
 

Stable circular orbits in caged black hole spacetimes
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We consider the motion of massive and massless particles in a five-dimensional spacetime with a
compactified extra-dimensional space where a black hole is localized, i.e., a caged black hole spacetime.
We show the existence of circular orbits and reveal their sequences and stability. In the asymptotic
region, stable circular orbits always exist, which implies that four-dimensional gravity is more
dominant because of the small extra-dimensional space. In the vicinity of a black hole, they do not
exist because the effect of compactification is no longer effective. We also clarify the dependence
of the sequences of circular orbits on the size of the extra-dimensional space by determining the
appearance of the innermost stable circular orbit and the last circular orbit (i.e., the unstable photon
circular orbit).
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I. INTRODUCTION

We naively perceive our world as a (3þ 1)-dimensional
spacetime. However, in the context of unified theories, a
higher-dimensional model of the Universe that adds an extra-
dimensional space to the four-dimensional (4D) spacetime
has been studied for a long time [1,2]. In this research
background, higher-dimensional black holes have been
actively studied as a field to find the various properties of
higher-dimensional spacetime and gravity [3]. In under-
standing the nature of higher-dimensional black hole space-
times, it is essential to consider test particle dynamics and
compare it to that in 4D. As a first step, many studies were
carried out on themotion of particles in an asymptotically flat
higher-dimensional black hole spacetime with a single
spherical horizon [4,5]. They revealed one of the most
distinctive differences from 4D due to the dimensional
dependence of gravity, the absence of the stable circular
orbit [6–9].1 As a result, the features of 4D gravity are
gradually highlighted. Furthermore, since the uniqueness
theorem does not hold for higher-dimensional black holes
as in 4D [11,12], and they can have a nonspherical horizon
(e.g., ring and lens spaces [13–15]), various particle dynamics
depending on the horizon topology can also occur in higher
dimensions. Indeed, stable circular/bound orbits appear in the
five-dimensional (5D) black ring spacetime [16–21].
It was recently shown that stable circular/bound orbits

also exist in the 5D supersymmetric black lens space-
times [22,23].
The next step is to consider black hole spacetimes that

model how we cannot observe an extra-dimensional space.
One of the possible mechanisms to explain such inability is
the compactification of the extra-dimensional space. Black
hole spacetimes that incorporate this mechanism are called
Kaluza-Klein black holes, and many solutions of this class
have been found in the higher-dimensional Einstein gravity
so far (see, e.g., Ref. [24] and references, therein). Focusing
on 5D Kaluza-Klein black holes, we can classify them into
two major classes. One is the class in which the horizon is
spread out over the whole extra-dimensional space. The
other is the class in which the horizon is localized in a
certain portion of the extra-dimensional space, the so-called
caged Kaluza-Klein black holes [25–28]. How the exist-
ence of a compact extra dimension has nontrivial effects on
particle dynamics is an important and nontrivial question.
Particle dynamics in the former class have been well
studied [29–33] because of its relatively higher symmetry.
On the other hand, particle dynamics in the latter class have
not been well investigated because of its relatively lower
symmetry.
However, it was recently shown that stable circular orbits

exist by the many-body effect of black holes if the
separation between the horizons is large enough in a 5D
multiblack hole spacetime [34]. Since a caged black hole
can be identified with an infinite number of black holes
localized in a one-dimensional direction, such many-body
effects can be expected to be inherited to particle dynamics
in the caged black hole spacetime. The purpose of this
paper is to reveal the effects of an extra dimension through
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1Note that stable stationary/bound orbits can exist in the

ultraspinning regime of the Myers-Perry black holes in more
than six dimensions [10].
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the dynamics of particles moving in the caged black hole
backgrounds [25]. In the region sufficiently far from the
black hole, the particle dynamics are like 4D, while in the
near horizon, the effect that a black hole is localized in a
compactified dimension appears more effectively.
This paper is organized as follows. In Sec. II, we

introduce a 5D caged black hole spacetime and formulate
conditions for stable/unstable circular orbits in the space-
time. In Sec. III, we clarify the dependence of sequences of
circular orbits on the size of extra-dimensional space.
Section IV is devoted to a summary and discussions.
Throughout this paper, we use units in which G ¼ 1 and
c ¼ 1, where G is the 5D Newton constant and c is the
speed of light.

