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Realistic black holes are usually dynamical, noticeable, or sluggish. The Vaidya metric is a significant
and tractable model for simulating a dynamical black hole. In this study, we consider scalar perturbations in
a dynamical Vaidya black hole and explore the quasinormal modes by employing the matrix method. We
find the proper boundary conditions of the quasinormal modes from physical analysis in the background of
a dynamical black hole for the first time. The results show that the eigenfrequencies become different at the
apparent horizon and null infinity, because the physical interactions propagate with finite velocity in nature.
Any variation of the hole does not affect the boundary condition at null infinity in a finite time. The
quasinormal modes originated around the horizon would not immediately come down to, but slowly go to
the final state following the mass accretion process of the hole. The precision of the matrix method is quite
compelling, which reveals more details of the eigenfrequencies of the quasinormal mode of perturbations in
the Vaidya spacetime.
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I. INTRODUCTION

Observations from LIGO and Virgo [1–9] and the Event
Horizon Telescope [10–14] verify the existence of black
holes in our Universe. Black holes have different origins,
such as the gravitational collapse of massive stars, the
accretion or merger of compact stars, and the collapse of an
overdensity region in the early Universe. Classically, any
particle or radiation inside the horizon can never escape
beyond it. Therefore, an observer outside the horizon is
ignorant about the interior of a black hole. Fortunately, we
can study the properties of black holes through several
circumstantial phenomena, such as the surrounding accre-
tion processes, gravitational wave radiation, and gravita-
tional lens. Because of the complexity of the astronomical
environment, people hope to receive a characteristic signal
of a black hole to facilitate its location and to have an
insight into its properties. For this purpose, it is intriguing
for us to explore the quasinormal mode (QNM) process
associated with a black hole.
A linear perturbation of a black hole is a critical tool to

reveal the stability of the black hole. An unstable pertur-
bation is a self-excitation mode that leads the hole to
explode eventually. In contrast, the black hole would
remain if the perturbation modes are stable. The vibrations
of the black hole decays gradually due to the loss of energy

from gravitational radiation. The process includes three
stages: First of all, in the initial perturbation stage, the
initial perturbation mainly determines the vibration behav-
ior that hardly depends on the nature of black hole itself.
The second stage is the QNM vibration stage: The wave-
form can be described by a complex frequency ω, which
includes a positive real part (indicating the frequency of
vibration) and a negative imaginary part (indicating the rate
of decrease in vibration amplitude). This complex fre-
quency is determined by the nature of the black hole itself.
Therefore, it is just the characteristic frequency of the black
hole. We can investigate the black hole according to the
QNM frequency and even to probe the relevant parameters
in quantum gravity through black hole physics. In the final
stage, the amplitude of the vibration decreases rapidly after
the QNM perturbation phase, which is named as the late
time tails. The nature of this phase is also determined by the
black hole itself.
On the other hand, gravitational waves from binary

compact objects also show that the gravitational wave
radiation in this process includes three phases: inspiral,
merger, and ringdown. Linear perturbation of a black hole
can describe the waveform of the ringdown phase. The
ability of the current gravitational wave detectors is
insufficient to precisely show the waveform of the ring-
down phase. Fortunately, the next generation of ground
gravitational wave detectors could allow us to survey the
details of this phase [15–24]. Therefore, investigating
QNMs will shed light on black hole physics and gravita-
tional wave astronomy in the future.
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So far, people have proposed various methods to study
the QNMs of black holes, such as the WKB method
[25–31], the asymptotic iteration method [32–35], and
other methods [36–40]. However, almost all of them are
designed for studying the case of static or stationary black
holes. Regarding realistic black holes in astrophysics, their
mass may either decrease in evaporation due to the
quantum Hawking radiation effect or increase due to the
accretion process. There is no doubt that dynamical
evolution plays an essential role in astronomical observa-
tion and theoretical research of black holes. However, few
studies pay attention to the QNMs of the dynamical black
hole. In general, obtaining an analytical solution from the
black hole perturbation equation is quite challenging. The
situation becomes more complicated for a dynamical black
hole. A few numerical methods are recommended to
resolve the time-dependent partial differential equations
[41–45]. An available method to calculate the QNMs in
dynamical spacetimes is the finite difference method
invoked by Abdalla et al. in Refs. [42–45]. The method
fits the frequency from the curve of the black hole
perturbation waveform. It is a straightforward way to
calculate the QNM frequency. The method precision in
certain situations leaves much to be desired. Especially for
a small angular momentum L, the QNM phase is almost
unobservable in the curve of the perturbation waveform.
In previous investigations, we proposed the matrix

