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We derive the exact analytical solutions to the symmetron field theory equations in the presence of a
one- or two-mirror system in the case of a spontaneously broken phase in vacuum as well as in matter.
This complements a similar analysis performed in a previous article, in which the symmetron is in the
spontaneously broken phase in vacuum but in the symmetric phase in matter. Here again, the one-
dimensional equations of motion are integrated exactly for both systems, and their solutions are expressed
in terms of Jacobi elliptic functions. In the case of two parallel mirrors, the equations of motion provide also
in this case a discrete set of solutions with an increasing number of nodes and energies. The solutions
obtained herein can be applied to qBOUNCE experiments, to neutron interferometry, and to the calculation
of the symmetron-field-induced “Casimir force” in the CANNEX experiment and allow us to extend the
investigation to hitherto unavailable regions in symmetron parameter space.
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I. INTRODUCTION

Cosmological observations reveal that our Universe is
currently expanding at an accelerated rate. The theoretical
framework describing the Universe on cosmological scales
is general relativity. Since cosmological observations rely
on general relativity for the interpretation of experimental
results, it appears natural that general relativity might need
to be modified to account for the current accelerated
expansion of the Universe. While a modification for short
distances is indeed easily possible, the modification of the
theory for large-distance scales is very intricate and would
violate some of the theory’s fundamental assumptions. It
appears more natural to consider the existence of additional
new hypothetical scalar fields, which couple to gravity
and can account for dark energy (see Ref. [1] for further
details). The existence of hypothetical new scalar-field
degrees of freedom is strongly motivated beyond their
cosmological application. The presence of a new scalar
typically induces also new interactions, so-called fifth
forces. On the other hand, experiments at solar distance
scales and below give no evidence for fifth forces, and as
such, provide strong constraints on these [2]. Naturally, it is
assumed that some kind of “screening mechanism” is at
work, which suppresses the scalar and/or its interaction
with matter in experimentally accessible regions of com-
parably high mass density. At cosmological scales, the
scalar prevails and contributes to the accelerated expansion.
Among the manifold screening mechanisms [1] are

the chameleon [3–5], Damour-Polyakov [6], K-mouflage

[7–9], and Vainshtein [10] mechanisms. Among the models
employing the Damour-Polyakov mechanism, which relies
on a weakened coupling to matter in high-density regions,
is the symmetron model [11,12] (for earlier work, see
Refs. [13,14]). In this model, the coupling of the scalar to
matter is proportional to the vacuum expectation value
(VEV) of the field. The effective potential resembles the
Higgs mechanism for a real rather than a complex field. In
regions of low mass density, spontaneous symmetry break-
ing occurs, resulting in a nonvanishing VEV. In this case,
the field prevails, and when its mass is small (∼103H0),
it could have cosmological implications [12], especially
on the growth of perturbations and large-scale structure
[15–17]. In contrast, in regions of high mass density, the
symmetry is restored, and the VEV, as well as the scalar
coupling to matter, vanishes, rendering the symmetron
invisible to experimental observation (see, e.g., Ref. [18]
for further details on symmetrons). An inflationary scenario
was investigated using symmetrons as a model in Ref. [19],
where it was shown that in this case inflation can start even
in a matter-dominated era.
In Ref. [20], torsion pendulum experiments such as

Eöt-Wash have been investigated theoretically to constrain
symmetrons, while bounds coming from atomic interfer-
ometry have been obtained in Refs. [21,22]. Bounds on
symmetrons have been obtained by Jaffe et al. [23]. Gravity
resonance spectroscopy (GRS) [24,25] has been employed,
and it provided limits on symmetrons in Ref. [26]. In the
corresponding theoretical analysis [18], exact analytical
solutions have been found for an idealized one-dimensional
setup of a single mirror covering an infinite half-space, or*mario.pitschmann@tuwien.ac.at
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two parallel mirrors of finite separation, each covering an
infinite half-space.
Supposedly, in any experimental analysis performed so

far, the symmetron was considered exclusively to be in its
symmetric phase inside the matter regions of the exper-
imental setup. This limitation restricted the experimentally
obtained limits of GRS [26]. Following earlier investiga-
tions, we do not constrain the analysis to regions in
parameter space with respect to their cosmological rel-
evance. In this article, the symmetron is analyzed in the
presence of a one- or two-mirror system with the symme-
tron in its spontaneously broken phase throughout—i.e., in
vacuum and also in matter. It leads to new solutions, which
can again be expressed in terms of Jacobi elliptic functions.
Thereby, a new region of the symmetron parameter space
can be experimentally probed. The solutions obtained here
are valid only for the symmetron in its spontaneously
broken phase in vacuum and matter. Consequently, this
analysis is complementary to the previously performed one
in Ref. [18]. The solutions obtained in the latter, together
with those obtained herein, provide a comprehensive
analysis to obtain complete experimental bounds.
In Sec. II, we will recall some background information

on symmetrons, which will provide the relevant definitions
for the field theory analysis. In Sec. III, the solutions for the
one-mirror case will be derived, while in Secs. IVand V, the
symmetric and antisymmetric two-mirror solutions will be
obtained. As an illustration, in Sec. VI, a particular case
study is carried out for an arbitrary choice of parameters,
and the complete spectrum of solutions for these param-
eters is derived. Section VII provides relevant information
on the qBOUNCE experiment, where the corresponding
symmetron-induced resonance frequency shift for the
case of a single mirror is obtained. In Sec. VIII, relevant
information on the CANNEX experiment is provided and the
symmetron-induced pressure derived. A conclusion in
Sec. IX will be followed by two Appendixes, providing
additional technical details on the symmetron-induced
force on a point particle in Appendix A and the screening
of a neutron in Appendix B.

