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By determining the relation between topological M-theory and the Chern-Simons actions for a gauge
field constructed from the Lie algebra of either SLð2;RÞ × SLð2;RÞ or SLð2;CÞ × SLð2;CÞ, depending
on the sign of the space-time curvature, we show that the standard and exotic actions of three-dimensional
gravity can be recovered from topological M-theory. With this result, we provide a concrete realization of a
conjecture by Dijkgraaf et al. stating that the partition function of topological M-theory is equivalent to the
partition function of a black hole in a related theory. We do this for the standard and exotic BTZ black holes
in three-dimensional gravity.

DOI: 10.1103/PhysRevD.103.084009

I. INTRODUCTION

One of the most useful tools for understanding gravita-
tional interaction is three-dimensional gravity. Not only has
2þ 1 gravity been quantized, it has other remarkable
features that are of great value as a guide to understanding
the foundations of gravity. Some of these features can be
easily derived from the fact that it can be written as a Chern-
Simons action [1]. And although 2þ 1 gravity is topo-
logical and therefore might seem physically unrealistic (it
lacks propagating degrees of freedom), there is a black hole
solution known as the Bañados-Teitelboim-Zanelli (BTZ)
black hole [2]. The BTZ solution is asymptotically anti–de
Sitter and has no singularity, but it has many of the features
of the Kerr black hole. It has an event horizon and an inner
horizon for the rotating case, also the thermodynamic
properties are analogous to four-dimensional black holes.
Interestingly the BTZ solution represents a black hole
solution with mass m and angular momentum j. It is a
solution to any 2þ 1 gravity model that admits anti–
de Sitter vacuum, with any linear combination of the
parameters m and j. When the role of mass and angular
momentum is reversed, the resulting black hole is known as
an exotic BTZ black hole. The entropy of the BTZ black
hole is in agreement with Hawking-Bekenstein entropy, but
for the exotic case the entropy is related to the inner

horizon. This appalling contradiction was resolved in [3] by
considering that the BTZ is a solution to the standard action
and the exotic BTZ is a solution to the exotic action, and
consequently the entropy must be given by

S ¼ π

2G
ðαrþ þ γr−Þ: ð1Þ

The standard and exotic actions are the two independent
actions that are derived in the Chern-Simons formulation of
2þ 1 gravity [1,4].
The description of the gravitational field in terms of

gauge fields or p-forms has been continuously developed.
In these theories the metric does not appear explicitly
but it is reconstructed from the dynamical fields under
consideration. These descriptions are referred to as form
theories of gravity. Some of these form theories, including
Chern-Simons (CS) three-dimensional (3d) gravity and the
A and B models of topological strings can be unified in a
seven-dimensional space-time, X, through the topological
M-theory (TMT) proposed by Dijkgraaf et al. [5]. Essential
in this theory is the volume form V constructed from an
invariant p-form whose existence is characteristic of
special holonomy manifolds. The study of manifolds
admitting stable nondegenerate forms is an interesting
topic by itself, see for example [6] for a classification of
all stable forms on Rn. In particular, for seven dimensions,
there are two nontrivial p-forms invariant under the
holonomy group G2, one of which is a 3-form and the
other a 4-form. The same is true for the stable p-forms
invariant under the dual group G̃2. Using the 3-form Φ
with holonomy in G2, Dijkgraaf et al. showed that the
equations of motion for 2þ 1 gravity are recovered under a
convenient partition of X. However, it is known that for
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nonvanishing cosmological constant, λ, there are two
classically equivalent actions to describe gravity in 2þ 1
dimensions and they are known as standard and exotic
actions [1,4]. As these two actions are classically equiv-
alent, they cannot be distinguished from the equations of
motion derived in [5] (this is not an issue for the 4d case,
because unlike 2þ 1 gravity, there is only one action). In
[7], the authors obtain these actions from TMT. This result
opens up the possibility to apply the formalism and ideas of
TMT to several models of 2þ 1 gravity that are built in
terms of the CS actions. We consider that CS gravity can be
used to better understand TMT. In particular we will
explore the relation between the partition function of the
Hitchin volume functional and the partition function of
black holes [5].
In [8], it is conjectured that the partition function of a 4d

