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We study the circular orbits of charged particles around a weakly charged Schwarzschild black hole
immersed in a weak, axisymmetric magnetic field. We start by reviewing the circular orbits of neutral
particles and charged particles around only weakly charged and only weakly magnetized black holes. The
case of a weakly magnetized and charged black hole is investigated then. In particular, we study the effect of
the electromagnetic forces on the charged particle innermost stable circular orbits. We show that negative
energy stable circular orbits are possible and that two bands of charged particles circular orbits, separated by a
gap of no stable circular orbits can exist. The astrophysical aspects of our findings are discussed too.
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I. INTRODUCTION

Black hole astrophysics has been one of the most
intriguing disciplines of science. It reached the pinnacle
of fascination when the first real image of a black hole was
published by the Event Horizon Telescope Collaboration.
One of the principal objectives of black hole astrophysics is
to measure the parameters of a black hole, in particular, its
mass and spin angular momentum. According to the no-
hair theorem, a stationary black hole is characterized by
only three parameters: mass, spin angular momentum, and
charge [1]. It has been argued that astrophysical black holes
are indeed electrically neutral. If some excess charge is
produced by whatever astrophysical processes, it would be
shortly neutralized by the selective accretion of the ambient
plasma. The wide adoption of this assumption can be
explicitly seen in the literature where charged black holes
are hardly considered, except for academic purposes.
There are several profound reasons to assume that

weakly charged black holes exist, however. The mass
difference between electrons and protons may render a
black hole positively charged (see Refs. [2–4], and the
references within). Moreover, a rotating black hole
immersed into a homogeneous magnetic field acquires a
nonvanishing electrical field. This can result in the selective
accretion of the ambient, free charged particles, until the
black hole’s charge neutralizes the magnetically induced
electric field [5,6]. Another effect that might charge a black
hole is the difference in the accretion rates of electrons and
protons of the surrounding plasma in the presence of
radiation from the accreting matter.
It is widely accepted that astrophysical black holes are

magnetized. The main source of the magnetic fields is the

plasma in the accretion disk as discussed in Refs. [7,8]. In
addition to the theoretical considerations, there are abun-
dant observational data that back this assertion [9–13].
The innermost stable circular orbit (ISCO) of a black

hole has several immediate implications. It is vital for
measuring the spin angular momentum of the black hole
[14]. It is also influential to the structure of the accretion
disk [15]. For an accretion disk with low luminosity
compared to the Eddington luminosity, the ISCO coincides
with the inner edge of the disk [16]. Therefore, the ISCO
has a direct impact on the structure of the black hole’s
shadow.
The charged particle ISCOs around a Schwarzschild and

Kerr black holes immersed in a weak, axially symmetric
magnetic field were extensively investigated [17–20]. In all
cases, the effect of the magnetic field is to bring the ISCO
closer to the black hole. The dynamics of charged particles
in Reissner-Nordstrom spacetime was investigated in
[21,22]. The charged particles ISCOs around a weakly
charged Schwarzschild black hole were addressed in [2–4].
The combined affects of the magnetic field and black hole’s
charge on the ISCOs have been recently examined in
Ref. [23] for a few special cases.
In this paper we study the ISCOs of charged particles

orbiting a Schwarzschild black hole that is weakly charged
and immersed in a weak, axisymmetric magnetic field. The
black hole’s charge and magnetic field are weak in the
sense that their backreactions on the spacetime are insig-
nificant.1 We first look at the effect of each of the magnetic
field and black hole’s charge separately and then study their
combined effect. We explore in detail the cases when no
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1In what follows, it should be inferred that the black hole’s
charge and magnetic field are assumed to be weak.
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ISCO exists and when the particle’s energy becomes
negative. The paper is organized as follows: Sec. II is a
review of the circular orbits and the ISCO of a neutral
particle. In Sec. III, we go over the Wald solution of
Maxwell’s equations in Ricci flat spacetimes and write the
radial equation of motion for a charged test particle. In
Secs. IV and V we discuss the ISCOs of a charged particle
near a charged black hole and magnetized black hole,
respectively. In Sec. VI, we investigate in detail the charged
particle ISCOs near a charged black hole immersed in a
magnetic field. General discussion and conclusion are
given in Sec. VII. We use the sign conventions adopted
in Ref. [1] and geometrized units where c, G and k (the
Coulomb constant) are unity.

