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In the context of the higher dimensional braneworld scenario, we have argued that the occurrence of
horizonless exotic compact objects, as an alternative to classical black holes, is more natural. These exotic
compact objects carry a distinctive signature of the higher dimension, namely a tidal charge parameter,
related to the size of the extra dimension. Due to the absence of any horizon, rotating exotic compact
objects are often unstable because of superradiance. Interestingly, these higher dimensional exotic compact
objects are more stable than their four-dimensional counterpart, as the presence of the tidal charge reduces
the size of the extra dimension and hence results in a stronger gravitational field on the brane. A similar
inference is drawn by analyzing the static modes associated with these exotic compact objects, irrespective
of the nature of the perturbation, i.e., it holds true for scalar, electromagnetic and also gravitational
perturbation. The postmerger ringdown phase of the exotic compact object in the braneworld scenario,
which can be described in terms of the quasinormal modes, holds a plethora of information regarding the
nature of the higher dimension. In this connection we have discussed the analytical computation of the
quasinormal modes as well as their numerical estimation for perturbations of arbitrary spin, depicting
existence of echoes in the ringdown waveform. As we have demonstrated, the echoes in the ringdown
waveform depend explicitly on the tidal charge parameter and hence its future detection can provide
constraints on the tidal charge parameter, which in turn will enable us to provide a possible bound on the
size of the extra dimension.
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I. INTRODUCTION AND MOTIVATION

Building a consistent theory of quantum gravity has been
one of the biggest open problems in theoretical physics for
the past couple of decades or so. Despite numerous efforts,
so far it has proved difficult to probe the laws of physics at
the Planck scale by some experiment, thereby making the
task of unification of general relativity and quantum theory
evenmore challenging. In recent times it has been suggested
that observing gravitational waves emitted by merger of
binary black holes [1–6], one can possibly get some hints
about the presence of quantum gravitational effects in the
near-horizon region of a black hole [7,8]. It is expected that
Planckian physics in the near-horizon region of a black hole
might remove or replace the classical black hole horizon by
some quantum structure [9,10]. Thiswill eventually lead to a
horizonless, but extremely compact object, which in the
literature is often referred to as exotic compact objects. The
phrase “exotic”merely stands for the fact that one should not
expect the assertions of classical physics to hold true near the
surface of this object. Just as it is possible to construct

various different models of such horizonless exotic compact
objects (henceforth referred to as ECOs), based on particular
details of the quantum effects governing the near-horizon
physics, such as, firewall [9], fuzzball [10], quantum black
holes [11,12] and 2-2 holes [13,14], it is also possible to
consider other exotic possibilities, such as gravastars [15]
and wormholes [7,16,17], within the realm of classical
physics as well. One common feature shared by all these
models of ECOs is the modification of the boundary
condition for an ingoing wave in the near-horizon region.
For a classical black hole, the presence of the horizon as a
one way membrane ensures that the wave modes are strictly
ingoing at the horizon, but for an ECO, the presence of a
physical surface in front of the would-be horizon [18–21] or
due to the quantum nature of the horizon [22], an ingoing
wavewould get partially reflected back. Thiswould give rise
to definitive observational signatures, such as the presence
of echoes in the postmerger ringdown signal of a binary
black hole coalescence [7,22–25]. Tentative detection of
these quasiperiodic echoes in the ringdown signal
[13,14,18,24,26,27] has made the subject more promising
despite some controversies [28–31], thus demanding more
rigorous theoretical and observational analysis.
In search for a better theoretical motivation for models of

quantum black holes, where a near-horizon modification to

*ramitdey@gmail.com
†intsb6@iacs.res.in
‡sumantac.physics@gmail.com

PHYSICAL REVIEW D 103, 084019 (2021)

2470-0010=2021=103(8)=084019(26) 084019-1 © 2021 American Physical Society

https://orcid.org/0000-0001-5717-1589
https://orcid.org/0000-0003-3343-3227
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.084019&domain=pdf&date_stamp=2021-04-12
https://doi.org/10.1103/PhysRevD.103.084019
https://doi.org/10.1103/PhysRevD.103.084019
https://doi.org/10.1103/PhysRevD.103.084019
https://doi.org/10.1103/PhysRevD.103.084019


the classical geometry is expected, black holes in the higher
dimensional braneworld scenario seems to be amore natural
candidate [32] (for other gravitational wave related aspects
of braneworld scenarios, see [33–36]). By the adaptation of
the AdS=CFT correspondence to the Randall Sundrum II
(RS2) braneworld scenario [37–41], it was argued in [42–
45] that black holes living on the brane must be quantum
corrected. This is based on the fact that solving the five-
dimensional Einstein’s equations (the five-dimensional
spacetime is referred to as the bulk) is equivalent to solving
projected four-dimensional Einstein’s equations (the four-
dimensional hypersurface we live in is referred to as the
brane) coupled with a conformal field theory (CFT) living
on the brane. Due to the coupling of the CFT stress tensor
with gravity, any brane localized black hole (which is a
solution of the semiclassical field equations on the brane)
would inherit quantum effects because of the backreaction
from the CFT and hence the black hole event horizon will
either be removed or replaced with an apparent horizon.
Since, the real-world astrophysical black holes always
inherit some spin, it is natural to extend the study of the
quantum-corrected braneworld black holes to a more rel-
evant, astrophysical setting by incorporating the effect of
rotation as well. Following this motivation, in this paper we
consider models of rotating ECOs in the braneworld
scenario. In particular, we investigate the physics of the
rotating ECOs living on the brane, having an exterior
geometry described by the Kerr-Newman-like metric with
the electric charge replaced by the “tidal” charge parameter
inherited from the bulk [46,47] (for other observational
signatures of the tidal charge parameter, see [48–51]).
Therefore, these rotating ECOs with a tidal charge and a
reflective quantummembrane in the near-horizon region can
be conceived as a simplified model to capture the near-
horizon quantum gravity modifications.
Unlike black holes, the horizonless ECOs with a nonzero

spin can develop a strong instability in the ergoregion, as
negative energy states are allowed in the ergosphere and if
these modes are not curtained by the event horizon they
grow exponentially due to superradiance [52–55]. It was
shown in [19,56] that allowing for a finite absorption by the
membrane placed in front of the would-be horizon can curb
the superradiant instability. In this context it would be
interesting to see whether the presence of higher dimen-
sions, in the guise of tidal charge, can suppress the
instability. In addition, we will also discuss the physics
of the zero frequency (static) mode of scalar, electromag-
netic and gravitational perturbation, which is the primary
source behind the superradiant instability for ECOs and
shall explore the effect of the tidal charge on these modes.
Besides superradiance, the postmerger ringdown wave-
form, which can be described in terms of superposition of
quasi-normal modes (QNMs) [57–62], also depends on the
tidal charge parameter and hence on the existence of the
higher dimension. In particular, the characteristic signature

of horizonless ECOs, which is repeating echoes in the
ringdown waveform, will also be different from in the
presence of higher dimensions. It is also possible to look for
plausible observational signatures of braneworld ECOs/
quantum black holes, through the echo time-delay meas-
urement, thereby opening up the possibility of constraining
the tidal charge with improved observation of echoes. For
this purpose, besides following an analytic approach, we
also obtain the ringdown waveform using a template for
obtaining the gravitational wave signal adapted to the case
of horizonless ECOs, as developed in [20,63].
The paper is organized as follows: In Sec. II, we set up

the background spacetime describing a rotating ECO in the
braneworld scenario and motivate the near-horizon quan-
tum modifications to the classical geometry. The basic
equations governing any generic spin-s perturbation
required to obtain the QNMs and analyze the superradiant
instability is established in Sec. III. We further discuss the
boundary conditions at the horizon/surface of the ECO and
at asymptotic infinity in terms of the Teukolsky radial
perturbation variable as well as the Detweiler function. In
Sec. IV, the superradiant instability for the braneworld ECO
has been analyzed, by determining the amplification factor,
using an analytic method and later confirmed our predic-
tions by a numerical analysis. The static modes, which play
a crucial role for the mode instability at the ergoregion, has
been studied in Sec. V for generic spin-s perturbation.
Section VI deals with determining the frequencies of the
QNMs with the modified near-horizon boundary condition
using an analytic method of asymptotic solution matching,
as well as a numerical method based on a ringdown
template. Finally, Sec. VIII summarizes the key results
and associated predictions of our analysis along with
possible future directions.

A. Notations and conventions

We will set the fundamental constants c ¼ 1 ¼ ℏ. The
lowercase Roman indices a; b; c;… run over the four-
dimensional brane spacetime indices, while the uppercase
Roman indices A;B;C;… run over the five-dimensional
bulk spacetime indices. We use mostly positive signature
convention, with the flat spacetime metric being
diagð−1;þ1;þ1;þ1Þ, on the brane.

II. SPINNING EXOTIC COMPACT OBJECTS IN
THE BRANEWORLD SCENARIO

In this section, we will lay down the basic premise of our
analysis, namely the exterior geometry of a spinning ECO
in the braneworld scenario along with a brief introduction
to the braneworld paradigm itself. Even though the brane-
world paradigm was originally motivated by the gauge
hierarchy problem in the context of particle physics, it has
provided significant insights in various aspects of the
gravitational physics as well [37,64–68]. In particular,
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the Randall-Sundrum model with noncompact extra dimen-
sions (referred to as RS2) and its various other incarnations
have played a major role in our understanding of gravita-
tional interactions in the presence of higher spacetime
dimensions [37]. In what follows, we will mostly be
interested in understanding the existence and properties
of rotating ECOs in the braneworld models involving
noncompact extra dimensions.
In the RS2 braneworld scenario considered here, the

gravitational field, being universal, can propagate along the
extra spatial dimension, but matter fields or any other
interactions would be constrained to live on the lower
dimensional brane. Thus it is legitimate to ask, what will be
the “effective” geometry that an observer living on the
brane observes? To be precise, one would like to know
whether we can have black holes localized on the brane
when matter fields collapse under self-gravity [69]. Often
such brane-localized black holes cannot be extended within
the bulk due to certain pathological properties [70]. In
addition, it has also been observed that the black hole
singularity may extend all the way up to the anti–de Sitter
(AdS) horizon when one studies the bulk extension of these
solutions, leading to classical instabilities [71,72]. These
classical instabilities were mostly realized as one considers
the static general relativistic black holes on the brane and
then tries to extrapolate it to the bulk. However, as realized
in [73–75], the gravitational field equations on the brane are
not the standard four-dimensional Einstein’s equations,
rather they involve corrections from the bulk geometry.
First such solutions to the effective (or, projected)
Einstein’s equations were derived in [74], albeit in the
context of static and spherically symmetric geometry. This
has been subsequently generalized to rotating situations as
well [46]. These solutions are very difficult to extend within
the bulk spacetime, however in the static case such an
extension was attempted in [76], where it was possible to
determine the bulk geometry numerically to some extent. In
addition, it was also possible to connect the length of the
extra dimension with the additional hairs appearing in these
brane-localized solutions, thereby making the higher
dimensional length scale accessible to observations. In
the subsequent section, we will describe the effective
gravitational field equations and the relevant solution of
these equations.

A. Solution to the effective gravitational
field equations on the brane

The effective gravitational field equations on the brane
can be obtained as follows: (a) one starts by assuming that
the bulk geometry satisfies the bulk Einstein’s equations,
(b) one introduces the projector hAB ¼ δAB − nAnB, satisfying
hABn

B ¼ 0 ¼ hABnA, where nA is the unit normal to the brane
hypersurface and finally (c) using this projector and the
Gauss-Codazzi relations one determines the projected bulk
Einstein tensor on the brane hypersurface and hence

determines the effective gravitational field equations on
the brane. As emphasized earlier, this equation differs from
the four-dimensional Einstein’s equations by several addi-
tional terms. In vacuum spacetime, the only surviving term
corresponds to the electric part of the bulk Weyl tensor and
hence the effective gravitational field equations on the
brane read [73,74]

ð4ÞGab þ Eab ¼ 0: ð1Þ

Here ð4ÞGab is the induced Einstein tensor on the 3-brane
and Eab ≡WPQRSnPe

Q
a nReSb is the electric part of the bulk

Weyl tensor WPQRS, where nA is the unit normal and eAa ¼
ð∂xA=∂yaÞ is another form of the projector with xA and ya

being the bulk and the brane coordinates respectively.
Static, spherically symmetric solutions of the above

effective gravitational field equations were first derived
in [74], which has been subsequently generalized in various
other contexts in [75,77–81]. But most of these solutions
inherited one common feature, namely the existence of a
“tidal charge” parameter having an opposite sign compared
to the electric charge in the case of the Reissner-Nordström
black hole. It turns out that the identical feature survives
even when one considers stationary and axisymmetric
solutions of the above effective gravitational field equa-
tions. Such a rotating black hole solution in the braneworld
scenario can be obtained by using a Kerr-Schild type metric
ansatz and then solving the above effective gravitational
field equations on the 3-brane. In the usual Boyer-Lindquist
coordinate system, the metric describing a rotating black
hole with massM and angular momentum J ≡ aM is given
as [46,47] (setting G ¼ 1 for convenience)

ds2¼−
�
1−

2MrþQ
ρ2

�
dt2−

�
2að2MrþQÞsin2 θ

ρ2

�
dϕdt

þ
�
r2þa2þð2MrþQÞa2 sin2 θ

ρ2

�
sin2 θdϕ2

þρ2

Δ
dr2þρ2dθ2; ð2Þ

where the unknown functions ΔðrÞ and ρðr; θÞ take the
following form:

ρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 þ a2 − 2Mr −Q: ð3Þ
The tidal charge parameter Q, originating from the bulk
Weyl tensor, appears in the above metric through ΔðrÞ and
can have both positive and negative values. The case of
negative Q corresponds to the case of the Kerr-Newman
black hole, while the positive Q scenario acts as the crucial
discriminator from the usual electric charge and encapsu-
lates the effect of extra dimensions. This distinction
becomes apparent as one determines the location of the
horizons associated with Eq. (2), obtained by setting
Δ ¼ 0, which yields
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r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þQ

p
¼ M

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2 þ Q

M2

r �
;

χ ≡ a
M

: ð4Þ

As evident, for positiveQ, the two horizons will coincide in
the extremal limit, provided ða=MÞ > 1, which is in
striking contrast with the standard paradigm for rotating
black holes. Just for future reference, note that the
expressions for angular velocity of the event horizon and
the Hawking temperature for the braneworld black hole
coincides with that of the Kerr black hole, with rþ replaced
by the horizon radius expressed above in terms of the tidal
charge Q, such that

Ωþ ¼ a
r2þ þ a2

¼ 1

2M

 
χ

1þ Q
2M2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2 þ Q

M2

q
!
; ð5Þ

Tþ ¼ 1

4π

rþ − r−
ðr2þ þ a2Þ ¼

1

4πM

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2 þ Q

M2

q
1þ Q

2M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2 þ Q

M2

q
1
CA:

ð6Þ

This provides a broad overview of the basic physical
properties, which we will require, regarding the rotating
solutions in the context of effective gravitational field
equations in the braneworld scenario. In what follows
wewill critically review the interpretation of these solutions
as black holes and shall argue that these solutions should
better be considered as ECOs.

B. Exotic compact objects on the brane

The above section provides the solution of the effective
gravitational field equations on the brane, with stationarity
and axisymmetric configuration. From the perspective
of a brane-localized observer, the above solution indeed
resembles a black hole, with its horizon located at
rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þQ

p
. However, as we will depict

below, in the context of braneworld geometry described
above, it is more natural to interpret the rotating solution as
an ECO, rather than a black hole.
For the above surface, located at r ¼ rþ, to depict an

event horizon it is important to consider the global structure
of the spacetime, i.e., extension of the horizon to the bulk
geometry. However, the extension of the brane-localized
geometry, derived above, to the bulk is nontrivial and
requires the momentum and the Hamiltonian constraint to
be satisfied throughout the bulk extension. Satisfying
these constraints throughout the extension of the brane-
localized solution into the bulk is difficult and due to
growing numerical inaccuracy the extension cannot be
performed beyond the AdS radius l, which is related to
the bulk cosmological constant Λ5 through the relation

l ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð6=8πG5Λ5Þ

p
[37,73,76]. This analysis explicitly

demonstrates that the surface located at r ¼ rþ is an
apparent horizon, as this is the outermost surface of the
negative expansion of the outgoing null congruences [76].
This suggests that the brane-localized geometry described
by Eq. (2) has an apparent horizon rather than an event
horizon and this can be regarded as one of the main features
describing an ECO. Further evidence for the claim that
brane-localized geometry, described in Eq. (2), actually
depicts an ECO can be understood from the perspective of
AdS=CFT as we elaborate below.
Since the bulk geometry involves a negative cosmologi-

cal constant, it is natural to adapt the AdS=CFT corre-
spondence to the braneworld scenario. In the RS2 model it
is assumed that our Universe is a hypersurface in a AdS5
bulk. According to the AdS=CFT conjecture, the boundary
theory of an AdS bulk is a CFT. As a result of this, the zero
mode of the five-dimensional bulk gravity gets trapped on
the brane, inducing a four-dimensional gravity coupled to a
cutoff CFT. The cutoff CFT living on the brane couples to
the effective gravitational field equations by introducing the
renormalized stress-energy tensor on the right-hand side of
Eq. (1). Therefore, the black holes living on the brane
would be quantum corrected due to the backreaction of the
CFT on the brane [42,43,82]. As a consequence of this, the
classical event horizon of the black hole will either be
removed or modified due to semiclassical effects of the
CFT living on the brane [44,83]. It is expected that any such
modifications to the black hole horizon must take place a
few Planck length away from the position of the classical
horizon and would provide a compelling case for ECOs.
These results suggest that the brane-localized black hole,

introduced above, is actually an ECO, since the horizon is
an apparent horizon and there is a CFT living on the brane,
leading to quantum corrections to the horizon via back-
reaction. Thus following [32], we can replace the event
horizon by an apparent horizon and further, as a simplified
model of some quantum structure in the near-horizon
region, we place a partially reflective membrane a few
Planckian distance away from the would-be horizon. As
argued in [32], due to a plausible quantum modification to
the horizon, the position of the membrane in the braneworld
scenario can be related to the size of the extra dimension
based on the fact that the apparent horizon of a brane-
localized black hole gets shifted by [45]

Δrþ ∼
N2l2p
M

; N2 ∼
�
L
lp

�
2

¼ 1030
�

L
1 mm

�
2

; ð7Þ

where N corresponds to the degrees of freedom of the CFT
living on the brane, M is the mass of the ECO and lp is the
four-dimensional Planck length. Note that restoring the
fundamental constantsG and c results in replacing the mass
of the black hole in Eq. (7) to ðGM=c2Þ. This shift in the
location of the horizon can also be related to the black hole
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parameters, by computing the proper length between the
horizon and the surface of the ECO. In terms of the Boyer-
Lindquist coordinate we can write down the position of the
membrane as rwall ¼ rþ þ Δrþ, where Δrþ defines the
compactness of the ECO and is comparable to Eq. (7).
Typically, the membrane is assumed to be a Planck proper
length away from the horizon, but to be consistent with the
semiclassical gravity on the brane we assume that the
membrane is placed at some constant, η, times the Planck
proper length lp. This implies

Z
rþþΔrþ

rþ

ffiffiffiffiffiffi
grr

p
drjθ¼0 ∼ ηlp: ð8Þ

From this relation we can determine Δrþ, in terms of the
black hole parameters as

Δrþ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2 þ Q

M2

q
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2 þ Q

M2

q
þ Q

2M2

� η2l2p
4M

: ð9Þ

Now, comparing Eq. (9) with Eq. (7), one can determine η
in terms of the black hole parameters and the CFT degrees
of freedom N, which in turn relates η directly to the AdS
length scale L as

η2 ¼ 4

�
L
lp

�
2 ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2 þ Q

M2

q
þ Q

2M2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2 þ Q

M2

q : ð10Þ

Therefore, if one can estimate for the parameter η, it is
possible to get an idea about the AdS length scale
associated with the size of the higher dimension. As we
will see later, using the computation of QNMs, this
estimation of the AdS length scale is indeed possible
through time delay measurements. Thus QNMs associated
with the perturbation of braneworld ECOs provide a natural
ground to observationally probe not only the ECOs but also
the higher spatial dimensions.

III. LINEAR PERTURBATIONS

Having described the rotating black hole solution in the
context of the braneworld scenario and the justification
behind treating it as the exterior geometry of an exotic
compact object, let us concentrate on the linear perturbation
of this background geometry. We will consider the case of
scalar, electromagnetic and gravitational perturbation, leav-
ing out the perturbation by the Dirac field for a future study.
The Klein-Gordon equation, determining the evolution of a
scalar field and the Dirac equation, determining the
evolution of a fermionic field are separable in the back-
ground metric given by Eq. (2) [84,85]. Thus we can
employ the techniques developed in the context of Kerr
spacetime to the present scenario, in order to find out the

equation for the radial and angular part of the perturbation.
However, the electromagnetic and gravitational perturba-
tions are generically nonseparable in the background
spacetime under consideration. Even though this poses a
serious problem, there is a way to get rid of this [86,87]. We
can either keep the brane geometry fixed and perturb the
extra dimensional part, or we can keep the extra dimen-
sional part fixed and perturb the brane geometry. In other
words, we consider perturbations which keeps the bulk
contribution Eab unchanged but modifies the brane con-
figuration and vice versa. In this case, for reasonable value
of the tidal charge Q, the electromagnetic and gravitational
perturbation also separates in an identical spirit to the Kerr-
Newman spacetime [88]. In what follows, we will assume
that such is the case and the perturbation separates out
nicely in terms of angular and radial part. This will allow us
to discuss various physical properties of the background
spacetime arising out of its perturbation.

A. Basic equations

In this section, we will spell out the basic equations
governing the linear perturbations of arbitrary spin around
the rotating braneworld geometry. These correspond to two
different sets of equations, one for the radial part and the
other for the angular part. Under the assumptions men-
tioned above, the perturbation ΦðsÞ associated with a
generic spin-s is separable, yielding

ΦðsÞ ¼
X
l;m

eiðmϕ−ωtÞ
sSlmðθÞsRlmðrÞ; ð11Þ

where we have used the result that the spacetime inherits
two Killing vector fields, ð∂=∂tÞμ and ð∂=∂ϕÞμ, respec-
tively. The radial part sRlm and the angular part sSlm satisfy
the following two equations [88,89]:

Δ−s d
dr

�
Δsþ1

dsRlm

dr

�

þ 1

Δ

�
K2− isK

dΔ
dr

þΔð2isK0−λÞ
�
sRlm¼ 0; ð12Þ

d
dx

�
ð1−x2ÞdsSlm

dx

�

þ
�
ðaωxÞ2−2aωsxþ sþ sAlm−

ðmþ sxÞ2
1−x2

�
sSlm¼ 0;

ð13Þ

where we have introduced a new variable, x≡ cos θ. In
addition, we have introduced the quantityK≡ ðr2þa2Þω−
am. Also, the separation constants λ and sAlm are related as,
λ≡ sAlm þ a2ω2 − 2amω. In generic situations, these sep-
aration constants need to be computed numerically or
using semianalytical techniques [88]. We note that for
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a ¼ 0 or for ω ¼ 0, it is possible to obtain a closed form
expression for the separation constants, yielding λ ¼
sAlm ¼ ðl − sÞðlþ sþ 1Þ.
The angular equation can be solved, which for scalar

perturbation (s ¼ 0), yields the associated Legendre poly-
nomial Pm

l ðcos θÞ, such that inclusion of eimϕ provides the
spherical harmonics Ylmðθ;ϕÞ. For other values of the spin,
i.e., for electromagnetic and gravitational perturbation the
solution of the angular equation can be expressed in terms
of the spin-weighted spherical harmonics. Thus the angular
part of the generic spin-s perturbation is well understood
[88]. For the radial part, it is not possible to obtain a closed
form expression for the solutions under generic situations.
But it is possible to solve this equation at the asymptotic
infinity and in the near-horizon regime, which we will
demonstrate explicitly while solving for the QNMs ana-
lytically. The solution of the radial perturbation equation is
crucially dependent on the boundary conditions that we
impose on the boundaries, i.e., at infinity and on the surface
of the ECO. However, the potential for the radial pertur-
bation equation presented above for the Teukolsky variable
with nonzero spin, i.e., for electromagnetic and gravita-
tional perturbations, is complex. As a consequence, the
asymptotic amplitudes are not simply in terms of expo-
nential functions denoting ingoing and outgoing waves.
The way to circumvent this problem is to introduce a new
radial function known as the Detweiler function, so that the
potential is real and the asymptotic amplitudes are sim-
plified by a transformation of the Teukolsky radial pertur-
bation variable sRlm. In the present context, the Detweiler
function can be defined as (following [90])

sXlm¼Δs=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p �
αðrÞsRlmþβðrÞΔsþ1

dsRlm

dr

�
; ð14Þ

where αðrÞ and βðrÞ are two unknown radial functions. In
terms of this function, the radial perturbation equation
presented in Eq. (12) takes the following form (for a
derivation, see Appendix A):

d2sXlm

dr2�
− VDðr;ωÞsXlm ¼ 0: ð15Þ

Here, we have introduced the tortoise coordinate r� through
the following differential equation:

dr�
dr

¼ ðr2 þ a2Þ
Δ

: ð16Þ

The potential VDðr;ωÞ has the following expression:

VDðr;ωÞ ¼
UΔ

ðr2 þ a2Þ2 þG2 þ dG
dr�

; ð17Þ

where the functions G and U take the following forms:

G ¼ sΔ0

2ðr2 þ a2Þ þ
rΔ

ðr2 þ a2Þ2 ; ð18Þ

U ¼ Vðr;ωÞ þ 1

βΔs

�
2
dα
dr

þ d
dr

�
Δsþ1

dβ
dr

��
; ð19Þ

Vðr;ωÞ ¼ −
1

Δ

�
K2 − isK

dΔ
dr

þ Δð2isK0 − λÞ
�
: ð20Þ

One can show, with appropriate choices of the radial
functions αðrÞ and βðrÞ, the potential experienced by the
radial part of the spin-s perturbation of rotating ECO in the
braneworld scenario is indeed real (for the case of a Kerr-
like ECO, see [19]). This is the equation we will use to
determine the QNMs as well as superradiant instability
associated with the generic spin-s perturbations of the
rotating braneworld solution described in Sec. II A.
The rest of the paper will be devoted to solving the radial

part of the perturbation equation, involving a generic spin-s
field, under different boundary conditions appropriate for
the physical scenario under consideration. Since the boun-
dary conditions will play a pivotal role in the subsequent
analysis, we will discuss them in detail in the subsequent
section.

