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Theoretical investigations have provided proof-of-principle calculations suggesting measurements of
stellar or pulsar orbits near the Galactic Center could strongly constrain the properties of the Galactic
Center black hole, local matter, and even the theory of gravity itself. As in previous studies, we use a
Markov chain Monte Carlo to quantify what properties of the Galactic Center environment measurements
can constrain. In this work, however, we also develop an analytic model (Fisher matrix) to understand what
parameters are well-constrained and why. Using both tools, we conclude that existing astrometric
measurements cannot constrain the spin of the Galactic Center black hole. Extrapolating to the precision
and cadence of future experiments, we anticipate that the black hole spin can be measured with the known
star S2. Our calculations show that we can measure the dimensionless black hole spin to a precision of ∼0.1
with weekly measurements of the orbit of S2 for 40 years using the GRAVITY telescope’s best resolution at
the Galactic Center, i.e., an angular resolution of 10 μarcsec and a radial velocity resolution of 500 m=s. An
analytic expression is derived for the measurement uncertainty of the black hole spin using the Fisher
matrix in terms of observation strategy, star’s orbital parameters, and instrument resolution. From it we
conclude that highly eccentric orbits can provide better constraints on the spin, and that an orbit with a
higher eccentricity is more favorable even when the orbital period is longer. We also apply it to S62, S4711,
and S4714 to show whether they can constrain the black hole spin sooner than S2. If in addition future
measurements include the discovery of a new, tighter stellar orbit, then future data could conceivably enable
tests of strong field gravity, by directly measuring the black hole quadrupole moment. Our simulations
show that with a stellar orbit similar to that of S2 but at one-fifth the distance to the Galactic Center and
GRAVITY’s resolution limits on the Galactic Center, we can start to test the no-hair theorem with 20 years
of weekly orbital measurements.
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I. INTRODUCTION

The supermassive black hole at the center of our galaxy
provides unique opportunities to investigate dynamics near a
strongly gravitating source [1,2]. Radio telescopes have
imaged the immediate vicinity of the black hole [3,4],
allowing direct constraints on the strong gravitational field
regime near the black hole via imaging accretion flows
[5–10]. Stellar motions also constrain the number and orbits
of nearby perturbers [11]. At present, however, the best
opportunities to constrain the Galactic Center come from
long-term monitoring of known stars [12–16]. These mea-
surements can also identify effects from the strong gravi-
tational field [17–19] and the properties of the supermassive
black hole [2,12–14,20–25]. Even stronger constraints
would be possible with a well-timed pulsar orbiting the
Galactic Center [26–30], at separations comparable to a

recently discovered object [31]. High precision inference
from stellar orbits ideally should account for many nearby
perturbers, including the local stellar density of visible stars
[32] and compact objects [22].
Motivated by recent discoveries of new stars in close

orbits around the Galactic Center [33], we assess how well
existing and future measurements of stellar orbits [2] can
constrain the black hole properties: its mass and particu-
larly its spin. Specifically, we wrote a Markov chain
Monte Carlo (MCMC) code and use it to compare real
and synthetic astrometric and radial velocity data with
models for the stellar orbits and black hole mass, account-
ing for differences in reference frames between different
observational campaigns. Unlike previous investigations,
our model includes leading-order post-Newtonian correc-
tions to the orbit from the black hole’s mass, spin, and
quadrupole moment, as well as the impact of unknown
nonquadrupole internal and exterior potentials. Our goal is
to determine whether, despite the extremely low orbital*hong.qi@ligo.org
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velocity v=c ≃ 0.02, future measurements can significantly
constrain strong-field features of the Galactic Center black
hole. We compare our MCMC results against a detailed
Fisher matrix analysis, both to validate our results and
allow the reader to easily extrapolate to future measurement
scenarios.
This paper is organized as follows. In Sec. II we review

the observations of stellar orbits near the Galactic Center;
review a simplified model for stellar dynamics near super-
massive black holes (justified at length in the Appendix A);
and introduce simplified and realistic models for the
process of measuring stellar orbits, including errors. In
Sec. III we describe two techniques to assess how well
measurements can constrain properties of stellar orbits and
the supermassive black hole. The first is a simplified,
approximate Fisher matrix. The second method uses
detailed Markov chain Monte Carlo simulations of syn-
thetic data to determine how well different parameters can
be measured and why. After validating our procedure using
analytically tractable toy models with a handful of param-
eters, we perform full-scale simulations in Sec. IV to test
several hypotheses including the no-hair theorem. Using
plausible choices of parameters and future achievable
measurement accuracy, we discuss how the black hole
spin and quadrupole moment can be constrained with the
known star S2 of an orbital period of about 16 years at
about 5 mpc distance from the black hole and future
discoverable closer stars with orbital periods as small as
1–2 years at about 1 mpc separation [34]. We also discuss
how these constraints can be affected by an intermediate-
mass black hole (IMBH) and a cluster of other stars in the
Galactic Center. In Sec. V we summarize the conclusions
we draw from the studies. Throughout the paper we adopt
the units where G ¼ c ¼ 1.