method to calculate the QNMs of black holes [46–48].
The results illustrate that the matrix method can be widely
utilized to investigate the asymptotical flat and (anti–)de
Sitter (AdS) black hole spacetimes. This approach gives us
an insight into the QNM frequency and eigenfunction of the
accreting Vaidya-AdS black hole [49], in which we
considered the case with mass increasing from an initial
mass Mi to another final mass Mf in a finite time.
Therefore, the QNM frequency ωi and its eigenfunction
in the Schwarzschild black hole spacetime with mass Mi
are naturally assumed as the initial condition. By applying
the finite difference method along the time, we solved the
QNM equation in the dynamical black hole spacetime. The
results showed that the QNM frequency fails to reach the
final state (QNM frequency of Schwarzschild with mass
Mf) immediately but approaches this value after a long
time.
In this study, we examine the QNMs of a Vaidya black

hole by utilizing the matrix method. In such an asymp-
totically flat dynamical spacetime, it is essential to consider
the boundary condition being more complicated than that
of the AdS spacetime. The reason is that the wave function
of the AdS spacetime vanishes always at infinity due to the
divergence of the potential function. However, the wave
function remains finite in an asymptotically flat spacetime.
Furthermore, the boundary conditions at infinity cannot be
changed in a finite time due to the limited velocity of
physical interactions. Therefore, the QNM frequency of the

Vaidya black hole should depend on both the radial spatial
and the temporal coordinates. For the reason mentioned
above, a suitable boundary condition is required. In the next
section, we illustrate the numerical calculation process of
the dynamical Vaidya black hole using the matrix method.
Section III shows the numerical results. We conclude the
investigation in Sec. IV.

II. SCALAR PERTURBATION AND
QUASINORMAL MODES OF THE VAIDYA

BLACK HOLE

Typically, the astronomical environment for a black hole
is rather complicated. Usually, a black hole lives in an
accretion disk, surrounded by gases and dark matter.
Actually, in the history of the Universe, almost all the
realistic black holes are in accretion, getting larger and
larger. Some particular black holes may be undergoing the
Penrose process to release energy. Even for a hole in the
clean astronomical environment, it is not completely static
due to the quantum evaporation, i.e., Hawking radiation. It
is a formidable task to find an analytical solution for the
realistic accreting black hole. Fortunately, Vaidya sug-
gested a dynamical metric that is surrounded by null dust.
Vaidya called it a shining star, as it radiates null matter
described by retarded Eddington coordinates. It also
describes absorbing stars by the advanced Eddington
coordinates. The Vaidya metric is an appropriate theoretical
model for dynamical spherical black holes. It is extended to
various modified gravities, for example, massive gravity
[50]. For an accretion black hole, we write the Vaidya
metric in the advanced Eddington coordinates as

ds2¼−fðv;rÞdv2þ2drdvþr2ðdθ2þsin2θdφ2Þ; ð2:1Þ

with

fðv; rÞ ¼ 1 −
2MðvÞ

r
≡ 1 −

r0ðvÞ
r

; ð2:2Þ

where r0 ¼ r0ðvÞ is the apparent horizon, which satis-
fies fðv; r0ðvÞÞ ¼ 0.
Substituting the above metric into the massless scalar

field equation ∂μð ffiffiffiffiffiffi−gp
gμν∂νΦÞ ¼ 0, we get the radial

scalar perturbation equation as follows:

f∂rðf∂rϕÞ þ 2f∂v∂rϕ − Vϕ ¼ 0; ð2:3Þ

where the potential term V ¼ f
r2 ½r∂rf þ LðLþ 1Þ� and the

field function comes from Φ ¼ P ϕðv;rÞ
r Yðθ;φÞ.

In order to simplify the calculation, we do the trans-
formation r → r

ri
and v → v

ri
, so that the initial value of

apparent horizon ri becomes 1.
Before making a further separation of variables, we

explore the physical significance of the coordinate v.
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For static spacetime, there is a natural 3þ 1 decomposition,
since ∂

∂t is a Killing vector. Thus, an observer who shifts
along the integral curve of this vector senses an invariant
spacelike 3-surface. This invariance leads to a conserved
current J, which is defined as

Ja ¼ Tab

� ∂
∂t
�

b
: ð2:4Þ

Here, Tab denotes the stress energy of a field or only a
conserved symmetric tensor on the manifold, which sat-
isfies ∇aTab ¼ 0. Then it is easy to demonstrate that J is a
conserved current:

