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Violations of Lorentz (and specifically boost) invariance can make gravity renormalizable in the
ultraviolet, as initially noted by Hořava, but are increasingly constrained in the infrared. At low energies,
Hořava gravity is characterized by three dimensionless couplings, α, β and λ, which vanish in the
general relativistic limit. Solar system and gravitational wave experiments bound two of these couplings
(α and β) to tiny values, but the third remains relatively unconstrained (0 ≤ λ≲ 0.01–0.1). Moreover,
demanding that (slowly moving) black-hole solutions are regular away from the central singularity
requires α and β to vanish exactly. Although a canonical constraint analysis shows that the class of
khronometric theories resulting from these constraints (α ¼ β ¼ 0 and λ ≠ 0) cannot be equivalent to
General Relativity, even in vacuum, previous calculations of the dynamics of the solar system, binary
pulsars and gravitational-wave generation show perfect agreement with general relativity. Here, we
analyze spherical collapse and compute black-hole quasinormal modes, and find again that they behave
exactly as in general relativity, as far as observational predictions are concerned. Nevertheless, we find
that spherical collapse leads to the formation of a regular universal horizon, i.e., a causal boundary for
signals of arbitrary propagation speeds, inside the usual event horizon for matter and tensor gravitons.
Our analysis also confirms that the additional scalar degree of freedom present alongside the spin-2
graviton of general relativity remains strongly coupled at low energies, even on curved backgrounds.
These puzzling results suggest that any further bounds on Hořava gravity will probably come from
cosmology.
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I. INTRODUCTION

Lorentz symmetry is one of the cornerstone of our
understanding of theoretical physics, and has been tested
to exquisite precision in particle physics experiments [1–4].
Bounds on Lorentz violations (LVs) in gravity are however
much weaker [5–7]. This is particularly interesting because
violations of boost symmetry in gravity may allow for
constructing a theory of quantum gravity that is power
counting (or even perturbatively) renormalizable in the
ultraviolet [8,9]. This proposal, initially put forward by
Hořava [8], may still pass particle physics tests of Lorentz
symmetry if a mechanism is included to prevent “perco-
lation” of large LVs from gravity to matter. Among such
putative mechanisms are renormalization group flows
(whereby Lorentz invariance may be recovered, at least
in matter, in the infrared) [10–13], accidental symmetries
allowing for different degrees of LVs in gravity and matter
[14], or the suppression of LVs in matter via a large energy
scale [15].
The infrared limit of Hořava gravity, also known as

khronometric theory, is characterized by three dimension-
less coupling parameters α, β and λ, in terms of which the
theory’s action is [8,16,17]

S ¼ 1 − β

16πG

Z
dTd3xN

ffiffiffi
γ

p �
KijKij −

1þ λ

1 − β
K2

þ 1

1 − β
ð3ÞRþ α

1 − β
aiai

�
þ Smatter½gμν;Ψ�; ð1Þ

in units where c ¼ 1 (used throughout this article), and
where the bare gravitational constant G is related to the one
measured on Earth and in the solar system (GN) by

GN ¼ G
1 − α=2

: ð2Þ

The action is written in terms of a preferred spacetime
foliation described by T ¼ const, and the metric has been
decomposed in the 3þ 1 form1

ds2 ¼ N2dT2 − γijðdxi þ NidTÞðdxj þ NjdTÞ; ð3Þ

where we recognize a lapse function N, a shift three-vector
Ni and the spatial three-metric γij. Also defined in terms of

1From now on, Latin indices will run only over space
directions, while Greek indices will also include time.
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this decomposition are the other quantities appearing in the
action, e.g., the determinant of the three-metric γ; the
extrinsic curvature of the foliation,

Kij ¼ −
1

2N
ð∂Tγij −DiNj −DjNiÞ; ð4Þ

where the covariant derivative Di is defined with respect to
γij; the three-dimensional Ricci scalar ð3ÞR; K ¼ Kijγij; and
ai ¼ ∂i lnN. With Ψ we refer here to standard matter fields,
which couple to the full four-dimensional metric gμν. This
action can be obtained from that of nonprojectable Hořava
Gravity [16] by neglecting operators with more than two
derivatives, relevant only at high energies. Note that by
introducing a preferred foliation, Lorentz symmetry is broken
at the local level. The action is invariant under foliation-
preserving diffeomorphisms (T → T̃ðTÞ, xi → x̃iðx; TÞ) but
not under full four-dimensional diffeomorphisms.
The same action can be recast in covariant form by

promoting the coordinate T to a (timelike) scalar field (the
“khronon”) and defining a unit-norm, timelike “æther”
vector field orthogonal to the hypersurfaces of T ¼ const,

uμ ¼
∇μTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇αT∇αT

p ; ð5Þ

where we assume a þ−−− metric signature (as in the
following). This allows for writing the action as [18]

S ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ λð∇μuμÞ2

þ β∇μuν∇νuμ þ αaμaμ� þ Smatter½gμν;Ψ�; ð6Þ

where aμ ≡ uν∇νuμ. Here, LVs are made apparent by the
fact that the vector field u is timelike, i.e., according to the
definition (5),

uμuμ ¼ 1: ð7Þ

Although still weaker than in matter, LVs in gravity are
becoming increasingly constrained, especially by gravita-
tional wave (GW) experiments. Bounds on the propagation
speed of GWs from GW170817 constrain jβj≲ 10−15

[19,20], which paired with bounds from solar system
experiments also allows for constraining jαj≲ 10−7 (with
λ left unconstrained), or jαj≲0.25×10−4 and λ≈α=ð1−2αÞ
[21–25]. Measurements of the abundance of primordial
elements produced by big bang nucleosynthesis (BBN)
constrain λ≲ 0.1 [26–28], with λ ≥ 0 required to ensure
absence of ghosts [16,20]. These bounds therefore seem to
suggest that α and β should be tiny, while λ could still be
sizeable. Indeed, an additional theoretical constraint—
namely that black holes moving slowly relative to the
preferred foliation remain regular except for their central
singularity—would require α and β to vanish exactly [25].

We will refer to the theory with α ¼ β ¼ 0 and λ ≠ 0 as
minimal Hořava gravity (mHG) in the following.
Remarkably, all noncosmological observables that have
been computed in Hořava gravity reduce to their GR
counterparts in the mHG case. For instance, the dynamics
in the solar system (i.e., at first post-Newtonian order)
exactly matches that of GR [23,24]. GWs also propagate
exactly at the speed of light [23]. Moreover, static
spherically symmetric black holes are described by the
Schwarzschild metric [29], and so are those moving slowly
relative to the preferred foliation [25]. The same applies to
stars, for which both static spherically symmetric solutions
and ones describing slowly moving bodies are character-
ized by the same (GR) geometry [30]. Note that for both
stars and black holes the khronon configuration is non-
trivial, but does not backreact on the geometry in mHG.
This is quite surprising—because objects at rest and in
motion are expected to be described by the same metric
only in a Lorentz-symmetric theory such as GR, and not
(a priori) in a theory with LVs—and has implications also
for the dynamics of binaries of compact objects and for GW
generation.
Indeed, since the geometry of slowly moving stars and

black holes is the same as in GR, the “sensitivities”—which
parametrize violations of the strong equivalence principle at
the leading post-Newtonian (PN) order [27,28,31]—can be
shown to vanish exactly in mHG [25,30]. Therefore, no
dipole GW emission from binaries of compact objects is
expected in mHG [25,30], unlike for generic α, β
(where this effect was used to test the theory with binary
pulsars [27,28]).
A possible caveat regarding these experimental bounds is

that the khronon becomes strongly coupled around the
Minkowski and Robertson-Walker geometries in the mHG
limit, since the scalar field T becomes non-propagating
(i.e., its speed diverges) when α, β → 0 and λ ≠ 0 [23,32].
We stress that strong coupling does not mean that the
theory is not viable, but simply that the linearized calcu-
lations on the simple backgrounds mentioned above may
provide incorrect results. However, since the strong cou-
pling affects the khronon and not the tensor sector, the
linear calculation of the speed of GWs (used to compare to
the GW170817 observations) is expected to provide trust-
worthy results.
As for the PN calculations of the solar system dynamics

and GW generation, it should be noted that (i) the PN
scheme is an expansion in powers of 1=c, and it thus
includes nonlinear terms; and (ii) the Newtonian/PN
dynamics is strongly coupled in GR as well, and yet it
gives meaningful results. Indeed, at leading (Newtonian)
order the gravitational field does not propagate in GR (i.e.,
the equation describing it is elliptic), and propagation only
appears at higher PN orders [21,33]. We therefore expect
the results from a PN expansion of the field equations to
remain valid also in the mHG limit.
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Given this wealth of (noncosmological) observables for
which mHG provides the same predictions as GR, it is
natural to wonder whether mHG and GR may be equiv-
alent, at least in some regimes. Obviously, a full equiv-
alence between GR and mHG can be excluded, since the
cosmological expansion history is different in the two
theories (a fact that is used to constrain λ with BBN data
[27,28]), but it may hold in more specific settings. For
instance Refs. [34,35], based on a constraint analysis of
mHG, claimed that the theory may be equivalent to GR in
vacuum and under asymptotically flat boundary conditions.
While suggestive in the light of the “coincidences” pre-
sented above, this conclusion disagrees with that of
Ref. [36], which solved the (tertiary) constraint equation
of mHG and showed explicitly that the theory cannot be
equivalent to GR unless N ¼ 0 (in which case the metric is
degenerate).
In this work, we will therefore attempt to identify