Bogomol’nyi-Prasad-Sommerfield (BPS) black hole in a
Calabi-Yau compactification of type II superstring theory is
related to the topological string partition function by

ZBH ¼ jZtopj2: ð2Þ

Furthermore, it is pointed out that the topological partition
function can be interpreted as a wave function. They
conjectured that the topological string wave function
computes the partition function of BPS black hole states
in 4d and is given by

ZBH ¼ jψ topj2: ð3Þ

Additionally in [5] it is proposed that the partition
function ZH associated with the holomorphic volume
functional VH is related to the partition function of the
B model of topological strings ZB and its complex con-
jugate Z̄B. More precisely, they argue that ZH is the Wigner
function of the topological string B model. These con-
jectures are related to black holes and topological string
theory. Considering that topological string theory is con-
tained in TMT, we can ask ourselves if these conjectures
can be realized in the context of TMT.
In this work we present a realization of these ideas, but in

the context of 3d gravity. As shown in [5] at the level of the
equations of motion and in [7] at the level of the action,
3d gravity is contained in TMT as a particular splitting of
the 7d manifold. In order to give a concrete example
of the relation between ZH and the black hole entropy
we consider an extremal BTZ black hole, compute its
volume form in terms of the 2þ 1 dimensional standard
and exotic actions for gravity, then we obtain ZH, and
finally we compare it to the norm of the wave function
for the same black hole [9]. Then we can write the
conjecture as

ZH ¼ ZBH ¼ jψ topj2 ð4Þ

where ZH is the partition function of the Hitchin functional.
As a side result, using TMT we can study the result in [3]
for the entropy of a BTZ black hole. We find that the
entropy of the BTZ black hole calculated from the TMT is
related to the volume functional. When considering the
linear combination of the two volume functionals, we
reproduce the result in [3] for the entropy.
The organization of this work is as follows. First, we

review and formalize the derivation of the standard and
exotic actions for 2þ 1 gravity from TMTand construct the
topological partition function. Then, we also review the
BTZ black hole solutions and its partition function obtained
from canonical quantization. Finally, we show how these
results are related.

II. STABLE FORMS IN 7D

In this section we study the relation between invariant
stable forms and structures on a 7d Riemannian manifold,
R7. To understand the geometric structures defined by stable
forms, we need to study the isotropy subgroup of such forms
under the action of the general linear groupGLð7Þ. We start
by recalling the structure on R7. Later we use such
construction to understand the case of a manifold X.
Let V be a real 7d vector space with basis feig and

consider the space of 3-forms ∧3V�. A form ω in ∧3V� can
be written as

ω ¼
X7
i;j;k¼1

aijkeijk; ð5Þ

where eijk ¼ ei ∧ ej ∧ ek and feig is a basis for V�.
Consider the group G ¼ GLð7Þ of automorphisms of V.
There is a natural action G↷ ∧3 V� and it is known that
there are two distinguished orbits given by this action,
namely

G · ω1; ð6Þ

G · ω2; ð7Þ

where ωi is the form defined as

ω1 ¼ e123 − e145 þ e167 þ e246 þ e257 þ e347 − e356; ð8Þ

ω2 ¼ e123 þ e145 − e167 þ e246 þ e257 þ e347 − e356: ð9Þ

Each form corresponds to an isotropy group, the Lie group

Gω1
¼ G2; Gω2

¼ eG2: ð10Þ

It is proved in [10] that G2 is compact, connected, simple,
simply connected, 14-dimensional and it fixes the Euclidean
metric g1¼

PðxiÞ2 where x ¼ xiei and y ¼ yiei induced by
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hx;yiω1
¼ x1y1þ x2y2þ x3y3þ x4y4þ x5y5þ x6y6þ x7y7:

G2 also preserves the orientation of the forms ω1 and �ω1

with respect to g1, and G2 is isomorphic to the group of
automorphisms of the octonions.
There are analogous results for the group eG2; this group

preserves ω2, �ω2, the metric induced by

hx; yiω2
¼ x1y1 þ x2y2 þ x3y3 − x4y4 − x5y5 − x6y6 − x7y7;

and it is the noncompact dual of G2. It is also connected, of
dimension 14, and simple.
In this case the natural identification

G · ωi ¼ G=Gωi

is in fact a diffeomorphism. Since dimðGÞ ¼ 49 and
dimðG2Þ ¼ dimðeG2Þ ¼ 14 then the dimension of these
orbits dimðG · ωiÞ ¼ 49 − 14 ¼ 35 coincides with the
dimension of the ambient space dimð∧3V�Þ ¼ 35 and
we conclude as in [10] that both orbits are open and the
forms ω1 and ω2 are stable. In [6], the authors show that
the forms ω1, ω2 are essentially the unique stable forms, in
the sense that any stable form ω ∈∧3 V� is either in the
orbit of ω1 or ω2.
The scenario we study in this paper is the case when X is

a complete 7d Riemannian manifold, x ∈ X is a point and
V ¼ TxX. A stable form induces a Gωi

-structure on X, as
follows (see [11]):
Consider the fiber bundle ∧3 T�X and the open sub-

bundle PiðXÞ with fiber

Pi
x ¼ fω ∈∧3 V�j ∃ f∶V → R7 with f�ðωiÞ ¼ ωg;

where in the last definition f is an oriented isomorphism.
From the previous discussion P3

x ≅ G · ωi. Fix a form ω
over X such that ωjp ∈ Pi

x ¼ g · ωi and consider the frame
bundle F of X with fiber

Fx ¼ ffjf∶V → R7 is an isometryg:

LetQ be the principal sub-bundle of F whose fiber consists
in isomorphisms preserving ω. Hence the fiber isQx ≅ Gωi

and ω determines Q which defines a Gωi
-structure on X,

preserving the metric gω induced by the inner product

hx; yiω ¼ g · hx; yiωi
:

There is a converse for this construction: given an
oriented Gωi

-structure we can define a metric g, a 3-form
ω, and �ω requiring that the corresponding metric is
preserved by the action of Gωi

.
Let X be a Riemannian 7d manifold with a G2 structure

ðω; gÞ and denote as ∇g the Levi-Civita connection

associated with g. Let ∇gω be the torsion of this G2

structure. We say that ðω; gÞ is torsion-free if ∇gω ¼ 0.
Finally define a G2 manifold as a triplet ðX;ω; gÞ such that
ðω; gÞ is torsion-free.
Consider a G2 manifold X. The existence of a G2

holonomy metric is equivalent to the existence of a 3-form
Φ satisfying as in [5]

dΦ ¼ 0;

d�ΦΦ ¼ 0: ð11Þ

A stable 3-form can be written in terms of a 7d vielbein as

Φ ¼
X7
i;j;k¼1

Ψijkeiejek; ð12Þ

where Ψijk are the structure constants of the imaginary
octonions. There are analogous constructions for stable
forms on a eG2manifold, since the orbits ofω1,ω2 correspond
with the holonomy groups G2 and eG2 respectively.
In order to define a volume on aGωi

manifold X consider
a 3-form Φ on X as before, invariant by the corresponding
holonomy group and define a volume as

V7ðΦÞ ¼
Z
X
Φ ∧ �ΦΦ: ð13Þ

As above since in the 7d case there are only two open orbits
of maximal dimension, it is natural to consider only forms
in these orbits to get a notion of genericity as in [5].