∇aJa ¼ 0: ð2:5Þ

The conserved charge E corresponding to this current reads

E ¼ −
Z

�J∼; ð2:6Þ

where � marks the Hodge dual of a form and ∼ labels a
restriction to the spacelike 3-space, i.e., the hypersurface
orthogonal to ∂

∂t. If we invoke the stress energy of the
spacetime, which expands the spacetime geometry accord-
ing to the Einstein equation, we directly arrive at the
Misner-Sharp energy as a conserved charge. This argument
can be extended to higher dimensions and modified
gravities [50–54]. For a probe field (no backreaction to
the metric), one also directly defines the conserved current
and conserved charge corresponding to its stress energy by
using Eqs. (2.5) and (2.6).
Generally, for a dynamical spacetime, no timelike field

has priority to decompose the spacetime. Fortunately, for a
dynamical spacetime in spherical symmetry, we have a
natural extension of the Killing vector, named after
Kodama [55]. Careful investigations imply that the
Kodama vector is the one with priority to decompose
dynamical spacetimes in spherical symmetry [56–58]. The
resulting time coordinate is also called Kodama time. The
key property of Kodama vector in spherical symmetry is

∇ðaKbÞ ¼ 0; ð2:7Þ

which exactly follows the property of the Killing vector.
Thus, naturally, we construct a conserved current J from a
conserved stress energy Tab:

Ja ¼ TabKb: ð2:8Þ

Similar to the static case, the conserved charge correspond-
ing to this current reads

E ¼ −
Z

�J∼: ð2:9Þ

For the dynamical spherical metric (2.1) in areal coor-
dinate, the Kodama vector reads

Kb ¼
� ∂
∂v

�
b
: ð2:10Þ

For the stress energy of the spacetime metric, the conserved
current becomes

J ¼ 1

8π

�
ð−1þ f þ rf0Þ dr

r2
þ ðf − f2 − rff0 − r _fÞ dv

r2

�
;

ð2:11Þ

where a prime denotes derivative with respect to r and a dot
for v. The Hodge dual of J reads

�J ¼ sin θ
8π

ðð−1þ f þ rf0Þ
× dr ∧ dθ ∧ dϕþ f _fdv ∧ dθ ∧ dϕÞ: ð2:12Þ

Thus, a restriction of �J to the spacelike hypersurface
orthogonal to K is

�J∼ ¼ 1

8π
ð1 − f − rf0Þdr ∧ d cos θ ∧ dϕ: ð2:13Þ

The resulting conserved charge is

E ¼ −
Z

�J∼ ¼ r
2
ð1 − fÞ: ð2:14Þ

This is a new definition of Misner-Sharp energy through the
conserved charge method [50]. One easily confirms that the
conserved charge is exactly the mass parameter MðvÞ for
the Vaidya metric. In a word, v is the proper time coordinate
and corresponds to a conserved charge (energy) in dynami-
cal spherical symmetry.
Thus, it is reasonable to write the scalar field as

ϕ ∼ e−iωðvÞv. At the apparent horizon, the eigen Kodama
energy is directly proportional to ωþ v∂vω. Comparing to
the case of static metric, a mode e−iωðvÞv does not imply a
constant eigenenergy. This is not surprising, since the
background spacetime is dynamical. The energy of a
particle is inherently variable when shifting along the
vector field which carries the intrinsic symmetry, i.e., the
Kodama field. The point is that the stress energy of
the scalar field yields a conserved current and a conserved
charge (energy) with the aid of the Kodama vector.
Mass accretion shifts the position of apparent horizon

r0 ¼ r0ðvÞ immediately. In detail, at the apparent horizon,
the potential term vanishes, so that the perturbation
equation reduces as
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f∂rðf∂rϕÞ þ 2f∂v∂rϕ ¼ 0; ð2:15Þ

and the above equation permits two solutions: the ingoing
mode ϕ1 ¼ C̃1e−iωðvÞv [C̃1 is a constant and ωðvÞ is the
temporal-dependent frequency] and the outgoing mode ϕ2

that satisfies f∂rϕ2 þ 2∂vϕ2 ¼ 0. The boundary condition
requires the outgoing mode to vanish, because nothing can
escape from the classical black hole.
However, the change of the apparent horizon would not

affect the boundary condition at infinity in a finite time,
because the speed of light is finite. In this paper, we
consider that the initial status of mass is a constant, so the
metric becomes a static Schwarzschild solution, and the
boundary solution at infinity is the outgoing mode
ϕ ¼ C̃0e−iωiðv−2rÞr2iωiri , where C̃0 is a constant and ωi is
the QNM frequency of the initial Schwarzschild status as
v ≤ va in Eq. (2.20).
Therefore, the field function in the master equation can

be recomposed as

ϕ ¼ e−i½ωiþ½r0ðvÞ=r�ðωðvÞ−ωiÞ�ve2iωirr2iωiriΨðv; rÞ; ð2:16Þ

so that the function Ψ satisfies the boundary condition

Ψ ¼
�
C1 r → r0ðvÞ;
C0 r → ∞;