II. BACKGROUND

Following Ref. [1] (see also Ref. [18]), the symmetron
effective potential is given by

VeffðϕÞ ¼ VðϕÞ þ AðϕÞρ

¼ 1

2

�
ρ

M2
− μ2

�
ϕ2 þ λ

4
ϕ4; ð1Þ

with the inverse coupling of dimension mass M to the
environmental mass density ρ, a parameter μ of dimension
mass, and the dimensionless self-interaction coupling λ.
(An additional term proportional to ρ, which will not
affect the equations of motion, has been neglected.)

The Weyl-rescaling factor for the metric is for symmetrons
defined as

AðϕÞ ¼ 1þ ϕ2

2M2
þOðϕ4=M4Þ: ð2Þ

For ρ ≥ M2μ2, the symmetron is in the symmetric phase. In
the broken-symmetry phase, which we consider exclusively
in this article, we have instead ρ < M2μ2. We introduce the
notation

μ2i ¼ μ2 −
ρi
M2

; ð3Þ

where in the broken-symmetry phase μ2i > 0. The one-
dimensional Hamiltonian reads [18]

H ¼ 1

2

�
dϕ
dz

�
2

−
μ2i
2
ϕ2 þ λ

4
ϕ4: ð4Þ

The minimum value is given by Veff;ϕðϕÞ ¼ 0 and reads
�ϕi, where (without loss of generality, we employ μi ≥ 0)

ϕi ¼
μiffiffiffi
λ

p : ð5Þ

One should note that while the minimum does not vanish
inside matter for ρi < M2μ2, due to Eqs. (3) and (5), it takes
a lower value in matter than in vacuum. The equations of
motion for static field solutions we are searching for are
given by

d2ϕ
dz2

¼ Veff;ϕðϕÞ: ð6Þ

After multiplication by dϕ
dz, these can be integrated to

1

2

�
dϕ
dz

�
2

−
1

2

�
dϕ
dz

�
2
����
z¼z0

¼ VeffðϕÞ − VeffðϕÞjz¼z0 : ð7Þ

Given the value of the field and its first derivative at some
point z0 determines the solutions to the field equations
completely.
For later use, we summarize the most relevant relations

concerning Jacobi elliptic functions. The elliptic integral of
the first kind is given by

Fðϕ;lÞ ¼
Z

sinϕ

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − l2t2Þ

p : ð8Þ

Its relation to those Jacobi elliptic functions relevant for our
analysis is as follows:
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snðu;lÞ ¼ sinðF−1ðu;lÞÞ ¼ −snð−u;lÞ;
cnðu;lÞ ¼ cosðF−1ðu;lÞÞ ¼ þcnð−u;lÞ;
dnðu;lÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2 sin2ðF−1ðu;lÞÞ

q
¼ þdnð−u;lÞ: ð9Þ

Furthermore, the following useful relation holds:

sn

�
uþ F

�
π

2
;l

�
;l

�
¼ cnðu;lÞ

dnðu;lÞ ¼ cdðu;lÞ: ð10Þ

Hyperbolic functions may be expressed in terms of Jacobi
elliptic functions as well—i.e.,

tanh u ¼ snðu; 1Þ;
coth u ¼ nsðu; 1Þ: ð11Þ

III. ONE MIRROR

Analogously to Ref. [18], we treat the case of a single
mirror filling the infinite half-space z ≤ 0 in this section.

A. Vacuum and mirror solutions

In Ref. [18], the solution for a vacuum of low density ρV
in the infinite half-space z ≥ 0 was found to be

ϕðzÞ ¼ ϕV
kV
jkV j

tanh

�
μVzffiffiffi
2

p þ tanh−1 jkV j
�
; ð12Þ

where kV ≔ ϕ0=ϕV is the ratio between the value of ϕ
taken for z ¼ 0—i.e., ϕ0—and the minimum value in
vacuum, ϕV ¼ μV=

ffiffiffi
λ

p
.

Next, we consider the case of low density within the
mirror where ρM < M2μ2 and search for a solution that
asymptotically for z → −∞ goes as ϕðzÞ → �ϕM ¼
�μM=

ffiffiffi
λ

p
, implying dϕ

dz → 0. Hence, we find

1

2

�
dϕ
dz

�
2

¼ VeffðϕÞ − VeffðϕMÞ; ð13Þ

leading to

Z
ϕðzÞ

ϕ0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ2Mðϕ2 − ϕ2

MÞ þ λ=2ðϕ4 − ϕ4
MÞ

p ¼ kM
jkMj

z; ð14Þ

where kM ≔ ϕ0=ϕM is the ratio between the value of ϕ
taken for z ¼ 0 and the minimum value inside the mirror
ϕM. Furthermore, we obtain

kM
jkMj

z ¼ 1

μM

Z
y

kM

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y02 þ 1=2ðy04 − 1Þ

p
¼ −

ffiffiffi
2

p

μM

Z
y

kM

dy0

1 − y02

¼ −
ffiffiffi
2

p

μM
ðcoth−1y − coth−1kMÞ; ð15Þ

where y ≔ ϕðzÞ=ϕM. In the last line, we make use of the
fact that jyj > 1. Inverting the relation straightforwardly
leads to