II. CIRCULAR ORBITS OF A NEUTRAL
PARTICLE AROUND A SCHWARZSCHILD

BLACK HOLE

The spacetime geometry around a spherically symmetric
black hole of mass M is described by the Schwarzschild
metric, which reads [1]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dθ2 þ r2sin2θdϕ2; ð1Þ

where

fðrÞ ¼ 1 −
2M
r

: ð2Þ

The Schwarzschild metric admits four Killing vectors. Two
of them are the temporal and azimuthal Killing vectors,
since the metric is temporally and azimuthally symmetric.
They read, respectively,

ξμðtÞ ¼ δμt ; ξμðϕÞ ¼ δμϕ: ð3Þ

Let a test particle of mass m be moving with four-velocity
uμ in the Schwarzschild background. There are two
constants of the particle’s motion associated with the
two Killing symmetries:

E ¼ −pμξ
μ
ðtÞ=m ¼ fðrÞ_t; ð4Þ

L ¼ pμξ
μ
ðϕÞ=m ¼ r2sin2θ _ϕ: ð5Þ

Here pμ ¼ muμ is the particle’s four-momentum. The two
constants of motion E and L are the specific energy and
specific azimuthal angular momentum, respectively. Using
them along with the normalization uμuμ ¼ −1, we reduce
the radial equation of motion in the equatorial submanifold
(θ ¼ π=2, _θ ¼ 0) to quadrature:

_r2 ¼ E2 − VðrÞ: ð6Þ

The overdot denotes differentiation with respect to the
particle’s proper time. The effective potential VðrÞ reads

VðrÞ ¼
�
1 −

L2

r2

�
fðrÞ: ð7Þ

The radial motion is invariant under the transformations

ϕ → −ϕ; _ϕ → − _ϕ; L → −L: ð8Þ

Therefore, there is only one mode of radial motion. Without
loss of generality, we will consider L > 0.
The two conditions of circular motion VðrÞ ¼ E and

V 0ðrÞ ¼ 0 give us

E2 ¼
�
1 −

L2

r2

�
fðrÞ; ð9Þ

E2ðr −MÞ þ ð2r − 3MÞr2 ¼ 0: ð10Þ

We will use ro, Eo and Lo to denote quantities correspond-
ing to circular orbits from here on. Solving the above two
equations for Eo and Lo for future-directed orbits yields

Eo ¼
ðro − 2MÞ

r1=2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro − 3M

p ; ð11Þ

Lo ¼
Mroffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro − 3M

p : ð12Þ

The value of Eo is always positive with a value of 1 far away
from the black hole. A circular orbit is the ISCO when
V 00ðroÞ vanishes. This condition gives us that rISCO ¼ 6M.
It is worth mentioning that EISCO ¼ 2

ffiffiffi
2

p
=3 and LISCO ¼

2
ffiffiffi
3

p
M. Therefore, a particle ending in the ISCO can release

an energy of 1 − 2
ffiffiffi
2

p
=3ð≈0.057Þ of its rest energy.

III. CHARGED AND MAGNETIZED
SCHWARZSCHILD BLACK HOLES

Let us now reviewWald’s solution of Maxwell equations
in a curved spacetime for weak electromagnetic fields [6].
In a Ricci flat spacetime a Killing vector ξμ obeys the
equation

ξμ;ν
;ν ¼ 0: ð13Þ

This is identical to the source-free Maxwell equations for
a four-potential Aμ in the Lorentz gauge (Aμ

;μ ¼ 0):

Aμ
;ν
;ν ¼ 0: ð14Þ

Therefore, any linear combination of the Killing vectors the
spacetime admits is automatically a solution to the Maxwell
equations.
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Consider the electromagnetic potential constructed
of the temporal and azimuthal Killing vectors of the
Schwarzschild geometry:

Aμ ¼ −
Q
2M

ξμðtÞ þ
B
2
ξμðϕÞ: ð15Þ

Lowering the index and removing the constant term give

Aμ ¼ −
Q
r
δtμ þ

B
2
r2sin2θδϕμ : ð16Þ

This potential describes the electromagnetic fields
around a charged black hole immersed in an axisymmetric
magnetic field. The black hole’s charge Q is given by