II. FORMULATION

We shortly review the caged black hole spacetime
given in Ref. [25]. We begin by considering the
metric and gauge field in the 5D Majumdar-Papapetrou
geometry,

gμνdxμdxν ¼ −U−2ðxÞdt2 þ UðxÞdx · dx; ð1Þ

Aμdxμ ¼ −
ffiffiffi
3

p

2
U−1ðxÞdt; ð2Þ

where t is the global Killing time, and x denotes spatial
coordinates, and dx · dx is the metric in the 4D Euclidean
space E4. For these ansatz, the only nontrivial components
in the field equations are the ðt; tÞ component of the
Einstein equation and the t component of the Maxwell
equation,2 both of which are equivalent to the Laplace
equation in E4,

ΔE4U ¼ 0: ð4Þ

Let us introduce the coordinates x ¼ ðρ; θ;ϕ; wÞ in which
the Euclidean metric takes the form

dx · dx ¼ dρ2 þ ρ2ðdθ2 þ sin2θdϕ2Þ þ dw2: ð5Þ

Consider a solution U of Eq. (4) for an infinite number of
point sources of mass scale μ on the w-axis with equal
spacing a ¼ 2πl,

U ¼ 1þ
X∞
n¼−∞

μ

ρ2 þ ðwþ naÞ2 ð6Þ

¼ 1þ πμ

aρ
sinhðπρ=aÞ coshðπρ=aÞ

sin2ðπw=aÞ þ sinh2ðπρ=aÞ ð7Þ

¼ 1þ μ

2lρ
sin hðρ=lÞ

coshðρ=lÞ − cosðw=lÞ ; ð8Þ

where the dimension of μ is length squared even in
ordinary units. This function has reflection symmetry under
w → −w. Furthermore, U is periodic in w with period a,
and therefore, we may periodically identify the spacetime
in the w direction. As a result, we have a spacetime where a
single black hole with S3 horizon topology is localized
in a compactified extra dimension, which is referred to as
the caged black hole spacetime. Thus, the parameter l
corresponds to the radius of the S1-compactified
extra-dimensional space. We only focus on the range
−πl < w ≤ πl in what follows.
We check the structure of the gravitational field of the

caged black hole spacetime at several scales through the
asymptotic shape of U. It is useful to gain an intuition for
the dynamics of particles. In the region where ρ; w ≪ a, the
function U is expanded as

U ¼ 1þ μ

r2
þ π2

3

μ

a2
þOðρ2=a2; w2=a2Þ; ð9Þ

where r2 ¼ ρ2 þ w2. The second term corresponds to the
monopole term appearing in the case of 5D asymptotically
flat black holes. The third term is contributions to the
potential in the short-range from all the other image
sources.3 Therefore, we can expect that the particle dynam-
ics in this region is the same as that in a 5D asymptotically
flat black hole spacetime.
In the region where ρ ≫ a, the functionU is expanded as

U ¼ 1þ μ

2lρ
þ μ

lρ
e−ρ=l cosðw=lÞ þ � � � : ð11Þ

Note that the third and subsequent terms are exponentially
suppressed, and thus, the metric reduces to a black string
(ring). The power of ρ in the second term implies that test
particles in the asymptotic region feel gravitational force as
in 4D asymptotically flat black hole spacetimes.
We consider the dynamics of a freely falling particle with

unit/zero mass in the caged black hole spacetime. Let pμ be
the canonical momenta conjugate with coordinate variables

2The field equations are derived from the 5D Einstein-Maxwell
theory,

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p ðR − FμνFμνÞ; ð3Þ

where R is the Ricci tensor and Fμν is the field strength of the
gauge field.

3

X∞
n¼1

1

n2
¼ π2

6
: ð10Þ

TAKAHISA IGATA and SHINYA TOMIZAWA PHYS. REV. D 103, 084011 (2021)

084011-2



of a particle. The Hamiltonian of affinely parametrized
geodesics is given by

H ¼ 1

2
gμνpμpν ¼ −

U2

2
E2 þ 1

2U

�
p2
w þ p2

ρ þ
L2

ρ2

�
; ð12Þ

where E ¼ −pt is constant particle energy, and

L2 ¼ p2
θ þ

p2
ϕ

sin2θ
ð13Þ

is a constant associated with the S2 rotational symmetry.
From the on-shell condition, gμνpμpν ¼ −κ, where κ is
particle mass squared, we obtain the constraint equation

U−1ð_ρ2 þ _w2Þ þ V ¼ E2; ð14Þ

Vðρ; w;L2Þ ¼ L2

ρ2U3
þ κ

U2
; ð15Þ

where the dots denote the derivatives with respect to an
affine parameter. We call V the effective potential of the
two-dimensional (2D) dynamics in the ðρ; wÞ plane.