(noncosmological) astrophysical observables for which
mHG may differ from GR, focusing on fully nonperturba-
tive calculations, or on ones that involve perturbations over
backgrounds different from the Minkowski and Robertson-
Walker geometries (on which the khronon is strongly
coupled). In more detail, in Sec. II we will review linear
perturbations of mHG on flat space. We will then study the
non-linear dynamics of spherically symmetric collapse (in
Sec. III), showing that a universal horizon (i.e., a boundary
for signals of arbitrary speeds) [37,38] naturally forms
inside the usual horizon for tensor gravitons and matter.
Nevertheless, the collapse is completely indistinguishable
from GR as far as observable quantities are concerned. In
Sec. IV we will then derive the equations for linear metric
perturbations over static spherically symmetric black holes,
and show that they also coincide with the GR ones, when
focusing on the tensor modes. The scalar mode remains
instead strongly coupled (like in flat space), but decouples
from the tensor sector. Our conclusions are finally pre-
sented in Sec. V.

II. KHRONOMETRIC THEORY
AROUND FLAT SPACE

The dynamics of the action (6) is described in terms
of the metric gμν and the æther vector u. The latter is
constrained to be unit-norm and timelike [cf. Eq. (5)] and
hypersurface orthogonal, i.e., it must have, from the
Fröbenius theorem, zero vorticity

u½μ∇νuσ� ¼ 0: ð8Þ

Since the theory breaks boost invariance at the local
level, it should propagate additional degrees of freedom
besides the usual spin-2 graviton field hμν of GR. Indeed, a
generic four-dimensional vector u contains four degrees of
freedom—which can be arranged into a three-dimensional
divergence-less vector and two scalars. However, the unit

norm (7) and vorticity (8) conditions eliminate three of
these degrees of freedom, leaving a single scalar behind
(corresponding obviously to the khronon scalar field T
defining the preferred foliation).
This can be seen directly at the level of the action by

perturbing both the metric and æther around flat space:

gμν ¼ ημν þ hμν; uμ ¼ ð1; 0Þ þ vμ: ð9Þ

Replacing this into the action (6), we first go to
momentum space—where ∂t ≡ iω and Di ≡ iqi, with ω
and qi the frequency and three-momentum respectively—
and perform a 3þ 1 decomposition adapted to the foliation
orthogonal to the background æther ð1; 0Þ, i.e., we decom-
pose the metric perturbation and æther as

hμν ¼
�
h00 h0i
h0i hij

�
; vμ ¼ ðv0; viÞ: ð10Þ

We then split the various quantities in modes that transform
as scalars, vectors and tensors under rotations

hij¼ ζijþ
qi
q
Xjþ

qj
q
Xiþ

qiqj
q2

s1þ
�
δij−

qiqj
q2

�
s2; ð11Þ

vi ¼ Yi þ
qi
q
s3; ð12Þ

h0i ¼ Zi þ
qi
q
s4; ð13Þ

where Xi, Yi and Zi are divergenceless vectors—i.e.,
DiXi ¼ DiYi ¼ DiZi ¼ 0; si, v0 and h00 are scalars;
and ζij is a transverse-traceless tensor—thus satisfying
Diζ

ij ¼ Djζ
ij ¼ ζii ¼ 0.

The two constraints (7) and (8) kill three of these degrees
of freedom, as previously mentioned. At the linear level,
they impose

h00 þ 2v0 ¼ 0; ϵijkqjYk ¼ 0; ð14Þ

where the second of these conditions is satisfied by setting
Yk ¼ 0. Once these conditions are enforced, the momen-
tum space Lagrangian for the perturbations, retaining only
quadratic terms, becomes

L¼−
1

8
ðλþ βÞω2s21−

1

2
ð1þ λÞω2s21 − λqωs1s3

þ 1

4
ð−q2− ð1þ βþ 2λÞω2Þs21 −

1

2
ðλþ βÞqωs1s3

þ 1

2
ð−ðλþ βÞq2−αω2Þs23þqωs1s4 −αω2s3s4 ð15Þ
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−
1

2
αω2s24 þ

1

8
ðq2 þ ð1 − βÞω2Þζabζab −

1

2
qωXaZa

þ 1

4
ð1 − βÞω2XaXa − αqωs4v0 −

1

2
αq2v20 − αqωs3v0

þ 1

4
ðð1 − βÞq2 − 2αω2ÞZaZa þ q2s1v0; ð16Þ

where we have omitted a global factor of G.
We are left with the task of choosing a suitable gauge.

Since the action (6) from which we started is covariant
(being related to the “unitary gauge” action (1) by a
Stuckelberg transformation), we need to choose four gauge
conditions. These can be given as the requirement that two
scalars and one of the three-dimensional divergenceless
vectors vanish. We choose s1 ¼ v0 ¼ Xa ¼ 0, and replac-
ing these conditions (as well as those that follow from
the equations of motion of these fields) back in the action,
we obtain

L ¼ 1 − β

8
ζabðω2 − c22q

2Þζab

þ ðβ − 1Þðλþ βÞð2þ 2λþ βÞ
4ð1þ λÞ2 s̃ðω2 − c20q

2Þs̃; ð17Þ

where we have also rescaled the remaining scalar as
s̃ ¼ q

ω s3. This is the Lagrangian of two modes propagating
with speeds [23,39]

c22 ¼
1

1 − β
; ð18Þ

c20 ¼
ðλþ βÞð2 − αÞ

αð1 − βÞð2þ 3λþ βÞ : ð19Þ

As previously mentioned, we find an extra propagating
scalar field with velocity c0, besides the usual transverse-
traceless graviton with velocity c2. Both propagation
velocities can be different from the speed of light, although
the coincident observation of GW170817 and GRB
170817A constrains c2 to match c to within about 10−15

(which in turn bounds jβj≲ 10−15). As for the scalar mode,
cosmic ray observations require c0 ≳ 1, because otherwise
ultrahigh energy particles would lose energy to the khronon
in a Cherenkov-like cascade [40].
Superluminality is of course not surprising, since the

theory is not boost-invariant, and thus c ¼ 1 is not a
universal maximum speed. However, although in general
the scalar velocity (19) is finite, it diverges in the mHG
limit, if λ ≠ 0. This is a signal that the linearized expansion
breaks down for the dynamics of the scalar field, which is
then out of reach of perturbative techniques, while the
tensor mode remains healthy. The same conclusion is
achieved by performing an identical expansion around
FRW space-times or around any maximally symmetric
spacetime [41]. Note also that this potentially problematic

behavior of the scalar field only appears at low energies. At
higher energies the action must be extended by operators
with higher number of derivatives, which deform the
dispersion relations and lead to a healthy propagating
scalar mode.
In light of this “strong-coupling problem” for the

khronon on flat space, we pursue in the following two
distinct calculations in mHG, namely spherically symmet-
ric gravitational collapse and linear perturbations over
spherically symmetric static black hole spacetimes. We
will aim to assess whether the khronon dynamics remains
strongly coupled when nonlinearities are included in the
equations of motion, or when spacetimes more general than
Minkowski space are considered.