III. 3D GRAVITY FROM
TOPOLOGICAL M-THEORY

In [5], Dijkgraaf et al. introduced a notion for TMT in 7d
with the property that it seems to unify several lower
dimensional topological models. In particular, they find a
dimensional reduction that recovers the equations of
motion of 2þ 1 gravity from the volume of the 7d manifold
X discussed in the previous section. A similar construction
was given by Bryant et al. [10], where starting from a rank-
4 spin bundle S over a 3d space of constant curvature
(space form), a 3-form Φ satisfying dΦ ¼ d�ΦΦ ¼ 0 is
constructed by making use of the structure equations for a
manifold with constant sectional curvature κ ≡ 4Λ, i.e.,

de ¼ −A ∧ e − e ∧ A; ð14aÞ

dA ¼ −A ∧ A − Λe ∧ e; ð14bÞ

where fe1; e2; e3g is a basis of the tangent space at a point
of the 3-manifold, and A is a Levi-Civita connection
1-form. As [5,10] point out, a 3-form that generalizes ω1

(8) can satisfy the conditions dΦ ¼ d�ΦΦ ¼ 0 in some
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special cases. In order to write down this 3-form ψ it is
convenient to introduce first a set of local coordinates on
the 4d fiber. Let yi be those coordinates; we define r ¼ yiyi.
Notice that this is SOð4Þ invariant. With the following
2-forms,

Σ5 ¼ e12 − e34;

Σ6 ¼ e13 − e42;

Σ7 ¼ e14 − e23; ð15Þ

we can write the 3-formΦ that satisfies dΦ ¼ d�ΦΦ ¼ 0 as

Φ ¼ f3ðrÞe567 þ fðrÞg2ðrÞem ∧ Σm: ð16Þ

Since f and g depend only on r, Φ preserves the SOð4Þ
invariance of ω1. Remembering that SOð4Þ is a subgroup of
G2, and by the discussion of the previous section, the fact
that Φ is SOð4Þ invariant is a good indicator that it
can define a G2 structure—thus satisfying the required
equations. The local coordinates yi are also used to define a
basis of 1-forms in the fiber direction as

α ¼ dy − yA: ð17Þ

The four components of α are identified as a local basis on
the fiber, αi ¼ ei, i ¼ 4, 5, 6, 7. As a consequence of
Eqs. (14), these 1-forms satisfy

dα ¼ −α ∧ Aþ ðκ=4Þyω ∧ ω: ð18Þ

Using Eqs. (14), (18), and

�ΦΦ ¼ −
1

6
g4Σm ∧ Σm þ 1

2
f2g2ϵmnpem ∧ en ∧ Σp; ð19Þ

in [12] it is shown that the equations dΦ ¼ d�ΦΦ ¼ 0

hold if

fðrÞ ¼
ffiffiffiffiffiffi
3Λ

p
ð1þ rÞ1=3;

gðrÞ ¼ 2ð1þ rÞ−1=6: ð20Þ

Conversely, the authors of [5] start with dΦ ¼ d�ΦΦ ¼ 0

and verify that the above assumptions for fðrÞ and gðrÞ
lead to the structure equations, (14), i.e., in their inter-
pretation, the equations of motion for 3d gravity arise from
the equations for a 3-form with G2 holonomy. If these
equations of motion are recovered from such a 3-form Φ, it
is natural to look for a Lagrangian for Φ that encompasses
the main points of the derivations above and reduces to the
known Lagrangians for 3d gravity. This Lagrangian is
given precisely in terms of the volume form discussed
around Eq. (13). In order to convert Eq. (13) into an
expression that we can recognize as the action for 2þ 1
gravity, we perform the following steps. First, we rewrite

the integrand Φ ∧ �ΦΦ using the antisymmetry of the
wedge product and of the Levi-Civita tensor, obtaining

V7ðΦÞ ¼
Z
X

40

3
ð3ΛÞ3=2ð1þ rÞ1=3e567 ∧ Σi ∧ Σi: ð21Þ

Now, let Σ be the curvature of a connection α, i.e.,

Σ5 ¼ dα5 þ 2α6α7; ð22Þ

and cyclically for the others. Later on wewill relate this α to
the connection 1-form A. Notice that this is compatible with
the equations (15) that express Σi in a local orthonormal
basis [13]. Using again the properties of the wedge product,
and noticing that as a consequence of the structure
equations (14) we have dðe567Þ ¼ 0 [12], the volume V7

can be written as

V7ðΦÞ ¼
Z
X

40

3
ð3ΛÞ3=2ð1þ rÞ1=3d

�
e567 ∧ ðαi ∧ dαi

þ 2

3
ϵijkαiαjαkÞ

�
: ð23Þ

The argument of the differential does not depend on r,
therefore, by an appropriate choice of coordinates, its
prefactor can be integrated out so that it becomes a global
factor of a 6d integral. We can further reduce these
dimensions by using Stokes’s theorem, obtaining1