We focus on stationary orbits of particles with κ ¼ 1, in
which ρ and w remain constant. Note that all of the
stationary orbits are circular because of the S2 rotational
symmetry. The conditions of the stationary orbits for V and
Vi ¼ ∂iV (i ¼ w, ρ) are written as

Vw ¼ −
2Uw

U3

�
1þ 3

2

L2

ρ2U

�
¼ 0; ð16Þ

Vρ ¼ −
2L2

ρ3U3
−
2Uρ

U3

�
1þ 3

2

L2

ρ2U

�
¼ 0; ð17Þ

V ¼ E2; ð18Þ

where the explicit forms of Ui ¼ ∂iU (i ¼ w, ρ) are
given by

Uw ¼ −
μ

2l2ρ

sinðw=lÞ sinhðρ=lÞ
½cosðw=lÞ − coshðρ=lÞ�2 ; ð19Þ

Uρ ¼
μ

2l2ρ2
ρ½1 − cosðw=lÞ coshðρ=lÞ� þ l sinhðρ=lÞ½cosðw=lÞ − coshðρ=lÞ�

½cosðw=lÞ − coshðρ=lÞ�2 : ð20Þ

The condition (16) leads to Uw ¼ 0, i.e.,

w ¼ 0; πl: ð21Þ

These correspond to the fixed points of the reflection
symmetry of U. Furthermore, solving the conditions (17)
and (18) for L2 and E2, we obtain

L2 ¼ L2
0ðρ; wÞ ≔ −

2ρ3UUρ

f
; ð22Þ

E2 ¼ E2
0ðρ; wÞ ≔ Vðρ; w;L2

0Þ ¼
2U þ ρUρ

fU2
; ð23Þ

where

fðρ; wÞ ¼ 2U þ 3ρUρ: ð24Þ

These must be non-negative to find circular orbits on w ¼ 0
or πl. Therefore, we can represent the sequence of circular
orbits on the ðρ; wÞ plane as

γ0 ¼ fðρ; wÞjðw ¼ 0 or w ¼ πlÞ; L2
0 ≥ 0g; ð25Þ

where we have used the fact that L2 ≥ 0 always means
E2 > 0 because of Eqs. (14) and (15). The explicit forms of
L2
0 and E2

0 on γ0 are given by

L2
0ðρ;ΘðσÞπlÞ ¼

μρ

l
½−σρþ l sinhðρ=lÞ�½2lρþ μðtanh ½ρ=ð2lÞ�Þσ�
4l2ρ coshðρ=lÞ − μl sinhðρ=lÞ þ σð3μþ 4l2Þρ ; ð26Þ

E2
0ðρ;ΘðσÞπlÞ ¼

4l2ρ2ðμ½σρþ l sinhðρ=lÞ� þ 4l2ρ½σ þ coshðρ=lÞ�Þ
½2lρþ μðtanh ½ρ=ð2lÞ�Þσ�2½4l2ρ coshðρ=lÞ − μl sinhðρ=lÞ þ σð3μþ 4l2Þρ� ; ð27Þ

respectively, where σ ¼ �1, and ΘðσÞ denotes the Heaviside step function, and we have used

fðρ;ΘðσÞπlÞ ¼ 2 −
μ

4l2ρ

−3σρþ l sinhðρ=lÞ
ΘðσÞcosh2½ρ=ð2lÞ� þ Θð−σÞsinh2½ρ=ð2lÞ� : ð28Þ
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The sign of fðρ;ΘðσÞπlÞ determines the signs of
L2
0ðρ;ΘðσÞπlÞ and E2