II. STATEMENT OF THE PROBLEM

A. Existing observations

There are observations of stellar orbits within 1 arcsec of
the Galactic Center in infrared [13,14,16,33]. In this paper,
we are analyzing two sets of long-duration observations
reported in Ghez et al. [13] and Gillessen et al. [14]. The
motions of stars in the immediate vicinity of Sgr A* have
been observed in infrared bands by NTT/VLT since 1992
and by Keck telescope since 1995. The two datasets we use
are the Keck data from 1995 to 2007 and the VLT data from
1992 to 2009. Massive young stars are found closely
orbiting the black hole at the center of our Milky Way.
The locations of the stars, i.e., the astrometric positions,
right ascensions (RA), and declinations (DEC) are recorded
at different epochs. Therefore, the relative positions of stars
to the radio source Sgr A*, i.e., the offsets of RA and DEC,
are also measured. The radial velocities, i.e., the line of
sight components of the velocities relative to the observers,
of each star at different epochs are also measured. In this

work, we use the stellar orbit of star S2, because it is
monitored for the longest time, its orbit is only 16 years,
and more importantly its eccentricity is high among the few
closest orbits that have been monitored frequently for over
a decade. The high eccentricity makes the star get deeper in
the gravitational potential of the black hole and thus can
provide more physics. We show in IV B with concrete
simulations why the orbit of S2 provides better constraints
than that of S102/S55 (S102 is short for S0-102 [35] which
was a previous name of S55) even though the latter has a
smaller orbital period (12 years) and even if they were
observed the same way. There have been more recent
observations and measurements of the S2 stellar orbit
[36–38] as we prepared our paper, but the added data do
not affect our conclusions.

B. Simplified models of stellar orbits

The approximations involved in deriving and justifying
our equations of motion are provided in Appendix A.
Neglecting the black hole’s recoil or the effect of ambient
material, each star’s positionx evolves according to leading-
order post-Newtonian equations of motion [21,39,40]

a ¼ −
Mx
r3

þMx
r3

�
4
M
r
− v2

�
þ 4

M_r
r2

v

−
2J
r3

½2v × Ĵ − 3_r n̂×Ĵ − 3n̂ðL · ĴÞ=r�

þ 3

2

Q2

r4
½5n̂ðn̂ · ĴÞ2 − 2ðn̂ · ĴÞĴ − n̂�; ð1Þ

where x; v ¼ ∂tx; a ¼ ∂2
tx are the harmonic coordinate

position, velocity, and acceleration of the star, r ¼ jxj is
the coordinate distance of the star from the black hole,
n̂ ¼ x=r is a unit vector pointing toward the star,L ¼ x × v
is the orbital angular momentum, M; J; Q2 ¼ −J2=M are
the mass, spin angular momentum, and quadrupole moment
of the black hole, and the hat over a quantity denotes its unit
vector, such as Ĵ ¼ J=J. Each star evolves according to a
post-Newtonian Hamiltonian in [41].
For the proof-of-concept analytic calculations, we sep-

arate timescales by orbit averaging rather than work
with the full Hamiltonian, following standard practice in
celestial mechanics. For analytic simplicity, we will fur-
thermore treat all perturbations at leading order, therefore
performing an orbit average using a Newtonian orbit; for
example, at leading order an equatorial orbit has the form
rðtÞ ¼ p=ð1þ e cosΦðtÞÞ, where p ¼ að1 − e2Þ is a semi-
latus rectum, a is the semimajor axis, e is the eccentricity of
the orbit, and ΦðtÞ is the orbital phase in terms of time t.
Using standard methods of celestial mechanics [21,42], we
find the secular equations of motion for the orbit average
(hXi) of each star’s Newtonian orbital angular momentum
LN ≡ μx × v and Newtonian Runge-Lenz vector AN ≡
μ2½v × ðx × vÞ −GMn̂�:
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∂thLNi ¼ Ω⃗ × hLNi; ð2Þ