ϕðzÞ ¼ ϕM coth

�
−
μMffiffiffi
2

p kM
jkMj

zþ coth−1 kM

�
; ð16Þ

and respectively,

ϕðzÞ ¼ ϕM
kM
jkMj

coth

�
−
μMzffiffiffi
2

p þ coth−1 jkMj
�
: ð17Þ

B. Boundary conditions

Using the boundary conditions

ϕðzÞjz¼0−
¼ ϕðzÞjz¼0þ ð18Þ

gives the condition

ϕMkM ¼ ϕVkV: ð19Þ

Together with Eq. (5), this leads to

μMkM ¼ μVkV: ð20Þ

The second boundary condition

dϕ
dz

����
z¼0−

¼ dϕ
dz

����
z¼0þ

; ð21Þ

together with Eq. (20), provides the relation

−
μM
jkMj

ð1 − k2MÞ ¼
μV
jkV j

ð1 − k2VÞ: ð22Þ

After some elementary transformations, Eqs. (20) and (22)
provide the parameters kV and kM, characterizing any field
solution in terms of the fundamental symmetron parameters
and environmental mass densities via μV and μM:

kV ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2M

μ2V

s
;

kM ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2V

μ2M

s
; ð23Þ
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where due to Eq. (20),

sgnðkVÞ ¼ sgnðkMÞ: ð24Þ

C. Final solution

Summarizing the findings of the last two subsections, we
finally obtain the field solution

ϕðzÞ ¼ ΘðþzÞε μVffiffiffi
λ

p tanh

�
μVzffiffiffi
2

p þ tanh−1 jkV j
�

þ Θð−zÞε μMffiffiffi
λ

p coth

�
μMjzjffiffiffi

2
p þ coth−1 jkMj

�
; ð25Þ

where ε is defined as

ε ¼ sgnðkVÞ ¼ sgnðkMÞ ð26Þ

and

jkV j ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2M

μ2V

s
;

jkMj ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2V

μ2M

s
: ð27Þ

For comparison with the solutions in the two-mirror case to
be discussed in the following sections, we express Eq. (25)
also in terms of Jacobi elliptic functions:

ϕðzÞ ¼ΘðþzÞε μVffiffiffi
λ

p sn

�
μVzffiffiffi
2

p þ sn−1ðjkV j;1Þ;1
�

þΘð−zÞε μMffiffiffi
λ

p ns
�
μMjzjffiffiffi

2
p þ ns−1ðjkMj;1Þ;1

�
: ð28Þ

IV. TWO MIRRORS: SYMMETRIC SOLUTION

In this section, we consider symmetric solutions—i.e.,
obeying ϕð−zÞ ¼ ϕðzÞ—which arise for two parallel,
infinitely thick mirrors separated at distance 2d in the z
direction, with z ¼ 0 being the center between the two
mirrors.

A. Vacuum and mirror solutions

In Ref. [18], the solution for the vacuum region of low
density ρV between the mirrors was found to be

ϕðzÞ ¼ ϕVkVcd

�
μV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2V=2

q
z;

jkV j=
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2V=2

p �
; ð29Þ

where kV gives the ratio between the value of the field at the
midpoint z ¼ 0 between the two plates and the vacuum
value ϕV . Therefore, its absolute value must obey jkV j ≤ 1.
The solutions within the mirrors can be directly obtained

from the corresponding solution in the one-mirror case
[Eq. (17)] as

ϕðzÞ ¼ ϕM
kM
jkMj

coth
�
μMffiffiffi
2

p ðjzj − dÞ þ coth−1 jkMj
�
: ð30Þ

B. Boundary conditions

Using the boundary condition at the mirror surface

ϕðzÞjz¼d− ¼ ϕðzÞjz¼dþ ð31Þ

provides the condition

ϕVkVcd

�
μV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2V=2

q
d;

jkV j=
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2V=2

p �
¼ ϕMkM: ð32Þ

Furthermore, the boundary condition

dϕ
dz

����
z¼d−

¼ dϕ
dz

����
z¼dþ

ð33Þ

has to be satisfied. Using

d
dz

cdðz; kÞ ¼ −ð1 − k2Þ snðz; kÞ
dn2ðz; kÞ ð34Þ

and Eq. (5) leads after some transformations to the relation

−
ffiffiffi
2

p
ð1 − k2VÞjkV jsgnðcdðα; βÞÞsnðα; βÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2V=2

q �
μ2M
μ2V

dn2ðα; βÞ − k2Vcn
2ðα; βÞ

�
; ð35Þ

where α ¼ μV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2V=2

p
d and β ¼ jkV j=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − k2V

p
. The

solutions of Eq. (35) provide possible values of kV .
Subsequently, for given kV the possible values of kM are
obtained by

kM ¼ μV
μM

kVcdðα; βÞ; ð36Þ

where we have employed Eqs. (5) and (32).
The discrete set of paired values ðkV; kMÞ obtained in

this way provides all solutions satisfying the boundary
conditions in Eqs. (31) and (33).