0ðρ;ΘðσÞπlÞ. They diverge at
fðρ;ΘðσÞπlÞ ¼ 0.
We further classify γ0 by imposing stability conditions

for circular orbits. Let ðVijÞ be the Hessian matrix of V
on the 2D flat space with δijdxidxj ¼ dρ2 þ dw2, where
Vij ¼ ∂j∂iV (i; j ¼ ρ, w). Let h and k be the determinant
and the trace of ðVijÞ on E2, i.e., hðρ; w;L2Þ ¼ detðVijÞ
and kðρ; w;L2Þ ¼ trðVijÞ, respectively. Since we
analyze the particle dynamics on a 2D reduced space,
of which metric is γ̃ij ¼ Ω2δij ¼ U−1δij [see Eq. (14)],
then the stability of circular orbits should be determined
on the basis of the Hessian matrix ðṼijÞ ¼ ð∇̃j∇̃iVÞ in the
2D conformally flat space, where ∇̃i is the covariant

derivative associated with γ̃ij. Focus on the relation
between Ṽij and Vij,

Ṽij ¼ Vij −Ω−1ð2VðiΩjÞ − δijδ
klVkΩlÞ; ð29Þ

where Ωi ¼ ∂iΩ. Note that Ṽij ¼ Vij on γ0 because
Vi ¼ 0 there. Furthermore, on γ0, the trace and determi-
nant of ðṼijÞ coincide with Uk and U2h, respectively.
Therefore, we can use k and h to determine the signs of
the trace and determinant of ðṼijÞ, respectively. In terms
of them, we define the region D such that

D ¼ fðρ; wÞjh0 > 0; k0 > 0; L2
0 > 0g; ð30Þ

where h0 and k0 are defined as

h0ðρ; wÞ ≔ hðρ; w;L2
0ÞjUw¼0 ¼

−16ρU2U2
wρ þ 8Uww½6ρUU2

ρ þ 3ρ2U3
ρ þ 2U2ð3Uρ þ ρUρρÞ�

ρU6f2
; ð31Þ

k0ðρ; wÞ ≔ kðρ; w;L2
0ÞjUw¼0 ¼ −

2

ρU4

6ρUU2
ρ þ 3ρ2U3

ρ þ 2U2ð3Uρ þ ρUρρ þ ρUwwÞ
f

: ð32Þ

The restriction that Uw ¼ 0 means that the terms propor-
tional to Uw have been removed. As a result, the part of γ0
overlapped by D is the sequence of stable circular orbits,
and its boundaries correspond to the marginally stable
circular orbits. On the other hand, the part of γ0 without
overlap with D is the sequence of unstable circular orbits.

III. CIRCULAR ORBITS IN THE CAGED BLACK
HOLE SPACETIMES

We consider circular orbits in the 5D caged black hole
spacetimes by using the quantities introduced in the previous

section. First, we illustrate typical sequences of circular
orbits by comparing the size of the extra dimension a and the
mass parameter μ. We use units in which μ ¼ 1 in what
follows. Figure 1(a) shows the case a ¼ 5, typical sequences
of circular orbits for a ≫ 1. The black solid lines are γ0, and
the blue shaded region is D. The part of γ0 overlapped by D
appears onw ¼ 0, a sequence of stable circular orbits, which
extends from the innermost stable circular orbit (ISCO) ρ ¼
ρI (indicated by a red dot) to infinity. The energy and squared
angular momentum,E0 andL2

0, decrease monotonically with
ρ (i.e., dE0ðρ; 0Þ=dρ ≥ 0 and dL2

0ðρ; 0Þ=dρ ≥ 0) in the

FIG. 1. Sequences of stable/unstable circular orbits for several sizes of the extra dimension. We use units in which μ ¼ 1. Black solid
lines show γ0, sequences of circular orbits, and blue shaded regions show D, inside which circular orbits are stable. Red dots denote the
ISCOs, and white circles denote UPCOs.
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range ρI ≤ ρ < ∞. Each of them takes a local minimum
value at the ISCO, where h0ðρI; 0Þ ¼ 0 also holds. On the
other hand, a sequence of unstable circular orbits
appears on the segment of γ0 between the ISCO and the
last circular orbit ρ ¼ ρp (denoted by a white circle). In this
range, the energy and squared angular momentum satisfy
dE0ðρ; 0Þ=dρ < 0 and dL2

0ðρ; 0Þ=dρ < 0, respectively, and
diverge in the limit to the white circle. The last circular orbit
on w ¼ 0 is justified as an unstable photon circular orbit
(UPCO)4 because the ratio L0=E0 is still finite even in the
limit. We also find a sequence of unstable circular orbits on
w ¼ πl. Next, let us see the case where a takes a smaller
value. Figure 1(b) shows the case a ¼ a1, where E0 and L2