∂thANi ¼ Ω⃗ × hANi; ð3Þ

Ω⃗ ¼ Ω⃗S þ Ω⃗J þ Ω⃗Q; ð4Þ

Ω⃗S ¼ L̂N
AS

P
¼ L̂N

3

pða=MÞ32 ; ð5Þ

Ω⃗J ¼ ½Ĵ − 3L̂ðL̂ · ĴÞ�AJ

P

¼ ½Ĵ − 3L̂ðL̂ · ĴÞ� 2J=M

ðMp3Þ12ð aMÞ
3
2

; ð6Þ

Ω⃗Q ¼ −ðĴðĴ · L̂Þ þ 1

2
L̂ð1 − 3ðL̂ · ĴÞ2ÞAQ

P
; ð7Þ

AQ ¼ 3

2

Q2

p2ða=MÞ3=2 ; ð8Þ

where the expressions Ω⃗, Ω⃗S, Ω⃗J, and Ω⃗Q are the orbital
precession; P is the orbital period; and the expressions AS,
AJ, and AQ derived in [21] are implicitly defined here; see
also [43]. The factors AS, AJ, and AQ are shown in Fig. 1.
Note that the dimensionless spin χ ¼ J=M2 is used and it is
always less than one. These orbit-averaged precession
equations imply a straightforward procedure for the linear
perturbation due to Ω, starting from a Newtonian solution
r⃗oðtÞ,

r⃗ðtÞ ≃ RðtÞr⃗oðtÞ; ð9Þ

where RðtÞ is the rotation generated by the orbit-averaged
Ω⃗. Specifically, again working to first order in the orbit-
averaged perturbations, the secular rotation RðtÞ on short
timescales is determined by the generators Lα of rotations:

RðtÞ ≃ 1 − itLαΩα; ð10Þ

r⃗ðtÞ ≃ roðtÞ − itΩαLαroðtÞ: ð11Þ

C. Relationship between observations
and theoretical model

In order to use observed data to measure the parameters
of the whole system, we have to convert the measurements
in the theoretical model in the Cartesian coordinates that
originated at the black hole center to the real observed
data form, RA and DEC offsets that are relative to Sgr A* in
the equatorial coordinate system which is centered at the
Earth.
We first generate the orbit of a star with our mixed

PYTHON/FORTRAN code, and get the star’s orbital positions,
r⃗bhi ¼ fxbhi ; ybhi ; zbhi g, in the black hole frame. Then we
transform from a Cartesian coordinates centered at Sgr A*
to the equatorial RA and DEC, or in terms of components

xi ¼ xbhi þ d cos αbh sin δbh; ð12Þ

yi ¼ ybhi þ d sin αbh sin δbh; ð13Þ

zi ¼ zbhi þ d cos δbh; ð14Þ

where d is the distance from the Earth to the center of the
black hole, αbh and δbh are the RA and DEC of the black
hole, the x axis points to the first point of Aries, and the z
axis points to the same direction as that in the black hole
coordinates. The black hole Cartesian coordinates and the
Earth Cartesian coordinates are only a translation of their
origins described by d⃗. Then we convert the positions of the
star from Cartesian coordinates centered at the Earth to the
equatorial coordinates,

αi ¼ arc tan 2ðyi; xiÞ; ð15Þ

δi ¼ sin−1
ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i þ y2i þ z2i
p ; ð16Þ

where αi is zero in the x axis direction and increases
to 2π along the celestial equator counterclockwise as
viewed from the North Pole, and δi is zero in the celestial
equator, positive to the north and negative to the south
of the celestial equator. We subtract from fαi; δig a
reference position such as the astrometry position fα0 ¼
17H43M02S; δ0 ¼ −28.7944°g [44] of Sgr A*, and get the

FIG. 1. Relative magnitudes of characteristic precession rates as
a function of semilatus rectum for a stellar orbit around the
supermassive black hole due to different effects. Solid curves
show analytic results; dotted curves are derived from our time-
domain evolution code as validations. The solid green, blue, and
purple curves show AS, AJ , and AQ that are derived in [21] and
implicitly defined in Eqs. (5), (6), and (7). The cyan curves show
the influence of an external quadrupolar potential from a cluster
of ambient stars of mass 200 M⊙ at a distance of 3 × 104 times
the black hole mass M.
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observed RA and DEC offsets fΔαi;Δδig relative to
Sgr A*, similar to those in the observed data, where Δαi ¼
αi − α0 and Δδi ¼ δi − δ0. Note that the values of fα0; δ0g
which we use in this paper have been fine-tuned over the
years [45], but those values do not affect our study results
because the observables are relative sky locations to
fα0; δ0g, not absolute positions. As long as the measure-
ments are always relative to the same object, it does not
even matter whether we take Sgr A* as the reference.
Notice that the position of Sgr A* does not necessarily
colocate the center of the black hole. The difference
between them can be modeled with five parameters,
including the relative position of the black hole to the
Sgr A*, Δαbh and Δδbh, and the uniform RA and DEC
velocities and radial velocity, fvαbh ; vδbh ; vr;bhg, of the black
hole relative to the Sgr A*. The radial velocities of the
stellar orbit are evaluated as vr;i ¼ v⃗i · r̂i, where r̂i ¼ r⃗i=ri
are the unit vectors of the line of sight.
Based on our model, the following parameters are