III. SPHERICAL COLLAPSE

Unlike in GR, Birkhoff’s theorem does not hold in
khronometric theories, and vacuum spherically symmetric
solutions (even when one imposes that they are static and
asymptotically flat) are not unique [37,38,42–44]. In more
detail, in a given khronometric theory, there exists a two-
parameter family of static, spherically symmetric and
asymptotically flat vacuum solutions. One of the param-
eters characterizing these solutions is (like in GR) their
mass, while the second parameter regulates the radial tilt of
the æ ther near spatial infinity [37,38,42–44]. In particular,
for a given mass, only a specific value of this second
parameter yields solutions that are regular everywhere
except for the central r ¼ 0 curvature singularity. These
are the solutions that are expected to form in gravitational
collapse [45] and which are usually referred to as “black
holes” in the literature [37,38,42].
Although the geometry of these black holes is similar to

that of the Schwarzschild solution of GR (with which it
actually coincides exactly in the mHG limit), the existence
of the khronon mode has profound implications for their
causal structure. As shown in Sec. II, at low energies
Hořava gravity propagates both spin-2 and spin-0 grav-
itons, whose speeds are generally different from c (i.e., the
limiting speed for matter modes). As a result, different
causal boundaries exist for spin-0, spin-2 and matter
modes, i.e., black holes in khronometric theories present
spin-0, spin-2 and matter horizons at (generally) distinct
locations.
Even more worryingly, when terms of higher order in the

(spatial) derivatives are included in the infrared action (1),
Hořava gravity predicts that the dispersion relations (for
both the gravitons and matter) will take the form
ω2 ¼ c2i q

2 þ Aq4 þ Bq6, with A and B constant coeffi-
cients and ci the species infrared phase velocity. Therefore,
the group velocity dω=dq of all species will diverge in the
ultraviolet limit, which questions whether it makes sense to
talk about event horizons at all. The problem is even more
evident in mHG, where the spin-0 propagation speed
diverges already in the infrared limit (cf. Sec. II).
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However, an unavoidable requirement for any physical
modes is that they propagate in the future, as defined by the
preferred foliation. Therefore, the topology of the hyper-
surfaces of constant khronon plays a crucial role in defining
the spacetime’s causal structure. In the infrared black hole
solutions of [37,38], there exists indeed a a hypersurface of
T ¼ const that is also a hypersurface of constant radius.
Once inside this hypersurface—which was called the
“universal horizon” in [37,38]—no modes can escape,
even if they propagate at infinite speeds, simply because
they need to move in the future direction defined by the
background preferred foliation. Note that in the special case
of mHG, this universal horizon coincides with the spin-0
horizon, since the khronon propagation speed diverges
already in the infrared limit.
Despite their attractive features, as mentioned above,

black holes are not the only static and spherically sym-
metric solutions of khronometric theory. Indeed, generic
values of the æ ther tilt parameter yield solutions that are
singular at the spin-0 horizon. In particular, if the tilt
parameter is such that the æther does not present any radial
component at spatial infinity, that component vanishes
throughout the entire spacetime (i.e., the æ ther is always
parallel to the timelike Killing vector), and the resulting
solutions describe the exterior spacetime of static spheri-
cally symmetric stars (whose matter “covers” the singu-
larity at the spin-0 horizon) [43,44].
For concreteness, let us examine the special case of

mHG, where these static and spherically symmetric vac-
uum solutions can be obtained analytically and read [29]

ds2 ¼ fðrÞdt2 − BðrÞ2
fðrÞ dr2 − r2dΩ2; ð20Þ

uαdxα ¼
1þfðrÞAðrÞ2

2AðrÞ dtþ BðrÞ
2AðrÞ

�
1

fðrÞ−AðrÞ2
�
dr; ð21Þ

where

fðrÞ ¼ 1 −
2GNM

r
; BðrÞ ¼ 1; ð22Þ

AðrÞ ¼ 1

f

�
−
r2æ
r2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ r4æ

r4

r �
: ð23Þ

The two parameters characterizing each solution are themass
M and the “radial tilt” ræ. These solutions are singular at the
universal horizon (which in mHG coincides with the spin-0
horizon, as mentioned above) unless ræ ¼ 33=4GNM=2 [29].
The latter value describes instead a black hole with a regular
universal horizon (located at areal radius rU ¼ 3GNM=2),
while ræ ¼ 0 describes a static æther u ∝ ∂t.
Note that Eqs. (20)–(23), whatever the value of ræ, yield∇μuμ ¼ 0. If we now express the class of solutions given by

Eqs. (20)–(23) in the unitary gauge (where the khronon is

used as the time coordinate T), the unit-norm, future directed
æther vector u becomes orthogonal to the preferred foliation
T ¼ const, which therefore presents K ¼ ∇μuμ ¼ 0.
Therefore, Eqs. (20)–(23) yield the Schwarzschild geometry
foliated inmaximal (preferred) slicesK ¼ 0,whichhave long
been studied in the context of numerical relativity [46–51].
In order to ascertain which solution, in the class

described by Eqs. (20)–(23), is produced as the end-point
of gravitational collapse, let us consider the equations of
motion for time dependent configurations, which can be
obtained by varying the action (1). Variation with respect to
the shift yields the momentum constraintHi ¼ 0. Variation
with respect to the lapse yields an equation H ¼ 0 that
reduces to the GR energy constraint when α, β, λ → 0, but
which is not a priori a constraint equation in khronometric
theory. In fact, for generic α, β, λ the resulting equation is
not a constraint, but corresponds to the khronon’s evolution
equation in the covariant formalism of action (6). Finally,
by varying with respect to γij one obtains the evolution
equations Eij ¼ 0. We describe matter by a perfect fluid,
whose stress-energy tensor

T μν ¼ ðρþ pÞUμUν − pgμν; ð24Þ

(where p, ρ and U are the fluid’s pressure, energy density
and four-velocity) is covariantly conserved (∇μT μν ¼ 0),
since in Eqs. (1) and (6) matter couples only to the four-
dimensional metric gμν. The explicit form of H, Hi and Eij

is given in the Appendix A (see also [24]) for generic
khronometric theories, from which the mHG equations can
be obtained by setting α ¼ β ¼ 0.
To simplify the algebra, let us choose spatial coordinates

on the preferred slices such that Ni ¼ 0. Unlike in GR,
however, the lapse is not a gauge field, i.e., we have already
chosen our time coordinate to be the khronon when writing
the action (1), and thus no further conditions can be
imposed on N. The most generic ansatz that we can write
in spherical symmetry is therefore

γijdxidxj ¼ AðT; RÞdR2 þ R2BðT; RÞdΩ2; ð25Þ

N ¼ ZðT; RÞ: ð26Þ

For the matter, we assume that ρ and p are also functions of
T and R alone, and that the three-velocity is radial, i.e., only
URðT; RÞ and UTðT; RÞ are nonzero (and related by the
normalization condition UαUα ¼ 1). Note that the class of
metrics given by Eqs. (20)–(23) can be easily put in the
form of Eq. (25) by performing first a coordinate trans-
formation t ¼ T þHðrÞ (to go to the unitary gauge) and
then a further (time dependent) coordinate transformation
r ¼ RBðT; RÞ1=2 to eliminate the shift and render the metric
diagonal. More explicitly, at large radii the solution given
by Eqs. (20)–(23) yields
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Z ¼ 1 −
GNM
R

þ ð2k1 − 1ÞG2
NM

2

2R2
þ ð−2k21 þ 2k1 þ 2k2 − 1ÞG3

NM
3

2R3

þ −8GNMTr2æ þ 4r4æ þ G4
NM

4½8k31 − 12k21 þ 8k2 − 4k1ð4k2 − 3Þ − 5�
8R4

þO
�
1

R

�
5

; ð27Þ

A ¼ 1þ 2GNM
R

−
2½ðk1 þ k2 − 2ÞG2

NM
2�

R2
þ 4Tr2æ þ G3

NM
3ð2k21 − 8k1 − 6k2 þ 8Þ

R3
þO

�
1

R

�
4

; ð28Þ

B ¼ 1þ 2k1GNM
R

þ ðk21 þ 2k2ÞG2
NM

2

R2
þ 2k1k2G3

NM
3 − 2T r2æ

R3
þO

�
1

R

�
4

; ð29Þ

where k1 and k2 are free parameters entering in the
coordinate transformation.2 Note that even though Z, A
and B are time dependent, the dependence on time appears
at subleading order in 1=R. Moreover, the trace of the
extrinsic curvature vanishes, as it did in the original
foliation given by Eqs. (20)–(23), since K ¼ ∇μuμ is a
scalar under four-dimensional diffeomorphisms.
In order to have only first order equations for our system,

let us then introduce KA ≡KR
R ¼ −∂TA=2AZ, KB ≡

Kθ
θ¼Kφ

φ¼−∂TB=2BZ, DZ ≡ ∂R logZ, DA ≡ ∂R logA
and DB ≡ ∂R logB. With these variables, K ¼
−∂T ln

ffiffiffi
γ

p
=N ¼ KA þ 2KB.

