

oJ" = 2RD06§0 + (_Dhl(; + Rwh;w - R(mh}w - ZRDﬂU/)hﬂp)(gﬂ + 556) + (2 - ﬁ) (gua - hmx)va(vgafa)

1 1
by 2= P TIE + 0V = | (Vo 4 (& + 05V, ) = (7,520 | (V).

(6.3)

Here we have assumed that the background spacetime inherits Killing symmetry, and hence, £° is a Killing vector field, such
that V&2 = 0, which we have used in deriving the above expression. Using the expressions for the perturbations of the
Ricci tensor and the Einstein tensor in the Lorenz gauge, the above change in the Noether current may be expressed in
several ways, among which we quote the expression involving the Einstein tensor below
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8JY = 2RY ,5E° + 25GY (£ + 567 — (% Ol + RM,W> (& +68) + (2 — ) (¢ — h**)V,(V,,6¢7)

+

| =

Observe that, using the perturbed Einstein equations, one
can replace the perturbation of the Einstein tensor appear-
ing in the above expression with the perturbation of the
matter energy-momentum tensor. In that case, the object
(6G*,&°) will correspond to the flux of the matter energy-
momentum tensor through the Killing horizon, to which the
Killing vector field is orthogonal. We will come back to this
point later in this section, but we first discuss a couple of
interesting limits:

(i) Even though we have treated the gravitational
perturbation and the perturbation of the Killing
vector field separately, the perturbation 6% we are
interested in is induced by the perturbation of the
background spacetime. Thus, it is natural to decom-
pose the perturbed Killing vector field as 6&* =
8y + 8xh [cf. Eq. (5.1)], where 8y/ is linear in the
gravitational perturbation and &4 is quadratic in the
gravitational perturbation. Then to the linear order in
the gravitational perturbation, the perturbed Noether
current from Eq. (6.4) takes the following form’:

8JY = DRV 845 + 26, R &% + (2 — u)V¥(V - 51)

Lo W, Ev,n

5 (6.5)

1
= 2RV, 847 + 28,G &7 — <§ Oh + Rﬂphw) &

+ %Vy(cf"vgh), (6.6)
where the Lorenz gauge condition has been used. In
the first line of the above expression, we have
expressed the change in the Noether current in terms
of the change in the Ricci tensor. In the second line,
we express the change in Noether current in terms
of the change in the Einstein tensor, and apply the
constraint ®; =0 [with ®; given in Eq. (5.5)],
which follows from the fact that &y} satisfies
Eq. (5.2), which as we showed earlier propagates
the constraint ®; = 0 for an appropriate choice of
initial data.

(i) For spacetimes which may contain a dilute amount
of nongravitational radiation on vacuum back-
grounds, i.e., with R, =0, one can use the

>One should be careful not to confuse this expression with
Eq. (5.3), which satisfies the identity V - J; = 0. 5J%, on the other
hand, satisfies V- (J +6J) = 0.

1
(2= PV + 820 - [ (Vs 4+ 82909, = (9,527 | (V).

(6.4)

|
transverse-traceless gauge (effectively setting 7 =0),
and hence, the above expression for the change in the
Noether current simplifies considerably:
oJV =206,G*,&°. (6.7)
Thus, using the perturbed Einstein equations, we find
that given the constraint ®; = 0, the change in the
Noether current to first order is simply equal to
167(86T",£%), which corresponds to the matter field
flowing into the Killing horizon. This will have
thermodynamical interpretation, as we compute the
associated change in the Noether charge.

(iii) For spacetimes which contain a dilute amount of
matter on vacuum backgrounds, one can instead
employ the y = 2 parameter choice, in which case,
the Noether current also simplifies to

S8JY =26,RV ;&% = (26,G%, + 8“5, R)E°.  (6.8)
We see that for matter fields, the Noether current
does not measure energy and momentum in the
sense of the energy-momentum tensor, due to the
term containing §; R. However, one may nonetheless
still regard the Noether current and its associated
charge as a measure of the matter content, and an
analysis [27] comparing Komar integrals for radia-
tion with that of matter in cylindrical symmetry
suggests that charges constructed from Noether
currents measure the effective gravitating mass.