B. Boundary conditions and reflectivity

The determination of the QNM spectrum associated with
the generic spin-s perturbation of the rotating braneworld
solution using the ordinary second order differential equa-
tion as presented in Eq. (12) requires two boundary
conditions. For a classical black hole, one of the boundary
conditions is imposed at the asymptotic infinity and the
other one at the event horizon. As the black hole is a perfect
absorber, the perturbation must be purely ingoing at the
event horizon and at infinity the perturbation must be
outgoing. On the other hand, for a horizonless ECO the
outgoing boundary condition at infinity remains unchanged
while the boundary condition near the surface of the ECO
will be modified as the event horizon is either removed or
replaced by a partially reflective membrane in front of the
would-be horizon, due to possibly some quantum effects at
least in the present context.
Let us start by writing down the nature of generic

solutions to the radial perturbation equation at infinity
and on the horizon for the Teukolsky radial perturbation
variable, sRlm. It is advantageous to express the solution in
terms of the tortoise coordinate r�, defined in Eq. (16), such
that for a generic spin-s perturbation fieldwe canwrite down
the modes at the asymptotic region r� → �∞ as [89,91]

sRlmðrÞ∼
(
Isr−1e−iωr� þOsr−ð2sþ1Þeiωr� for r�→∞
T sΔ−se−iω̃r� þRseiω̃r� for r�→−∞:

ð21Þ
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The horizon frame frequency ω̃ appearing in the above near-
horizon behavior of the Teukolsky radial perturbation
variable sRlm is defined as, ω̃≡ ω −mΩþ, where Ωþ is
the angular velocity of the event horizon, defined in Eq. (5).
The above asymptotic solutions can be obtained from the
asymptotic behavior of the potential entering the radial
perturbation equation presented in Eq. (12). The term with
coefficient I s denotes the ingoing modewhile the term with
coefficientOs denotes the outgoing mode at infinity. For the
near-horizon behavior, the term with coefficient T s denotes
the ingoing mode and the term with coefficientRs denotes
the outgoing mode.
In the case of a black hole, the near-horizon behavior of

the mode function must be purely ingoing, since nothing
can come out of the event horizon. Contrary to the above, in
the case of the rotating ECO in the braneworld scenario, the
presence of an apparent horizon/quantum structure in the
near-horizon regime will affect the near-horizon boundary
condition drastically. Even though the perturbation equa-
tions are not directly affected, the solutions will be different
from that of the black hole case due to modification of the
near-horizon boundary condition. However, the boundary
condition at the asymptotic infinity will remain unchanged
as shown in Fig. 1.
In this paper we are mainly concerned with the study of

the modes instability developed in the ergosphere of a
rotating braneworld ECO due to superradiance and then
determine the QNM spectrum of the ECO to obtain its
ringdown modes. Both, the superradiant instability and the

QNM spectrum can be studied/obtained from the same
perturbation equation, presented in Eq. (12), but requires
different boundary conditions. Let us discuss the boundary
conditions associated with the QNMs first, before delving
into the corresponding scenario for superradiance. The
QNMs are generated by the perturbation of the exterior
geometry and hence there will be an outgoing mode at
infinity and an ingoing mode to the surface of the ECO.
Since the surface of the ECO is reflective in nature, it
follows that there will also be an outgoing mode at the near-
horizon regime and the amplitude of that mode will be
proportional to the reflectivity of the surface of the ECO.
Thus the appropriate boundary condition for the Teukolsky
radial perturbation variable is given by

sRlmðrÞ∼
	
Osr−ð2sþ1Þeiωr� for r� →∞
T sΔ−se−iω̃r� þRseiω̃r� for r� →−∞:

ð22Þ

The physical significance of this boundary condition can
also be understood from Fig. 1. In the case of a black hole,
perturbation of the angular momentum barrier leads to
outgoing modes at infinity and ingoing modes at the
horizon. On the other hand in the context of a braneworld
ECO, the perturbation of the angular momentum barrier
generates outgoing modes at infinity, but in the near-
horizon regime we have both ingoing and outgoing modes,
in stark contrast to the black hole spacetime.
The quantity Rs, which, as we demonstrate, will be

related to the reflectivity of the surface of the ECO. The
reflectivity of the membrane placed in front of the would-be
horizon of the braneworldECOshould ideally depend on the
quantum properties of the membrane. Since we are consid-
ering a generic quantum black hole/ECO in the braneworld
scenario and not being specific about a framework describ-
ing the quantum origin of the ECO, we have stated the
boundary condition at this surface in a generic manner. As
we have emphasized earlier, it is often convenient to work
with the Detweiler function as it provides a real potential for
the perturbation equation, in terms of which the above
boundary condition takes the following form:

XECO ∼
	
eiωr� for r� → ∞
e−iω̃r� þRwalleiω̃r� for r� → r�ðwallÞ:

ð23Þ

Here, ω̃ is the horizon-frame frequency as already defined
and r�ðwallÞ denotes the location of the surface of the ECO in
terms of the tortoise coordinate. The reflectivity of the
surface of the ECO is given byRwall, which in general can be
a function of the frequencyω as well. Using Eq. (14), which
connects the Teukolsky radial perturbation variable sRlm
with sXlm, the Rwall can also be related to Rs. This is
achieved by explicitly computing the ingoing and outgoing
flux in the near-horizon regime (at r� ¼ r�ðwallÞ) using the
Detweiler function and the Teukolsky radial perturbation
variable. This yields [26,27,92]

FIG. 1. The above figure demonstrates the relevant boundary
conditions associated with QNMs in the context of a black hole as
well as for braneworld ECO. As evident, for black hole
spacetime, the perturbation of the angular momentum barrier
leads to outgoing mode at infinity and ingoing mode at the
horizon. For braneworld ECO, the perturbation leads to outgoing
mode at infinity (similar to black hole spacetime) while for the
near-horizon regime, there will be both ingoing and outgoing
modes, in contrast to black hole spacetime. See the text for more
discussions.
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jRwallj2 ¼
Fout½r�→ r�ðwallÞ�
Fin½r�→ r�ðwallÞ�

¼

8>>>>>>>><
>>>>>>>>:

jR0j2
jT 0j2 s¼ 0

jR�1j2
jT �1j2




 B̄2

E




�1
s¼�1

jR�2j2
jT �2j2

�
jCj2
D

��1

s¼�2;

ð24Þ

where jCj2 is related to the Starobinsky-Churilov constant
[53] and B̄2, E, andD are dependent onω,m, the separation
constant λ, as well as hairs of the black hole [26,92]. Note
that for the case of scalar perturbation neither jCj2 norD has
any effect and thus with T 0 ¼ 1, the reflectivity arising out
of theDetweiler function is identical to that of the Teukolsky
radial perturbation. On the other hand, for electromagnetic
and gravitational perturbations, these terms will affect
the reflectivity. Since we are not interested in an exact
expression for the reflectivity but rather interested in under-
standing how a nonzero reflectivity can affect various
physical characteristics of the solution, the exact relation
inEq. (24)will not be ofmuch importance.However, if some
exact expression of the reflectivity can be obtained from
some model of quantum gravity, then Eq. (24) will be of
significant interest, as it can provide a direct connection
between themacroscopic observations with the microscopic
theoretical details. Since such is not the case, there is not
much significant differencewhetherwe callRwall or the ratio
ðRs=T sÞ as the reflectivity. For completeness, we will
present all our results in terms of Rwall using Eq. (24).
For the reflectivity of the membrane (or of the quantum

corrected apparent horizon) various choices can be made,
namely—(a) perfectly reflecting surface [19], (b) partially
reflecting surface with constant reflectivity and finally,
(c) partially reflecting surface with a frequency dependent
reflectivity RwallðωÞ, a special case of which is the
Boltzmann reflectivity [11]. Among these models, the
perfectly reflecting scenario is not very practical since
they lead to ergoregion instability for moderate rotation of
the ECO and also there are some observational constraints
from the stochastic gravitational wave background [93].
Existence of the instability of modes for perfectly reflect-
ing membranes is a generic one and exists in the present
context as well (though much more tamed in the
braneworld scenario than the Kerr-like ECOs, as we will
see). Hence it is more favorable to work with models of
the membrane with partial or frequency dependent reflec-
tivity as described above. The reflectivity Rwall in the
constant reflectivity model of the membrane can be
expressed as

Rwall ¼ Rceiδwall ; 0 < Rc < 1; ð25Þ
where δwall is a phase factor that depends on the model
of the quantum gravity. The situation with Rc ¼ 0

corresponds to a black hole, while the case Rc ¼ 1 is
the perfectly reflecting membrane, which leads to insta-
bility and hence will not be considered here. On the other
hand, if one assumes the black hole as a macroscopic
realization of a discrete quantum system, then without
going into details of the quantum gravity theory the
reflectivity of the membrane can be defined in terms of
the Boltzmann factor as [11,25]

Rwall ¼ e−jω̃j=ð2TþÞeiδwall ; ð26Þ

where Tþ is the Hawking temperature as defined
in Eq. (6).
Finally, for superradiance there is an ingoing wave from

infinity, a part of which gets reflected from the effective
potential of the exterior geometry and goes back to infinity
as an outgoing wave. A part of the incident wave is
transmitted to the region inside the photon sphere (which
is the location of the maxima of the effective potential) and
ultimately hits the surface of the ECO. Then a part of it
again gets reflected and hits the effective potential, from
which a part goes to infinity while another part comes in
and the whole process is repeated. Therefore the boundary
condition will involve both ingoing and outgoing waves at
infinity as well as near the surface of the ECO, which
suggests that it is given by Eq. (21) and as shown in Fig. 2.
As we will show later, the amplification due to

FIG. 2. The above figure presents the relevant boundary
condition associated with the phenomenon of superradiance in
the case of a black hole as well as a braneworld ECO. In the case
of a black hole, the ingoing wave gets scattered by the angular
momentum barrier and goes to infinity while a part of it is
transmitted. The scattered wave carries out more energy if the
frequency of the mode satisfies the condition ω < mΩþ. On the
other hand, for braneworld ECO, there are both ingoing and
outgoing modes in the near-horizon regime, leading to possible
runaway amplification of the amplitude of the ingoing wave from
infinity, referred to as the ergoregion instability.
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superradiance will depend on the reflectivity of the effec-
tive potential (which is identical to that of the black hole)
and also on the reflectivity of the membrane/horizon. Thus
the phenomenon of superradiance will also receive subtle
modifications from the rotating ECO in the braneworld and
will possibly make it more stable under superradiant
instability due to the tidal charge.

IV. SUPERRADIANT INSTABILITY FOR EXOTIC
COMPACT OBJECTS IN BRANEWORLD

For a rotating black hole, superradiance is the process by
which the amplitude of an ingoing wave from infinity,
falling on the black hole, is enhanced at the cost of the
rotational energy of the black hole and is finally reflected
outwards. For black holes this process does not lead to any
instability (as the ingoing mode is always absorbed) while
for ECOs, as we describe below, there is a potential
instability. As the ingoing wave is incident on the black
hole spacetime, it gets scattered by the effective potential. A
part of it is reflected and goes to infinity, carrying the excess
energy, while a part is transmitted and goes into the
horizon. For ECOs, the part which is transmitted from
the effective potential is further reflected by the surface of
the ECO and since it passes through the ergoregion, it can
extract rotational energy from the ECO. A part of this wave
is again reflected and goes to the surface of the ECO with
an increased amplitude. Then the whole process repeats,
leading to a runaway situation, where the amplitude of the
modes inside the ergoregion grows indefinitely. Thus for a
spinning ECO, with a reflective membrane in front of the
horizon, the process of superradiance may lead to a
potential instability. This is known as the superradiant
instability or ergoregion instability [55]. For clarity, we
have provided a pictorial depiction of the physical scenario
discussed above in Fig. 2.
To reiterate, by definition negative energy states can exist

within the ergosphere and even though it is energetically
more favorable to drift towards even more negative energy
states, the black holes are stable. This is because, the
presence of an event horizon makes the black hole absorb
all the ingoing radiation very effectively. However, in the
case of an ECO due to the existence of a reflective surface
such dissipation mechanism is absent, making them highly
unstable. The instability is enhanced for perturbing fields
with higher spin and hence for gravitational perturbations
we except the problem of superradiant instability to be the
strongest. As we will see, the presence of a nonzero tidal
charge curbs the instability.
The best way to quantify the phenomenon of super-

radiance is through the amplification of the ingoing wave
from infinity. As evident from Eq. (21), the amplification
factor sZlm will depend on the ratio jOs=I sj and it can be
defined in terms of the ratio of ingoing and outgoing energy
fluxes at infinity as [55]

sZlm ¼ dEout

dEin
− 1 ¼

8>>>>>>>><
>>>>>>>>:




O0

I0




2 − 1; s ¼ 0


O1

I1




2�16ω4

B̄2

��1

− 1; s ¼ �1




O2

I2




2�256ω8

jCj2

��1

− 1; s ¼ �2;

ð27Þ

where jCj is related to the Starobinsky-Churilov constant
and jB̄j is dependent on ω, m, the separation constant λ
and the asymptotic hairs of the ECOs. Based on the
transformation of the radial perturbation variable of
Teukolsky to Detweiler function, the amplification factor
sZlm can be written in terms of the Detweiler asymptotic
amplitudes as

sZlm¼ jRBHj2−1; sXlmðr� →∞Þ¼RBHeiωr� þe−iωr� :

ð28Þ

As we have emphasized earlier, it is difficult to solve for
the radial perturbation equation analytically in some
generic context and the same consideration applies to
the present context as well. It is possible to determine
the amplification factor sZlm analytically, in the low-
frequency regime [52,53,55,94]. For the background
spacetime, given by the rotating solution on the brane
with a nonzero tidal charge, the amplification factor for a
generic spin-s field can be given by (for a detailed
derivation, see Appendix C)

sZlm ¼ jRBHj2 − 1 ¼ 4σ

�ðl − sÞ!ðlþ sÞ!
ð2lÞ!ð2lþ 1Þ!!