C. Final solution

Summarizing the findings of the previous subsections,
we finally obtain the field solution
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ϕðzÞ ¼ Θðd − jzjÞ kVμVffiffiffi
λ

p cdðαz=d; βÞ þ Θðjzj − dÞ

×
kM
jkMj

μMffiffiffi
λ

p coth

�
μMffiffiffi
2

p ðjzj − dÞ þ coth−1 jkMj
�
;

ð37Þ

with α ¼ μV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2V=2

p
d, β ¼ jkV j=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − k2V

p
, and where

the possible values of kV satisfying the boundary conditions
are given by the solution of

−
ffiffiffi
2

p
ð1 − k2VÞjkV jsgnðcdðα; βÞÞsnðα; βÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2V=2

q �
μ2M
μ2V

dn2ðα; βÞ − k2Vcn
2ðα; βÞ

�
: ð38Þ

Subsequently, for given kV , the possible values of kM are
given by Eq. (36):

kM ¼ μV
μM

kVcdðα; βÞ: ð39Þ

V. TWOMIRRORS: ANTISYMMETRIC SOLUTION

In this section, we derive antisymmetric solutions—i.e.,
obeying ϕð−zÞ ¼ −ϕðzÞ—for two parallel, infinitely thick
mirrors separated at distance 2d in the z direction, with
z ¼ 0 being the center between the two mirrors.

A. Vacuum and mirror solutions

In Ref. [18], the solution for the vacuum region of low
density ρV between the mirrors was found to be

ϕðzÞ ¼ � μ̃ð−Þffiffiffi
λ

p sn

�
μ̃ðþÞffiffiffi
2

p z;
μ̃ð−Þ

μ̃ðþÞ

�
; ð40Þ

where μ̃ð�Þ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4V − 2λϕ0

0
2

pq
and ϕ0

0 ≔
dϕ
dz jz¼0.

Again, the solution inside the mirrors can be obtained
directly from the corresponding solution in the one-mirror
case [Eq. (17)] as

ϕðzÞ ¼ ϕM
kM
jkMj

z
jzj coth

�
μMffiffiffi
2

p ðjzj − dÞ þ coth−1 jkMj
�
:

ð41Þ

B. Boundary conditions

Using the boundary condition at the mirror surface

ϕðzÞjz¼d− ¼ ϕðzÞjz¼dþ ð42Þ

provides the condition

�μ̃ð−Þsnðγ; δÞ ¼ μMkM; ð43Þ

where γ ¼ μ̃ðþÞd=
ffiffiffi
2

p
and δ ¼ μ̃ð−Þ=μ̃ðþÞ, and we have used

Eq. (5). Furthermore, the boundary condition

dϕ
dz

����
z¼d−

¼ dϕ
dz

����
z¼dþ

ð44Þ

also has to be satisfied. Using

d
dz

snðz; kÞ ¼ cnðz; kÞdnðz; kÞ; ð45Þ

we obtain the relation

� μ̃ðþÞμ̃ð−Þffiffiffi
λ

p cnðγ; δÞdnðγ; δÞ ¼ ϕMμM
kM
jkMj

ð1 − k2MÞ: ð46Þ

Using this together with Eq. (43) leads after some trans-
formations to

μ̃ðþÞcnðγ;δÞdnðγ;δÞ ¼ sgnðsnðγ;δÞÞ
�
μ2M
μ̃ð−Þ

− μ̃ð−Þsn2ðγ;δÞ
�
:

ð47Þ

The solutions of this equation provide possible values of
ϕ0
0. Subsequently, for given ϕ0

0 (and therefore given μ̃ð�Þ),
the possible values of kM are obtained from Eq. (43):

kM ¼ � μ̃ð−Þ

μM
snðγ; δÞ: ð48Þ

C. Final solution

Summarizing the findings of the previous subsections,
we finally obtain the field solution

ϕðzÞ ¼ �Θðd − jzjÞ μ̃
ð−Þffiffiffi
λ

p snðγz=d; δÞ

� Θðjzj − dÞsgnðzsnðγ; δÞÞ

×
μMffiffiffi
λ

p coth

�
μMffiffiffi
2

p ðjzj − dÞ þ coth−1 jkMj
�
; ð49Þ

where γ ¼ μ̃ðþÞd=
ffiffiffi
2

p
and δ ¼ μ̃ð−Þ=μ̃ðþÞ. Furthermore,

μ̃ð�Þ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4V − 2λϕ0

0
2

pq
and ϕ0

0 ≔
dϕ
dz jz¼0. The solu-

tions of

μ̃ðþÞcnðγ; δÞdnðγ; δÞ ¼ sgnðsnðγ; δÞÞ
�
μ2M
μ̃ð−Þ

− μ̃ð−Þsn2ðγ; δÞ
�

ð50Þ
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provide possible values of ϕ0
0, while for given ϕ0

0 (and
therefore given μ̃ð�Þ), the possible values of kM are given
by Eq. (48):

kM ¼ � μ̃ð−Þ

μM
snðγ; δÞ: ð51Þ

For a further discussion concerning the completeness of the
two-mirror solutions, we refer to the corresponding dis-
cussion in the previous publication (Ref. [18]), which is
valid for the solutions obtained herein as well.

