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We interpret the cosmological constant as the energy of the vacuum, and under a minimum amount of
assumptions, we show that it is deformed in the vicinity of a black hole. This leads us to reexamine the
Kerr–de Sitter solution. We provide a new solution, simpler and geometrically richer, which shows the
impact of the rotation in form of a warped curvature. We carry out a detailed and exact study on the new
black hole solution, and we conclude with a conjecture regarding the possible impact of our results on
alternative theories.
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I. INTRODUCTION

In recent years, two extraordinary events have occurred,
with a deep impact on theoretical physics and the way we
understand the Universe. These are the observational
evidence that we live in an accelerated expanding universe
[1,2], and more recently, the direct observation of a black
hole (BH) [3]. The simplest way to explain the former is by
a positive cosmological constant Λ, whereas it is well
established that BHs are rotating, and therefore described
by the Kerr’s solution [4]. In this regard, if we want a
description as realistic as possible, we should consider BHs
in a de Sitter universe, i.e., Λ > 0. This is precisely the
scenario described by the Kerr–de Sitter (KdS) metric, a
solution of Einstein field equations with cosmological
constant, describing the exterior of a rotating BH (see,
e.g., Refs. [5–11]). This solution was discovered by Carter
almost fifty years ago [12], and today we know that it
represents a special case of the general Plebański-
Demiański metric [13], which is the most general solution
for a Petrov Type D spacetime.
Carter builds a solution that, by definition, leaves the

cosmological constant or “vacuum energy” immaculate,
even in the strong field regime, such as the vicinity of a BH.

However, the assumption of an always constant vacuum
energy is a classic concept, which indeed is no longer valid
in quantum field theory. It is precisely in the strong field
regimewhere we expect that certain preestablished classical
concepts begin to lose validity [14]. Of course, we can
always move the cosmological constant to the matter-
energy content of spacetime and postulate different models
ΛðxaÞ ad hoc. This has been done for years, and it is
something we definitely want to avoid. Our plan is more
ambitious. We want to interpret the cosmological constant
as vacuum energy, and under a minimum number of
assumptions, find the way in which it is deformed in the
vicinity of BHs. This deformation could give new insight to
understand gravitational phenomena that cannot be
explained without conjecturing exotic forms of matter.
In this paper, following the scheme explained above, we

will show a gravitational effect impossible to describe by
the KdS solution. This consist in a deformation undergone
by the curvature R of the spacetime surrounding a rotating
stellar distribution. To prove what we claim, we will
consider a rotating BH in an expanding universe and show
that the uniform curvature R ¼ −4Λ is warped around the
BH.1 To carry out the above, we depart from a spherically
symmetric BH with cosmological constant, i.e., the
Schwarzschild–de Sitter (SdS) solution, and then we
implement the so-called gravitational decoupling (GD)*Corresponding author.
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approach [15,16] for axially symmetric systems [17] to
build the rotating version. Thus, we end up with a new BH
solution in a de Sitter universe which is neither a Λ-vacuum
solution nor does it belong to the Plebański-Demiański
family of metrics. The solution we found is asymptotically
de Sitter and contains the Kerr line element as a special
case. In addition, it is much simpler than Carter’s standard
solution, and at the same time describes a richer spacetime
structure, especially in the proximity of the rotating object,
where we identify the aforementioned gravitational effect,
i.e., the “warped curvature.” Finally, we will see that given
the simplicity of this new solution, we can carry out a
detailed, analytical and exact study on the nature and
structure of the horizons.
The paper is organized as follows: in Sec. II, we briefly

review the fundamentals of the Kerr-Schild spacetimes for
the spherically symmetric case, showing that for this
particular symmetry the GD becomes trivial, then we
generate the Schwarzschild–de Sitter solution in a simple
way; in Sec. III, we generate the axially symmetric version
of the Schwarzschild–de Sitter solution, finding that this
does not correspond to the known Kerr–de Sitter solution,
but to a new one, whose main characteristic is the presence
of a deformed curvature due to rotational effects; in Sec. IV,
we develop a complete and detailed analysis of BH
solutions; finally, we summarize our conclusions in Sec. V.