�
2

× ½ωðrþ − r−Þ�2lþ1
Yl
n¼1

�
1þ 4σ2

n2

�
; ð29Þ

where the quantity σ takes the following form,
σ ¼ fðr2þ þ a2Þ=ðrþ − r−ÞgðmΩþ − ωÞ, which explicitly
depends on the tidal charge parameter Q. We can see from
the above expression for the amplification factor sZlm,
that for ω < mΩþ, the amplification factor is positive, i.e.,
the amplitude of the outgoing mode is larger than the
ingoing mode, i.e., within the superradiant bound (this
corresponds to ω < mΩþ) the reflectivity of the black hole
is greater than unity. Using the above expression for σ, we
can write down the above amplification factor explicitly in
the low-frequency regime as

ERGOREGION INSTABILITY AND ECHOES FOR BRANEWORLD … PHYS. REV. D 103, 084019 (2021)

084019-9



sZlm¼ 4M

0
B@1þ Q

2M2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2þ Q

M2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2þ Q

M2

q
1
CA

×

2
64 m
2M

0
B@ χ

1þ Q
2M2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2þ Q

M2

q
1
CA−ω

3
75

×

�ðl− sÞ!ðlþ sÞ!
ð2lÞ!ð2lþ1Þ!!

�
2
"
2Mω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2þ Q

M2

r #
2lþ1

×
Yl
n¼1

8<
:1þ4M2

n2

0
B@1þ Q

2M2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2þ Q

M2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2þ Q

M2

q
1
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2

×

2
64ω−

m
2M

0
B@ χ

1þ Q
2M2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−χ2þ Q

M2

q
1
CA
3
75
29=
;: ð30Þ

The above analysis provides the desired analytical expres-
sion for the amplification factor due to superradiance.
Note that the amplification factor depends explicitly on
the tidal charge parameter Q and reduces to that of a Kerr
black hole in the limit of vanishing tidal charge. In generic
contexts, one has to resort to numerical computation in
order to determine the amplification factor and Eq. (27)
plays a key role in that. In particular, using a modified
version of the Mathematica code used in [55], we have
numerically determined the amplification factor by com-
puting the asymptotic amplitudes Os and Is, respectively.
Hence the amplification factor has been determined in a
case by case basis using Eq. (27). In order to see the
consistency of the analytical result derived in Eq. (30)
with the numerical analysis, the amplification factor

arising out of numerical as well as analytical treatment
of superradiance has been plotted as a function of the
frequency ω in Fig. 3. As evident, sZlm > 0 for the
superradiant frequencies, irrespective of the spin-s of
the perturbation. In addition, Fig. 3 explicitly demonstrates
the usefulness of the tidal charge parameterQ in taming the
superradiant instability. As the value of the tidal charge
parameter is increased, the critical frequency mΩþ
decreases in comparison to the scenario with zero tidal
charge. Hence the parameter space allowed in the fre-
quency domain decreases by almost 45%, for ðQ=M2Þ ¼ 1,
in comparison to the case of vanishing tidal charge, see
Fig. 3. This is because the presence of the extra dimension
and its backreaction on the brane makes the gravitational
pull stronger, thereby increasing the size of the would-be
horizon and decreasing the angular velocity Ωþ, which in
turn lowers the critical frequency mΩþ. Besides reducing
the parameter space in the frequency domain, the presence
of extra dimension also helps in reducing themaxima of the
amplification factor. For gravitational perturbation, the
maximum amplification factor in the presence of extra
dimension, with ðQ=M2Þ ¼ 1, is about 10 times smaller to
the case with ðQ=M2Þ ¼ 0, as Fig. 3 explicitly demon-
strates. Even though, for a given frequency ω, the ampli-
fication in the presence of extra dimension is larger in
comparison to the general relativistic scenario, the reduc-
tion in the parameter space in the frequency domain and
decrease in the maximum amplification by a significant
amount makes the rotating ECO more stable against the
superradiant instability. As we will see, an identical
scenario holds true for the static modes as well, to be
discussed in the later sections.
For a horizonless ECO, as pointed out before, if the

horizon is replaced by a perfectly reflective membrane,

FIG. 3. The amplification factor sZlm is plotted against the frequency both from the analytical expression and numerical estimation,
for different values of the dimensionless tidal charge parameter ðQ=M2Þ. The plot of the amplification factor sZlm for the scalar case
(s ¼ 0) is plotted to the left and for the gravitational case (s ¼ −2) is plotted to the right. We see from the above plots that with an
increase in the tidal charge parameter Q, the ergoregion instability is suppressed. This is because the critical frequency up to which the
amplification happens decreases, as well as the maximum amplification factor also decreases drastically. Though at a given frequency,
the amplification in the presence of extra dimension is slightly larger compared to the case of the Kerr black hole. See the text for more
discussions.
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whenever the amplification factor sZlm > 0, it would give
rise to superradiant instability. The “bounce and amplify”
picture for the above phenomenon has also been discussed
before. To see how this assertion comes about, note that the
ingoing wave after transmission at the effective potential
barrier gets reflected by the surface of the ECO and hence
its amplitude will be modified by a factor of Rwall.
Subsequently, it is again reflected by the potential barrier
and then it will hit the surface of the ECO with amplitude
RwallRBH, after which this process will repeat. Therefore,
the wave gets amplified by a factor of jRwallRBHj due to
each bounce at the surface of the ECO. Thus, the energy of
the perturbation mode would grow indefinitely unless
jRwallRBHj < 1. If we consider a perfectly reflecting sur-
face, withRwall ¼ 1, then the above condition can never be
satisfied. As shown in [19], a way to curb this instability is
to allow some absorption of the ingoing radiation by the
surface of the ECO, i.e., we would like to chooseRwall < 1,
such that the condition jRwallRBHj < 1 can be satisfied.
This will allow us to put possible constraints on the
reflectivity of the membrane, in terms of the amplification
due to superradiance, which yields,

jRwallj2 <
1

1þ sZlm
: ð31Þ

This bound on the reflectivity of the surface of the ECO
depends crucially on the tidal charge parameter Q through
Eq. (30). As emphasized before, this ensures that the
energy inside the cavity formed by the angular momentum
barrier and the surface of the ECO does not grow
indefinitely. Based on the numerical computation of the
amplification factor, we provide the maximum allowed
values for the reflectivity Rwall of the surface of the ECO,
in Table I, so that the superradiant instability can be
quenched.
As the phenomenon of superradiance and the preced-

ing discussion explicitly demonstrates, in order to avoid
ergoregion instability it is necessary for the surface of the
ECO to absorb some amount of ingoing radiation. This can
be quantified in terms of the absorption cross section,
defined as σabs, which is defined as

σabs ¼
Fin½r� → r�ðwallÞ� þ Fout½r� → r�ðwallÞ�

Fin½r� → ∞� : ð32Þ

The absorption cross section σabs can be computed ana-
lytically in the low-frequency approximation, using the
solutions of the radial perturbation equation in this limit, as
shown is Appendix D. However, it is more useful to
perform a numerical analysis to depict the effect of the
reflectivity of the surface of the ECO and the tidal charge
on the absorption cross section, which has been presented
in Fig. 4. As evident, the presence of the tidal charge
increases the absorption cross section, thereby reducing the
ergoregion instability compared to the general relativistic
scenario. Thus the absorption cross section also provides us
a similar conclusion, i.e., the presence of the tidal charge,
or, equivalently that of an extra spatial direction, reduces
the ergoregion instability for exotic compact objects living
on the brane.

TABLE I. We have presented various bounds on the reflectivity
Rwall, of the surface of the ECO, for different values of the black
hole spin parameter a and the tidal charge parameter Q, obtained
from Eq. (31), for the following choices of the parameters:
s ¼ −2, l ¼ 2 and m ¼ 2 respectively, based on the numerical
computation of sZlm. As evident, for a given rotation parameter,
the reflectivity increases with an increase of the tidal charge
parameter Q, i.e., as the size of the extra dimension decreases.

Bounds on jRwallj
a ðQ=M2Þ ¼ 0 ðQ=M2Þ ¼ 1

0.998 0.64 0.72
0.9 0.94 0.98
0.8 0.992 0.999

FIG. 4. The absorption cross section σabs of the surface of the ECO is plotted against the frequency of the perturbation modes for
different values of the reflectivity and the tidal charge. The zero crossing of the absorption cross section corresponds to the superradiance
bound ω ¼ mΩþ. See the text for more discussions.
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V. STATIC MODES AND DARBOUX
TRANSFORMATION FOR EXOTIC COMPACT

OBJECT ON THE BRANE

In relation to the ergoregion instability, we have seen that
the low-frequency modes play a crucial role and in
particular the ω ¼ 0, i.e., the static mode is most important
in this respect. In addition, the instability is enhanced if the
surface of the ECO is perfectly reflecting. Following which,
in this section we discuss the static perturbation modes for
generic spin for the braneworld ECO with perfectly
reflecting surface. In particular, we will see that the critical
value of the rotation parameter depends on the tidal charge
parameter. To start with, we rewrite Eq. (12) for the static
modes as

Δ−s d
dr

�
Δsþ1

dsRlm

dr

�
þ 1

Δ
½a2m2þ isamΔ0−Δλ�sRlm¼ 0;

ð33Þ

where λ ¼ ðl − sÞðlþ sþ 1Þ follows from the angular
perturbation equation. As we will show later, the
solution of the above equation for gravitational and
electromagnetic perturbation can be related to the scalar
perturbation through the Darboux transformation. Thus
we will discuss the solution of the above equation for
scalar perturbation first, and then shall comment on
the electromagnetic and gravitational perturbation using
Darboux transformation.

A. Static mode for scalar perturbation

For the scalar perturbation, with s ¼ 0, the radial pertur-
bation equation for the static mode can be expressed as

d
dr

�
Δ
d0Rlm

dr

�
þ 1

Δ
½a2m2 − lðlþ 1ÞΔ�0Rlm ¼ 0: ð34Þ

Introducing z≡ ðr − rþÞ=ðrþ − r−Þ and expressing Δ ¼
ðr − rþÞðr − r−Þ ¼ zðzþ 1Þðrþ − r−Þ2, the above differ-
ential equation can be written as

d
dx

�
ð1 − x2Þ d0Rlm

dx

�
þ
�
lðlþ 1Þ − ðiνÞ2

1 − x2

�
0Rlm ¼ 0;

ð35Þ

where we have introduced a new variable x ¼ 1þ 2z and
a new constant, ν≡ 2am=ðrþ − r−Þ. The above differential
equation is identical to the Legendre differential equation
and hence the general solution is in terms of the associated
Legendre polynomials Piν

l ðxÞ and Qiν
l ðxÞ. However,

regularity of the perturbation as r → ∞ demands the
coefficient of Piν

l ðxÞ to vanish. Given the perfectly reflec-
tive nature of the surface of the ECO, imposing the
Dirichlet boundary condition at the surface of the ECO

leads to Qiν
l ð1þ 2z0Þ ¼ 0, while the Neumann boundary

condition yields ðd=dzÞQiν
l ð1þ 2zÞjz0 ¼ 0. This yields

z−iν0 ≈ eiðpþ1Þπ Γð1 − iνÞΓðlþ 1þ iνÞ
Γð1þ iνÞΓðlþ 1 − iνÞ ; ð36Þ

where p is an odd integer for the Dirichlet boundary
condition and p is an even integer for the Neumann
boundary condition. The above algebraic relation deter-
mines the critical value of the rotation parameter a ¼ acrit,
beyond which the ECO will experience superradiant
instability. An analytical estimate of acrit for braneworld
ECO can be obtained from Eq. (36) using the ν → 0 limit,
which is equivalent to slow rotation limit. This yields

acrit ¼
πðpþ 1ÞM
mj ln ϵj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q

M2

r
: ð37Þ

Note that the dimensionless parameter ϵ, appearing in the
above expression, denotes the departure of the surface of
the ECO from the horizon location of the would-be black
hole, which for the case of braneworld ECO is given by
Eq. (7). As the above expression suggests, presence of a
positive tidal charge Q, whose origin is solely from the
existence of an extra spatial dimension, indeed suppresses
the instability by increasing the value of acrit, as evident
from Eq. (37). This is consistent with our earlier findings,
where the presence of a tidal charge reduces the amplifi-
cation due to superradiance. Thus we can safely conclude
that braneworld ECOs are more stable than other candi-
dates for ECO, as far as staticmodes are concerned.Wewill
now present the results for electromagnetic and gravita-
tional perturbation in the context of static modes.