ð2:17Þ

where we can find that the constants C1 and C0 are not
independent and C0 can determine C1 by the calculating of
the eigenvalues and eigenvectors. The above discussion and
Eq. (2.16) imply that the QNM frequencies become differ-
ent at different radial positions r. The effect also comes
from the fact that the speed of physical interaction
propagation is finite. Thus, any variance around the horizon
does not affect the physical environment at a finite distance.
After the change of horizon, the QNM frequency ωðvÞ at
the horizon in Eq. (2.16) will change immediately, but ωi at
infinity will not change in a finite time.
We also introduce a new variable x≡ 1 − r0ðvÞ

r , so that
the range 0 ≤ x ≤ 1 (x ¼ 0 at the horizon and x ¼ 1 at
infinity). Under the above transformations, the master
equation becomes

HxxΨ00 þHxv
_Ψ0 þHxΨ0 þHv

_ΨþH0Ψ ¼ 0;

Hxx ¼ ðx − 1Þ3½2_r0 − xð1 − xÞ�;
Hxv ¼ 2ð1 − xÞ2r0;
Hx ¼ ið1 − xÞf−2r0ðvÞ½2ωi _r0 þ ðx − 1Þðxωiþvðx − 1Þ _ωÞ þ ðx − 1Þ2ω�

þ ðx − 1Þ½_r0ð4ωiðri þ vðx − 1ÞÞ þ 2iÞ þ ðx − 1Þðxð4riωi þ 2vðx − 1Þωi þ 3iÞ − iÞ
− 2vðx − 1Þωð2_r0 þ ðx − 1ÞxÞ�g;

Hv ¼ 2ir0½2ωir0þð1 − xÞð2ωiri − ð1 − xÞvðωi − ωÞÞ�;
H0 ¼ ð1 − xÞfðx − 1Þ½2vðωi − ωÞ_r0ð2riωiþvðx − 1Þωi þ ðv − vxÞωþ iÞ þ xω2

i ð2ri þ vðx − 1ÞÞ2 þ iωiðð4x − 2Þri
þ vxð3x − 4Þ þ vÞ þ vðx − 1Þωð−xð4riωiþ2vðx − 1Þωi þ 3iÞ þ vðx − 1Þxωþ iÞþL2 þ L − xþ 1�
þ 2r0½ωð2vωi _r0 þ ðx − 1Þð−2riωi þ vωi þ v2ðx − 1Þ _ω − iÞÞ − vðx − 1Þ _ωð2riωi þ vðx − 1Þωi þ iÞ
þ ω2

i ð−ð2xri þ 2v_r0 þ vðx − 1ÞxÞÞ þ vðx − 1Þ2ω2� þ 4ωir20ðv _ωþ ωÞg; ð2:18Þ

whereF 0 ≡ ∂xF and _F ≡ ∂vF . When r0 → ri, the spacetime reduces to the Schwarzschild case withω → ωi andΨ → Ψi,
so the master equation becomes

xð1 − xÞ2Ψ00
i þ ½ð4x − 1Þð2iωiri − 1Þþð3 − 4iωiriÞx2�Ψ0

i þ ½8ω2
i r

2
i þ 4iωiri − 1−L − L2 − xðiþ 2ωiriÞ2�Ψi ¼ 0; ð2:19Þ

and we can get the initial conditions from the above equations.
To make the study concise and definite, we assume the mass accretion as follows:

r0ðvÞ≡ 2MðvÞ ¼

8>><
>>:

ri 0 ≤ v < va;

ri þ Aþ A sin ðαðv − vaÞ − π
2
Þ va ≤ v < va þ π

α ;

ri þ 2A va þ π
α ≤ v:

ð2:20Þ
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In principle, MðvÞ is a C2 function. Here, MðvÞ denotes a
solution which describes a spacetime that initiates from a
Schwarzschild one, then accretes to some degree, and
returns to a static one at last. The evolution of MðvÞ is
shown in Fig. 1. To explicitly display the position and
propagation of the QNMs, Fig. 2 displays a conceptual
Penrose diagram for an accretion Vaidya black hole.

In the next section, we will calculate the time-dependent
QNM frequency ωðvÞ by using the matrix method.