V7ðΦÞ ∝
Z
X5

e567 ∧
�
αi ∧ dαi þ

2

3
ϵijkαiαjαk

�
: ð24Þ

Finally, since the argument of the integral only depends on
quantities defined over the 3-manifold M with basis
fe5; e6; e7g, the volume can be expressed as

V7ðΦÞ ∼
Z
M

e567 ∧
�
αi ∧ dαi þ

2

3
ϵijkαiαjαk

�
: ð25Þ

Expanding the wedge product in components, relabeling
the internal indices as ða; b; cÞ and using ði; j; kÞ for the
spacetime indices, we get

V7ðΦÞ ∼
Z
M

ϵijk
�
2αai ∧ ∂jα

a
k þ

2

3
ϵabcα

a
i α

b
jα

c
k

�
: ð26Þ

This is the Chern-Simons action. At this point it is
convenient to notice that the 2-forms Σ are anti-self-dual,

1We have to be careful with the notation: all p-forms are
integrated over p-dimensional manifolds. If the dimensions of the
integral and the order of the p-form obtained by counting wedge
products does not match, this means that one of the differentials
dxi has been integrated out, and we have to remember this when
writing the form in component notation.
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i.e., �Σi ¼ −Σi. For this reason, we rename it as −Σi, with
associated connection −αi, and we also rename the form Φ
given in Eq. (16) as −Φ. Now we are ready to see the
relevance of the discussion of the previous section. The
form −Φ is constructed out of the stable form ω2 presented
in Eq. (9). However, we have seen that the volume form can
also be constructed in terms of ω1, Eq. (8). Moreover, these
two possibilities, ω1 and ω2, are unique in the sense
discussed in the previous section. With these considerations
in mind, we construct a volume form for each of the
3-forms

−Φ ¼ f3ðrÞe567 þ fðrÞg2ðrÞem ∧ −Σm; ð27Þ
þΦ ¼ f3ðrÞe567 þ fðrÞg2ðrÞem ∧ þΣm; ð28Þ

where þΣm are the self-dual 2-forms

þΣ5 ¼ e12 þ e34;
þΣ6 ¼ e13 þ e42;
þΣ7 ¼ e14 þ e23; ð29Þ

and r is defined in the same way as described before. When
fðrÞ ¼ gðrÞ ¼ 1, −Φ, þΦ are equivalent to ω2 and ω1,
respectively. The 4-forms associated with −Φ and þΦ are

�Φ
∓Φ ¼∓ 1

6
g4∓Σm ∧ ∓Σm

� 1

2
f2g2ϵmnpem ∧ en ∧ ∓Σp: ð30Þ

We can use either of �Φ to construct the volume of the
7-manifold X,

V� ≡ V7ð�ΦÞ ¼
Z
X

�Φ ∧ �Φ
�Φ: ð31Þ

By the same steps of the previous section, V7 can be
written as

V� ∼
Z
M

ϵijk
�
2�αai ∧ ∂j

�αak þ
2

3
ϵabc

�αai
�αbj

�αck

�
; ð32Þ

where þαi is the connection associated with þΣi. Thus, we
have found two Chern-Simons actions derivable from the
volume of a 7-manifold that admits two special stable
forms. Now we want to understand how these two actions
are related to 2þ 1 gravity. From the results of [5,12], we
know that the equations of motion arising from the volume
of −Φ are those of 2þ 1 gravity with a cosmological
constant. Since VðþΦÞ describes the same volume as
Vð−ΦÞ, the 3d equations of motion derived from both
actions have to coincide. This is remarkably similar, and
consistent, with the results of [1], where it is shown that

there are two 3d actions, named standard and exotic, that
lead to the same equations of motion that we are interested
in. Moreover, it is proven that these actions can be written
in terms of the Chern-Simons actions Eq. (32) by setting