With our ansatz, the nontrivial field equations are
H ¼ HR ¼ ERR ¼ Eθθ ¼ 0. As mentioned above, H ¼ 0
becomes the energy constraint in the GR limit, but is not
generically a constraint in khronometric theory. To check
whether H ¼ 0 is a constraint in mHG, let us consider the
time derivative of H. By using the equations of motions to
simplify the expressions, one obtains

∂TH ¼ −
λ

RAZ
½ð2þ RDÞ∂RKþ r∂2

RK�; ð30Þ

where D ¼ 2DZ −DA=2þDB. Equation (30) vanishes
either in the GR limit λ ¼ 0, or when the quantity within
brackets is zero.
Barring the case λ¼0, one therefore has to solve ∂TH¼0

(which follows from the original field equation H ¼ 0) at
each time T. Actually, the generic solution to ∂TH ¼ 0 is
simply

∂RK ¼ CðTÞ2 A1=2

R2BZ2
; ð31Þ

where CðTÞ is an integration constant. In a gravitational
collapse, e.g., of a star, one requires regularity at the center
of the coordinates to obtain a physically meaningful
solution [50,51]. Necessary conditions for regularity are
that A, Z, B are finite (and nonvanishing) at R ¼ 0, and that
K and its radial derivative also remain finite at the center.
From Eq. (31), it is therefore clear that the only way to
impose regularity at r ¼ 0 is to set CðTÞ ¼ 0 for any T, i.e.,
the extrinsic curvature K must be constant on any given
spatial foliation, i.e., KðT; RÞ ¼ kðTÞ. Note that a spatially
constant trace was also expected from the Hamiltonian
analysis of [35,52].
If kðTÞ ≠ 0, by exploiting time-reparametrization invari-

ance one can set kðTÞ ¼ 1. The evolution equations ERR ¼
Eθθ ¼ 0 and the momentum constraint HR ¼ 0 then take
the same form as in GR, whereas the equation H ¼ 0
[which is now a bona fide Hamiltonian constraint since
CðTÞ ¼ 0] contains a term proportional to λ. However, as
noted e.g., by [35], if asymptotically flat boundary con-
ditions are assumed, at spatial infinity one must necessarily
have K ¼ kðTÞ ¼ 0 at all times [cf. also Eqs. (27)–(29)].
Boundary conditions at spatial infinity that are not neces-
sarily flat, but which are time-independent, will yield also
K ¼ kðTÞ ¼ 0 at all times (see e.g., [53] for an example of
one such GR collapse solution).
Similarly, outgoing boundary conditions at infinity also

imply K ¼ kðTÞ ¼ 0 at all times. This can be seen by
noting that if one imposes N ≈ 1þ AN exp½iωNðT − RÞ�=R
and

ffiffiffi
γ

p ≈ 1þ Aγ exp½iωγðT − RÞ�=R (with AN , Aγ , ωN , and
ωγ free coefficients), then at large R we find

∂RK ≃ −
Aγω

2
γ

R
exp½iωγðT − RÞ�: ð32Þ

Requiring that ∂RK ¼ 0 implies Aγ ¼ 0 and thus K ¼ 0.
Finally, let us note that if K ¼ 0 at all times, the

spherical collapse equations and the constraints become
identical to the GR ones, written in the maximal slicing
gauge K ¼ 0 [and in our zero-shift ansatz (25)]. Since K ¼
∇μuμ (with u the unit-norm future-directed vector orthogo-
nal to the foliation) is a scalar under four-dimensional

2Indeed, our ansatz (25) does not complete fix the gauge, as it
is invariant under a time-independent redefinition of the radius.
This residual gauge freedom arises because choosing Ni ¼ 0
does not completely fix the spatial coordinates on T ¼ constant
hypersurfaces, but merely ensures that once a set of spatial
coordinates is chosen on some initial T ¼ constant hypersurface,
then the spatial coordinates are fixed in the whole spacetime. The
choice of coordinate on the initial slice, however, is arbitrary.
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diffeomorphisms, one can then transform the spherical
collapse equations of mHG into those of GR with maximal
time-slicing K ¼ 0, but more general spatial coordinates
(i.e., ones yielding general nonvanishing shift).3

The maximal time-slicing gauge has been extensively
used in GR to study gravitational collapse, as it allows for
penetrating the black hole horizon [46–51]. One can
therefore utilize the results of GR simulations (either
performed in the maximal slicing gauge, or transformed
to that gauge a posteriori) to gain insight on spherical
collapse in mHG.
Indeed, GR collapse simulations in the maximal time-

slicing found that there exists a “limiting slice”, i.e., a
limiting hypersurface that the maximal slices approach at
late times [46–51]. In more detail, the slicing that arises in
these simulations outside the collapsing sphere turns out to
be described by the unit-norm future-directed vector u given
by Eq. (21), with the parameter ræ asymptotically approach-
ing the critical value 33=4GNM=2. The limiting slice is
therefore defined by areal radius r ¼ 3GNM=2 [46–51].
While in GR the foliation of the spacetime in time slices

has no physical meaning (as it is merely a coordinate
effect), the slicing has instead an important physical
meaning in mHG, since we are using the unitary gauge,
where the time coordinate coincides with the khronon
scalar field. Indeed, the appearance of the limiting slice
r ¼ 3GNM=2 in the GR maximal-slicing collapse simu-
lations corresponds to the formation of a universal horizon
in mHG.4 This can be understood because in spherical
symmetry the universal horizon is, by definition, the
outermost hypersurface r ¼ const that is also orthogonal
to u (or equivalently, the outermost hypersurface r ¼ const
that is also a hypersurface of constant khronon T ¼ const).
We can therefore conclude that spherical collapse in mHG
produces “regular” black holes, i.e., ones described by
Eqs. (20)–(23). In particular, no singularity forms at the
spin-0/universal horizon.
We stress, however, that an analysis of the principal

part of the fully non-linear spherical collapse equations in
generic khronometric theories, which we present in
Appendix B, shows that the characteristic speed of the

scalar mode diverges in the mHG limit. This suggests that
the effect of the khronon on spherical collapse in mHGmay
vanish simply because it satisfies an elliptic equation. It is
therefore unclear if gravitational collapse will be the same
as in GR when the assumption of spherical symmetry is
relaxed. To partially tackle this problem, as well as to assess
if moving away from flat space can fix the strong coupling
of the khronon reviewed in Sec. II, in the next section we
will consider linear, but otherwise generic, perturbations of
black holes in mHG.

IV. QUASINORMAL MODES

Linear gravitational perturbations of black hole space-
times in GR have been studied for decades, since the
seminal work by Regge, Wheeler and Zerilli for the
Schwarzschild geometry [57,58] and by Teukolsky for
the Kerr one [59]. The frequency spectrum of these
perturbations, once ingoing/outgoing boundary conditions
are imposed at the event horizon/far from the black hole, is
discrete and consists of complex frequencies. Since the
imaginary part of the latter is such that the spectrum modes
are exponentially damped (thus pointing, in particular, to
linear stability of the Schwarzschild and Kerr solutions, at
least for nonextremal spins), these modes are usually
referred to as quasinormal modes (QNMs).
Interestingly, because the Kerr geometry can only

depend on two “hairs” [60–63] (mass and spin5), the
QNMs frequencies are found to only depend on the same
two quantities. This observation has long prompted sug-
gestions to use QNM observations to test the no-hair
theorem and thus GR [65,66], a proposal that the LIGO/
Virgo collaboration is starting to tentatively apply to real
data [67–70], even though really constraining tests will
probably have to wait for future detectors [71].
In order to compute QNM frequencies in mHG, let us

start from the equations of motion in vacuum derived from
the covariant action (6). From variations of the metric, one
obtains

Eμν ¼ Gμν − λT kh
μν ¼ 0; ð33Þ

where Gμν ¼ Rμν − gμνR=2 and T kh
μν contains the contri-

bution from the khronon:

T kh
μν ¼ uμuνuσ∇σ∇ρuρ − gμν∇ρuρ þ

1

2
gμνð∇σuσÞ2

þ 2ðgρðμuνÞ − uðμuνÞuρÞ∇ρ∇σuσ: ð34Þ

Variation of the khronon field T yields a scalar equation
that is equivalent to the covariant conservation of T kh

μν,
already a consequence of (33) [18]. As such, it does not

3Note that we are changing the spatial coordinates to reinstate
the shift, but not the time coordinate, which still coincides with
the khronon field (unitary gauge).