III. NUMERICAL RESULTS

The situation we faced in the current stage is the master
equation (2.18) with the boundary (2.17) and initial
conditions ωi and Ψi, which satisfy the Schwarzschild
black hole’s QNM equation (2.19). To resolve the problem,
we need to discretize the partial differential equation (2.18)
and initial equation (2.19). By using the matrix method, the
eigenvalue ωi is obtained efficiently. Substituting ωi into
the matrix equation from Eq. (2.19) can calculate the
eigenvector ΨiðxiÞ on the grid. Next, from the discrete
master equations, the eigenvalue ωðvkþ1Þ and the eigen-
vector Ψðvkþ1; xiÞ at time v ¼ vi þ ðkþ 1ÞΔv can be
derived by ωðvkÞ and Ψðvk; xiÞ at time v ¼ vi þ kΔv,
where Δv is the step of time coordinate. We show the
calculation results in Figs. 3 and 4.
The above figures show the properties of QNM frequency

at the apparent horizon of an accreting Vaidya black hole.
Comparing Fig. 1 with Fig. 2, we find that ω changes
immediately after the horizon r0 varies from the initial
position. Since ωðvÞ is the QNM frequency at the horizon,
thevariance of r0 can affectωðvÞ soon.However, on the other
hand, after the horizon r0 achieves the final size (namely,
Vaidya spacetime terminated at a static Schwarzschild
spacetime with a larger horizon), we find the frequency ω
cannot cease variance at once, butω slowly goes to the value
of QNM frequency of final state Schwarzschild spacetime.
The phenomenon can be found in QNMs of dynamical black
holes [42–45,49] and is helpful to differentiate signals from
dynamical black holes and static ones.
Figure 3 displays the trend of real and imaginary parts

with respect to the variation of angular momentum L. A
mode with larger angular momentum L implies a larger real
part of ω but a smaller absolute value of its imaginary part.
Another property displayed in Fig. 3 is that the frequency
ωðvÞ is not monotonic. The real part of ωðvÞ hits a maximal
value and then decreases to the final state value gradually,
while the imaginary part of ωðvÞ falls to a minimal value
and then increases to the final value slowly. Interestingly,
the maximal value real part appears of ωðvÞ near the
maximal value of _rðvÞ; as a contrast, the minimal value of
the imaginary part is near the position where r0 reaches the
final state, as shown in Fig. 1. What is more, for larger L,
the above property is more evident; that is, the maximal
value of the real part becomes larger, and the minimal value
of the imaginary part becomes smaller.
Figure 4 shows the variance of Ψ, which is an eigenfunc-

tion of the QNM problem. We find that, at different times v,
the imaginary part of Ψ changes visibly. Simultaneously, its
real part does not change drastically, and the variance
becomes milder for a larger L.

FIG. 2. Penrose diagram for an accreting Vaidya black hole.
The horizon is expanding, while the boundary condition at future
null infinity is not affected.

FIG. 1. The time-dependent function for r0 ¼ r0ðvÞ and _r0 with
A ¼ 1=20, α ¼ 3, and va ¼ 7=20. The initial value of r0 is 1 as
v < va, and it becomes 1.1 as v > vb.
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FIG. 4. The x ¼ 1 − r0ðvÞ
r -dependent function for function Ψ with different v with L ¼ 0, 1, 2 and the step Δx ¼ 1=21.

FIG. 3. The time-dependent function for QNM frequency ω with L ¼ 0, 1, 2 and the step Δx ¼ 1=21.
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IV. CONCLUSION

In this study, we apply the matrix method and time
difference technology to study the QNM process of
dynamic black holes. Because this method straightfor-
wardly penetrates the eigenfrequency of QNMs, the
numerical results are more accurate than those obtained
by the finite difference method. On the other hand, due to
the fact that the speed of physical interaction is limited, the
change in the mass of the black hole would not affect the
boundary conditions at infinity in a finite time. This implies
that the frequency of QNMs of dynamic black holes is a
function of time and space. There are similar results in the
study of gravitational collapse: The information of gravi-
tational collapse cannot reach infinity in a finite time [59].
Since a black hole is a simple celestial body with strong

gravitation, people tend to treat a black hole as a probe to
explore quantum gravity in reasoning. The status of black

holes in gravitational theory may be similar to hydrogen
atoms in quantum theory. Without considering the changes
in atomic energy levels, it is impossible to conduct in-depth
research on quantum theory. Similarly, the study of
dynamical black holes will inevitably have a profound
impact on quantum gravity theory and astronomy. We will
continue to study and discuss the open problems, such as
bound and scattering problems, in the future.
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