0

on w ¼ πl diverge at a radius ρ ¼ ρ1 (white circle), where

a1 ¼ 1.2470…; ð33Þ

ρ1 ¼ 1.0129…: ð34Þ

It corresponds to a UPCO on w ¼ πl. Figure 1(c) shows the
case a ¼ 1, typical sequences of circular orbits for a ≲ 1.
Even in the range, we can see a sequence of stable circular
orbits between infinity and the ISCO on w ¼ 0 and can also
see a sequence of unstable circular orbits between the ISCO
and the last circular orbit (i.e., the UPCO). The difference
appears in sequences on w ¼ πl, which separate into two
pieces. Each end point of the sequences corresponds to
a UPCO.

Figure 2 shows the dependence of some characteristic
orbital radii on a. The blue solid curve shows the ISCO
radius ρ ¼ ρI as a function of a, which is determined by
h0ðρI; 0Þ ¼ 0. For a > aI, the radius ρI monotonically
decreases as a decreases, whereas for a < aI, it monoton-
ically increases as a decreases, where

aI ¼ 2.1286…: ð35Þ

Hence, at a ¼ aI, the ISCO radius takes the minimum value
(see the blue dot)

ρI;min ¼ 2.4465…: ð36Þ

The orange solid curve shows the last circular orbit radius
ρ ¼ ρp (or equivalently, the UPCO radius) as a function of
a, which is determined by fðρp; 0Þ ¼ 0. For a > ap, the
radius ρp monotonically decreases as a decreases, whereas
for a < ap, it monotonically increases as a decreases, where

ap ¼ 1.8206…: ð37Þ
At a ¼ ap, the radius of the UPCO on w ¼ 0 takes the
minimum value (see the orange dot)

ρp;min ¼ 1.2210…: ð38Þ

The blue dashed curve shows a pair of circular orbit
radii on w ¼ πl that are marginally stable against small
perturbations only in the ρ direction, which are determined
by Vρρðρ; πl;L2

0ðρ; πlÞÞ ¼ 0. We call them marginally
ρ-stable circular orbits. The outer radius ρ ≥ ρ0 appears
only in the range 0 < a ≤ a0, where

FIG. 2. Dependence of the radii of the ISCO, UPCOs, and marginally ρ-stable circular orbits on the size of the extra dimension, a. We
use units in which μ ¼ 1. Blue solid curve denotes the radius of the ISCO on w ¼ 0. Blue dashed curve denotes a pair of radii of
marginally ρ-stable circular orbits on w ¼ πl. Orange solid and dashed curves show the radii of UPCOs on w ¼ 0 and w ¼ πl,
respectively.

4The conventional term “photon” is used to describe the
unstable circular orbit of a massless particle.
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a0 ¼ 1.7430…; ð39Þ

ρ0 ¼ 2.0717…; ð40Þ

and increases as a decreases. The inner radius ρ ≤ ρ0
appears only in the range a1 < a < a0 and decreases with a
and disappears at a ¼ a1. The orange dashed curve shows a
pair of the radii of UPCOs on w ¼ πl. The inner radius
decreases with a and finally goes to zero in the limit a → 0.
The outer radius increases as a decreases. There are no
circular orbits between these radii. In the enclosed region
by the blue and orange dashed curves, the circular orbits
that are unstable in all directions appear on w ¼ πl, and
the energy and squared angular momentum satisfy
dE0ðρ; πlÞ=dρ < 0 and dL2

0ðρ; πlÞ=dρ < 0, respectively.
In the region to the right of all the dashed curves, ρ-stable
circular orbits appear on w ¼ πl, and the energy and
squared angular momentum satisfy dE0ðρ; πlÞ=dρ > 0 and
dL2

0ðρ; πlÞ=dρ > 0, respectively.
Consider the qualitative behaviors of particle dynamics

in the asymptotic analysis of V. We restore μ in the
following discussions. We can see that V in the asymptotic
region ρ ≫ a behaves like the effective potential of a 4D
asymptotically flat black hole spacetime, as is expected
from Eq. (11), as