4The correspondence between the appearance of a limiting
foliation in GR in the maximal time slicing gauge and the
formation of a universal horizon was also noticed in Ref. [54] for
the case of Cuscuton theories. The latter are indeed equivalent to
mHG if their scalar potential is quadratic [55,56] (even though the
equivalence is subtle when it comes to the hypersurface ortho-
gonality condition (8), as a result of which suitable boundary
conditions are required to obtain an exact equivalence between
the two theories [55]). However, Ref. [54] worked in the
decoupling limit (i.e., neglecting the backreaction of the
Lorenz-violating field on the geometry) and with zero potential
(in which case the theory is not equivalent to mHG).

5The electric charge is believed to be zero or extremely small
for astrophysical black holes [64].

THE RELATION BETWEEN GENERAL RELATIVITY AND A … PHYS. REV. D 103, 084012 (2021)

084012-7



need to be independently enforced if all of the ten
components of Eq. (33) are satisfied. However, we show
it here for completeness:

κ ≡ λ∇μ

�ðgμν − uμuνÞð∇ν∇σuσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇αT∇αT
p

�
¼ 0: ð35Þ

Let us now perturb the metric and khronon fields around
a curved background geometry, characterized by the pair
fḡμν; ūμg:

gμν ¼ ḡμν þ ϵhμν þOðϵ2Þ;
uμ ¼ ūμ þ ϵvμ þOðϵ2Þ; ð36Þ

where ϵ is a perturbative parameter (which sets the
amplitude of the perturbations of the metric and æther/
khronon, which needs to be small for the linear theory to be
a good approximation). In the following, to keep the
analysis more general, we will simply assume a spherically
symmetric and static background, given by the ansatz of
Eqs. (20)–(21). To restrict to a black hole background, one
can then simply assume the validity of Eqs. (22)–(23),
with ræ ¼ 33=4GNM=2.
Inserting Eq. (36) into Eq. (33) and expanding to linear

order in ϵ, we obtain the equations of motion for the
perturbations in covariant form,

Ēμν þ ϵδEμν þOðϵ2Þ ¼ 0; ð37Þ

where Ēμν ¼ 0 is automatic from the choice of background.
From now on we will drop the Oðϵ2Þ symbol everywhere
for notational clarity. Note that the æ ther field enters
Eq. (34) both with upper and lower indices. This implies
that even if we set vμ ¼ 0, we do not trivially recover the
same equations for the perturbation as in GR, since there
are still non-negligible contributions to δEμν coming from
uμ ≈ ūμ þ ϵvμ − ϵūνhμν. Note that this signals that the
gravitational perturbations “feel” the presence of a back-
ground violating Lorentz invariance through the presence
of the preferred foliation.
Since the background fḡμν; ūμg is spherically symmetric,

it is convenient to expand the perturbations in spin-
weighted spherical harmonics. Using the standard
Regge-Wheeler gauge [57] for the metric perturbations
and performing a Fourier transform in the time coordinate
(exploiting the staticity of the background), we obtain

hμν ¼ e−iωtðhevenμν þ hoddμν sin θ∂θÞPlðcos θÞ; ð38Þ

where PlðxÞ is the lth Legendre polynomial, with l the
angular momentum eigenvalue, and

hevenμν ¼

0
BBBBB@

fðrÞHl
0ðrÞ Hl

1ðrÞ 0 0

Hl
1ðrÞ Hl

2
ðrÞ

fðrÞ 0 0

0 0 r2KlðrÞ 0

0 0 0 r2KlðrÞsin2θ

1
CCCCCA
;

ð39Þ

hoddμν ¼

0
BBB@

0 0 0 hl0ðrÞ
0 0 0 hl1ðrÞ
0 0 0 0

hl0ðrÞ hl1ðrÞ 0 0

1
CCCA: ð40Þ

Here, without loss of generality (thanks to spherical
symmetry), we have set the azimuthal number m ¼ 0.
The functions H0ðrÞ; H1ðrÞ; H2ðrÞ; KðrÞ; h0ðrÞ and h1ðrÞ,
where we have dropped the index l to keep the notation
compact, characterize the radial profile of the degrees of
freedom of the metric perturbations. The perturbation of the
æ ther vμ depends on that of the khronon field T. If we
make this explicit in the equations, the expressions quickly
become very cumbersome. Instead, and equivalently, we
choose to write a generic æ ther vector perturbation

vμ ¼ ðϕl
1ðrÞ;ϕl

2ðrÞ; 2utϕl
3ðrÞ∂θ; 0ÞPlðcos θÞe−iωt; ð41Þ

where the factor of ut is chosen for convenience, since it
makes the resulting equations simpler. Imposing here
the unit-norm and hypersurface-orthogonality conditions
[Eqs. (7) and (8)] expanded at linear order in ϵ allows one
to eliminate two of the three free functions appearing
in Eq. (41).
Focusing first on the odd part of Eq. (37), we find that

there are only three potentially independent equations,
corresponding to δEtθ; δErθ and δEθϕ. Notice that the
perturbation of the æther, arising from the perturbation
of a scalar field, has no odd contribution and therefore does
not appear in the odd sector.
The function h0ðrÞ can be algebraically solved from the

system and, after defining QðrÞ≡ fðrÞh1ðrÞ=r, we find
that one of the remaining equations implies the other. We
are thus left with a single independent equation of the
Regge-Wheeler form [57]

d2Q
dr2�

þ ½ω2 − VoddðrÞ�Q ¼ 0; ð42Þ

where we have introduced the tortoise coordinate in the
usual way, i.e., dr=dr� ¼ fðrÞ. The effective potential
VoddðrÞ reads

Vodd ¼
ΛfðrÞ
r2

þ 2fðrÞ½fðrÞ − 1�
r2

−
f0ðrÞfðrÞ

r
; ð43Þ
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where Λ ¼ lðlþ 1Þ. Replacing the black hole metric
[Eq. (22)], this reduces exactly to the potential found in
GR for the same Schwarzschild solution. We thus conclude
that no differences from GR arise in the equations for odd
perturbations, nor in the QNM frequencies in this parity
sector.
In the even sector, the manipulation of the equations gets

more complicated as they now involve the khronon
perturbations as well. The full derivation of the equations
presented below is shown in Appendix C, as it is rather
lengthy and not particularly enlightening. In summary, the
system is reduced to two second-order equations, for ϕ3ðrÞ
and for an additional variable ΨðrÞ defined in Appendix C.
These two modes represent the perturbations of the
khronon and metric, respectively. The equation for Ψ
decouples and reads

d2Ψ
dr2�

þ ½ω2 − VevenðrÞ�Ψ ¼ 0; ð44Þ

with the potential

Veven ¼
f

r2ð1þ Λ − 3fÞ2 ½ð1þ ΛÞðΛðΛ − 2Þ þ 3Þ

− 3f½ð1þ ΛÞ2 þ 3fðf − 1 − ΛÞ��: ð45Þ

This is a wave equation (in Fourier space) and again it
agrees exactly with the GR result [58], once specialized to
the black hole background [Eq. (22)]. Therefore, the even
QNM frequencies for the metric perturbations coincide
with their GR counterparts.
The equation for ϕ3ðrÞ, however, remains coupled to

ΨðrÞ, which enters as a source

ϕ00
3ðrÞ þW1ðrÞϕ0

3ðrÞ þW0ðrÞϕ3ðrÞ ¼ jðrÞ; ð46Þ

with

jðrÞ ¼ U1ðrÞΨ0ðrÞ þ U0ðrÞΨðrÞ ð47Þ

and

W1ðrÞ ¼
−4A4f2 þ 2A2ð5f þ 3Þ − 4

rðA2f þ 1Þ2 þ ωð2i − 2iA2fÞ
A2f2 þ f

;

ð48Þ

W0ðrÞ ¼
ið3f þ 1ÞωðA2f − 1Þ3

f2rðA2f þ 1Þ3 −
ω2ðA2f − 1Þ2
f2ðA2f þ 1Þ2

−
4A2Λ

r2ðA2f þ 1Þ2 : ð49Þ

The UiðrÞ are (very complicated) functions of the geo-
metry, the frequency ω and the angular momentum l, and
explicit expressions for them are given in the Supplemental