measured from the data: the six orbital parameters of the
star fa; e;Φ0; β; γ;ψg (where a is a semimajor axis, e is
eccentricity, Φ0 is the initial orbital phase at some moment,
and the other three are Euler angles following a z − x − z
definition), the three black hole spin components J ¼
fJx; Jy; Jzg in Cartesian coordinates or J ¼ fJ;ϕJ; θJg
in spherical coordinates as what we used in the code, the
mass of the black hole M, the position of the black hole
relative to the Sgr A* fd;Δαbh;Δδbhg (where d is the
distance from Sgr A* to us and the other two indicate
the black hole’s astronomical position). We ignore the
motion of the black hole relative to the Sgr A*
fvαbh ; vδbh ; vr;bhg. To test the no-hair theorem, we also
use two more parameters, the quadrupole term, Q2, of the
black hole potential, and the quadrupole term, QX, due to
the external potential of an intermediate-mass black hole or
other S-stars outside S2’s orbit. Those two parameters can
be combined into one parameter, the quadrupole term Q,
where Q ¼ Q2 þQX. Throughout the paper everything is
in the units of M� ¼ 4.00 × 106 M⊙ when we perform
calculations.

III. MEASURING PARAMETERS

A. Bayesian formalism

According to the Bayesian paradigm, a prior distribution
pðλ⃗Þ is used to quantify our knowledge about a set of
unobservable parameters λ⃗ in a statistical model when no
data are available. We can update our prior knowledge
using the conditional distribution of parameters, given
observed data D, via the Bayes theorem. Suppose that
the likelihood, or the distribution of the data from an
assumed model that depends on the parameter λ⃗ is denoted
by pðDjλ⃗Þ, Bayes theorem updates the prior to the posterior
by accounting for the data,

pðλ⃗jDÞ ¼ pðDjλ⃗Þpðλ⃗Þ
pðDÞ ; ð17Þ

where pðDÞ ¼ R
pðDjλ⃗Þpðλ⃗Þdλ⃗ is the evidence of the data

and also a normalizing constant for the same model.
To separate issues pertaining to measurements from

physics from simplified models of stellar orbits, we
describe results using the real observation scenario, where
only the angular offsets and radial velocity can be mea-
sured. Note that for comparison and to validate our MCMC
method, we also employ idealized theoretical measurement
scenarios in Appendix C. This realistic measurement model
accounts for all of the parameters described in Sec. II C.
The probability distribution of the data given parameters λ⃗
is

pðDjλ⃗Þ ¼
YNΔα

k

ð2πσ2ΔαkÞ−1=2 exp−
½Δαðtkjλ⃗Þ − Δαk�2

2σ2Δαk

×
YNΔδ

k

ð2πσ2ΔδkÞ−1=2 exp−
½Δδðtk j⃗λÞ − Δδk�2

2σ2Δδk

×
YNvr

k

ð2πσ2vr;kÞ−1=2 exp−
½vrðtkjλ⃗Þ − vr;k�2

2σ2vr;k
; ð18Þ

whereΔαðtkjλ⃗Þ andΔαk are the theoretical prediction of the
RA offset and the observation, respectively, at epoch tk.
The notations are similar for the other two observables, i.e.,
the DEC offset and the radial velocity. The quantities
fσΔαk ; σΔδk ; σvr;kg are the measurement uncertainties for the
observation at tk. The number of measurements for the
three observables are denoted as NΔα, NΔδ, and Nvr ,
respectively. In the equation above, we have assumed that
each measurement of each observable has a noise of
Gaussian distribution.
To determine the model parameters and their uncertain-

ties, we use a Markov chain Monte Carlo analysis to sample
the likelihood function in Eq. (18). Specifically, we use an
ensemble sampler for MCMC named EMCEE [46,47].