Q ¼ 1

4π

Z
σ
Fμνdσμν; ð17Þ

where σ is a 2D surface surrounding the black hole and Fμν

is the electromagnetic field tensor [see Eq. (19)]. The
magnetic field is axisymmetric with a strength of B
asymptotically [6,18,19]. This is the potential that we will
use in this paper.
The dynamics of a charged particle of massm and charge

e in an electromagnetic field in a curved spacetime is
governed by the equation

muν∇νuμ ¼ eFμ
ρuρ: ð18Þ

The electromagnetic field tensor Fμ
ν is given by

Fμν ¼ Aν;μ − Aμ;ν: ð19Þ

In the frame of an observer with four-velocity uobsμ , the
electric and magnetic fields are, respectively,

Ei ¼ Fiνuobsν ; ð20Þ

Bi ¼ 1

2

εiνλσffiffiffiffiffiffi−gp Fλσuobsν ; ð21Þ

where g ¼ detðgμνÞ, ε0123 ¼ þ1 and i ¼ 1, 2, 3.
For a stationary observer (uobsμ ¼ −f1=2δtμ), the electric

and magnetic field are, respectively,

Ei ¼ Qf1=2

r2
δir; ð22Þ

Bi ¼ Bf1=2
�
cos θδir −

sin θ
r

δiθ

�
: ð23Þ

The generalized four-momentum of the particle is

Pμ ¼ muμ þ eAμ: ð24Þ

The Lie derivatives of Aμ with respect to ξμðtÞ and ξμðϕÞ
identically vanish:

LξνðtÞ
Aμ ¼ 0; ð25Þ

LξνðϕÞ
Aμ ¼ 0: ð26Þ

The energy and azimuthal angular momentum of a charged
particle are therefore constants of motion. Equations (4)
and (5) are generalized to

E ¼ −Pμξ
μ
ðtÞ=m ¼ q

r
þ fðrÞ_t; ð27Þ

L ¼ Pμξ
μ
ðϕÞ=m ¼ r2ðbþ _ϕÞsin2θ; ð28Þ

respectively, where q ¼ eQ=m and b ¼ eB=2m. We can
straightforwardly obtain the charged particle version of
Eq. (6) by combining Eqs. (27) and (28) with uμuμ ¼ −1.
The radial equation of motion in the equatorial submanifold
then reads

r2 _r2 ¼ ðEr − qÞ2 − ½r2 þ ðL − br2Þ2�fðrÞ: ð29Þ

It is more convenient to recast it as

_r2 ¼ ðE − VþÞðE − V−Þ; ð30Þ

where

V�ðrÞ ¼
q
r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ

�
L
r
− br

�
2
�
fðrÞ

s
: ð31Þ

It is VþðrÞ that corresponds to future-directed
orbits. Equation (29) is invariant under the symmetry
transformations

ϕ→ −ϕ; _ϕ→ − _ϕ; L → −L; b→ −b: ð32Þ

As in the previous section, we will keep L > 0 without any
loss of generality. When b > 0 (b < 0), the magnetic force
is radially out (in). Likewise, q > 0 (q < 0) corresponds to
Coulomb repulsion (attraction). Therefore, there are four
different modes of radial motion, in general.
The weak field approximation breaks down when the

electric charge and magnetic field creates curvatures
comparable to that made by the black hole’s mass near
the event horizon. This happens when

B2 ∼M−2 or Q2 ∼M2: ð33Þ

In conventional units, the weak field approximation fails
when

CIRCULAR ORBITS OF CHARGED PARTICLES AROUND A … PHYS. REV. D 103, 084008 (2021)

084008-3



Q ∼
G1=2M

k1=2
∼ 1020

M
M⊙

C ð34Þ

or

B ∼
k1=2c3

G3=2M
∼ 1019

M⊙

M
G; ð35Þ

where M⊙ is the solar mass.
The typical magnetic field strength near a black hole’s

horizon has been estimated to be ∼108 G (10−15 m−1) for
stellar mass black holes and ∼104 G (10−19 m−1) for
supermassive black holes [9–13]. According to Ref. [3],
the charge of Sgr A* is estimated to be in the range
108–1015 C (10−9–10−2 m). These estimates validate
ignoring corrections to the metric due to the presence of
the electromagnetic fields.
In spite of the fact that the electromagnetic fields are

geometrically insignificant, their effects on the dynamics
of charged particles can be significant since e=m ¼
2.04 × 1021 (1.11 × 1018) for electrons (protons). For
electrons and protons near a black hole with Q ¼ 108 C
and B ¼ 104 G, for example,

qe ∼ 1012 m; qp ∼ 109 m; ð36Þ

and

be ∼ 103 m−1; bp ∼ 10−1 m−1: ð37Þ

The subscripts “e” and “p” refer to electrons and protons,
respectively.