VI. A PARTICULAR EXAMPLE

For illustrative purposes, we provide in this section the
complete set of solutions for two mirrors with the particular
parameters as given in Table I. The corresponding one-
mirror solution with k ¼ 0.21 is depicted in Fig. 1.
The “one-dimensional energies” are defined by

E ¼
Z

∞

−∞
ðHðzÞ −H0ðzÞÞdz; ð52Þ

where the Hamiltonian HðzÞ is given by Eq. (4) and

H0ðzÞ ¼ −Θðjzj − dÞ μ
4
M

4λ
− Θðd − jzjÞ μ

4
V

4λ
ð53Þ

“renormalizes” the energy in Eq. (52) to a finite value.
Hereby, we have used the fact that μ4i =4λ is the Hamiltonian
for the ground state solution in a medium filled with
density ρi.
The complete set of six solutions is given in Table I, and

the corresponding field profiles are depicted in Figs. 2
and 3. These six solutions exhaust the spectrum of possible

FIG. 1. The one-mirror solution is depicted for the parameters
of Table I. One can clearly see that the solution approaches a
nonvanishing minimum value inside the mirror, which is lower
than the corresponding minimum in vacuum. Furthermore, the
necessary condition ϕ=M ≪ 1 from Eq. (2) is indeed satisfied.

TABLE I. Values of energy E as defined in Eq. (52) are
given for the three solutions for ρeff ¼ 1.082 × 10−5 MeV4,
M ¼ 10 MeV, μ ¼ 4 × 10−4 MeV, with λ ¼ 10−2 and mirror
distance d ¼ 10−8 m.

Mode E [MeV3] kV kM jϕ0
0j [MeV2]

0þ 3.94 × 10−10 1.00 1.43
3− 1.84 × 10−8 −0.14 1.12 × 10−6

4þ 2.41 × 10−8 0.84 1.36
5− 2.90 × 10−8 1.19 9.65 × 10−7

6þ 3.21 × 10−8 −0.47 0.82
7− 3.26 × 10−8 −0.20 3.96 × 10−7

FIG. 2. The field profiles for the three symmetric solutions from
Table I are depicted. Again, the necessary condition ϕ=M ≪ 1
from Eq. (2) is indeed satisfied.
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solutions completely. Each solution is denoted by its
number of nodes, 0,3,4,5,6,7, and an upper index � to
denote its (anti)symmetry. In Table I, the solutions are
ordered with increasing number of nodes, which corre-
sponds to increasing energy. This is in agreement with the
results in Ref. [18], where the symmetron is in its
symmetric phase inside the mirrors. Surprisingly, the
boundary conditions for the chosen parameter values
permit neither a 1− nor a 2þ solution. One expects that
depending on the parameter values and the distance
between the mirrors, solutions with an arbitrary number
of nodes are possible.

VII. SYMMETRON-INDUCED FREQUENCY
SHIFT IN qBOUNCE

In this section, we analyze observable effects of symme-
trons in the qBOUNCE experiment using the exact sol-
utions obtained herein. This analysis follows the one
performed in Ref. [18]. Therefore, the representation will
be rather succinct, and we refer to that article for further
details. This analysis can also be used for the GRANIT
experiment, which suggests using magnetic gradient fields
for the induction of resonant transitions [27].
In the qBOUNCE experiment [24,25,28], ultracold

neutrons fall freely in Earth’s gravitational field and are
totally reflected by a neutron mirror (this has been reported
for the first time in Ref. [29]). The resulting eigenstates are
discrete and nonequidistant, allowing us to apply resonance
spectroscopy (for a description of the basic setup, we refer
the reader to Ref. [25]). In its version of Rabi spectroscopy,
an energy resolution of 3 × 10−15 peV has been obtained
[26]. In this particular realization of the experiment, the
ultracold neutrons are allowed to pass a first region, ideally
only in the energy ground state of E1 ¼ 1.41 peV—i.e.,
this region acts as a state selector for the ground state.
Subsequently, mechanical vibrations of a glass mirror
with a tunable frequency ω induce Rabi transitions
between the ground and a selected excited energy state.
Finally, the third region acts again as a state selector for
the ground state. Any potential acting on the neutrons, in
addition to the gravitational potential, induces shifts in the
energy levels and thus affects the observable transmission
rate of neutrons passing all three regions. Nonobservation
of such deviations within experimental sensitivity allows
us to put constraints on these hypothetical additional
potentials.
The neutron in a gravitational potential is described by

the Schrödinger equation:

−
ℏ2

2m
∂2ψnðzÞ
∂z2 þmgzψnðzÞ þ δVðzÞψnðzÞ ¼ EnψnðzÞ;

ð54Þ

where δVðzÞ refers to any potential acting on the neutron in
addition to the gravitational potential. In order to obtain the
symmetron-induced frequency shift, we have to extract the
δVðzÞ caused by the symmetron.
The semiclassical neutron-symmetron coupling can

be extracted from the effective symmetron potential
[Eq. (1)] as

Veff ¼
1

2

m
M2

ψ�ψϕ2: ð55Þ

We note that a semiclassical treatment of the neutron
involves some subtleties which are discussed at some length
in the Appendix of Ref. [18]. Hence, we refer to this article

FIG. 3. The field profiles for the three antisymmetric solutions
from Table I are depicted. Once more, the necessary condition
ϕ=M ≪ 1 from Eq. (2) is indeed satisfied.
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for further information. Finally, the symmetron-induced
potential δVðzÞ is found to be

δVðzÞ ¼ 1

2

m
M2

ϕ2ðzÞ: ð56Þ

To first order, this leads to a resonance frequency shift in
Rabi transitions between two neutron eigenstates ψm and ψn
(see, e.g., Ref. [30] for a textbook treatment of perturbation
theory):

δEmn ≡ Em − En

¼ 1

2

m
M2

Z
∞

−∞
dzðjψmðzÞj2 − jψnðzÞj2ÞϕðzÞ2: ð57Þ

For qBOUNCE we consider a single mirror filling z ≤ 0.
Hence, we can employ Eq. (25) and finally obtain for the
resonance frequency shift

δEmn ¼
1

2

m
M2

μ2V
z0λ

Z
∞

0

dz tanh

�
μVzffiffiffi
2

p þ tanh−1jkV j
�

2

×

(
Aiðz−zmz0

Þ2
Ai0ð− zm

z0
Þ2 −

Aiðz−znz0
Þ2

Ai0ð− zn
z0
Þ2
)
; ð58Þ

where z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2=2m2g3

p
and zn ¼ En=ðmgÞ.