B. Fisher matrix

To better understand and validate our MCMC results,
and to make efficient projections about future hypothetical
measurements, we perform a semianalytic calculation that
approximates the likelihood in Eq. (18) by a locally
quadratic approximation. The coefficient of the second-
order term is known as the Fisher matrix.
The illustration of the mechanics of a Fisher matrix

calculation is shown in Appendix C by employing an
idealized measurement model in Cartesian coordinates.
For the observations, we can do the same by exploiting
in the special case that the observed data are exactly
as predicted by some set of model parameters λ⃗0,
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i.e., Δαk ¼ Δαðtkjλ⃗0Þ, Δδk ¼ Δδðtkjλ⃗0Þ, and vr;k ¼
vrðtkjλ⃗0Þ. Using a first-order Taylor series expansion
Δαðtkjλ⃗Þ − Δαðtkjλ0Þ ≃ δλa∂ΔαðtkÞ=∂λa for the RA offset
Δα versus parameters λ⃗ (here λa are the elements of λ⃗, and
the same index a means contraction) and similar for the
other two observables, we find that the conditional prob-
ability of the data given λ⃗ can be approximated by

lnpðDjλ⃗Þ ¼ const −
1

2
Γabδλaδλb ð19Þ

with

Γab¼
X
k

�
Cλa;ΔαkCλb;Δαk

σ2Δαk
þCλa;ΔδkCλb;Δδk

σ2Δδk
þCλa;vr;kCλb;vr;k

σ2vr;k

�
;

ð20Þ

where Γab is the Fisher matrix. For a parameter in λ⃗ that has
two values λa and λ0a with δλa difference that results in two
orbits, the components in Eq. (20) for this parameter are

Cλa;Δαk ≡
∂ΔαðtkÞ
∂λa ¼ ΔαðtkjλaÞ − Δαðtkjλ0aÞ

δλa
; ð21Þ

Cλa;Δδk ≡
∂ΔδðtkÞ
∂λa ¼ ΔδðtkjλaÞ − Δδðtkjλ0aÞ

δλa
; ð22Þ

Cλa;vr;k ≡
∂vrðtkÞ
∂λa ¼ vrðtkjλaÞ − vrðtkjλ0aÞ

δλa
: ð23Þ

Having estimated the Fisher matrix and hence approxi-
mated pðDjλ⃗Þ by a Gaussian, we can further construct
marginalized distributions for subset variables λA in λ⃗ ¼
ðλA; λaÞ by integrating out the variables λa. In the Gaussian
limit, this integration implies the marginalized distribution
has a covariance matrix Γ̄AB given by

Γ̄AB ¼ ΓAB − ΓAa½Γ−1�abΓbB: ð24Þ

Because the second term is negative, the marginalized
distribution is always wider: additional uncertain degrees of
freedom lead to less accurate constraints.
The Fisher matrix is a cross-check for the parameter

estimations obtained from MCMC. Drawing in the best-fit
parameters, the Fisher matrix can give the estimates of the
uncertainties of parameters in a few seconds, whereas it
takes MCMC several hours in our problem. A Fisher matrix
can also let us test how sensitively the measurement
accuracy and hypothesis tests depend on the stellar
parameters.
As an illustration of the usefulness of the Fisher matrix,

we show in Sec. IV B in a concrete scenario the measure-
ment uncertainty of the spin with both a synthetic stellar

orbit similar to the S2 orbit and one similar to that of
S102/S55.

C. Results on the observed data

After testing the validity of our mixed PYTHON/FORTRAN
code using a highly idealized measurement scenario (see
Appendix C 3), we use observed data to measure the
parameters of the S2 orbit and the properties of the Galactic
Center black hole as also reported elsewhere [13,14]. Our
results agree with their work within systematic and stat-
istical errors. This shows that our code works well with
observations, and therefore the validity of using it is assured
to calculate several hypotheses in Sec. IV.
Keck S2 data [13] are used to estimate the parameters

assuming the black hole is not free to move relative to us.
The modes of the parameters and their 1σ uncertainties are
shown in Table I. VLT S2 data in [14] are also used to
estimate the parameters; see Table I. Our parameter esti-
mation results are consistent with Ghez’s and Gillessen’s
analyses within 2σ, and the uncertainties are consistent, too.
We evaluate how good a model fit is with the chi-square χ2dof
statistics. The reduced chi-square value χ2dof is the chi-square
value divided by the number of degrees of freedom, which is
the degree of freedomof the data subtracted by the number of
parameters of the model. Notice that for two measurements
that were taken at the same time, the mean of the two
measurements offΔαi;Δδig is used as themeasurement that
happened at that time and the larger error bars are used as the
measurement uncertainties of the observables.