IV. CIRCULAR ORBITS AROUND A CHARGED
SCHWARZSCHILD BLACK HOLE

Now, we write the expressions similar to Eqs. (11) and
(12) for a charged particle orbiting a charged Schwarzschild
black hole and study its circular orbits and ISCOs. Setting
b ¼ 0 in Eq. (31) gives

VþðrÞ ¼
q
r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ L2

r2

��
1 −

2M
r

�s
: ð38Þ

The two conditions for circular orbits [VðrÞ ¼ E and
V 0ðrÞ ¼ 0] yield, respectively,

Eo ¼
q
ro

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ L2

o

r2o

��
1 −

2M
ro

�s
ð39Þ

and

L2
o ¼

2Mr2o
ro − 3M

þ
�
qroðro − 2MÞ
ðro − 3MÞ2

× ðq −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4roðro − 3MÞ þ q2

q
Þ
�
: ð40Þ

The condition for a circular orbit to be the ISCO
V 00ðroÞ ¼ 0 reads

½roðL2
o þ r2oÞðro − 2MÞ�1=2ðL2

o − 2MroÞ
þ q½L2

oðro −MÞ þ r2ð2ro − 3MÞ� ¼ 0: ð41Þ

Figures 1–3 show how the radius, azimuthal specific
angular momentum and specific energy of the ISCO vary
with q, respectively. For q > 0, rISCO increases very steeply
and approaches infinity as q approaches M, in agreement
with Refs. [2,21]. This is because the Coulomb repulsion
makes the circular orbits less stable. The destabilization
effect is due to the first term in Eq. (38) which creates a

FIG. 1. The radius of the ISCO versus the charge parameter q.

FIG. 2. The specific azimuthal angular of the ISCO versus the
charge parameter q.
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hump in Vþ near r ¼ 2M for q > 0. When q < 0, rISCO
also increases as the magnitude of q increases, but more
smoothly. Overall, the black hole charge pushes away rISCO
beyond r ¼ 6M for both signs of q. We can see this effect
explicitly by expanding rISCOðqÞ around q ¼ 0, which
yields

rISCO ¼ 6M þ q2

2M
þOðq3Þ: ð42Þ

Thus, rISCO > 6M whenever jqj > 0.
At q ¼ M,LISCO has its minimum ofM. It then increases

monotonically as q decreases. On the other hand, EISCO has
its maximum of 1 when q ¼ M. As q decreases, EISCO
monotonically decreases and approaches 0 as q approaches
−∞. Therefore, the efficiency of energy liberation of a
charged particle at the ISCO can be close to 100% of the
particle’s rest energy.
In the case when q ≪ −M, we can write approximate

expressions for rISCO, LISCO and EISCO as

rISCO ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
2Mq23

q
; ð43Þ

LISCO ≈ −q; ð44Þ

EISCO ≈ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M=4q3

p
: ð45Þ

The results of this section, and the relationship between
rISCO and q in particular, demonstrates that even a trace
charge on a black hole can have profound astrophysical
implications.

V. CIRCULAR ORBITS AROUND A MAGNETIZED
SCHWARZSCHILD BLACK HOLE

In this section, we review the circular orbits and
the ISCOs of a charged particle near a magnetized

Schwarzschild black hole. Equation (31) with q ¼ 0
reads

VþðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ

�
L
r
− br

�
2
�
fðrÞ

s
: ð46Þ

The two conditions for circular orbits give us that

Eo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ

�
Lo

ro
− bro

�
2
��

1 −
2M
ro

�s
; ð47Þ

Lo ¼
ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2r2oðro − 2MÞ2 þMðro − 3MÞ

p
ro − 3M

−
bMr2o

ro − 3M
: ð48Þ

For a circular orbit to be the ISCO, it must satisfy the
condition

b2r3oð5ro − 4MÞ − 4bLoMr − L2
o þ 2Mro ¼ 0: ð49Þ

Figure 4 shows rISCO versus b. The effect of the magnetic
field is always to bring the ISCO inward closer than
r ¼ 6M. As b approaches ∞ and −∞, rISCO approaches
2M and ð ffiffiffiffiffi

13
p þ 5ÞM=2, respectively. Figures 5 and 6 show

LISCO and EISCO versus b, respectively. When b → ∞,
LISCO approached ∞ but EISCO approach 0. The efficiency
of energy release for a charged particle ending at the ISCO
can be close to 100% of the particle’s rest energy. As
b → −∞, both LISCO and EISCO approach ∞.