Material [72] as Mathematica [73] files. We have con-
firmed that this is a general result by looking at the
eigensystem of the generalized linear problem, when all
equations are taken together: There is no (linear) change of
variables which decouples the system into two independent
differential equations.
Taking a closer look at our result, it may seem that the

khronon field, which was strongly coupled around max-
imally symmetric spaces (cf. Sec. II), is now propagating,
since Eq. (46) has a potential W0 including ω2, which
seems to indicate a finite propagating speed. However, this
is just an illusion due to a poor choice of variables, since the
equation also contains terms proportional to ϕ0

3ðrÞ.
Performing a change of variables ϕ3ðrÞ ¼ gðrÞϕðrÞ and
choosing gðrÞ to cancel all terms proportional to ϕ0ðrÞ,
we get

gðrÞ ¼ C1e
R

r

1
dzlðzÞ; ð50Þ

lðrÞ ¼ iω
f
A2f − 1

A2f þ 1
þ 2þ 2A4f2 − A2ð3þ 5fÞ

rðA2f þ 1Þ2 ; ð51Þ

where C1 is an integration constant. The equation thus
becomes

ϕ00ðrÞ − VϕðrÞϕðrÞ ¼ jðrÞ: ð52Þ

The new potential VϕðrÞ has no term proportional to ω2,
whose contribution has been cancelled by that coming from
gðrÞ. This corresponds to a field propagating with infinite
speed (so that c−2ϕ ¼ 0, with cϕ the propagation speed).
This is analog to the situation in flat space. Therefore, we
conclude that the khronon field remains strongly coupled
also around black hole geometries [and actually around any
static spherically symmetric solution of the class described
by Eqs. (22)–(23)].
This result can also be confirmed by looking at the

position of the spin-0 horizon for radial khronon modes
(l ¼ 0). In more detail, if one restores time derivatives in
Eq. (46) by replacing ω → i∂t and takes the eikonal limit—
thus keeping only the highest radial and time derivatives of
ϕ3ðrÞ—we find that Eq. (46) can be rewritten as

gAB∂A∂Bϕ3ðrÞ ≈ 0; ð53Þ

where the indices A, B run on ft; rg and the (inverse)
effective metric g is given by

gAB ¼
�

1 − A2f fðA2f − 1Þð1þ A2fÞ
fðA2f − 1Þð1þ A2fÞ f2ð1þ A2fÞ2

�
:

ð54Þ

By computing the null cones of this effective metric,
one finds that the apparent horizon for the khronon
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modes—which coincides with the event horizon, since
the metric is static—lies at the outermost radius at which
grr ¼ 0 (or equivalently ¼ gtt ¼ 0). Since that location
corresponds to 1þ A2ðrÞfðrÞ ¼ 0, one can conclude that
the spin-0 horizon coincides with the universal horizon,
which we recall is the causal boundary for signals of
infinite speed. This again signals that the khronon field
remains strongly coupled even on spherically symmetric
and static black hole spacetimes. We stress however that the
khronon does not couple directly to matter (and in
particular to GW detectors) at tree level.

V. CONCLUSIONS

In this work, we have explored the possibility of
finding astrophysical signatures of theories of gravity that
violate Lorentz symmetry, focusing on the case of Hořava
gravity. Because of existing experimental and theoretical
constraints, we have enforced α ¼ β ¼ 0 in the action (1)
that describes the low energy limit of Hořava gravity,
obtaining a theory (for which we coined the name minimal
Hořava gravity) depending on only one dimensionless
coupling parameter λ, on which experimental bounds are
relatively loose. We have focused on two phenomena that
explore both the linear (around curved spacetime) and
nonlinear dynamics of mHG, i.e., gravitational collapse of
spherically symmetric matter configurations and the
dynamics of the QNMs of the black holes produced by
the collapse.
We have found that spherical collapse proceeds

exactly as in GR as far as the spacetime metric is
concerned, but that the khronon field undergoes a nontrivial
dynamical evolution. In more detail, we have found that the
hypersurfaces of constant khronon follow the same evolu-
tion as the maximal time slices K ¼ 0 of GR, which are
known to asymptote to a limiting slice (corresponding to
areal radius r ¼ 3GNM=2) in spherical collapse [46–51].
Although in the case of GR the appearance of this
limiting slice is just a coordinate effect (since the
choice of foliation has only practical but not physical
meaning), the foliation has a physical meaning in mHG
(where diffeomorphism invariance is broken). We interpret
the appearance of the aforementioned limiting slice
as the formation of a universal horizon (i.e., a causal
boundary for signals of arbitrary speed). This is a hallmark
of black holes in Hořava gravity [37,38], and we thus
conclude that collapse in mHG leads to the formation of a
black hole (as opposed to other vacuum solutions of
the theory).
We have also studied QNMs around this family of

Lorentz-violating black holes, which are described by

the Schwarzschild metric, but which present a non-trivial
khronon configuration. By using the standard Regge-
Wheeler gauge, we have shown that the metric perturba-
tions, both in the even and odd sectors, satisfy the same
(linearized) equations as in GR.We have also found that the
extra scalar mode of the theory, i.e., the perturbation of the
khronon field, remains strongly coupled also around static
and spherically symmetric spacetimes.
We therefore conclude that no (classical) observable

deviations from GR arise in either spherical collapse or in
the spectrum of black hole QNMs, at least if the khronon
(which undergoes a nontrivial dynamics) does not couple
directly to matter. While direct coupling of the khronon to
matter is certainly possible, this would produce large
violations of Lorentz invariance in the matter sector, which
are tightly constrained by experiments. Another possibility
to further test mHG may be provided by cosmology
(which already places mild constraints on mHG via e.g.,
BBN) and in general by spacetimes which are not asymp-
totically flat.
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APPENDIX A: EQUATIONS OF MOTION
IN THE UNITARY GAUGE

The variation of the action (1) with respect to the lapse N
yields

H≡ ð3ÞR − ð1 − βÞKijKij þ ð1þ λÞK2

− αaiai − 2αDiai − 8πGNð2 − αÞN2T 00 ¼ 0; ðA1Þ

on the other hand, a variation with respect to the shift Ni
gives

Hi ≡Dj

�
Kij −

1þ λ

1 − β
γijK

�

þ 4πGNN
2 − α

1 − β
ðT 0i þ NiT 00Þ ¼ 0; ðA2Þ

finally, variation with respect to the metric γij gives
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Gij ≡ ð3ÞRij −
1

2
ð3ÞRγij −

1

N
DT ½ð1 − βÞKij − ð1þ λÞγijK� þ 2

N
Dk½Nðiðð1 − βÞKjÞk − ð1þ λÞKγjÞkÞ�

−
1

2
γij½ð1 − βÞKklKkl þ ð1þ λÞK2� þ 2ð1 − βÞKikKj

k −
1

N
ðDiDjN − γijDkDkNÞ

þ α

�
aiaj −

1

2
γija2

�
− ð1þ β þ 2λÞKijK − 4πGNð2 − αÞðT ij − NiNjT 00Þ ¼ 0; ðA3Þ

whereDi is the covariant derivative compatible with γij and
DT ≡ ∂T − NkDk.

APPENDIX B: CHARACTERISTIC SPEEDS
OF KHRONOMETRIC THEORY
IN SPHERICAL SYMMETRY

In this Appendix, we write the evolution equations for
the metric and khronon [Eqs. (A3) and (A1)] for the ansatz
(25) in generic khronometric theories and in spherical
symmetry, and compute their characteristic speeds. We also
refer the reader to [45,74] for more details on spherical
collapse in generic khronometric theories.