II. SPHERICAL SYMMETRY AND KERR-SCHILD
SPACETIMES

Let us start from the standard Einstein field equations

Rμν −
1

2
Rgμν ¼ k2Tμν; ð1Þ

with k2 ¼ 8πGN and c ¼ 1. It is well known that the line
element for all spherically symmetric and static spacetimes
can be written as [18]

ds2 ¼ eΦðrÞ
�
1 −

2mðrÞ
r

�
dt2 −

dr2

1 − 2mðrÞ
r

− r2dΩ2; ð2Þ

where ΦðrÞ is a metric function and mðrÞ stands for the
Misner-Sharp mass function, which measures the amount
of energy within a sphere of areal radius r. A particularly
interesting case is that where the metric functionΦ satisfies

ΦðrÞ ¼ 0: ð3Þ

Under the condition (3), the line element (2) belongs to the
so-called spacetimes of the Kerr-Schild class [19], which
has been extensively studied (see, e.g., Ref. [20]). In this
case, the Einstein equations becomes

k2T0
0 ¼

2m0

r2
; ð4Þ

k2T1
1 ¼

2m0

r2
; ð5Þ

k2T2
2 ¼

m00

r
; ð6Þ

where the energy-momentum tensor Tμν contains an energy
density ϵ ¼ T0

0, a radial pressure pr ¼ −T1
1, and a tangen-

tial pressure pt ¼ −T2
2.

There are two characteristic features of the system (4)–
(6). The first one is the equation of state ϵ ¼ −pr, which
follows directly from Eqs. (4) and (5), and the second is the
linearity in (derivatives of) the mass function mðrÞ.
Regarding the latter, we see that any solution mðrÞ of
the system (4)–(6) can be coupled with a second one msðrÞ
to generate a new solution m̃ðrÞ as

mðrÞ → m̃ðrÞ ¼ mðrÞ þmsðrÞ: ð7Þ

The above represents a trivial case of the so-called
gravitational decoupling [15,16]. A simple and well-known
example is the Schwarzschild–de Sitter solution, which is
generated by coupling the spherically symmetric vacuum
Tμν ¼ 0 with the vacuum energy of energy-momentum
tensor Sμν, namely,

ð8Þ

where

k2Sμν ¼ Λgμν; ð9Þ

with Λ the energy density of space or cosmological
constant. We see, according to Eqs. (4)–(6), that the
spherically symmetric vacuum and Λ-vacuum solution
are generated, respectively, by

m ¼ M1; ð10Þ

ms ¼ M2 þ
Λ
6
r3; ð11Þ

where M1 and M2 are constants with units of length. The
two mass functions in Eqs. (10) and (11) produce,
according to Eq. (7), a total mass function given by

m̃ðrÞ ¼ M1 þM2 þ
Λ
6
r3 ≡M þ Λ

6
r3; ð12Þ

which plugged in Eq. (2), and under the condition (3), leads
to the SdS solution, namely,

gtt ¼ −grr ¼ 1 −
2M
r

−
Λ
3
r2: ð13Þ
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Notice that when Tμν ≠ 0, then M1 → m̂ðrÞ and the mass
function m̃ in Eq. (12) becomes

m̃ðrÞ ¼ m̂ðrÞ þM2 þ
Λ
6
r3 ≡mðrÞ þ Λ

6
r3; ð14Þ

which plugged in Eq. (2) yields interior spherically
symmetric spacetime of the Kerr-Schild class with cosmo-
logical constant

gtt ¼ −grr ¼ 1 −
2mðrÞ

r
−
Λ
3
r2: ð15Þ

In summary, Eqs. (13) and (15) represent, respectively, the
exterior and interior solution for a self-gravitating object in
a spherically symmetric de Sitter vacuum.

III. AXIALLY SYMMETRIC CASE

In order to generate the rotating version of the
Schwarzschild–de Sitter line element in Eq. (13), we follow
the strategy described in Ref. [17]. Let us start with the
Kerr-Schild metric in Boyer-Lindquist coordinated,
namely, the Gurses-Gursey metric [21]