B. Darboux transformation and static mode for
electromagnetic and gravitational perturbation

For static modes the electromagnetic and gravitational
perturbations are closely related to the scalar perturbation
and its derivative through the Darboux transformation. For
the electromagnetic perturbation, the radial perturbation
equation for the static modes, presented in Eq. (33), takes
the following form:

Δ
d
dr

�
d−1Rlm

dr

�

þ 1

Δ
½−lðlþ 1ÞΔþ a2m2 − iamΔ0�−1Rlm ¼ 0; ð38Þ

which can be related to the scalar perturbation equation for
the static mode, through the following transformation:

−1Rlm ¼ 0Rlm þ iΔ
am

d0Rlm

dr
; ð39Þ

as one can check in a straightforward manner. Therefore,
the calculation for the scalar perturbation will be directly
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applicable for the case of electromagnetic perturbation
as well. In an identical manner, the radial perturbation
equation for the gravitational perturbation, from Eq. (33),
can be expressed as

Δ2
d
dr

�
1

Δ
d−2Rlm

dr

�

þ 1

Δ
½a2m2−2iamΔ0−ðl−1Þðlþ2ÞΔ�−2Rlm¼0: ð40Þ

The gravitational perturbation −2Rlm can be related to
the electromagnetic perturbation through the following
relation:

−2Rlm ¼ ðam − iΔ0Þ
2am − iðrþ − r−Þ −1

Rlm

þ iΔ
2am − iðrþ − r−Þ

d−1Rlm

dr
; ð41Þ

since it is straightforward to check that −2Rlm indeed
satisfies Eq. (40), provided −1Rlm satisfies Eq. (38).
Note that these relations are not unique, as there can be
arbitrary overall multiplicative factors. Given these rela-
tions, we can immediately determine the appropriate
boundary conditions for the electromagnetic and gravita-
tional perturbations, using the boundary condition on the
scalar perturbation. These can be obtained by inverting the
relations presented in Eqs. (39) and (41) and expressing

0Rlm and its derivative in terms of −1Rlm and −2Rlm, along
with their derivatives. These relations, when expressed in
an explicit manner, yield

0Rlm ¼ −
iam

lðlþ 1Þ
��

iam
Δ

�
−1Rlm þ d−1Rlm

dr

�
; ð42Þ

Δ
d0Rlm

dr

¼−
iam

lðlþ1Þ
�
iam

d−1Rlm

dr
þ−1Rlm

�
lðlþ1ÞΔ−a2m2

Δ

��
;

ð43Þ

for electromagnetic perturbation. Therefore, the Dirichlet
boundary condition demands setting 0Rlm ¼ 0 on the
surface of the ECO and hence the combination within
square brackets of Eq. (42) must vanish. Similarly, for the
Neumann boundary condition, we can set ðd0Rlm=drÞ ¼ 0,
and hence the electromagnetic perturbation −1Rlm must
satisfy the differential relation, arising out of vanishing
of the terms within the square brackets of Eq. (43).
Furthermore, we can use these boundary conditions on
the electromagnetic perturbation in order to determine the
relevant boundary condition on the gravitational perturba-
tion using Eq. (41). These yield

d−2Rlm

dr
þ
�
iam
Δ

þ ðlþ 2Þðl − 1Þ
2iamþ Δ0

�
−2Rlm ¼ 0;

for theDirichlet boundary condition ð44Þ

d−2Rlm

dr
þ
�
iam
Δ

þ iamðl−1Þðlþ2Þ
iamð2iamþΔ0Þþlðlþ1ÞΔ

�
−2Rlm¼0;

for the Neumann boundary condition ð45Þ

as the boundary conditions for the gravitational perturba-
tion on the surface of the ECO. Therefore, the computation
of the critical rotation parameter acrit for the scalar
perturbation can be easily extended to both electromagnetic
and gravitational perturbations with appropriate boundary
conditions, as presented above. As evident, for the static
modes associated with both electromagnetic and gravita-
tional perturbations, the boundary conditions for the ECO
on the brane are affected by the presence of extra
dimension, through the tidal charge parameter Q appearing
in Δ. Also, the value of acrit will increase in the presence of
extra dimension, as it predicts a positive value of the tidal
charge parameter Q, thereby stabilizing the ECO against
the superradiant instability for electromagnetic and gravi-
tational perturbations.

VI. SPECTRUM OF THE QUASINORMAL MODES
FOR THE EXOTIC COMPACT OBJECT ON THE

BRANE: ANALYTICAL RESULTS

In this section, we will determine the QNMs associated
with the perturbation of the ECO using analytical tech-
niques. This requires solving the radial and angular
perturbation equations, presented in Eqs. (12) and (13),
respectively. As emphasized earlier, for obtaining the
QNM spectrum, we need to impose certain boundary
conditions at the horizon and also at the asymptotic
infinity, which has been discussed in detail in Eqs. (22)
and (23) (also see Fig. 1). In brief, one must assume that
there are no ingoing waves from the asymptotic infinity,
which is unanimously true for both the black hole and the
ECO. While, for a black hole the boundary condition at
the horizon is ingoing, but as we have discussed, for the
horizonless ECO the boundary condition at the horizon is
modified due to the presence of the reflective surface in
the near-horizon region.
Using these boundary conditions in the low-frequency

regime ðMω ≪ 1Þ, it is possible to obtain the characteristic
frequencies by matching the solution in the near-horizon
region with the solution near infinity. In the near-horizon
region, described by the condition ωðr − rþÞ ≪ 1, the
radial perturbation equation can be simplified by the
low-frequency approximation, leading to the following
solution in terms of hypergeometric functions (see
Appendix B),
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sRlm¼ð1þzÞiσðAz−iσ2F1½−lþs;lþ1þs;1−2iσþs;−z�
þBziσ−s2F1½−lþ2iσ;lþ1þ2iσ;1þ2iσ−s;−z�Þ:

ð46Þ

Here, A and B are unknown constants, which need to be
determined using appropriate boundary conditions. We
have also used the following definitions: z≡ ðr − rþÞ=
ðrþ − r−Þ and σ ≡ ðr2þ þ a2ÞðmΩþ − ωÞ=ðrþ − r−Þ. On
the other hand, in the asymptotic region r ≫ M, the radial
perturbation equation can be reduced to a simple form in
the low-frequency approximation, which can be immedi-
ately solved, yielding (see Appendix B)

sRlm ¼ αe−ikzzl−sUðl − sþ 1; 2lþ 2; 2ikzÞ
þ βe−ikzz−l−s−1Uð−l − s;−2l; 2ikzÞ; ð47Þ

where α and β are two unknown constants to be deter-
mined using the boundary conditions and k≡ ωðrþ − r−Þ,
with z defined earlier. If we take the r → ∞ limit of
Eq. (47), we will observe that it will provide both ingoing
as well as outgoing solutions. Since by the boundary
condition, presented in Eq. (22), there will be no ingoing
wave at infinity, we obtain the following condition among
the arbitrary constants α and β as

β

α
¼ −

Γð2lþ 2ÞΓð−lþ sÞ
Γðlþ sþ 1ÞΓð−2lÞ ð−2ikÞ

−1−2l: ð48Þ

Substitution of this condition in Eq. (47) will eliminate one
arbitrary constant, leaving an overall factor. Subsequently,
one takes the small ðr − rþÞ limit of Eq. (47) andmatches it
with the r → ∞ limit of Eq. (46), in the intermediate
overlapping region ðM ≪ r − rþ ≪ 1=ωÞ, yielding

A
B
¼ −

Γðlþ 1þ sÞ
Γðlþ 1 − sÞ

�
Rþ þ ið−1Þlk2lþ1LSþ
R− þ ið−1Þlk2lþ1LS−

�
; ð49Þ

where we have defined the following:

R� ¼ Γð1� 2iσ ∓ sÞ
Γðlþ 1� 2iσÞ ; S� ¼ Γð1� 2iσ ∓ sÞ

Γð−l� 2iσÞ ;

L ¼ 1

2

�
2lΓðlþ 1þ sÞΓðlþ 1 − sÞ

Γð2lþ 1ÞΓð2lþ 2Þ
�
2

: ð50Þ

Finally, the determination of the QNMs requires imposing
a relevant boundary condition at the near-horizon regime.
Conventionally for a black hole spacetime, an ingoing
boundary condition is imposed and therefore one obtains
another relation between A and B, which along with
Eq. (49) determines the QNMs. As we have discussed
for ECO, where the horizon is replaced by a partially
reflective membrane in front of the would-be horizon,
the relevant boundary condition corresponds to Eq. (22).

This, when applied to the near region solution presented in
Eq. (46), yields the ratio ðRs=T sÞ in terms of the ratio
(A=B) of the unknown constants appearing in the near
region solution of the Teukolsky equation. Using this
equation along with the ratio (A=B) given in Eq. (49),
the reflectivity Rwall can be obtained from Eq. (24). Since
the reflectivity Rwall depends on the spin-s of the pertur-
bation, we will discuss the QNM spectrum for braneworld
ECO, individually for each spin.

A. Quasinormal mode frequencies for scalar
perturbation

The scalar perturbations are defined by s ¼ 0, for which
the ratio R0=T 0 is given by the ratio (A=B), modulo some
additional phase factor. Similarly, the reflectivity of the
membrane Rwall is related to the ratio R0=T 0, with some
arbitrary phase factor, as evident from Eq. (24). Finally the
reflectivity of the surface of the ECO takes the following
form [see Appendix B for the derivation of ðR0=T 0Þ]:

Rwall ¼
A
B

�
rþ

rþ − r−

�
−2iσ

eiδwall ; ð51Þ

where δwall is the additional phase factor associated
with the reflectivity of the surface of the ECO. In order
to fix the phase factor δwall, we refer back to the case of
perfectly reflective surface, i.e., the case inwhichRwall ¼ 1.
In this case from the Dirichlet boundary condition on
the surface of the ECO, we obtain ðA=BÞz−2iσwall ¼ −1.
Therefore, we choose the phase factor δwall, such that
eiδwallfrþ=ðrþ−r−Þg−2iσ¼z−2iσwall and hence using Eqs. (49)
and (51), we obtain

Rwall ¼
�
A
B

�
z−2iσwall ¼ −

�
Rþ þ ið−1Þlk2lþ1LSþ
R− þ ið−1Þlk2lþ1LS−

�
z−2iσwall :

ð52Þ

Usually, it is not easy to obtain an exact analytic solution of
Eq. (51), but we can solve it approximately in the low-
frequency limit in order to obtain the QNM frequencies. We
can assume σ ≪ 1, i.e., we are considering modes having
frequencies near the superradiant bound ω ¼ mΩþ, along
with taking the low-frequency limit Mω ≪ 1. In these
limits, to leading order, Rþ ≈ R− and Sþ ≈ 0 ≈ S−. Thus
from Eq. (51), using the tortoise coordinates we obtain

e2ir�ðwallÞω̃ ¼ −Rwall ¼ eið2nþ1ÞπþlnRwall : ð53Þ

From this equation we can obtain the nth order QNM
frequency to take the following form:

ωn ∼mΩþ þ ð2nþ 1Þπ
2r�ðwallÞ

− i
lnRwall

2r�ðwallÞ
; n ∈ N: ð54Þ

DEY, BISWAS, and CHAKRABORTY PHYS. REV. D 103, 084019 (2021)

084019-14



Note that the QNM frequencies depend explicitly on the
reflectivity of the surface of ECO and also on the tidal
charge, through the quantity r�ðwallÞ. In particular, if we
specialize to the case of Boltzmann reflectivity, where
Rwall ∼ expð−jω̃j=2TþÞ, we get the nth order QNM fre-
quency to yield

ωn ∼
�
mΩþ þ ð2nþ 1Þπ

2r�ðwallÞ

��
1 −

i
4r�ðwallÞTþ

�
−1
: ð55Þ

The above analysis provides the analytical estimation of the
QNM frequencies at the zeroth level of the approximations
described above. If we keep the next higher order contri-
bution, then the QNM frequency for the nth mode would be
given by Eq. (54), withRwall, replaced byRwallRBH, where
RBH is the reflectivity of the angular momentum barrier,
which can be determined from Appendix C.