IV. TESTING VARIOUS HYPOTHESES

A. Bayesian hypothesis selection

We assume that the observed orbital data D have arisen
under one of the two hypotheses H0 and H1 according to
probability density pðDjH0Þ or pðDjH1Þ, and for given
prior probabilities pðH0Þ and pðH1Þ ¼ 1 − pðH0Þ, we
obtain from Bayes’s theorem

pðHijDÞ ¼ pðDjHiÞpðHiÞ
pðDjH0ÞpðH0Þ þ pðDjH1ÞpðH1Þ
ði ¼ 0; 1Þ ð25Þ

and

pðH0jDÞ
pðH1jDÞ ¼

pðDjH0Þ
pðDjH1Þ

pðH0Þ
pðH1Þ

; ð26Þ

where we define the Bayes factor as

B01 ¼
pðDjH0Þ
pðDjH1Þ

: ð27Þ
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When the two hypotheses are equally probable, the Bayes
factor B01 is equal to the posterior odds in favor of H0.
If for H0 and H1 we choose models M0 and M1

parametrized by model parameter vectors θ0 and θ1, we
then have to select between the two models using the Bayes
factor,

B01 ¼
pðDjM0Þ
pðDjM1Þ

¼
R
pðθ0jM0ÞpðDjθ0;M0Þdθ0R
pðθ1jM1ÞpðDjθ1;M1Þdθ1

; ð28Þ

where pðθijMiÞ is the prior probability distribution func-
tion of parameter vector θi in Mi for i ¼ 0, 1.

B. Measuring the black hole spin

1. Does the Galactic Center black hole spin?

Measuring the spin of the Galactic Center black hole is
of significant interest. Short of an accurate measurement,
one can assess the evidence of the existence of any spin.
Working in the framework of general relativity, we choose
the same parameter vector, except the spin, for both the
non-spin model (M0) and the spin model (M1) that
address the S2 orbit around the Galactic Center black
hole, i.e., θ0 ¼ fa; e;Φ0; β; γ;ψ ; d;Δαbh;Δδbh;Mg and
θ1 ¼ fa; e;Φ0; β; γ;ψ ; d;Δαbh;Δδbh;M; Jg, and apply
Bayesian statistics to answer the question.
Our modelsM0 andM1 are nested, i.e.,M1 reduces to

M0 when the spin J or dimensionless spin χ acquires 0.
For a smooth, marginalized posterior probability distribu-
tion PðJ;M1jDÞ of spin J for model M1 that is obtained
from an MCMC sampling and has a maximum, we
define the 68.3% credible interval to be χ ∈ ½χL; χH� such
that

R
χH
χL

Pðχ;M1jDÞdχ ¼ 0.683 with PðχL;M1jDÞ ¼
PðχH;M1jDÞ. For Keck data of the S2 orbit up to 2007
in Table III in [13] and VLT data up to 2009 in [14],

respectively, we use our MCMC code to obtain the
posteriors for dimensionless spin χ under the spin model
M1, and both of the spin posteriors are uniform. It is
uninformative about the spin of the Galactic Center black
hole with either dataset.
The Bayes factor B01 is evaluated for the selection of our

two models with Keck’s S2 data. Parameter estimation is
done on the nonspin model M0, too. The Bayes factor B01

in favor of M0 rather than M1 is 1.2, which is calculated
from Eq. (28) with the posteriors from the MCMC
samplings with the Keck data for the two models that
represent the two hypotheses. As stated at the beginning of
this section, the parameters for the two models are the same
except that there is no spin parameter J in M0. The value
B01 ¼ 1.2 is interpreted as that the nonspin model M0 is
slightly (but barely worth mentioning) more strongly
supported by the data than the spin model M1. We find
that this does not contradict with the most recent constraints
on the Galactic Center black hole spin [25] where their
estimate is χ ≤ 0.1 strictly.

2. Stellar orbit measurement scenarios for decisive
constraints on the Galactic Center black hole spin

What measurements of star S2 can enable us to
constrain the black hole spin? We assume a set of future
achievable measurement precision fσΔα¼σΔδ¼10μarcsec;
σvr¼500m=sg, which are the resolution limits of
GRAVITY instrument [48,49], and use our code to conduct
fake/virtual observations of S2 around the Galactic Center
black hole and estimate the model parameters including the
spin. Specifically, for each simulation we inject a dimen-
sionless spin value χinj ¼ Jinj=M2 to the black hole and let
the star evolve its orbit around this spinning black hole
under the equation of motion model in Eq. (1). To mimic

TABLE I. Orbital parameters for S2 and the black hole properties with Keck data and VLT data.