FIG. 3. The specific energy of the ISCO versus the charge
parameter q.

FIG. 4. The radius of the ISCO versus the magnetic
parameter b.
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VI. CIRCULAR ORBITS AROUND A CHARGED
AND MAGNETIZED SCHWARZSCHILD

BLACK HOLE

Applying the two conditions for circular orbits to the
effective potential of Eq. (31) yields

Eo ¼
q
ro

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ

�
Lo

ro
− bro

�
2
��

1 −
2M
ro

�s
; ð50Þ

where Lo is determined by the equation

b2r4oðro −MÞ þMr2oð1 − 2bLoÞ þ L2
oð3M − roÞ

− q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
roðro − 2MÞ½ðLo − br2oÞ2 þ r2o�

q
¼ 0: ð51Þ

While it is possible to solve this equation for Lo explicitly,
the resulting expression is extremely cumbersome. The
ISCO condition reads

b2r3oð5ro − 4MÞ − 4bLoMro − L2
o þ 2Mro −

q
ro

A

−
q
A
½b2r4oð2ro − 3MÞ þ 2bLor2oðM − roÞ þ L2

oM

þ r2oðro −MÞ� ¼ 0; ð52Þ

where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
roðro − 2MÞ½ðLo − br2oÞ2 þ r2o�

q
: ð53Þ

In order to visualize the behavior of rISCO when both q and
b are nonzero, we will reproduce Fig. 1 for selected,
representative values of b. Figure 7 shows the effect of
turning on the magnetic field on the rISCO versus q curve.
The magnetic field has mainly three effects on rISCO: (i) It
brings rISCO closer to the black hole. In all cases where
b ≠ 0, rISCO is finite. (ii) It makes qmax > M, where qmax is

FIG. 6. The specific energy of the ISCO versus the magnetic
parameter b.

FIG. 5. The specific azimuthal angular of the ISCO versus the
magnetic parameter b.

FIG. 7. The radius of the ISCO versus q for selected values of b. The thick black (gray) curve corresponds to the positive (negative)
value of b. The thin curve corresponds to b ¼ 0.
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the maximum possible value of q for which rISCO exists.
(iii) It can creates two concurrent ISCOs when b < 0 (see
below). These three effects become more evident as jbj
increases. Figure 8 shows qmax versus b. When q ¼ qmax,
LISCO ¼ 0 for b > 0 only. The relationship between qmax

and b can be well approximated to be linear when jbj ≳
10−1=M as

qmax ≈ 8.22bM2 ðb≳ 10−1=MÞ; ð54Þ

qmax ≈ −10.4bM2 ðb≲ −10−1=MÞ: ð55Þ

When both q and b are very large and positive (q ≫ M,
b ≫ 1=M), rISCO approaches ½ð3þ ffiffiffi

3
p Þ=2�M ≈ 2.366M

and qmax approaches ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
135þ78

ffiffiffi
3

pp
=2ÞbM2≈8.217bM2.

However, when q and jbj are very large, q is positive, but b
is negative (q ≫ M, b ≪ −1=M), rISCO approaches 3M
and qmax approaches −6

ffiffiffi
3

p
bM2 ≈ −10.39bM2.

We can see in the three plots of Fig. 7 that the positive b
and negative b curves always cross at rISCO ¼ 6M, the
neutral particle value. This finding was noted in Ref. [23].
It may be tempting to think that the radial component
of the electromagnetic force (eFr

ρuρ) vanishes where the
crossing occurs, but this is not the case. The corresponding
values of LISCO and EISCO are different from the neutral
particle values.
The most interesting finding is the occurrence of an inner

and outer ISCOs when b < 0. This happens when the
charge parameter is in the interval qmaxðjbjÞ < q <
qmaxð−jbjÞ. The coexistence of the two ISCOs implies
the existence of a forbidden zone where stable circular
orbits of charged particles cannot exist. The outer boundary
of the forbidden zone is the outer ISCO. The inner
boundary is the circular orbit at rojLo¼0, the value of ro

FIG. 8. The dependence of the maximum value of q at which
the ISCO exists (qmax) on b.