By combining with the momentum constraint (A2) and
by introducing the variables X ≡ ∂T

ffiffiffiffi
A

p
=Z, Y ≡ ∂T

ffiffiffiffi
B

p
=Z,

AR ≡ ∂R

ffiffiffiffi
A

p
and BR ≡ ∂R

ffiffiffiffi
B

p
, Eqs. (A3) and (A1) can be

put in the first order form

∂TuþM · ∂Ru ¼ S ðB1Þ

∂2
R

ffiffiffiffi
Z

p
¼ SZ ðB2Þ

where u ¼ ðX; Y; BR; ARÞ, M is the characteristic matrix

M ¼

0
BBBBB@

ðβ þ λÞ ffiffiffiffiffiffiffi
ZA

p
Bk1 2ðλþ 1Þ ffiffiffiffiffiffiffi

ZB
p

Ak1
2ðα−2Þðλþ1ÞZ

αðβ−1Þðβþ3λþ2Þ ffiffiffiffiffi
AB

p 0

ðβ þ λÞ ffiffiffiffiffiffiffi
AZ

p
Bk2 2ðλþ 1Þ ffiffiffiffiffiffiffi

ZB
p

Ak2 − ðα−2ÞðβþλÞZ
αðβ−1Þðβþ3λþ2ÞA 0

0 −Z 0 0

−Z 0 0 0

1
CCCCCA

while S and SZ are complicated source terms that depend on
Z, ∂RZ, A, B, X, Y, BR, AR and the matter variables.
The characteristic matrix has four eigenvalues

_R ¼ 0 ðB3Þ

_R ¼
ffiffiffiffiffiffiffiffiffiffi
ABZ

p
ðk1ðβ þ λÞ

ffiffiffiffi
B

p
þ 2ðλþ 1Þk2

ffiffiffiffi
A

p
Þ ðB4Þ

_R ¼ �c0
Zffiffiffiffi
A

p ðB5Þ

where k1 and k2 are functions of T and R, which can be
chosen arbitrarily (as they regulate how the momentum
constraint is linearly combined with the evolution equa-
tions), and c0 is the propagation speed for the spin-0 modes
in Minkowski space [cf. Eq. (19)], This means that the sub-
system X; Y; BR; AR is strongly hyperbolic if k1 ¼ k2 ≠ 0
and if c0 is real and finite, while Eq. (B2) can be solved as
an ordinary differential equation at each time step (provided

that suitable boundary conditions are imposed on it). Note
however, as stressed in the main text, that c0 diverges in the
mHG limit, signaling a strong-coupling problem.

APPENDIX C: THE LINEARIZED FIELD
EQUATIONS FOR THE EVEN-PARITY SECTOR

Let us start from the trace-reversed system

Ẽμν ≡ Eμν −
1

2
gμνEαβgαβ ¼ 0; ðC1Þ

and use it to compute the linearized equations δẼμν. In
order to simplify them, we make use of the background
field equations, and of the unit-norm and hypersurface-
orthogonality constraints (7)–(8), in order to get rid of ϕ1,
ϕ2 and their derivatives.
In more detail, the seven nontrivial linearized equations

have the following structure:
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δẼtt ∝ λ½Ctt
KK þ Ctt