Parameter (Symbol) [Unit] Keck VLT VLT w/o 2002

Semimajor axis (a) [AU] 980� 17.6 1054� 17.8 981� 23.8
Eccentricity (e) 0.9048� 0.0038 0.8953� 0.0040 0.9038� 0.0060
Initial phase (Φ0) [radian] 3.178� 0.0029 3.031� 0.0032 3.038� 0.0040
Euler angle 1 (β) [radian] 0.268� 0.008 0.186� 0.0076 0.227� 0.0136
Euler angle 2 (γ) [radian] 1.464� 0.013 1.490� 0.016 1.444� 0.0252
Euler angle 3 (ψ ) [radian] 3.936� 0.013 4.047� 0.012 4.030� 0.0120
Distance (d) [kpc] 7.328� 0.17 8.422� 0.288 7.571� 0.382
RA offset of BH (Δαbh) [radian] 1.4166 × 10−8 � 4.42 × 10−9 4.99 × 10−9 � 3.15 × 10−9 9.86 × 10−9 � 3.34 × 10−9

DEC offset of BH (Δδbh) [radian] −4.2962 × 10−8 � 6.543 × 10−9 −1.84 × 10−8 � 7.41 × 10−9 −1.575 × 10−8 � 1.026 × 10−8

Mass (M) [106 M⊙] 4.468� 0.236 4.492� 0.244 3.624� 0.272
Spin (J) Not measurable Not measurable Not measurable
Reduced chi-square χ2dof [1] 1.4 1.0 1.0

The table shows the estimated modes and 1σ errors of the six parameters of the S2 orbit and the seven parameters of the Galactic Center
black hole from Keck and VLT data using our MCMC code. These estimations are consistent with Ghez’s [13] and Gillessen’s [14]
analyses within 2σ. The second, third, and fourth rows use Keck data, VLT data, and VLT data subtracted by its data in 2002 to compare
with Keck data because Keck does not contain observations in 2002, respectively. The spin of the black hole is not testable with the two
datasets.
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measurements with noises in them, we add a Gaussian
noise of the chosen measurement uncertainty (Table II) to
the evolved stellar orbit for each observable at each
measurement epoch. Recall that the three observables
consist of two angular offsets and one radial velocity.
We then use our code to calculate marginalized posterior
distributions of the parameters, including the black hole
spin, given the fake observed orbital data Df. For χ it is
PðχjDfÞ ∝ PðχÞPðDfjχÞ. The prior in χ is uniform
for χ ∈ ½0; 1�.
Our virtual observations that can measure the black hole

spin with S2 are called Scenario I and summarized in
Table II. The stellar orbit has a ¼ 2.65 × 104 M� ¼
1060 AU ≈ 5 mpc, e ¼ 0.8847, Φ0 ¼ −0.1 (which corre-
sponds to August 2017 for S2, and we assume that is when
we start the virtual observations) and three Euler angles that
have the values of an S2 orbit. The parameters for the black
hole areM ¼ 4.6 × 106 M⊙ ¼ 1.15M� and its sky position
d ¼ 8.0 kpc, RA ¼ 265.75°, and DEC ¼ −28.79° which
are determined by the observed S2 orbit in Table I. The
injected dimensionless spin χinj values are f0.2; 0.5; 0.7;
0.9; 0.95g, and the spin direction is randomly chosen as
fϕJ ¼ π; cos θJ ¼ 0.2g for any of those five injected spin
magnitudes. We get from MCMC the marginalized pos-
terior PðχjDfÞ for the fake observed data with that injected

spin value χinj. We do the same for different injected black
hole spin values. The fake observations are conducted once
per week for 2080 weeks, or 40 years, about two and a half
complete orbits in Scenario I. In Scenario II, we take the
same number of measurements but the measurements are
arranged twice frequently during half of the observing time
compared to Scenario I.
The plots in Fig. 2 show the marginalized posteriors of χ

for different injected values χinj for Scenario I (top panel)
and Scenario II (bottom panel). Even though they have the
same number of data points and the observations are done
on the same star S2, Scenario I has better constraints on the

TABLE II. Scenario I: Fake observation of S2.

Parameter (Symbol) [Unit] Injected parameter value

Star S2
Semimajor axis (a) [AU] 1060
Eccentricity (e) 0.8847
Initial phase (Φ0) [radian] −0.100 (August 2017)
Euler angle 1 (β) [radian] 0.169
Euler angle 2 (γ) [radian] 1.515
Euler angle 3 (ψ ) [radian] 4.046
Dimensionless spin (χinj) f0.2; 0.5; 0.7; 0.9; 0.95g
Spin angle 1 (ϕJ) π
Spin angle 2 (cos θJ) 0.200
Quadrupole moment Q2 −J2inj=M with Jinj ¼ χinjM2

Mass (M) [M⊙] 4.60 × 106

Distance (d) [kpc] 8.00
RA of BH (αbh) [degree] 265.754795
DEC of BH (δbh) [degree] −28.794375
Measurement uncertainty in
RA offset (σΔα) [μarcsec]

10

Measurement uncertainty in
DEC offset (σΔδ) [μarcsec]

10

Measurement uncertainty in
radial velocity (σvr ) [m/s]

500

Orbital period (T) [week] 823
Measurements 2080 weekly

The table lists the injected parameters and observation strategy
for the fake observations of star S2 in Scenario I. The posteriors
from parameter estimation are shown in the top panel of Fig. 2.
HereM� ¼ 4 × 106 M⊙ is used as a scale of the black hole mass.