ds2 ¼
�
1 −

2rmðrÞ
ρ2

�
dt2 þ 4 a rmðrÞsin2θ

ρ2
dtdϕ

−
ρ2

Δ
dr2 − ρ2dθ2 −

Σsin2θ
ρ2

dϕ2; ð16Þ

with

ρ2 ¼ r2 þ a2 cos2 θ; ð17Þ

Δ ¼ r2 − 2rmðrÞ þ a2; ð18Þ

Σ ¼ ðr2 þ a2Þ2 − Δa2 sin2 θ; ð19Þ

and

a ¼ J=M; ð20Þ

where J is the angular momentum and M the total mass of
the system. The line element (16) represents the simplest
nontrivial extension of the Kerr metric, and it reduces to the
Kerr solution when the metric function m ¼ M. The metric
(16) is the rotational version of the spherically symmetric
one in Eq. (2) under the constraint (3). However, we have to
bear in mind that the definition of the coordinate r in
Eq. (16) is not the usual, but given by

x2 þ y2

r2 þ a2
þ z2

r2
¼ 1: ð21Þ

A critical feature of the metric (16), inherited from its
spherical version given by Eqs. (2) and (3), is the linearity

of the Einstein tensor in the metric function mðrÞ, which
explicitly reads

G0
0 ¼ 2

r4 þ ðρ2 − r2Þ2 þ a2ð2r2 − ρ2Þ
ρ6

m0

−
ra2 sin2 θ

ρ4
m00; ð22Þ

G1
1 ¼ 2

r2

ρ4
m0; ð23Þ

G2
2 ¼ 2

ρ2 − r2

ρ4
m0 þ r

ρ2
m00; ð24Þ

G3
3 ¼ 2

2r2ðρ2 − r2Þ þ a2ðρ2 − 2r2Þ
ρ6

m0

þ rða2 þ r2Þ
ρ4

m00; ð25Þ

G3
0 ¼ 2

að2r2 − ρ2Þ
ρ6

m0 −
ar
ρ4

m00: ð26Þ

Hence, as the spherically symmetric case, two different
solutions mðrÞ and msðrÞ can be coupled by Eq. (7) to
generate a new one m̃ðrÞ. However, as noticed in Ref. [17],
the coupling (7) must be complemented by the requirement

ã ¼ a ¼ as; ð27Þ
where fa; as; ãg are the rotational parameters associated,
respectively, with the mass functions fm;ms; m̃g.

A. New Kerr–de Sitter solution

Before introducing the new KdS solution, let us briefly
recall the standard one discovered by Carter [12], whose
line element is given by

ds2 ¼
�
Δr − Δθa2sin2θ

ρ2Ξ2

�
dt2 −

ρ2

Δr
dr2 −

ρ2

Δθ
dθ2

−
sin2θ
ρ2Ξ2

½Δθðr2 þ a2Þ2 − Δra2sin2θ�dϕ2

þ 2asin2θ
ρ2Ξ2

½Δθðr2 þ a2Þ − Δr�dtdϕ; ð28Þ

with

Δr ¼ r2 − 2Mrþ a2 −
Λ
3
r2ðr2 þ a2Þ; ð29Þ

Δθ ¼ 1þ Λ
3
a2 cos2 θ; ð30Þ

Ξ ¼ 1þ Λ
3
a2: ð31Þ
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This is a Λ-vacuum solution of the Einstein field equations
with cosmological constant and therefore satisfies

Rμν ¼ −Λgμν: ð32Þ

A complete study of the solution (28) can be found in
Refs. [5–11].
Now, we proceed to generate the new solution. We start

by identifying the mass function of the spherically sym-
metric seed solution. This is the de Sitter–Schwarzschild
mass function given by Eq. (12), which plugged into the
metric (16) leads to

ds2 ¼
�
ΔΛ − a2sin2θ

ρ2

�
dt2 −

ρ2

ΔΛ
dr2

− ρ2dθ2 −
ΣΛsin2θ

ρ2
dϕ2;