V ¼ 1 −
μ

lρ
þ L2

ρ2
−
3μL2

2lρ3
þOðle−ρ=l=ρÞ: ð41Þ

The second term implies that the gravitational mass of the
black hole, as perceived by the particle, is proportional to
Mgrav ¼ μc2=ð2lG4Þ, where we have restored the speed of
light c and the 4D Newton constant G4 ¼ G=a. Hence, the
mass increases as l decreases. Evaluating the ISCO radius
up to this order, we find ρI ¼ ð9=2Þðμ=lÞ ¼ ð9=2Þrg,
where rg ¼ 2G4Mgrav=c2 is the Schwarzschild radius.
Furthermore, as can be seen from the fact that the leading
terms in Eq. (41) are independent of w, gravitational force
in the ρ direction is dominant in the asymptotic region. As a
result, the ISCO and the marginally ρ-stable circular orbit
radii there increase as a decreases, and they must have the
same value regardless of w, i.e., in this region, the solid and
dashed blue curves in Fig. 2 coincide with each other. The
same behavior can be seen for UPCOs, i.e., the solid and
dashed orange curves coincide with each other in this
region.
We find from Eq. (9) that V in the range ρ; w ≪ a

behaves like the effective potential of a 5D asymptotically
flat black hole spacetime as

V ¼ 1 −
2π2

3

μ

a2
−

2μ

ρ2 þ w2
þ
�
1 −

π2μ

a2

�
L2

ρ2
−

3μL2

ρ2ðρ2 þ w2Þ
þOðρ2=a2; w2=a2Þ: ð42Þ

The third term corresponds to a 5D gravitational potential.
In particular, on w ¼ 0, the potential V of Eq. (42)
reduces to

Vðρ; 0Þ ¼ 1 −
2π2

3

μ

a2
þ ð1 − π2μ=a2ÞL2 − 2μ

ρ2

−
3μL2

ρ4
þOðρ2=a2Þ: ð43Þ

Thus, we find that there are no circular orbits in this range
because the third and fourth terms cannot make a poten-
tial well.

IV. SUMMARY AND DISCUSSIONS

We have considered sequences of circular orbits for
massive and massless particles in the 5D caged black
hole spacetime, in which a black hole is localized in the
extra-dimensional space. We have given a systematic
way to find stationary orbits (i.e., circular orbits) and a
prescription to determine whether they are stable or
unstable. Using these, we have identified a typical
sequence of circular orbits for each size of extra-
dimensional space and have specified the part where
it shows stable behavior.
We have found that stable circular orbits exist in the

asymptotic region regardless of the scales of the extra
dimension and the black hole mass. It implies that the
localization effect of the black hole in the extra-
dimensional space does not appear in the region far from
the black hole. The existence of stable circular orbits in
such an asymptotic region is analogous to the case of a 4D
asymptotically flat black hole spacetime, rather than a 5D
asymptotically flat black hole spacetime with a spherical
horizon. In other words, we can interpret the effect of the
compactification of the extra-dimensional space in the
asymptotic region as reproducing effective 4D gravity.
As mentioned in the Introduction, we can also interpret
this phenomenon as a consequence of the many-body effect
due to the infinite images of a black hole [34]. On the other
hand, in the region closer to the black hole than the size of
the extra dimension, stable circular orbits do not appear
because 5D gravity of the asymptotically flat black
hole spacetime dominates due to the suppression of the
compactification effect. In the intermediate region
between these two, the sequence of stable circular orbits
reaches the ISCO and switches to the unstable circular
orbits, and finally, it terminates in the last circular orbit
(i.e., the UPCO). This behavior does not qualitatively
depend on the extra-dimensional size, but the ISCO and
UPCO take various radii according to the sizes of mass
and compactification.
It is inadvisable to apply this model to the Universe

because the caged black hole has an electric charge and is
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justified only at a=
ffiffiffi
μ

p ≫ 1
5 (see, e.g., Ref. [35]). Even if

we applied it, we would find that the behavior at infinity is
the same as in 4D, but for example, the ISCO radius takes a
larger value 4.5rg than the value 3rg we expect, where rg is
the Schwarzschild radius. Such behavior does not
adequately represent the actual astrophysical situation. If
we consider the higher-dimensional Universe scenario in an
astrophysical situation, then we may give a more realistic

model by a squashed Kaluza-Klein black hole with a
horizon expanding to the whole extra dimension, rather
than a caged black hole. The interpretation of stable circular
orbits proposed recently in the context of the AdS=CFT
correspondence would also be interesting [36,37]. These
issues deserve further study.
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