We note that the difference in Eq. (58) from the
corresponding expression in Ref. [18] amounts to a differ-
ent shift of the hyperbolic tangent’s argument. We find that
again, larger values of λ give smaller energy shifts for a
given μV . Similarly, increasing M leads to smaller devia-
tions. In this way, large regions of the symmetron parameter
space can be probed with the qBOUNCE experiment.
In the analysis given so far, only the interaction of the

neutron with the background field as generated only by the
mirrors has been considered. Thereby, the neutron is treated
as a probe which does not influence the symmetron field as
a source. A proper treatment taking the neutron as a source
as well its quantum nature into account constitutes a far
more sophisticated problem, which is beyond the scope
of this paper. Clearly, more work needs to be done to
obtain completely rigorous symmetron bounds using the
qBOUNCE experiment. As an approximation, we treat the
neutron as a classical sphere [18] with diameter R, which is
a commonly used treatment for neutrons. Such a treatment
permits the extraction of a screening charge Q, given in
Eq. (B12) and derived in Appendix B. In order to account
for the neutron acting as a source for the symmetron, one
has to replace Eq. (58) as follows:

δEmn → QδEmn ð59Þ

for the extraction of the experimental limits.

VIII. SYMMETRON-INDUCED PRESSURE IN
CASIMIR EXPERIMENTS

Here, we consider limits that can be obtained by the
Casimir And Non-Newtonian force EXperiment (CANNEX)
[31] (see also Refs. [32,33]). This experiment consists of
two parallel plates in a vacuum chamber and has been
devised to measure the Casimir force and hypothetical
fifth forces. A symmetron field would induce a pressure
between those plates, which can be measured with high
precision.
We approximate the setup in one dimension along the z

axis as follows: Between the upper surface of the fixed
lower mirror at z ¼ 0 and the lower surface of the movable
upper mirror at z ¼ a prevails vacuum. Above that follows
the upper mirror with thickness D, and above that at
z > aþD vacuum prevails again. In order to obtain the
induced pressure for the movable upper mirror, we apply
the symmetron-induced force on a point particle Eq. (A15),
which is derived in Appendix A, to the macroscopic mirror
as follows:

fϕ ¼ −
ρM
M2

Z
∞

−∞
dx

Z
∞

−∞
dy

Z
dþD

d
dzϕ∂zϕez; ð60Þ

where ρM is the mirror density. Consequently, the pressure
in the z direction is given by

pz ¼ −
ρM
M2

Z
dþD

d
dzϕ∂zϕ: ð61Þ

The corresponding integral is a surface term and hence is
trivially carried out with the final result

pz ¼
ρM
2M2

ðϕ2ðdÞ − ϕ2ðdþDÞÞ: ð62Þ

This agrees for a static field configuration of ϕ with
Eq. (A2), which reduces in this case to

∂zTzz ¼ −∂zpz ¼ ∂z lnAρM: ð63Þ

Using this with Eq. (2) indeed agrees with Eq. (62).
For ϕðdÞ, we employ the value at the mirror surface of
the corresponding two mirror solutions given in Eqs. (37)
and (49):

ϕ2ðdÞ ¼ μ2Mk
2
M

λ
; ð64Þ

where kM is obtained by Eqs. (38) and (39) for the
symmetric solutions and by Eqs. (50) and (51) for the
antisymmetric ones. For ϕðdþDÞ, we can use instead
the value at the mirror surface of the one-mirror solution
given in Eq. (25):
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ϕ2ðdþDÞ ¼ 1

2λ
ðμ2V þ μ2MÞ: ð65Þ

Finally, we obtain for the pressure

pz ¼
ρM

4λM2
ðμ2Mð2k2M − 1Þ − μ2VÞ: ð66Þ

A numerical analysis has been carried out in parallel to this
work [34] to obtain the exclusion region of the symmetron
parameter space by employing the CANNEX experiment.

IX. CONCLUSION

We have extended a previously performed analysis [18]
for the case of symmetrons in the broken phase in vacuum
and in matter. We have derived exact analytical solutions to
the symmetron field theory in the presence of a one- or
two-mirror system. The obtained solutions have been
expressed in terms of Jacobian elliptic functions. Again,
as in Ref. [18], a discrete set of solutions with increasing
numbers of nodes and energies has been found in the two-
mirror case. Surprisingly, the discrete set of solutions
obtained in a particular example does not contain the full
discrete spectrum of nodes within finite bounds.
We have analyzed observable effects induced in the

presence of symmetrons for the qBOUNCE and CANNEX

experiments. Parallel to this analysis, a numerical work has
been carried out [34], which employs the analytical results
obtained herein.
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APPENDIX A: FORCE ON A POINT PARTICLE
IN A SYMMETRON BACKGROUND