þ 2a sin2θ
ρ2

ðr2 þ a2 − ΔΛÞdt dϕ; ð33Þ

with

ΔΛ ¼ r2 − 2Mrþ a2 −
Λ
3
r4; ð34Þ

ΣΛ ¼ ðr2 þ a2Þ2 − ΔΛa2 sin2 θ; ð35Þ

and ρ defined in Eq. (17). The line element (33) is a new
solution of the Einstein field equations describing the
exterior of a rotating stellar object in a de Sitter or anti–
de Sitter background. As far as we know, this solution has
never been reported before. However, it is fair to mention
that in Refs. [22–27] the same strategy was used to generate
rotating regular BHs from a spherically symmetric seed
solution. In this respect, notice that the interior of a rotating
distribution with cosmological constant can be described
by Eq. (33) but substituting M → mðrÞ. This corresponds
to the use of the interior de Sitter–Schwarzschild mass
function in Eq. (14) [instead of Eq. (12)].
We see that the metric (33) looks quite simpler than the

line element (28). However, a simpler line element does not
necessarily mean a less rich spacetime structure, as we will
see below. First of all, we can assure that both solutions are
different, since the KdS metric in Eq. (28) is a Λ-vacuum
solution, whereas the metric in Eq. (33) is not. In fact, we
find that the curvature

R ¼ −4Λ
r2

ρ2
≠ −4Λ ð36Þ

for the line element in Eq. (33), and therefore it is not a
solution of Eq. (32). Notice that the curvature is warped
everywhere but in the equatorial plane, where remains
constant. The warped effect is particularly significant near

the rotating distribution, i.e., r ∼ a and disappears far
enough, where R ∼ −4Λ for r ≫ a. This effect will never
appear in a KdS space time, since by construction it is a
constant-curvature solution. We conclude that the line
element (33) is necessary to elucidate the effects of the
rotating object in its immediate surroundings.
Regarding the relationship between R and Λ, note that

we can write the curvature in Eq. (36) as

Rðr; θÞ ¼ −4Λ̃ðr; θÞ; ð37Þ

where we have introduced the effective cosmological
constant

Λ̃ðr; θÞ≡ Λ
r2

ρ2
¼ Λ

�
r2

r2 þ a2cos2θ

�
: ð38Þ

The expression in Eq. (38) clearly shows the rotational
effect on vacuum energy. We see that Λ̃ → Λ for r ≫ a.
Also notice that for r ≠ 0

Λ
�

r2

r2 þ a2

�
≤ Λ̃ ≤ Λ; ð39Þ

where Λ̃max and Λ̃min in Eq. (39) occur in the equatorial
plane and axis of rotation, respectively. We emphasize that
neither Λ nor Λ̃ is the energy of the system. The reason is
that the metric in Eq. (33) is not a solution of Eq. (32) but
Einstein field equations (1), where Tμν generating the
metric (33) is given by

Tμν ¼ ϵuμuν þ prlμlν þ pθnμnν þ pϕmμmν; ð40Þ

where the orthonormal tetrad fuμ; lμ; nμ; mμg reads [21]

uμ ¼ ðr2 þ a2Þδμ0 þ aδμ3ffiffiffiffiffiffiffiffi
ρ2Δ

p ; lμ ¼
ffiffiffiffiffi
Δ
ρ2

s
δμ1

nμ ¼ 1ffiffiffiffiffi
ρ2

p δμ2; mμ ¼ −
a sin2θδμ0 þ δμ3ffiffiffiffiffi

ρ2
p

sin θ
; ð41Þ

and the energy density ϵ and pressures pr, pθ, and pϕ

satisfy

ϵ ¼ −pr ¼
2r2

ρ4
m0 ¼ Λ

r4

ρ4
¼ Λ̃2

Λ
; ð42Þ

pθ ¼ pϕ ¼ −
r
ρ2

m00 þ 2ðr2 − ρ2Þ
ρ4

m0

¼ ϵ − 2Λ
r2

ρ2
: ð43Þ

It is quite easy to check, from Eqs. (42) and (43), that the
dominant energy condition
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ϵ ≥ 0; ð44Þ

ϵ ≥jpij ði ¼ r; θ;ϕÞ ð45Þ

holds for Λ > 0, but is violated for Λ < 0, whereas the
strong energy condition

ϵþ pr þ 2pθ ≥ 0

ϵþ pr ≥ 0

ϵþ pθ ≥ 0 ð46Þ

is satisfied for Λ < 0 but violated for Λ > 0.