�αai ¼ Aa
i �

ffiffiffi
λ

p
eai ; ð33Þ

where Ai and ei are the fields introduced around Eq. (14).
The combinations

Ist ¼
þI − −I
4

ffiffiffi
λ

p ; ð34Þ

Iex ¼
þI þ −I

2
; ð35Þ

where �I are the integrals in Eq. (32), give respectively the
standard and exotic actions.
Now we can reinterpret the standard and exotic actions in

terms of the volume functional as

Ist ¼
hþVþ − h−V−

4
ffiffiffi
λ

p ;

Iex ¼
hþVþ þ h−V−

2
; ð36Þ

where h� are the inverses of the proportionality factors in
Eq. (32). In this way, we can see the standard and exotic
actions as two different combinations of pieces of the
volume of the 7-manifold X. Applications of the ideas
developed so far to the Immirzi ambiguity in 3d gravity
have been presented in [7]. In the next section we explore
the entropy of the BTZ black hole from the point of view of
TMT and we discuss the relation of our results to the
conjecture ZBH ¼ jZtopj2.

IV. BTZ BLACK HOLE: PARTITION FUNCTION

Using the results described above we can provide
evidence that the conjecture discussed around Eq. (2) also
applies for G2 manifolds and 3d black holes, i.e., that in
general, the partition function of a theory with action
defined by a Hitchin functional is related to the partition
function for a BPS black hole in the gravitational theory
allowed by the p-forms used to construct the Hitchin
functional. The possibility that the relation between BPS
objects and form theories of gravity extends to G2 mani-
folds was hinted in [5]. However, it was only studied for 4d
and 5d black holes embedded in a 6d SUð3Þ manifold. The
4d BPS black hole is constructed in a Calabi-Yau com-
pactification of type II string theory [5,8] and the partition
function is related to the 6d topological sting model derived
in TMT. The 5d black hole is derived from M-theory
compactified in the Calabi-Yau [5]. The 4d and 5d black
holes are not solutions to the 4d or 5d form theories of
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gravity derived from TMT. In contrast, for the 3d case the
BTZ black hole is a solution to the 3d form theory of
gravity derived from TMT. In this work we show explicitly
that the partition function of the BTZ black hole is
recovered from the partition function associated with the
volume V7. Given the different ways of writing down V7

either in terms of Vþ, V− or both, one could think that the
result only applies to the extremal case, which turns out to
be associated with the situation where we demand that the
linear combinations of Vþ and V−, for instance Ist and Iex,
preserve a given multiple of V7; but as we argue below, the
partition function obtained from TMT correctly gives the
BH partition function even away from the extremal case.
In the case of TMT, the total space X is 7d and as we

shown in the previous sections, its volume can be con-
structed with either of the 3-forms þΦ and −Φ. A certain
combination of these volumes, Eq. (34), results in the
standard action for 3d gravity. In this theory, a black hole
solution is given by the BTZ space-time [2], whose metric
can be written as

ds2 ¼ −N2dt2 þ N−2dr2 þ r2ðNϕdtþ dϕÞ2; ð37Þ

where the lapse N and shift Nϕ are

N ¼
�
−M þ r2

l2
þ J2

4r2

�
1=2

; ð38Þ

Nϕ ¼ −
J
2r2

: ð39Þ

The integration constants M and J are interpreted respec-
tively as the mass and angular momentum of the black hole,
and l is related to the cosmological constant of the theory
by l−2 ¼ Λ=3. The lapse function vanishes at two distinct
values of r, defining two coordinate singularities, r�,

r� ¼ 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlM þ JÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlM − JÞ

p
Þ: ð40Þ

When J ¼ 0 only rþ is different from zero, and in the
extremal case J ¼ Ml the two horizons coincide. The
entropy of the BTZ black hole can be computed by
different methods, for example, by a Euclidean path
integral or by Noether charges [see, e.g., [14] ], and it is
given by