Here, we derive the force on a point particle due to a
scalar field, which interacts with matter via the Weyl-
rescaling of the metric gμν → g̃μν ¼ A2ðϕÞgμν in the matter
action. Then, the equations of motion for a point particle
follow from

∇̃μT̃μν ¼ 0 ðA1Þ

in the Jordan frame with metric g̃μν. In this frame, the
presence of the scalar ϕ leads to a change in the space-time
geometry. Concerning the matter part of the total action, the
scalar is absorbed within the rescaled metric. Hence, a point
particle still follows geodesics in space-time but with
respect to the rescaled metric g̃μν.
On the other hand, in the Einstein frame we have instead

∇μTμν ¼ lnAðϕÞ;νT; ðA2Þ

which can be shown to follow from Eq. (A1) [35]. In this
frame, the metric determining the space-time geometry
is gμν, and consequently the geometry of space-time is
unaffected by the scalar, which appears in this case as an
explicit degree of freedom and induces a force on the
particle, which we will derive next.
The energy-momentum tensor of a point particle propa-

gating along a curve zμðsÞ is given by

Tμν ¼ mffiffiffiffiffiffi−gp
Z

dsδð4Þðx − zðsÞÞ_zμ _zν; ðA3Þ

where the dot denotes derivation with respect to proper time
s—i.e., d

ds. Using

∂ν
1ffiffiffiffiffiffi−gp ¼ −

1ffiffiffiffiffiffi−gp Γλ
νλ; ðA4Þ

the covariant derivative of the energy-momentum tensor
takes the form

Tμν
;ν ¼

mffiffiffiffiffiffi−gp
Z

dsð_zμ _zν∂νδ
ð4Þðx − zðsÞÞ

þ Γμ
λν _z

λ _zνδð4Þðx − zðsÞÞÞ

¼ mffiffiffiffiffiffi−gp
Z

dsδð4Þðx − zðsÞÞð̈zμ þ Γμ
λν _z

λ _zνÞ: ðA5Þ

Then, Eq. (A2) reads

mffiffiffiffiffiffi−gp
Z

dsδð4Þðx − zðsÞÞð̈zμ þ Γμ
λν _z

λ _zν − lnAðϕÞ;μÞ ¼ 0:

ðA6Þ

This provides the equation of motion,

̈zμ þ Γμ
λν _z

λ _zν − lnAðϕÞ;μ ¼ 0: ðA7Þ

It is interesting to note that the equation of motion can also
be obtained by a variation principle as follows: Since a
Weyl-rescaling in the Einstein frame leads to a change of
the mass of the point particle m → AðϕÞm, the action
changes accordingly:

Sm ¼ −m
Z

b

a
ds → −m

Z
b

a
AðϕÞds: ðA8Þ

Variation of the action

−mδ

Z
b

a
AðϕÞds ¼ 0 ðA9Þ

leads again to the equation of motion in Eq. (A7).
Comparison with the four-vector of the force in the

Einstein frame,
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fμ ¼ m̈zμ; ðA10Þ

gives the complete force on a point particle:

fμ ¼ −mΓμ
αβ _zα _zβ þm lnAðϕÞ;μ: ðA11Þ

The first term on the right-hand side is the gravitational
force, with the remaining second term being due to the
scalar field ϕ. We would like to note that the acceleration is
still proportional to the mass, which means that the weak
equivalence principle still holds.
Hence, the force fμϕ caused by the scalar field alone is

given by

fμϕ ¼ m lnAðϕÞ;μ: ðA12Þ

In the nonrelativistic limit, this expression reduces to

fϕ ¼ −m∇ lnAðϕÞ: ðA13Þ

Typically, AðϕÞ ≃ 1, in which case to leading order,
lnAðϕÞ ≃ AðϕÞ − 1. Consequently, we find for the force
on a particle caused by a scalar ϕ to leading order

fϕ ¼ −m∇AðϕÞ: ðA14Þ

In the case of symmetrons, AðϕÞ is given by Eq. (2), and we
finally obtain for the force on a point particle induced by
the symmetron field

fϕ ¼ −
m
M2

ϕ∇ϕ; ðA15Þ

and, respectively, for the corresponding acceleration,

aϕ ¼ −
1

M2
ϕ∇ϕ: ðA16Þ

APPENDIX B: SYMMETRON FIELD
OF A NEUTRON

In Sec. VII, we have derived the symmetron-induced
resonance frequency shift in the qBOUNCE experiment.
This analysis employed the solutions of symmetron fields
as sourced only by the mirrors of the experimental setup.
For certain symmetron parameter ranges, the neutron acts
as a source of the symmetron in a non-negligible way. To
take this rigorously into account is beyond the analysis
presented in this paper. For an approximative treatment, we
treat the neutron as a classical sphere.
The field equations for a static massive sphere with

radius R are given by

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ −μ2iϕþ λϕ3; ðB1Þ

where μi ¼ μS inside the sphere and μi ¼ μV outside. The
boundary conditions we take as