B. Quasinormal mode frequencies for
electromagnetic perturbation

For the electromagnetic perturbation we use the appro-
priate boundary condition given in Eq. (24) for s ¼ −1.
Using Eq. (49) we can write Rwall as

Rwall ¼
A
B





 B̄2

E





−1z2iσ0 ð56Þ

Rwall ¼ −
Γðlþ 1 − 1Þ
Γðlþ 1þ 1Þ

�
Rþ þ ið−1Þlk2lþ1LSþ
R− þ ið−1Þlk2lþ1LS−

�




 B̄2

E





−1z2iσ0 :

ð57Þ

We can solve this in the low-frequency limit to obtain the
quasinormal frequencies. We can assume σ ≪ 1 the low-
frequency limit Mω ≪ 1 in Eq. (57) and using the tortoise
coordinates we get

z2iσ0 ¼ e2iσr
�
0
ðrþ−r−Þ=ðr2þþa2Þ ¼ Rwall: ð58Þ

Assuming the Boltzmann reflectivity of the membrane
Eq. (26), from this equation we can write the quasinormal
frequencies as [25]

ωn ∼
�
mΩþ þ ð2nÞπ

2r�ðwallÞ

��
1 −

i
4r�ðwallÞTþ

�
−1
: ð59Þ

We can see that in this case the phase for the electromag-
netic perturbation differs from that of the scalar case by a
factor of π.

C. Quasinormal mode frequencies for
gravitational perturbation

For the gravitational perturbation we use the appropriate
boundary condition given in Eq. (24) for s ¼ −2. Using
Eq. (49) we can write Rwall as

Rwall ¼
A
B





 jCj2D





−1z2iσ0 ð60Þ

Rwall¼−
Γðlþ1−2Þ
Γðlþ1þ2Þ

�
Rþþ ið−1Þlk2lþ1LSþ
R−þ ið−1Þlk2lþ1LS−

�



 jCj2D





−1z2iσ0 :

ð61Þ

Again we can solve this in the low-frequency limit to obtain
the quasinormal frequencies. We can assume σ ≪ 1 near
the superradiant bound ω ¼ mΩ, which is same as the low-
frequency limit Mω ≪ 1 in Eq. (61) and use the tortoise
coordinates to get

z2iσ0 ¼ e2iσr
�
0
ðrþ−r−Þ=ðr2þþa2Þ ¼ −Rwall: ð62Þ

Assuming the Boltzmann reflectivity of the membrane,
from this equation we can write the quasinormal frequen-
cies as [25]

ωn ∼
�
mΩþ þ ð2nþ 1Þπ

2r�ðwallÞ

��
1 −

i
4r�ðwallÞTþ

�
−1
: ð63Þ

We can see that the frequencies are the same as the
scalar case.

VII. RINGDOWN AND ECHOES FROM EXOTIC
COMPACT OBJECT ON THE BRANE:

NUMERICAL ANALYSIS

In this section, we will present the analysis of the QNM
frequencies and obtain the ringdown waveform using
numerical techniques. This will complement the analysis
of the previous section, where the analytical estimation for
the QNM frequencies has been obtained. The analytical
computation was straightforward, when expressed in terms
of the Teukolsky perturbation variables. However, the
numerical analysis will require use of the Detweiler
function introduced in Eq. (14), since the associated
potential is manifestly real and short range. In order to
do this analysis it is convenient to introduce the asymptotic
forms of the Detweiler function in terms of standard “in”
and “up” modes [20,63]:

Xin ∼

(
e−iω̃r� for r� → −∞
Aine−iωr þ Aouteiωr for r� → ∞

ð64Þ

Xup ∼

(
Bine−iω̃r� þ Bouteiω̃r� for r� → −∞
eiωr for r� → ∞:

ð65Þ

As evident, the mode Xin denotes ingoing wave at the
horizon and both ingoing and outgoing wave at infinity,
which is reminiscent of the superradiant mode for black
hole spacetime. Similarly, the mode Xup denotes outgoing
wave at infinity and both ingoing and outgoing wave at the
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horizon, which is reminiscent of the QNM for ECO,
with Bin ¼ 1 and Bout ¼ Rwall. For a braneworld ECO
the relevant boundary condition in terms of the Detweiler
function is explicitly presented in Eq. (23), where we have
an outgoing wave at infinity, while near the surface of the
ECO, we have an ingoing part and an outgoing reflective
part with amplitude Rwall.
Our ultimate goal is to determine the ringdown signal of

an ECO and for that we start by constructing the Green’s
function of a black hole in order to compute the ringdown
modes. The Green’s function, satisfying the boundary
condition for a black hole (Rwall ¼ 0), can be written in
terms of the two linearly independent homogeneous sol-
utions of the Detweiler equation, Eq. (64), as

GBHðr�; r0�Þ ¼
Xinðr<� ÞXupðr>� Þ

WBH
; ð66Þ

where r<� ≡minðr�; r0�Þ and r>� ¼ maxðr�; r0�Þ, while WBH
is the Wronskian of the independent solutions of the
differential equation satisfied by the Detweiler function.
In terms of the Green’s function, Eq. (66), and for a source
defined as Sðr�Þ, the Fourier mode of gravitational waves
seen by a distant observer is obtained as

Xðr� → ∞Þ ¼
Z

dr0�GBHðr� → ∞; r0�ÞSðr0�Þ

¼
Z

dr0�Sðr0�Þ
Xinðr0�ÞXupðr� → ∞Þ

WBH

≡ Xupðr� → ∞ÞZ∞
BHðωÞ; ð67Þ

and in the near region, we obtain

Xðr� → −∞Þ ¼
Z

dr0�GBHðr� → −∞; r0�ÞSðr0�Þ

¼
Z

dr0�Sðr0�Þ
Xinðr� → −∞ÞXupðr0�Þ

WBH
ð68Þ

≡ Xinðr� → −∞ÞZH
BHðωÞ; ð69Þ

where Z∞
BHðωÞ and ZH

BHðωÞ are the response functions of
the black hole to the perturbation at infinity and at the
horizon respectively.
For an ECO, on the other hand, since the reflectivity

Rwall ≠ 0, it follows that the ingoing modes at the horizon
will also contribute to the modes at infinity and thus the
response function of an ECO at infinity would be different
from the black hole case. Since the black hole and the ECO
satisfies the same perturbation equation, namely Eq. (15),
we can construct the ECO solution in terms of the black
solution and some homogeneous solution of Eq. (15)
satisfying the correct boundary conditions, as given by
Eq. (23), at infinity and at the surface of the ECO.
Following which, we may add the following homogeneous

solution, KXup
R
∞
−∞ dr0�Xupðr0�ÞSðr0�ÞW−1

BH, where symbols
have their usual meaning, to the black hole waveform,
presented in Eq. (67). This will satisfy the same outgoing
boundary condition at asymptotic infinity. Thus near the
surface of the ECO, we will have the following solution for
the Detweiler function:

XECO ¼ ðXin þKXupÞ
Z

∞

r�ðwallÞ
dr0�

Xupðr0�ÞSðr0�Þ
WBH

: ð70Þ

Matching the Detweiler function XECO in the near-horizon
regime, with the near-horizon asymptotic modes given in
Eq. (23), we obtain K as

K ¼ T BHRwalle
−2iω̃r�ðwallÞ

1 −RBHRwalle
−2iω̃r�ðwallÞ

: ð71Þ

Here K is referred to as the transfer function [63,95], with
RBH being the reflectivity of the angular momentum barrier
outside the black horizon defined in Eq. (28), while the
transmissivity (T BH) is the coefficient of e−iω̃r� in the
Detweiler function in the regime between the surface of
the ECO and the angular momentum barrier. Also Rwall is
the reflectivity of the surface of the ECO, defined in
Eq. (23). It is also possible to arrive at the same expression
of the transfer function using a geometric optics approxi-
mation to determine the echo amplitude as given in [63,96].
In terms of the transfer function the response of the ECO at
infinity can be written down as

Z∞
ECO ¼ Z∞

BH þKZH
BH: ð72Þ

This expression for the response function of the ECO at
infinity will find important application while determining
the ringdown waveform in a later section.

A. Quasinormal modes from the Green’s function

The QNM spectrum can also be obtained from the poles
of the Green’s function of the ECO. Following the analysis
of [63] and the discussion presented above, we can write
down the Green’s function associated with the perturbation
of ECO as

GECOðr�; r0�Þ ¼ GBHðr�; r0�Þ þK
Xupðr�ÞXupðr0�Þ

WBH
; ð73Þ

where the quantity K has been defined in Eq. (71). Besides
the QNM frequencies of the black hole, for ECO there are
additional poles of the Green’s function. These arise from
the zeros of the denominator of the transfer function K,
defined in Eq. (71), which yields the following algebraic
equation for the QNM frequency ω:

1 −RBHRwalle
−2iω̃r�ðwallÞ ¼ 0: ð74Þ
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As evident, the solution for ωn from this equation coincides
with the analytical results presented in Sec. VI A, in the
low-frequency limit. Thus the QNM frequencies obtained
using the Green’s function are consistent with that obtained
from the explicit solution of the radial perturbation equa-
tion, depicting consistency between the two approaches.

B. Ringdown waveform

In this section, we will describe the derivation
of the ringdown waveform for an ECO. As given in
[20,96,97], for a given source located at r� ¼ xs, such that
S ¼ CðωÞδðr� − xsÞ, we can obtain a relation between Z∞

BH
and ZH

BH as

ZH
BH ¼ RBHZ∞

BH þ Z∞
BHe

−2iω̃xs

T BH
: ð75Þ

Since the response functions Z∞
BH and ZH

BH have the same
set of complex poles coming from the equation WBH ¼ 0,
one can estimate that the near-horizon response is a
superposition of QNMs. Thus, using Eq. (75) we can
express Eq. (72) in terms of quantities defined in the
asymptotic limit as

Z∞
ECO ¼ Z∞

BH þK
�
RBHZ∞

BH þ Z∞
BHe

−2iω̃xs

T BH

�

¼ Z∞
BH

�
1

1 −RBHRwalle
−2iω̃r�ðwallÞ

�
; ð76Þ

where in the last step we have used the explicit expression
of the transfer function from Eq. (71) and neglected the
term coming from the product of the transfer function and
the second term in the numerator of the above equation.
The initial black hole ringdown amplitude Z∞

BH can be
modeled based on [20,96,98] for the rotating ECO in the
braneworld scenario, where we avoid the details of this

black hole ringdown model as our main purpose of this
section is to show quantitatively how the tidal charge Q
would affect the ringdown waveform of a braneworld
ECO and change the echo time. Thus from Eq. (76), the
time domain ringdown waveform of the ECO can be
computed as

shlmðtÞ ¼
1

2π

Z
∞

−∞
dωZ∞

ECOðωÞe−iωt: ð77Þ

Here ω corresponds to QNMs associated with the spin-s
perturbation of the braneworld ECOs and Z∞

ECO is the
response function of the ECO at infinity, which can be
expressed in terms of black hole parameters through
Eq. (76). Using the reflectivity RBH and transmissivity
T BH of the classical black hole potential and choosing an
appropriate initial condition, one can obtain the time
domain waveform which has been plotted in Fig. 5. We
can explicitly observe the distinctive echoes in the ring-
down waveform, due to the presence of a reflective surface.
The time gap between two consecutive echoes can be

determined in terms of the black hole parameters and the
location of the reflective surface. In the context of the
braneworld scenario, the location of the reflective surface,
given by Eq. (7), depends on the AdS length scale and
hence can be estimated if the echoes are observed in the
ringdown waveform of the gravitational waves. The pres-
ence of the tidal charge modifies the time gap between
successive echoes, as evident from Fig. 5. Thus a meas-
urement of the time gap (also referred to as the time delay
compared to the primary QNM waveform) will enable one
to determine the tidal charge parameter and hence the AdS
length scale. This time delay, often referred to as the “echo
time” Δtecho, can be expressed as twice the distance
between the surface of the ECO and the maxima of the
angular momentum barrier in terms of the tortoise coor-
dinate, which reads

FIG. 5. The postmerger time-domain ringdown signal has been presented for braneworld ECOs having dimensionless tidal charge
parameters, ðQ=M2Þ ¼ 0 and ðQ=M2Þ ¼ 1, respectively. The above plot is for an ECO of having a ¼ 0.67, l ¼ 2, m ¼ 2. As evident,
after the primary ringdown signal, we can see that there are additional signals considered as echo of the original signal arising out of
reflection at the surface of the ECO. For nonzero values of the tidal charge parameter, these echoes are differently spaced, as the echo
time delay would depend on the tidal charge for a braneworld ECO. See the text for more discussion.
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Δtecho ¼ 2ðr�ðbarrierÞ − r�ðwallÞÞ

¼ 2

Z
rbarrier

rwall

r2 þ a2

r2 − 2Mrþ a2 −Q
dr

≃
2ðr2þ þ a2Þ
rþ − r−

ln

�
rþ
L

�
: ð78Þ

As evident, the echo time delay Δtecho depends on the tidal
charge parameter Q through the prefactor of the logarithm,
as well as through the term rþ within the logarithm. In
addition, it also depends explicitly on the AdS length scale
L, though only logarithmically.
The explicit dependence of the echo time delay on the

size of the extra dimension, through the tidal charge
parameter Q, takes the following form:

Δtecho
M

¼
2
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q

M2

q
þ Q

2M2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q

M2

q ln

�
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þQ

p
L

�
:

ð79Þ

As evident from the above expression, the presence of the
extra dimension, reflected by a nonzero value of the tidal
charge parameter Q, increases the echo time delay Δtecho
and hence provides a distinct signature for the existence of
extra dimension. This can also be understood more intui-
tively by looking at Fig. 6, where the echo time delayΔtecho
has been explicitly depicted to depend on the size of the
cavity formed by the surface of the ECO placed at r�ðwallÞ

and the maxima of the angular momentum barrier. As
obtained in Eq. (9), the position of the wall is sensitive to
the value of Q, as well as the maxima of the angular
momentum barrier shifts to a larger value of the radial
coordinate with a decrease in the length of extra dimension,
which in turn increases the value of Q, thus increasing the
size of the cavity and hence Δtecho increases.
In particular, if we consider the case in which the

dimensionless tidal charge parameter ðQ=M2Þ ∼ 1, then
from the ringdown waveform one can determine the
difference in the time delay with the Q ¼ 0 case, for a
black hole of 70 solar mass, as δðΔtechoÞ ¼ 10−3 sec. Then
from Eq. (78), it follows that the AdS length scale is given
by L ∼ 10−15rþ ∼ 10−10 mm. Therefore, the extra dimen-
sional length scale is in the submicrometer regime, which is
consistent with the small-scale test of inverse square law of
gravitation.
In addition to the echo time delay Δtecho, another

avenue to explore the effect of extra dimension on the
gravitational wave is through the amplitude of the wave-
form. In particular, one may ask whether the amplitude of
the repetitive waveform increases or decreases with change
in the size of the extra dimension, which is manifested as a
change in the tidal charge parameter Q. However, as Fig. 5
explicitly demonstrates, the amplitude of the waveform
associated with both scalar and gravitational perturbation
remains almost constant even if ðQ=M2Þ changes by unity.
Thus we may argue that the amplitude of the waveform is
not much sensitive to the presence of the extra dimension,
since the amplitude changes very little with a change in the
tidal charge parameterQ. This is why we have concentrated
on the time delay measurement, rather than the change in
the amplitude of the waveform, in comparison to the
general relativistic scenario.

VIII. DISCUSSION

In this paper, we have shown that there are compelling
features of higher dimensional braneworld geometries,
localized on a 3-brane, which would differ from classical
black holes due to the presence of quantum effects in the
near-horizon region. One can account for these quantum
effects by studying the RS2 braneworld scenario in the
framework of AdS=CFT duality [42,43,99]. In addition, the
extension of this brane-localized solution to the bulk
geometry also transforms the brane event horizon to a
bulk apparent horizon. Based on these arguments we
advocated that the classical black hole horizon must be
either removed or modified and thus the boundary con-
ditions imposed at the black hole horizon would change
accordingly. Ideally one should be able to derive these
modified near-horizon boundary conditions from specific
models of quantum gravity, but that is far beyond the scope
of our quantitative analysis; following which, we have
assumed that there is a partially reflective membrane
present in front of the would-be horizon and the reflectivity

FIG. 6. The basic structure of an ECO has been presented with a
quantum structure in the near-horizon region which would
partially reflect the ingoing waves incident on the merged
ECO. These reflected waves would partially transmit through
the angular momentum barrier and reach a distant observer as an
echo of the primary signal with a time delayΔtecho. The echo time
delay is determined by the position of the reflective membrane
placed in front of the would-be horizon and the maxima of the
angular momentum barrier. See the text for further discussions.
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of this membrane can either be a constant or depend on the
frequency (as should be the case for a quantum black hole
based on [11,12]). Thus braneworld geometries must be
considered as ECOs, rather than black holes with partially
reflective boundary condition in the near-horizon regime.
Usually, rotating horizonless ECOs are infested with the

problem of superradiant instability. As shown in [56] for
the scalar case and in [19] for both the case of electro-
magnetic and gravitational perturbations, the instability can
be suppressed by tuning the reflectivity of the membrane to
a value less than unity. By extending their analysis to the
brane localized black holes we have found that the super-
radiant instability is further curbed based on the tidal charge
Q originating from the braneworld ECO. The tidal charge
parameter is related to the size of the extra dimension, as
well as the size of the horizon, as one extends the brane
localized black hole solution to the bulk spacetime. In
particular, the superradiant bound on the frequency
decreases, as the size of the extra dimension becomes
smaller (or, equivalently as the tidal charge parameter
increases), thereby less number of perturbation modes
experience the instability. To provide a direct estimate,
based on an analytic and numerical analysis, we found that
for Q ¼ 0 and ða=MÞ ¼ 0.998, one must allow for at least
36% absorption by the membrane, in order to suppress the
superradiant instability. On the other hand, for ðQ=M2Þ¼1,
if the reflective surface can absorb 28% of the ingoing
radiation for the same (a=M) ratio, the superradiant
instability can be avoided. Thus nonzero tidal charge (or,
presence of extra spatial dimension) indeed helps in
curbing the superradiant instability for rotating ECOs.
Since, for an ECO, the zero frequency modes are primarily
associated with the onset of the instability, we have studied
the static (zero frequency) modes and established a critical
value of the black hole spin parameter (acrit) at which the
instability appears. Our findings suggest that this critical
value of the spin parameter depends on the tidal charge of the
black hole in such a way that acrit increases with increasing
Q, i.e., as the size of the extra dimension decreases. This
analysis further confirms our findings that as the size of the
extra dimension decreases, the value of the tidal charge
increases and hence the superradiant instability is sup-
pressed for generic spin-s perturbations. Physically, as the
size of the extra dimension decreases, the energy scale of the
bulk spacetime increases. As a consequence the effect of
the bulk spacetime on the brane is enhanced, resulting in a
stronger gravitational field, thereby reducing the instability.
The same holds true for the static case as well.
Subsequently, we have also studied plausible observa-

tional signatures of these quantum corrected braneworld
ECOs by studying the associated QNMs. To start with, we
have determined the QNMs of the braneworld ECOs using
an analytic method in the low-frequency approximation and
have found that the characteristic frequencies of the ECOs
differ considerably from that of the black holes as expected.

The imaginary part of the frequencies show a power law
decay contrary to an exponential decay for the case of a
classical black hole, when we model the reflectivity of
the membrane based on the Boltzmann reflectivity [25].
The real part of the frequency is discrete and sensitive to the
compactness of the ECO (or, the position of the reflective
membrane) and the tidal charge parameter. In order to
analyze the time-domain ringdown waveform, we have
used a ringdown template designed to capture the nontrivial
near-horizon geometry of an ECO through the method of
transfer function. Based on this ringdown template our study
suggests that the echoes in the postmerger ringdown wave-
form are dependent on the higher dimensional tidal charge
parameter. In particular, the echo time delay increases with
the tidal charge parameterQ. This is because the larger value
of the tidal charge parameter implies smaller size of the extra
dimension, which translates into the existence of stronger
gravitational field on the brane.As a consequence the photon
sphere, i.e., themaxima of the potential barrier, is shifted to a
larger radial distance, thereby increasing the time of flight
between the surface of the ECO and the potential barrier,
leading to an enlarged time delay. The enhanced time delay
may allow us to put constraints on the AdS length scale as
and when such echo waveforms are observed. As we have
explicitly demonstrated above, for the value of the tidal
charge parameter considered here, the associatedAdS length
scale turns out to be submicrometer, consistent with the
small scale tests of inverse square law.
There are several future avenues to explore in these

directions. For example, the effect of the reflective mem-
brane on the polarization of the gravitational waves has not
been considered so far. This becomes more important in the
braneworld scenario, since the number of polarization
modes may increase, leading to certain observable conse-
quences. In addition, we have not discussed other observ-
able consequences of braneworld ECOs, e.g., the effect of
the reflective boundary condition on the tidal Love number,
the QNM spectrum in the context of black string brane-
world, the phenomenon of tidal heating among many
others. Furthermore, the theoretical model of the brane-
world ECOs presented here is in the semiclassical regime
and involves the effect of the backreaction to the CFTof the
leading order. Better insights into the theoretical models
can be obtained if the AdS=CFT dictionary can be used in a
more concrete manner, so that more satisfactory prediction
regarding the underlying quantum gravity model can be
obtained. We hope to address these exciting issues in
future works.

ACKNOWLEDGMENTS

The research of S. C. is funded by the INSPIRE Faculty
fellowship from DST, Government of India (Reg. No. DST/
INSPIRE/04/2018/000893) and by the Start-Up Research
Grant from SERB, DST, Government of India (Reg.
No. SRG/2020/000409).

ERGOREGION INSTABILITY AND ECHOES FOR BRANEWORLD … PHYS. REV. D 103, 084019 (2021)

084019-19



APPENDIX A: DETWEILER TRANSFORMATION

We have defined the Detweiler function in Eq. (14) and in this Appendix we will outline how to derive Eq. (15) based on
some constraints on αðrÞ and βðrÞ. From Eq. (14) the derivative of the Detweiler function with respect to r is given as

dsXlm

dr
¼ Δs=2−1Gðr2 þ a2Þ32½αsRlm þ βΔsþ1

sR0
lm� þ Δs=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
½α0sRlm þ sR0

lmαþ β0Δsþ1
sR0

lm þ βΔsVðr;ωÞsRlm�;
ðA1Þ

where G, Vðr;ωÞ are defined in Eqs. (18) and (17) respectively. Using the definition of the tortoise coordinate Eq. (16) we
can write Eq. (A1) as

dsXlm

dr�
¼ GsXlm þ Δs

2
þ1ðr2 þ a2Þ−1

2½α0sRlm þ sR0
lmαþ β0Δsþ1

sR0
lm þ βΔsVðr;ωÞsRlm�: ðA2Þ

Now, in terms of the tortoise coordinate Eq. (16) we can write the second derivative of the Detweiler function as

d2sXlm

dr2�
¼ Δ

ðr2 þ a2Þ
d
dr

�
Δ

ðr2 þ a2Þ
dsXlm

dr

�

¼ sXlm
dG
dr�

þ sXlmG2 þ Δs
2
þ1

ðr2 þ a2Þ52 ½ðsþ 1ÞΔ0ðr2 þ a2Þ�½α0sRlm þ sR0
lmαþ β0Δsþ1

sR0
lm þ βΔsVðr;ωÞsRlm�

þ Δ
ðr2 þ a2Þ2Δ

s
2ðr2 þ a2Þ12

�
Vðr;ωÞðαsRlm þ βΔsþ1

sR0
lmÞ − ðsþ 1ÞαΔ0

sR0
lm þ βΔsþ1Vðr;ωÞsRlm

− ðsþ 1Þβ0Δsþ1Δ0
sR0

lm þ 2α0 þ ðβ0Δsþ1Þ0
βΔs βΔsþ1

sR0
lm þ α00sRlmΔþ ðβΔsVðr;ωÞÞ0ΔsRlm

�
: ðA3Þ

Using the definition of the Detweiler function Eq. (14) and writing sR0
lm in terms of sXlm we can further write Eq. (A3):

d2sXlm

dr2�
¼
�
dG
dr�

þ G2 þ Δ
ðr2 þ a2Þ2 Vðr;ωÞ þ

Δ
ðr2 þ a2Þ2

ð2α0 þ ðβ0Δsþ1Þ0Þ
βΔs

�
sXlm

þ Δ
ðr2 þ a2Þ2 Δ

s
2ðr2 þ a2Þ12

�
βΔsþ1Vðr;ωÞ − ð2α0 þ ðβ0Δsþ1Þ0Þ

βΔs αþ α00Δþ ðβΔsVðr;ωÞÞ0Δ

þ ððsþ 1ÞΔ0ðα0 þ βΔsVðr;ωÞÞÞ
�
sRlm: ðA4Þ

We can write this equation in a more compact way as

d2sXlm

dr2�
− VDðr;ωÞsXlm ¼ FsRlm; ðA5Þ

where

VDðr;ωÞ≡
�
dG
dr�

þ G2 þ Δ
ðr2 þ a2Þ2 Vðr;ωÞ þ

Δ
ðr2 þ a2Þ2

ð2α0 þ ðβ0Δsþ1Þ0Þ
βΔs

�
ðA6Þ

and

F≡ Δ
ðr2 þ a2Þ2Δ

s
2ðr2 þ a2Þ12

�
βΔsþ1Vðr;ωÞ − ð2α0 þ ðβ0Δsþ1Þ0Þ

βΔs αþ α00Δ

þ ðβΔsVðr;ωÞÞ0Δþ ððsþ 1ÞΔ0ðα0 þ βΔsVðr;ωÞÞÞ
�
: ðA7Þ
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Now α and β are supposed to be satisfied by the following
relation:

α2 − α0βΔsþ1 þ αβ0Δsþ1 − β2Vðr;ωÞΔ2sþ1 ¼ constant:

ðA8Þ

Taking a derivative with respect to r and demanding that
(βΔsÞ ≠ 0 we can end up with

α00ΔþΔðβΔsVðr;ωÞÞ− α

βΔs ð2α0 þ ðβ0Δsþ1Þ0Þ

þðsþ1ÞΔ0ðαΔ0 þβΔsVðr;ωÞÞþβ0Δsþ1Vðr;ωÞ¼ 0:

ðA9Þ

Using Eq. (25) we find that F ¼ 0; so finally we get

d2sXlm

dr2�
− VDðr;ωÞsXlm ¼ 0: ðA10Þ

So we can conclude that the Detweiler function satisfies the
linear homogeneous second-order ordinary differential
equation (comparable to a Schrödinger-like eigenvalue
problem).