H0
H0 þ Ctt

H1
H1 þ Ctt

H2
H2 þ Ctt

ϕ3
ϕ3 þ Ctt

K0K0 þ Ctt
H0

0H0
0 þ Ctt

H1
0H0

1 þ Ctt
H0

2
H0

2 þ Ctt
ϕ0
3
ϕ0
3

þ Ctt
K00K00 þ Ctt

H00
0
H00

0 þ Ctt
H00

1
H00

1 þ Ctt
H00

2
H00

2 þ Ctt
ϕ00
3
ϕ00
3 þ Ctt

ϕð3Þ
3

ϕð3Þ
3 � þ ð3f þ 1ÞiωH1

2r
−
ω2H2

2

þ 1

2
H00

0f
2 þ ðf − 1ÞK0f

2r
þ ðf þ 3ÞH0

0f
4r

þ iωH0
1f −

ðf − 1ÞH0
2f

4r
−
ΛH0f
2r2

− Kω2 ¼ 0; ðC2aÞ

δẼtr ∝ λ½Ctr
KK þ Ctr

H0
H0 þ Ctr

H1
H1 þ Ctr

H2
H2 þ Ctr

ϕ3
ϕ3 þ Ctr

K0K0 þ Ctr
H0

0
H0

0 þ Ctr
H0

1
H0

1 þ Ctr
H0

2
H0

2 þ Ctr
ϕ0
3
ϕ0
3

þ Ctr
K00K00 þ Ctr

H00
0
H00

0 þ Ctr
H00

1
H00

1 þ Ctr
H00

2
H00

2 þ Ctr
ϕ00
3
ϕ00
3 þ Ctr

ϕð3Þ
3

ϕð3Þ
3 �

−
ið3f − 1ÞKω

2fr
−
H1Λ
2r2

þ iH2ω

r
− iωK0 ¼ 0; ðC2bÞ

δẼrr ∝ λ½Crr
KK þ Crr

H0
H0 þ Crr

H1
H1 þ Crr

H2
H2 þ Crr

ϕ3
ϕ3 þ Crr

K0K0 þ Crr
H0

0
H0

0 þ Crr
H0

1
H0

1 þ Crr
H0

2
H0

2 þ Crr
ϕ0
3
ϕ0
3

þ Crr
K00K00 þ Crr

H00
0
H þ Crr

H00
1
H00

1 þ Crr
H00

2
H00

2 þ Crr
ϕ00
3
ϕ00
3 þ Crr

ϕð3Þ
3

ϕð3Þ
3 �

H2

�
ω2

2f2
−

Λ
2fr2

�
þ iðf − 1ÞH1ω

2f2r
þ 3ðf − 1ÞH0

0

4fr
−
ð3f þ 1ÞH0

2

4fr
−
iωH0

1

f
þ ð3f þ 1ÞK0

2fr
−
H00

0

2
þ K00 ¼ 0; ðC2cÞ

δẼθθ þ
δẼϕϕ

sin2θ
∝ λ½Cθθ

K K þ Cθθ
H0
H0 þ Cθθ

H1
H1 þ Cθθ

H2
H2 þ Cθθ

ϕ3
ϕ3 þ Cθθ

K0K0 þ Cθθ
H0

0
H0

0 þ Cθθ
H0

1
H0

1

þ Cθθ
H0

2
H0

2 þ Cθθ
ϕ0
3
ϕ0
3 þ Cθθ

K00K00 þ Cθθ
H00

0
H00

0 þ Cθθ
H00

1
H00

1 þ Cθθ
H00

2
H00

2 þ Cθθ
ϕ00
3
ϕ00
3 þ Cθθ

ϕð3Þ
3

ϕð3Þ
3 �

− frH0
0 − frH0

2 þ fr2K00 þ ð3frþ rÞK0 þ K

�
r2ω2

f
− Λþ 2

�

þH0Λ
2

þH2

�
−
Λ
2
− 2

�
− 2iH1rω ¼ 0; ðC2dÞ

δẼtθ ∝ λ

�
H0

�ð3f þ 1ÞðA2f þ 1ÞðA2f − 1Þ3
32A4f2r

þ iωðA4f2 − 1Þ2
32A4f2

�

þH1

�ðA2f þ 1Þ2ð3A4f3 þ ðA2 − 12ÞA2f2 þ ð3 − 4A2Þf þ 1Þ
16A4f2r

þ iωðA2f þ 1ÞðA2f − 1Þ3
16A4f2

�

þH2

�ð3f þ 1ÞðA2f þ 1ÞðA2f − 1Þ3
32A4f2r

þ iωðA2f þ 1Þ2ðA4f2 − 6A2f þ 1Þ
32A4f2

�

þ ð−A8f4 − 6A6f3 þ 6A2f þ 1ÞH0
0

32A4f
þ ðA4f2 − 1ÞK0

4A2

þ ϕ3

�
ið3f þ 1ÞωðA2f þ 1ÞðA2f − 1Þ3

8A4f2r
−
ω2ðA4f2 − 1Þ2

8A4f2
−
ΛðA2f þ 1Þ2

2A2r2

�

þ ϕ0
3

�
−
ð2A4f2 − A2ð5f þ 3Þ þ 2ÞðA2f þ 1Þ2

4A4r
−
iωðA2f − 1ÞðA2f þ 1Þ3

4A4f

�

−
ðA2f þ 1Þ4H0

1

16A4f
−
ðA2f − 1ÞðA2f þ 1Þ3H0

2

32A4f
−
iKωðA2f þ 1Þ2

4A2f
þ ðA2f þ 1Þ4ϕ00

3

8A4

�

þ ðf − 1ÞH1

2r
−
fH0

1

2
−
1

2
iH2ω −

1

2
iKω ¼ 0; ðC2eÞ
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δẼrθ ∝ λ

�
H0

�
−
ð3f þ 1ÞðA2f − 1Þ4

32A4f3r
−
iωðA2f þ 1ÞðA2f − 1Þ3

32A4f3

�

þH1

�
−3A8f5 − ðA2 − 12ÞA6f4 þ 4A6f3 − 12A2f2 þ ð3 − 4A2Þf þ 1

16A4f3r
−
iωðA2f − 1Þ4

16A4f3

�

þH2

�
−
ð3f þ 1ÞðA2f − 1Þ4

32A4f3r
−
iωðA8f4 − 6A6f3 þ 6A2f − 1Þ

32A4f3

�
þ ðA4f2 − 1Þ2H0

2

32A4f2

þ ðA2f − 1ÞðA2f þ 1Þ3H0
1

16A4f2
þ ðA2f − 1Þ2ðA4f2 þ 6A2f þ 1ÞH0

0

32A4f2
þ iKωðA4f2 − 1Þ

4A2f2

þ ϕ3

�
ΛðA4f2 − 1Þ

2A2fr2
−
ið3f þ 1ÞωðA2f − 1Þ4

8A4f3r
þ ω2ðA2f þ 1ÞðA2f − 1Þ3

8A4f3

�

þ ϕ0
3

�
2A8f4 − A6f2ð5f þ 3Þ þ A2ð5f þ 3Þ − 2

4A4fr
þ iωðA4f2 − 1Þ2

4A4f2

�
−
ðA2f − 1Þ2K0

4A2f

−
ðA2f − 1ÞðA2f þ 1Þ3ϕ00

3

8A4f

�
þ ð3f − 1ÞH0

4fr
−
ðf þ 1ÞH2

4fr
−
iH1ω

2f
−
H0

0

2
þ K0

2
¼ 0; ðC2fÞ

δẼθϕ ∝ H0 −H2 ¼ 0: ðC2gÞ

The explicit expressions for the coefficients Cij
k are given in

the Supplemental Material [72] as Mathematica [73] files.
Let us notice that these seven equations contain only five

independent variables H0; H1; H2; K and ϕ3. This seems to
imply that the system may be overdetermined. This turns
out not to be the case, since some of these equations are
redundant due to the Bianchi identity.
In more detail, from diffeomorphism invariance of the

covariant gravitational action (6) (without the matter con-
tribution) one obtains the generalized Bianchi identity [25]

∇μEμν ¼ −
κ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇αT∇αT
p

uν: ðC3Þ

Taking linear combinations to cancel out the explicit
dependence on T and κ and performing trivial manipula-
tions, one can then write the identity

∇νðEμνuα − EανuμÞ ¼ Eμν∇νuα − Eαν∇νuμ; ðC4Þ

which can be used to show that two of the seven equations
can be eliminated from the systemwithout loss of generality.
This can also be seen by directmanipulation of the equations
of motion, as we will now show.
From δẼθϕ ¼ 0, we obtain

H2ðrÞ ¼ H0ðrÞ; ðC5Þ

which allows us to get rid of H2 completely. The structure
of the remaining equations is then the following: on the
one hand, the equations δẼtt; δẼtr; δẼrr; δẼθθ contain up to
second derivatives of the metric perturbations and up to

third derivatives of ϕ3ðrÞ6; on the other hand, in δẼtθ and
δẼrθ one can find up to first derivatives of the metric
perturbations and up to second derivatives of ϕ3ðrÞ. Thus,
from δẼtθ ¼ 0 and δẼrθ ¼ 0 we can solve algebraically for
H0

1ðrÞ and ϕ00
3ðrÞ. This defines an equation for the scalar

field, which we denote by Fϕ ¼ 0. The next step is to use
the expressions for H0

1ðrÞ and ϕ00
3ðrÞ (and their derivatives)

to eliminate H0
1, H

00
1 , ϕ

00
3 and ϕð3Þ

3 from the rest of the
equations. By doing so, we obtain Ẽrr ∝ Ẽtt.
We then solve δEtt ¼ 0, δErt ¼ 0 and δEθθ ¼ 0 and get

algebraic expressions for H00
0ðrÞ, K00ðrÞ and H1ðrÞ, which

take the schematic form

F0 ≡H00
0 − d1H0

0 þ d2K0 þ d3H0 þ d4K ¼ 0; ðC6Þ

FK ≡ K00 − d5H0
0 þ d6K0 þ d7H0 þ d8K ¼ 0; ðC7Þ

H1 − d9H0
0 þ d10K0 þ d11H0 þ d12K ¼ 0; ðC8Þ

where the di are functions of r, ω and Λ. We have checked
that the derivative of Eq. (C8) coincides with the previous
analytic solution that we had found for H0

1, so Eq. (C8) is
redundant. We are thus left with three independent equa-
tions, corresponding to Fϕ ¼ 0, F0 ¼ 0 and FK ¼ 0, which
depend only on three variables ϕ3, H0 and K, with the
scalar field present only in Fϕ. Moreover, both F0 and Fk

are independent of λ, and Fϕ contains only first derivatives
of H0 and K.

6Third radial derivatives appear after imposing the hypersur-
face-orthogonality condition, Eq. (8).

THE RELATION BETWEEN GENERAL RELATIVITY AND A … PHYS. REV. D 103, 084012 (2021)

084012-13



In the GR limit, λ → 0, the dependence on ϕ3 also
disappears fromFϕ. In that case, compatibility of the system
would require that one of the equations is redundant. Note
that this must be the case since we know that in the GR limit

the energy constraint is reinstated, cf. Eq. (30). Since Fϕ

reduces to a first order equation in theGR limit, it can beused,
upon substitution into the other equations, to reduce the
whole system to two first-order equations relatingH0 andK:

−
ðf2ð−ΛÞ þ fðΛ2 − 2Λþ 14r2ω2Þ þ Λ − 2Λr2ω2 − 6r2ω2Þ

frðfΛ − Λþ 4r2ω2Þ H0

þ ðf2ðΛ2 − 2Λþ 9r2ω2Þ − 2fð2Λþ 1Þr2ω2 þ 4r4ω4 þ r2ω2Þ
f2rðfΛ − Λþ 4r2ω2Þ K þH0

0 ¼ 0; ðC9aÞ

H0ð−2fΛþ Λ2 þ 4r2ω2Þ
−fΛr − 4r3ω2 þ Λr

þ KðfðΛ2 − 2Λþ 6r2ω2Þ − 2ðΛþ 1Þr2ω2Þ
frðfΛ − Λþ 4r2ω2Þ þ K0 ¼ 0: ðC9bÞ

Since Eqs. (C6)–(C7) can be shown to be independent of λ,
Eq. (C9) also holds in the general case, as can be checked
by direct substitution.
A last simplification occurs by introducing the same

variable transformation as in [58,75], given by

K ¼ Λð1þ ΛÞ − 3ð2þ ΛÞf þ 6f2

2rð1þ Λ − 3fÞ Ψþ fΨ0; ðC10Þ

H0¼−
1þΛ−3Λfþ3f2

2ð1þΛ−3fÞ Ψ0

þ
�
1þΛ−3f

6r
þðΛ−2Þ2ð1þΛÞ
3rð1þΛ−3fÞ2−

rω2

f

�
Ψ: ðC11Þ

After performing this transformation, Eq. (C9) reduces to
the simple equation

d2Ψ
dr2�

þ ½ω2 − VevenðrÞ�Ψ ¼ 0; ðC12Þ

with potential

Veven ¼
f

r2ð1þ Λ − 3fÞ2 ½ð1þ ΛÞðΛðΛ − 2Þ þ 3Þ

− 3f½ð1þ ΛÞ2 þ 3fðf − 1 − ΛÞ��: ðC13Þ

However, in the general case of nonvanishing λ, the third
equation Fϕ ¼ 0 remains independent and serves as the
equation of motion for the scalar field:

ϕ00
3ðrÞ þW1ðrÞϕ0

3ðrÞ þW0ðrÞϕ3ðrÞ ¼ jðrÞ; ðC14Þ

with

jðrÞ ¼ U1ðrÞΨ0ðrÞ þ U0ðrÞΨðrÞ: ðC15Þ

The explicit forms of the functions WiðrÞ are

W1ðrÞ ¼
−4A4f2 þ 2A2ð5f þ 3Þ − 4

rðA2f þ 1Þ2 þ ωð2i − 2iA2fÞ
A2f2 þ f

;

ðC16Þ

W0ðrÞ ¼
ið3f þ 1ÞωðA2f − 1Þ3

f2rðA2f þ 1Þ3 −
ω2ðA2f − 1Þ2
f2ðA2f þ 1Þ2

−
4A2Λ

r2ðA2f þ 1Þ2 ; ðC17Þ

while U0ðrÞ and U1ðrÞ are included in the Supplemental
Material [72] as Mathematica [73] files.
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