Thus, we have discussed situations of physical interest and

how the change in the Noether current can be simplified

and interpreted in these scenarios. We will now proceed to
compute the change in the Noether charge due to the
gravitational perturbation and the perturbation of the

Killing vector field.

In order to determine the Noether charge, we have to
integrate the Noether current over a three-surface. One may
define such a hypersurface as a level surface of some scalar
function ® = ®(x); defined in this way, the surface is held
fixed in the manifold and does not change under metric
perturbations. However, the measure on the surface will
change. In particular, for a ® = constant surface, the
integration measure is dX, = d*xv/hn,, where n, is the
normalized normal on this surface, and 4 is the determinant
of the induced metric on the @ = constant surface. It is
also possible to express the integration measure on a
@ = constant surface as d¥, = d°x,/=gV,®, where V,®
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is the unnormalized normal to the ® = constant surface.
Under metric perturbations, the measure changes as
V=9 = v-9=+/=9{1 + (1/2)h}. Thus, the Noether
charge associated with the GKV field y* = &% 4 6&*
becomes

0+t = / dz,J" = / dZa<1 +%h) (I +67%)

=Q[e] + / dz, (%h)]“—l— / dz,6J%
1
+/d2,,<2h>5j ,

where Q[£] denotes the Komar charge of the background
Killing vector field. It is straightforward to read off the
change in the Noether charge, which takes the following
form:

(6.9)

60 =0[¢ +6¢] - 0[¢]

1 1
- / dx, (5 h) JE 4 / AT, 8T + / dz, (Eh)éJ“.

(6.10)

Note that the first term is due to the perturbation of the
integration measure, while the second and third terms result
from a change in the Noether current. As in the case of the
Noether current, this expression can be simplified further
if we assume that the perturbations correspond to dilute
radiation in vacuum background spacetime. The transverse-
traceless gauge condition can then be imposed, and thus,
the trace of the perturbation % can be set to zero. Therefore,
the above expression for the change in the Noether charge
becomes

50 =2 / d%,6G 4P . (6.11)

As we will discuss below, this expression can be under-
stood from a physical as well as thermodynamical
perspective.

We consider the case where the metric g,, is a vacuum
black hole spacetime, with a Killing vector field £* defining
the Killing horizon, to which the Killing vector is orthogo-
nal. Since the Killing horizon is a null surface, it follows
that we can consider the surface on which the Noether
charge is computed to be the Killing horizon, which is
bound to have a thermodynamic interpretation. In particu-
lar, for a generic null surface, the Noether charge associated
with a Killing-like vector corresponds to Q = 16z 7S,
where 7 is the temperature associated with the null surface,
and S is the associated entropy, which for general relativity
is simply (area/4) [21,28]. As evident from the Vaidya
solution considered in Sec. II and it follows that to first

order, under the assumptions considered here, the temper-
ature does not change, and hence, the above change in the
Noether charge may be interpreted as

T6S = / %, 5T &P, (6.12)

which is the Clausius relation. In brief, this suggests that
due to radiation falling into the Killing horizon, the
spacetime is perturbed, and the Killing vector also ceases
to be Killing, rather it becomes a GKV. This perturbation
under the appropriate limit yields the Clausius relation.
Thus, the formalism developed here for the case of
radiation provides a close correspondence with the thermo-
dynamic nature of gravity. One may make a similar
argument for the case of nonradiative matter with the
1 = 2 parameter choice for null surfaces, provided that
dx, &% = 0, or by interpreting the Noether charge in terms
of gravitating mass, as suggested in [27].

VII. FINAL REMARKS

Killing vectors play a central role in characterizing
spacetime symmetries, which are crucial in determining
the conserved quantities that can be constructed in a given
spacetime geometry. Systems of astrophysical interest are
often symmetric only in a first approximation, and the
spacetime geometries for such systems are often more
accurately described in terms of a symmetric spacetime
background with perturbations (the latter due to gravita-
tional radiation or inhomogeneities and highly dynamical
behavior in matter fields) which explicitly break the
symmetry of the background. This motivates the perturba-
tive study of the AKE, the solutions of which provide the
generalizations of Killing vectors (which we refer to as
GKVs) appropriate for the perturbed spacetime.