APPENDIX B: ANALYTIC SOLUTION FOR
SCALAR, ELECTROMAGNETIC AND
GRAVITATIONAL PERTURBATIONS

The perturbation equations for the radial and angular
parts, given in Eqs. (12) and (13) respectively, are usually
solved using numerical techniques; otherwise, one needs to
invoke certain approximations in order to solve these
equations analytically. In this section we use the asymptotic
solution matching technique in order to obtain an approxi-
mate solution of the radial wave equation, presented in
Eq. (12). First of all, it is necessary to consider the low-
frequency approximation, defined as Mω ≪ 1 to simplify
the perturbation equations, allowing us to solve them in
terms of special functions. In addition, we divide the
spacetime outside the rotating ECO described by Eq. (2)
into a near region ðr − rþ ≪ 1=ωÞ, an asymptotic far
region ðr − rþ ≫ MÞ and an intermediate matching region
ðM≪r−rþ≪1=ωÞ. This enables us to solve for the
perturbation equation in two of the asymptotic limits
and then match the solutions order by order in the over-
lapping matching region. In what follows, we first solve for
the radial perturbation equation in the near regime and then
in the asymptotic regime, before matching in the inter-
mediate region.

1. Solution near the surface of the ECO

In this section, we will solve the radial perturbation
equation in the region close to the surface of the
ECO, which corresponds to ðr − rþ ≪ 1=ωÞ, in which

case in the low-frequency limit (Mω ≪ 1) we obtain
K∼ðr2þþa2Þðω−mΩþÞ. Under these approximations the
radial wave equation, presented in Eq. (12), takes the
following form:

Δ1−s d
dr

�
Δsþ1

dsRlm

dr

�
þ½ðr2þþa2Þ2ðω−mΩþÞ2

− isΔ0ðr2þþa2Þðω−mΩþÞþ2isK0Δ−λΔ�sRlm ¼ 0;

ðB1Þ

where we have used the fact that K0 ¼ 2rω and the
separation constant in the low-frequency limit can be
approximated as λ ∼ ðl − sÞðlþ sþ 1Þ. It is instructive
to define a new variable z, as in the case of static mode, as
follows:

z≡ r − rþ
rþ − r−

; ðB2Þ

and in terms of this newly defined coordinate z, the radial
perturbation equation near the surface of the ECO can be
written as

½zðzþ 1Þ�1−s d
dz

	
½zðzþ 1Þ�1þs dsRlm

dz

�
þ ½σ2 þ iσsð1þ 2zÞ − λzðzþ 1Þ�sRlm ¼ 0; ðB3Þ

where σ is defined in terms of the frequency ω of the
perturbation mode as σ≡ ðr2þþa2ÞðmΩþ−ωÞ=ðrþ− r−Þ.
The solution of this equation is given in terms of the
hypergeometric functions 2F1 [Eq. (46)], which for small
values of z (i.e., r − rþ ≪ rþ − r−) yields

sRlm ¼ Az−iσ þ Bziσ−s

∼ A

�
rþ

rþ − r−

�
−iσ

eiω̃r�

þ B

�
rþ

rþ − r−

�
iσ
ðrþ − r−Þ2sΔ−se−iω̃r� : ðB4Þ

Here,A andB are arbitrary constants, to be determined from
the relevant boundary conditions and r� is the tortoise
coordinate defined in Eq. (16) which can be expressed in
terms of z in the near-horizon limit, as

z ≂
�

rþ
rþ − r−

�
exp

��
rþ − r−
r2þ þ a2

�
r�

�
: ðB5Þ

The near-horizon radial perturbation, as presented in
Eq. (B4), can be compared with the asymptotic limits of
the Teukolsky wave function presented in Eq. (22) to yield
the ratio Rs=T s in terms of the ratio (A=B) as
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Rs

T s
¼

Að rþ
rþ−r−

Þ−iσ
Bðrþ − r−Þ2sð rþ

rþ−r−
Þiσ ¼

A
B

ð rþ
rþ−r−

Þ−2iσ
ðrþ − r−Þ2s

: ðB6Þ
This will play a crucial role in the determination of the
QNMs. On the other hand, in the large r, i.e., large z limit of
the near region solution, we obtain

sRlm ∼ zl−sΓð2lþ 1Þ
�

AΓð1 − 2iσ þ sÞ
Γð1þ l − 2iσÞΓðlþ 1þ sÞ þ

BΓð1þ 2iσ − sÞ
Γðlþ 1þ 2iσÞΓðlþ 1 − sÞ

�

þ z−l−1−s
ð−1Þlþ1þs

2Γð2lþ 2Þ
�
AΓð1 − 2iσ þ sÞΓðlþ 1 − sÞ

Γð−l − 2iσÞ þ BΓð1þ 2iσ − sÞΓðlþ 1þ sÞ
Γð−lþ 2iσÞ

�
; ðB7Þ

which will be important in the intermediate region, where
this solution will be matched with the solution in the far
region.

2. Solution in the far region

In the far region, i.e., with the condition ðr − rþÞ ≫ M,
the radial perturbation equation reduces to the wave
equation for a field of spin-s having frequency ω and
angular momentum l in the flat background (since the
effects of the black hole can be neglected in this region).
Using the coordinate z defined in Eq. (B2), the radial
perturbation equation in the far region, can be written as

d2sRlm

dz2
þ 2ð1þ sÞ

z
dsRlm

dz
þ
�
k2 þ 2isk

z
−

λ

z2

�
sRlm ¼ 0;

ðB8Þ

where we have defined k≡ ωðrþ − r−Þ. The resulting
solution is in terms of the confluent hypergeometric
functions [Eq. (47)], which for large values of z, takes
the following form:

RðsÞ
lm ∼

1

ω

�
αks−l

ð−2iÞs−l−1Γð2lþ 2Þ
Γðlþ sþ 1Þ

þ βklþ1þs ð−2iÞlþsΓð−2lÞ
Γð−lþ sÞ

�
e−iωr

r

þ 1

ω2sþ1

�
αks−l

ð−2iÞ−s−l−1Γð2lþ 2Þ
Γðl − sþ 1Þ

þ βklþ1þs ð2iÞl−sΓð−2lÞ
Γð−l − sÞ

�
eiωr

r2sþ1
; ðB9Þ

where α and β are arbitrary constants, to be determined
using appropriate boundary conditions. The boundary
condition at asymptotic infinity (stated in terms of absence
of ingoing waves from infinity) suggests that the coefficient
of ð1=rÞe−iωr must vanish identically, yielding the ratio
(β=α). Using which and expanding the far-region solution
for kz ≪ 1, we obtain

sRlm ∼ α
ð−1Þl−s

2

Γðlþ 1þ sÞ
Γð2lþ 2Þ rl−s

þ αð2iωÞ−1−2l Γð2lþ 1Þ
Γð1þ l − sÞ r

−1−l−s: ðB10Þ

This provides the relevant limit for the intermediate region,
arising out of the far region solution. Matching of this
solution with the one presented in Eq. (B7), we immedi-
ately obtain the ratio A=B in terms of spin of the
perturbation, angular momentum, frequency and hairs of
the black hole. Further details can be found in the main text.

APPENDIX C: ANALYTICAL COMPUTATION
OF THE AMPLIFICATION FACTOR

ASSOCIATED WITH SUPERRADIANCE OF
BRANEWORLD ECO

In Sec. IV we have defined the amplification factor sZlm
for the modes scattered from the angular momentum barrier
due to the existence of negative energy states in the ergo
region for the perturbation of arbitrary spin-s. In order to
determine the amplification factor, we will follow [94] and
define the amplification factor as

sZlm ¼




OsO−s

IsI−s





 − 1; ðC1Þ

which is motivated from the fact that we do not have to
worry about the normalization factor arising in front of
jðOs=I sÞj2 for different values of the spin-s. We will use
the solution for the radial perturbation obtained in
Appendix B, along with the method of asymptotic solution
matching, in order to derive an approximate expression for
the amplification factor sZlm in the low-frequency limit.
Since the phenomenon of superradiance is concerned with
the amplification by the angular momentum barrier, near
the photon sphere, we will consider the ingoing part of the
near-region solution given in Eq. (46), to obtain

sRlm ¼ Bziσ−sð1þ zÞiσ2F1½−lþ 2iσ;lþ 1þ 2iσ;

1þ 2iσ − s;−z�: ðC2Þ
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The large z behavior of this solution is given by the following expression:

sRlm ∼ B

�
zl−s

Γð2lþ 1ÞΓð1þ 2iσ − sÞ
Γð1þ lþ 2iσÞΓðlþ 1 − sÞ þ ð−zÞ−l−1−s Γð1þ 2iσ − sÞΓðlþ 1þ sÞ

2Γð−lþ 2iσÞΓð2lþ 2Þ
�
: ðC3Þ

Matching this with the intermediate region solution arising out of Eq. (47), we obtain

α ¼ A
Γð2lþ 1ÞΓð1þ 2iσ − sÞ

Γð1þ lþ 2iσÞΓðlþ 1 − sÞ ; β ¼ A
Γð1þ 2iσ − sÞΓðlþ 1þ sÞ
Γð−lþ 2iσÞΓð2lþ 1Þ : ðC4Þ

Using these expressions for α and β in Eq. (C5) we can write the radial perturbation as

RðsÞ
lm ∼

A
ω

�
ks−l

ð−2iÞs−l−1Γð2lþ 2Þ
Γðlþ sþ 1Þ

Γð2lþ 1ÞΓð1þ 2iσ − sÞ
Γð1þ lþ 2iσÞΓðlþ 1 − sÞ

þ klþ1þs ð−2iÞlþsΓð−2lÞ
Γð−lþ sÞ

Γð1þ 2iσ − sÞΓðlþ 1þ sÞ
Γð−lþ 2iσÞΓð2lþ 1Þ

�
e−iωr

r

þ A
ω2sþ1

�
ks−l

ð−2iÞ−s−l−1Γð2lþ 2Þ
Γðl − sþ 1Þ

Γð2lþ 1ÞΓð1þ 2iσ − sÞ
Γð1þ lþ 2iσÞΓðlþ 1 − sÞ

þ klþ1þs ð2iÞl−sΓð−2lÞ
Γð−l − sÞ

Γð1þ 2iσ − sÞΓðlþ 1þ sÞ
Γð−lþ 2iσÞΓð2lþ 1Þ

�
eiωr

r2sþ1
: ðC5Þ

Using these expressions and the boundary conditions
presented in Eq. (21) we obtain Os as the coefficient of
r−ð2sþ1Þeiωr� and Is as the coefficient of r−1e−iωr� . There-
fore, using these expressions for Os and Is, one can also
determine O−s and I−s, respectively. These when sub-
stituted in Eq. (C1) yield Eq. (29), we have used in the
main text.

APPENDIX D: ABSORPTION CROSS SECTION

We obtain the absorption cross section of the ECO given
in Eq. (2). This gives us a better way of understanding the
superradiance of the ECO and analyze how it is affected
due to the near-horizon modifications in the presence of the
tidal charge. We do this analysis for the scalar perturbation
to understand the quantitative behavior of the scattering
cross section. The conserved flux associated to the radial
wave equation is

F ¼ −i2πð0R�
lmΔ∂r0Rlm − 0RlmΔ∂r0R

�
lmÞ: ðD1Þ

Using this expression for the flux we can determine the
ingoing flux from infinity (Fin

∞), which is given as

Fin
∞ ¼ 2jα2 þ β2j; ðD2Þ

while the ingoing and outgoing flux at the horizon is
given as

Fin
r→rþ ¼ 4πσðrþ − r−ÞjAj2; ðD3Þ

Fout
r→rþ ¼ −4πσðrþ − r−ÞjBj2: ðD4Þ

The absorption cross section is given as

σabs ¼
Fin
r→rþ þ Fout

r→rþ

Fin
r→∞

¼ 4πσðrþ − r−Þ
1 −Rwall

jα=Aj2 þ jβ=Aj2 :

ðD5Þ
One can obtain α

A and β
B by matching the solutions in the

intermediate region ð1=ω ≫ r ≫ MÞ and using the appro-
priate boundary condition as

α

A
¼ ðω=2Þ−l−1=2 Γðlþ 3=2ÞΓð2lþ 1Þ

ðrþ − r−ÞlΓðlþ 1Þ
�

Γð1 − 2iσÞ
Γð1 − 2iσ þ lÞ þRwallz−2iσ0

Γð1þ 2iσÞ
Γðlþ 1þ 2iσÞ

�
ðD6Þ

β

A
¼ ðω=2Þlþ1=2 Γð−lþ 1=2ÞΓð−2l − 1Þ

ðrþ − r−Þ−l−1Γð−lÞ
�
Γð1 − 2iσÞ
Γð−1 − 2iσÞ þRwallz−2iσ0

Γð1þ 2iσÞ
Γð−lþ 2iσÞ

�
: ðD7Þ

These expressions will be used in Eq. (D5) to obtain the absorption cross section in the low-frequency limit.
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