IV. BLACK HOLES

Notice that the metric (33) becomes singular if ρ ¼ 0 or
ΔΛ ¼ 0. The first case is the ring singularity of the Kerr
solution and represents a physical (curvature) singularity.2

However, this singularity can be removed when
M → mðrÞ. The second case is a coordinate singularity
which indicates a horizon.
The equation determining the horizon of the metric (33)

is given by 0 ¼ g̃rr ∼ ΔΛ, which yields

r4 −
3

Λ
r2 þ 6M

Λ
r −

3a2

Λ
¼ 0: ð47Þ

We see that the Kerr horizon

rKerr ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
ð48Þ

is recovered for Λ ¼ 0, and the cosmological horizon of the
de Sitter solution, with characteristic length l ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

, is
recovered for a ¼ 0 and r ≫ M.
The roots of Eq. (47) can be expressed by

ðr − rþÞðr − r−Þðr − rþþÞðr − r−−Þ ¼ 0; ð49Þ

where rþþ > rþ > r− > r−− are, respectively, the cosmo-
logical horizon, the event horizon, the Cauchy horizon, and
inner cosmological horizon. From Eq. (34), we see that the
quartic equation ΔΛ ¼ 0 contains the free parameters
fM; a2;Λg of the solution (33), and therefore ri ¼
riðM; a2;ΛÞ for each of the horizons in Eq. (49). They
are relatively simple and explicitly given by

r� ¼ � 1

2

ffiffiffi
γ

p ∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

Λ
− γ ∓ 12M

Λ ffiffiffi
γ

p
s

;

rþþ ¼ 1

2

ffiffiffi
γ

p þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

Λ
− γ −

12M
Λ ffiffiffi

γ
p

s
;

r−− ¼ −
1

2

ffiffiffi
γ

p
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

Λ
− γ þ 12M

Λ ffiffiffi
γ

p
s

; ð50Þ

with

γ ¼ 2

Λ
þ α

Λβ
þ β

Λ
; α ¼ 1− 4a2Λ; β ¼ ðY − XÞ1=3;

X ¼ 1þ 12a2Λ− 18M2Λ;

Y ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ½a2ð3þ 4a2ΛÞ2 þ 9M2ð9M2Λ− 12a2Λ− 1Þ�

q
:

For the four roots in Eq. 2 to be real, Λ > 0 and D > 0,
with D being the discriminant of the polynomial equa-
tion (47), which can be written as

D ¼ −
108

Λ6
Y2: ð51Þ

The condition D > 0 is satisfied for a specific range of
values for M2 ¼ M2ðΛ; a2Þ. This leads to an upper
(Mmax ≡Mþ) and lower (Mmin ≡M−) bound for M, given
by

M2
� ¼ 1þ 12a2Λ� ð1 − 4a2ΛÞ3=2

18Λ
; ð52Þ

which are found by solving the degenerated case D ¼ 0.
This occurs, respectively, at

hD� ¼ 1ffiffiffiffiffiffi
2Λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4a2Λ

pq
: ð53Þ

We want to emphasize that, contrary to the KdS solution,
the expressions in Eqs. (52) and (53) are simple and exact.
There are not black holes beyond these bonds. Indeed,
solutions with M < Mmin or M > Mmax describe, respec-
tively, a ring singularity enclosed between two cosmologi-
cal horizons, or between a inner cosmological horizon and
a Cauchy horizon, as we can see in Fig. 1.
For the case Mmin < M < Mmax, we have the event

horizon rþ, two cosmological horizons r−− and rþþ, as
well as the Cauchy horizon r−. For M ¼ Mmax, we have a
degenerate case where rþ and rþþ merge at hDþ in Eq. (53).
Notice that M2

max ¼ 1
9Λ for a ¼ 0, in agreement with the

results for the de Sitter–Schwarzschild black hole. The
other degenerate case, i.e.,M ¼ Mmin, occurs when rþ and
r− merge at hD− in Eq. (53), which represents an extremal
black hole, with

2We see from Eq. (36) that the curvature R is regular for r → 0.
However, the Kretschmann scalar is singular at ðr ¼ 0; θ ¼ π=2Þ.
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aext ∼M þ Λ
6
M3: ð54Þ