ϕ0ð0Þ ¼ 0;

lim
r→∞

ϕðrÞ → ϕV: ðB2Þ

We approximate the effective potential around the mini-
mum value μi=

ffiffiffi
λ

p
to second order. With

ϕ ¼ φþ μiffiffiffi
λ

p ; ðB3Þ

this corresponds in the equation of motion to the
approximation

−μ2iϕþ λϕ3 ¼ −μ2i

�
φþ μiffiffiffi

λ
p

�
þ λ

�
φþ μiffiffiffi

λ
p

�
3

≃ 2μ2iφ: ðB4Þ

The field equation for a static massive sphere in this
approximation is given by

d2φ
dr2

þ 2

r
dφ
dr

¼ 2μ2iφ: ðB5Þ

With φ ¼ ψ=r, Eq. (B5) reads

d2ψ
dr2

¼ 2μ2iψ ; ðB6Þ

with the general solution

ϕ ¼ A
e

ffiffi
2

p
μir

r
þ B

e−
ffiffi
2

p
μir

r
þ μiffiffiffi

λ
p ; ðB7Þ

where A and B are arbitrary constants. The solution inside
the sphere, which is convergent for r → 0 and satisfies the
boundary condition ϕ0ð0Þ ¼ 0 is given by

ϕ<ðrÞ ¼ C
sinhð ffiffiffi

2
p

μSrÞ
r

þ ϕS; ðB8Þ

where C ≔ −2A ¼ 2B and ϕS ¼ μS=
ffiffiffi
λ

p
. The solution

outside the sphere, which is convergent for r → ∞ and
satisfies limr→∞ ϕðrÞ → ϕV ¼ μV=

ffiffiffi
λ

p
is given by

ϕ>ðrÞ ¼ B
e−

ffiffi
2

p
μVr

r
þ ϕV: ðB9Þ

At the surface of the sphere, the boundary conditions

ϕ<ðRÞ ¼ ϕ>ðRÞ;
ϕ0
<ðRÞ ¼ ϕ0

>ðRÞ ðB10Þ
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must hold, which provides the following expressions for
the constants:

C ¼ ϕV − ϕSffiffiffi
2

p 1þ ffiffiffi
2

p
μVR

μS coshð
ffiffiffi
2

p
μSRÞ þ μV sinhð

ffiffiffi
2

p
μSRÞ

;

B ¼ −
ϕV − ϕSffiffiffi

2
p

ffiffiffi
2

p
μSR coshð ffiffiffi

2
p

μSRÞ − sinhð ffiffiffi
2

p
μSRÞ

μS coshð
ffiffiffi
2

p
μSRÞ þ μV sinhð

ffiffiffi
2

p
μSRÞ

× e
ffiffi
2

p
μVR: ðB11Þ

Consequently, we obtain for the approximative symmetron
solution of a sphere

ϕðrÞ

¼
(
ϕSþϕV−ϕSffiffi

2
p 1þ ffiffi

2
p

μVR
μScoshð

ffiffi
2

p
μSRÞþμV sinhð

ffiffi
2

p
μSRÞ

sinhð ffiffi
2

p
μSrÞ

r ; forr≤R;

ϕV−Q
ϕV−ϕS

3

2μ2SR
3

1þ ffiffi
2

p
μVR

e−
ffiffi
2

p
μV ðr−RÞ
r ; forr≥R:

The solution ϕðrÞ is plotted in the top panel of Fig. 4 for
some representative parameter values. Outside the sphere,
the solution is expressed in terms of the screening charge,
which is obtained as

Q¼ 3

2
ffiffiffi
2

p 1þ ffiffiffi
2

p
μVR

μ2SR
3

ffiffiffi
2

p
μSRcoshð

ffiffiffi
2

p
μSRÞ−sinhð ffiffiffi

2
p

μSRÞ
μS coshð

ffiffiffi
2

p
μSRÞþμV sinhð

ffiffiffi
2

p
μSRÞ

:

ðB12Þ

The screening charge is plotted in the bottom panel of
Fig. 4 as a function of parameter M. One should note the
lower bound given by M ¼ ffiffiffiffiffi

ρS
p

=μ. Below this limit, the
symmetron undergoes a phase transition to its symmetric
phase, in which case the corresponding field solution
derived in Ref. [18] has to be employed instead. The
screening charge has the limits

Q →

�
0; for screened bodies withR ≫ 1=μS;

1; for unscreened bodies withR ≪ 1=μS:

In Eq. (A16), the symmetron-induced acceleration on a
small test body is given. Using this with the field outside a

sphere as given above, we obtain asymptotically for large r
the acceleration on the test body:

aϕ ¼ −Q
ϕV

M2

ϕV − ϕS

3

2
ffiffiffi
2

p
μVμ

2
SR

3

1þ ffiffiffi
2

p
μVR

e−
ffiffi
2

p
μVr

r
r
r
: ðB13Þ

This dependence of the acceleration on Q justifies the
identification of the latter as a screening charge.

FIG. 4. Top: the field solution of a sphere ϕðrÞ is depicted as a
function of the radial distance of the center of the sphere for
symmetron parameters corresponding to Q ¼ 0.9 (blue) and
Q ¼ 0.3 (yellow). The blue shaded area is bounded by the radius
of the sphere R ¼ 104 MeV−1 and the vacuum field value ϕV .
Bottom: the screening charge Q is plotted here as a function of
the coupling parameter M. For illustrative purposes, the param-
eters taken are R ¼ 104 MeV−1, ρS ¼ 2.39 × 10−10 MeV4, and
μ ¼ 4 × 10−4 MeV. Note the lower bound given byM ¼ ffiffiffiffiffi

ρS
p

=μ,
below which the symmetron undergoes a phase transition to its
symmetric phase.
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