SstBTZ ¼ 4πrþ: ð41Þ

These computations do not depend only on the metric but
also on the action, that is usually taken to be the standard
action, hence the superscript st. Originally, this result
comes from making geometrical considerations on the
standard action of 2þ 1 gravity, and then deriving the
entropy from the grand canonical partition function in
the classical approximation [15]

Z ¼ expðIstÞ:

Since the standard action is recovered from TMT, we can
expect that the entropy of a BTZ black hole described by
such an action can be recovered as well. Additionally, as we
have shown, both the standard and exotic actions are
derivable from TMT, thus we can also explore the entropy
for the exotic BTZ black holes. Applying to the exotic
action the same techniques that lead to Eq. (41), it is found
that the entropy is proportional to the inner BTZ horizon,
r−. The fact that the entropy is proportional to the inner
horizon raised doubts about the validity of black hole
thermodynamics. However, it has been shown that these
laws hold [3]. Indeed, the result is even more general: an
entropy of the form

S ∼ αrþ þ γr− ð42Þ

is in agreement with black hole thermodynamics. One
advantage of the framework we are studying in this work is
that Eq. (42) arises naturally. Hitchin’s partition function is
defined in terms of the volume functional,

ZHðΦÞ ¼
Z
½Φ�

dΦ exp ðVHðΦÞÞ: ð43Þ

Thus, when we write TMTas a theory of a 4d vector bundle
over a 3d base space such that the 7d manifold X has a G2

structure, we can separate V7 in terms of the volume
functionals V�,

λV7 ¼ βþVþ þ β−V−; ð44Þ

for some coefficients λ, β�. Notice that, so far, all the
properties that hold for a theory based on V7 hold for a
theory based on a multiple λ of V7. In addition, V� are
proportional to the Chern-Simons actions, Eq. (32), with
proportionality constants 1=h�. Putting all together, we
write Hitchin’s partition function as

ZHðΦÞ ¼
Z
½Φ�

dΦ exp

� X
σ¼þ;−

βσðhσÞ−1σI
�
: ð45Þ

As before, the basis of the 7d manifold can be decomposed
into a 3d base space and a 4d bundle. The coefficients β�
can be chosen in such a way that the linear combination of
�I in the argument of the exponential reproduces either the
standard or the exotic action, or a combination of both. For
the choice that leads to the standard action, by the
discussion above we confirm that Hitchin’s entropy is
related to the BTZ entropy,

ZHðΦÞ ∝
Z

dedα expðIstÞ ¼ ZBH: ð46Þ
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On the other hand, for a different choice of parameters we
can have

ZHðΦÞ ∝
Z

dedα expðIexÞ ¼ ZBH; ð47Þ

i.e., the Hitchin partition function for the exotic action is
also related to a black hole partition function, only that in
this case ZBH corresponds to the exotic BTZ black hole.
The extremal case, rþ ¼ r−, admits an interpretation

from the point of view of TMT. Suppose we fix λ, e.g.,
λ ¼ 1. This imposes a constraint on the linear combinations
in Eq. (44), such that any choice of β� leads to a fixed V7

and the same ZHðΦÞ. Accordingly all combinations lead to
the same black hole entropy, and this is only possible if
rþ ¼ r−, i.e., the extremal case corresponds to a constraint
on the parameters β�.

V. DISCUSSION

Three-dimensional gravity can be embedded in a
7-manifold with G2 holonomy. The volume form of this
manifold is constructed in terms of a stable (generic, in the
sense of [5]) form. Indeed, there are essentially two unique
such forms and by using these two stable forms, we split the
volume of the 7-manifold into contributions from the
distinct orbits. Using the structure equations appropriated
for our geometrical setup, we find that these two contri-
butions can be rephrased as Chern-Simons actions, one for
a self-dual curvature and one for an anti-self-dual curvature.
This observation allows us to recover the two classically
equivalent known actions of 3d gravity, i.e., Witten’s
standard and exotic actions, thus completing the picture
shown in [5,12].
In a context that is more general than the theory that we