In this article, we have examined in detail the con-
struction and behavior of these GKVs as perturbative
solutions to the AKE associated with the metric perturba-
tions of vacuum and nonvacuum spacetimes, which admit a
Killing vector field. This has been achieved in two steps:
(a) by considering the perturbation of the action yielding
the AKE and then varying the same with respect to the
perturbed GKV and (b) by perturbing the AKE and hence
determining the evolution equation of the perturbed GKV.
The matching of both of these equations explicitly dem-
onstrates the internal consistency of these results.

Additionally, it turns out that the hyperbolicity and
Hamiltonian stability of the perturbed GKV remains
unchanged compared to its unperturbed counterpart if
the GKV and the metric perturbations are kept independent.
However, we have found that in the case where the
perturbations of the GKV are sourced by the metric
perturbation, the problem of an unbounded Hamiltonian
can be avoided at first order, and at second order, the
problem may also be avoided if the metric perturbations are
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transverse and traceless (assuming the perturbations remain
well behaved), and perturbative solutions to the y = 2 AKE
exist to second order. We have found that the first-order
equations trivialize (they reduce to the background AKE)
for traceless metric perturbations; for dilute radiation, the
second-order case is necessary. We have also examined
the first-order behavior of the Noether current constructed
from a GKV and its associated charge. Intriguingly, it turns
out that the conservation of the Noether current introduces
additional constraints in the theory, which helps signifi-
cantly to simplify the evolution equation for the perturbed
GKV. In particular, if the perturbed matter energy-
momentum tensor is traceless, i.e., the perturbation is
due to null matter field, it follows that the first-order
perturbation of the GKV can be absorbed within the
background Killing vector field. To second order, we find
that the second-order perturbation always yields nontrivial
modifications to the background Killing vector field.

Finally, the perturbation of a background spacetime
respecting Killing symmetry also has interesting thermo-
dynamic implications. In particular, as we have demon-
strated, the perturbation of the Noether charge to first order
can be expressed as 76S. This is because to first order in
the perturbation, under these assumptions, the surface
gravity does not change. This is also apparent from the
example of Vaidya spacetime considered in this work,
which further corroborates our claims regarding the
thermodynamic interpretation for the perturbed Noether
charge and currents associated with the generalized Killing
vector fields.
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APPENDIX: VARIATIONAL PRINCIPLE
FOR AKE

Here, we review the derivation of the AKE from a
variational principle, following the notation and conven-
tions of Sec. III A. We rewrite here the action given in
Eq. (2.3) in expanded form:

Aly] = /V d*x\/=7 {—i (Vo + Vo) (Vi + Vi)
+ (A1)

=

972

where g, is the metric of the perturbed spacetime, and
p=p(x) is an arbitrary function of the spacetime coor-
dinates. Varying the above action with respect to arbitrary
variations of y#, including endpoint contributions, we
obtain

AA= Ad4x¢:§[—§ﬂa§uﬁ(v”x” + V) (VEA) + AV ) (Vaby )]

1
+ [ exvg {—
v 4

(Vurt + Vo) (Vi + Vi) +

(V)2 | A9 . (A2)

=

where 0V is the boundary surface of the full spacetime volume ) described by some arbitrary scalar function,
¢(x) = constant. By performing integration by parts, the above expression for the variation of the action can be further
simplified and it will yield several boundary terms. Since these boundary terms will not play any significant role
immediately, we will neglect all the boundary contributions, and hence, the above variation of the action functional can be
expressed in the following manner:

AA = Ad4x\/—_§[Ax”§»ﬁ(ix” + [V VI + VY0 = APV (Vo)
B /v d* /=g g0 (O + R + V{1 = )Vor7}]. (A3)

Here we have used the fact that the commutator of covariant derivatives acting on a vector is given by the Riemann
tensor. Thus, setting the variation of the action functional AA to be zero, for arbitrary variations of the GKV field ;(ﬂ s
we obtain

V=390 + Riy" + V{(1 =)V, x°}] = 0. (A4)
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Since we are interested in nondegenerate spacetime, i.e., spacetimes with a metric g, with nonzero determinant and
nontrivial inverse, the above equation can be casted in the following form:

O + R + V{(1 = i)V} = 0. (AS)

The above equation corresponds to the AKE satisfied by the GKV y* in the exact spacetime, with metric g,,. Note that, in
the above expression we have kept ji inside the derivative terms since it is a function of the spacetime coordinates.
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