We see that the condition a ¼ M no longer leads to
extremal black holes and that

aext < aKdSext ≡M þ Λ
3
M3; ð55Þ

where aKdSext corresponds to the extremal case for the KdS
solution.
Notice that the line element (33) shows a region where

the spacetime violates the causality condition, as it happens
for the standard solution in Eq. (28). This takes place when
gϕϕ > 0, which defines a sector where the Killing field ∂ϕ

becomes timelike. This occurs adjacent to the ring singu-
larity, in the region r < 0, and goes from r ¼ 0 to a
maximum or minimum extension, corresponding to a
maximum or extreme black hole, respectively.
Regarding rotational effects, we see that the angular

speed Ω≡ − gtϕ
gϕϕ

for the Lense-Thirring effect

Ω ¼ arð2M þ Λ
3
r3Þ

ρ2ðr2 þ a2Þ þ a2rð2M þ Λ
3
r3Þ sin2 θ < ΩKdS; ð56Þ

which is much simpler than ΩKdS, the corresponding one
for the KdS metric in Eq. (28). In this respect, although it is
true that every rotating solution produces a frame dragging,
the warped curvature displayed in Eq. (36) cannot be
generated by the Lense-Thirring effect in the KdS solution
(28). Also note that, in general, the line element (33)
describes the spacetime of a uniform thermal bath (regard-
less of its nature) surrounding a black hole in equilibrium.
In this sense, the solution is not limited to the existence of a
cosmological constant.

If we compare the event horizons rþ of both solutions in
(28) and (33), for a given value of fM; a;Λg, we find that
rþ < rKdSþ . This indicates a larger screening effect due to Λ
in the new solution. This agrees with the shadow of both
solutions in Fig. 2.
Finally, if the Minkowski vacuum is filled by a source

whose energy-momentum tensor is traceless, then there will
be no warped curvature as shown in the expression (36).
This explains why the curvature remains R ¼ 0 in the
axially symmetric electrovacuum, namely, when we depar-
ture from the Reissner-Nordström solution to generate the
Kerr-Newman solution [17]. The above has a direct and
quite important consequence regarding alternative theories,
which we express in the form of conjecture: if there is a
gravitational sector not described by general relativity, and
it is conformal invariant, then a rotating black hole will
produce no warped curvature of spacetime surrounding it.

V. CONCLUSIONS

Following the scheme developed in Ref. [17], we find a
rotating version of the Schwarzschild–de Sitter spacetime,
which represents a new solution describing the exterior of a
black hole with cosmological constant. We find that the
new solution, displayed in Eq. (33), besides being simpler
and therefore easier to analyze than the standard one in
Eq. (28), presents a phenomenon never described, such as
the warped curvature shown in (36). This rotational effect
on the curvature R will appear as long as the energy-
momentum tensor filling the axialsymmetric vacuum has a
nonzero trace, as in fact it is for the case of a cosmological
constant.

FIG. 1. Metric function Δ for the two bounds shown in
Eq. (52), i.e., extremal BH (M−) and maximum BH (Mþ),
and for a BH with mass M between the two bounds. We take
fa;Λg ¼ f0.9; 0.05g. The vertical dashed line shows the event
horizon r ¼ rþ.

FIG. 2. Shadows for the KdS solution (28) (black) and for the
new solution (33) (blue), for M ¼ 1.06; a ¼ 0.9;Λ ¼ 0.06. The
parameters α, β are the celestial coordinates [28].
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The new solution was examined in detail, precisely
identifying the bonds for Mða;ΛÞ in (52), within which
the existence of BHs is possible. We want to stress that this
new scheme is particularly attractive to implement in theories
beyond Einstein, where in general finding exact axialsym-
metric BH solutions is a difficult task, and in most cases
impossible.
We conclude emphasizing a critical point of particular

importance related to the uniqueness theorem. In this paper,
like Carter’s solution, the spacetime surrounding rotating
BHs contains only the cosmological constant, that is, the
right-hand side of Eq. (1) is given by Λgμν. In Carter’s
solution, Λ remains constant and uniform everywhere. In

our case, the Minkowski spacetime is filled by Tμν ¼ Λgμν
generating a de Sitter spacetime with uniform energy
density ϵ ¼ Λ. However, as soon as we get near to a
rotating BH, we observe rotational effects on the energy
density Λ and spacetime curvature R, as is explicitly
shown by Eqs. (36), (42), and (43). Of course, by con-
struction, it is not possible to see these effects in the KdS
solution. Indeed, it is difficult for a second solution to exist
satisfying a condition as rigid as that imposed on Carter’s
solution. However, if we relax this condition, we can
probably find new features of spacetime near rotating
BHs, such as warped curvature, that are certainly worth
studying.
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