study here, it has been conjectured that topological and
black hole partition functions are related. Our results give a
concrete realization of this conjecture: by writing the action
of TMT in terms of the contributions from the two unique
stable forms, we can tune the theory so that it reproduces
the partition function of the standard action of 3d gravity,
thus agreeing with the result for the BTZ black hole; or we
can choose to reproduce the exotic action, obtaining the
correct entropy for the exotic BTZ black hole. It is worth
noticing that a combined standard/exotic entropy is in
agreement with black hole thermodynamics [3], and our
results provide a scenario where such combined models can
be embedded. Moreover, any other action that can be
written in terms of the standard and exotic action can be
reinterpreted as a combination of the volume forms V�, and
its Hitchin’s partition function can be expressed as in
Eq. (45). This is the case, for instance, for topologically
massive ADS gravity [16], which also admits a BTZ black
hole as an exact solution.
The topological partition function is also conjectured to

be related to a wave function. The wave function for a static

BTZ black hole in the region outside the horizon has been
computed within a canonical quantization scheme [9].
When evaluated at the horizon, their result takes the form
(more details in the Appendix)

jψ j2 ∼ eμ̃rþ ;

where μ̃ is a quantized number related to the energy levels
of the system. This result indeed reassembles the Euclidean
partition function for the BTZ black hole. It would be
interesting to explore the quantization of a nonstatic BTZ
black hole, so that the relation between the wave function
and the black hole partition function can be explored for the
extremal case, i.e., the case that would correspond to the
conjectures in [8]. This is left for future work.
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APPENDIX: STATIONARY STATES
OF THE BTZ BLACK HOLE

In this appendix we briefly present the derivation done in
[9], of the nonrotating BTZ black hole wave function

Ψ ¼ eði=4GÞ
R

∞
0

drΓðrÞWðτðrÞ;RðrÞ;FðrÞÞ; ðA1Þ
where τ ¼ τð0Þ, R ¼ Rð0Þ, and F ¼ Fð0Þ. The Wheeler-
DeWitt (WDW) equation becomes the Klein-Gordon (KG)
equation

� ∂2

∂τ2 þ F
∂2

∂R2
þ A

∂2

∂Rþ B

�
eiμWðτ;R;FÞ ¼ 0: ðA2Þ

As this description is based on a collapsing shell we impose
that we have a free wave function; this is a natural
assumption. For this to happen we should be able to write
the WDW equation as

γab∇a∇bΨ ¼ 0; ðA3Þ

where γab is the DeWitt supermetric on the configuration
space and ∇a is the covariant derivative. The WDW
equation is the free KG equation if B ¼ 0 and AðR;FÞ ¼
jFj∂R ln

ffiffiffiffiffiffijFjp
and the inner product is given by

hΨ1;Ψ2i ¼
Z

dRffiffiffiffiffiffijFjp Ψ�
1Ψ2: ðA4Þ

When F ≠ 0, the supermetric can be written in a flat form
by the transformation R� ¼ � R jRj−1=2dR. In terms of R�
the KG equation is
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� ∂2

∂τ2 �
∂2

∂R2�

�
eiμWðτ;R;FÞ ¼ 0; ðA5Þ

the positive sign is for the exterior and the minus sign for
the interior. The solutions are

ψ inðτ; R�Þ ¼ A�e−iμðτ�R�Þ F < 0;

ψoutðτ; R�Þ ¼ B�e−iμðτ�iR�Þ F > 0: ðA6Þ

In the exterior

R� ¼
1ffiffiffiffi
Λ

p
�
ln

�
R

ffiffiffiffi
Λ

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛR2 − 8GM

p
ffiffiffiffiffiffiffiffiffiffiffi
8GM

p
�
þ π

2

�
; ðA7Þ

at the horizon R� ¼ ln rþ. For a continuous wave function
the matching conditions give the following spectrum:

μj ¼
ffiffiffiffi
Λ

p
ℏ

�
jþ 1

2

�
; j ¼ 0; 1; 2;…; ðA8Þ

a similar spectrum was derived in [17].
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