FIG. 9. The inner and outer bands of stable circular orbits.

FIG. 10. The radius of the ISCO versus q for b ¼ 1=M (black)
and b ¼ −1=M (gray). The gray curve is double valued in the
interval qmaxð1=MÞ<q<qmaxð−1=MÞ or 8.539M<q<10.53M.

FIG. 11. The radius of the stable circular orbit ro versus Lo
when b ¼ −1=M and q ¼ 10M. No stable circular orbits exist
between the dashed lines.
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at whichLo ¼ 0. The true ISCO is the inner ISCO. Figure 9
demonstrates this structure.
As an illustration, let us consider the case of Fig. 7(c),

where b ¼ −1=M. Figure 10 is a magnification of the
region where two ISCOs exist in Fig. 7(c).
Figure 11 shows how the radius of the circular orbit ro

changes with Lo when b ¼ −1=M and q ¼ 10M. The inner
(true) ISCO is at ro ¼ 2.682M. Between ro ¼ 2.914M (the
value whenLo ¼ 0) and ro ¼ 3.314M (the larger rISCO), no
stable circular orbits exist.
Figures 12 and 13 show LISCO and EISCO that correspond

to rISCO shown in Fig. 7. It is compelling that EISCO
becomes negative when b > 0 after q falls behind a certain
negative value, call it qo. Figure 14 shows how qo changes
with b. The parameter qo approaches 0 (−∞) as b
approaches ∞ (0). We can write approximate expressions
for qo when b ≪ 1=M or b ≫ 1=M. They read

qo ≈ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

ffiffiffi
3

p
M

9b

s
¼ −1.241

ffiffiffiffiffi
M
b

r
ðb ≫ 1=MÞ; ð56Þ

FIG. 12. The specific azimuthal angular momentum of a charged particle at the ISCO versus q for selected values of b. The thick black
(gray) curve corresponds to the positive (negative) value of b. The thin curve corresponds to b ¼ 0.

FIG. 13. The specific energy of a charged particle at the ISCO versus q for selected values of b. The thick black (gray) curve
corresponds to the positive (negative) value of b. The thin curve corresponds to b ¼ 0.

FIG. 14. The critical charge parameter qo at which EISCO
vanishes versus b. For q < qo (gray region), EISCO is negative.
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qo ≈ −
1

2b
ðb ≪ 1=MÞ: ð57Þ

This finding may have important astrophysical conse-
quences. The energy liberated by a charged particle
ending in such an ISCO can be several orders of magnitude
greater than its rest energy. Similar “superbound” stable
circular orbits were found near magnetized Kerr black
holes in Ref. [20]. However, we are not aware of any
negative-energy orbits outside the event horizon of the
Schwarzschild black hole.

VII. SUMMARY

We have studied the ISCOs of charged particles near a
weakly charged and magnetized Schwarzschild black hole.
The effect of the black hole’s charge alone is to push the
ISCO beyond the neutral particle’s ISCO, regardless of
whether the Coulomb force is repulsive or attractive. When
the Coulomb force is repulsive, the ISCO does not exist
beyond some critical ratio of the Coulomb force to the
“gravitational force.” The binding energy of a charged
particle at the ISCO can be as much as the particle’s rest
energy.
The effect of the magnetic field alone is to bring the

ISCO closer than the neutral particle ISCO in all cases.
When the magnetic force is radially out, the particle’s ISCO

can approach the event horizon where the particle’s binding
energy approaches its rest energy.
The problem becomes much richer when the black hole

is both charged and magnetized. The charge and magnetic
field have competitive effects on the ISCO’s radius. The
critical ratio of the Coulomb force to the gravitational force
beyond which the ISCO does not exit becomes greater as
the magnetic field becomes stronger. An interesting result is
that the particle’s energy can be negative. The energy
liberation in such cases can be several orders of magnitude
greater than the particle’s rest energy.
The most interesting result is the possibility of the

existence of two bands of charged particles’ circular orbits,
separated by a region of no stable circular orbits.
The problem can be more sophisticated and more

astrophysically interesting when restudied in Kerr space-
time. The black hole rotation can have significant effects on
the energy libation efficiency, position of the ISCOs and
hence the forbidden zone. Another important modification
is to consider more realistic magnetic fields.
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