FIG. 2. The marginalized posteriors of dimensionless spin χ ¼
J=M2 for the fake observations of S2 in Scenarios I (top panel)
and II (bottom panel) in Table II. The thin vertical lines are
injected values. The range of the spin J is ½0;M2�, where M ¼
1.15M� and M� ¼ 4.00 × 106 M⊙. The measurement uncertain-
ties fσΔα ¼ σΔδ ¼ 10 μarcsec; σvr ¼ 500 m=sg are the limits of
GRAVITYat a distance of 8 kpc. The star has an S2-ish orbit. It is
observed once per week for 2080 weeks or about 40 years for 2.5
full orbits for the top panel; and twice per week for 1000 weeks or
about 20 years for more than one full orbit for the bottom panel.
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spin than Scenario II. The minimum we should do to be
able to constrain the black hole spin with the S2 orbit
during 40 years, or a person’s entire academic career, is to
observe it once per week and record the three orbital
observables. Observing less frequently or for a shorter
amount of time will not enable us to constrain the black
hole spin decisively.
The parameter estimation results in Scenario I are also

illustrated on a recovered vs injected plot. Figure 3 shows
the credible intervals of the black hole spin as a function of
injected spin value. For each injected value, we plot two
error bars. The thick-lined error bar with caps to the two
ends is the 68.3% credible interval, and the thin-lined error
bar without caps is the 95.4% credible interval of the
marginalized posterior that corresponds to its injected
dimensionless spin χinj. The big round dot of the same
color in that bar is the value of the maximum posterior. The
uncertainty of the measured spin is about 0.1 at the 68.3%

credible interval for 40 years of weekly measurements of
S2 orbit with GRAVITY’s best resolution at the Galactic
Center.
On the other hand, if we can find a star that is closer to

the Galactic center, then it is possible to sooner achieve a
similar measurement precision on the spin as in Scenario I.
The possible existence of such stars has been studied in
previous research on the stellar density distribution around
an isolated massive black hole. Stars can get almost as near
as a few hundreds of the Schwarzschild radii of the
supermassive black hole through the mechanisms of binary
disruptions and dynamical relaxation [50–52]. The recently
found faint stars of shorter periods than S2 [33] also
indicate that there could be stars even closer to the
Galactic Center. In Scenario III, we consider a star that
orbits around the black hole on half the size of the S2 orbit.
We also observe it weekly for ∼2.5 full orbits or 800 weeks;
see Table III. Figure 4 shows the posteriors of χ for
Scenario III. Note that for all the cases in Scenarios I
through VI, the reduced least-square value is χ2dof ≈ 1which
means the sampling is converged.

3. Analytic expression for the measurement uncertainty
of Galactic Center black hole spin

We also develop a convenient analytic expression from
the Fisher matrix for the measurement uncertainty of the
black hole spin with generic observation strategies on
stellar orbits. From Eq. (B32), we can derive that the
uncertainty in the spin measurement σJ (or σχ for the
dimensionless spin), i.e., the inverse square root of ΓJaJb , is
determined by

σχ ∝ σJ ∝
a2σrffiffiffiffi
N

p
T

ð1 − e2Þ32
ð13e4 þ 9e2 þ 3Þ14 ; ð29Þ

where a is the semimajor axis, e is the eccentricity, σr is the
stellar orbit measurement uncertainty, T is the duration of
observation time, and N is the number of measurements.
We now use the Fisher matrix to check against the

MCMC method, with stellar orbits similar to those of S2
and S102/S55 in fake observation Scenarios I and VI; see

FIG. 3. The mode and two credible intervals of the dimension-
less spin χ of the Galactic Center black hole as a function of
injected dimensionless spin χinj for fake observation Scenario I in
Table II and from the top panel of Fig. 2. Dots show the maxima
of posterior estimates of χ; bars indicate the 68.3% (1σ, thick with
caps to the ends) and the 95.4% (2σ, thin) credible intervals. The
black thin line is when χ ¼ χinj.

TABLE III. Summary of fake observation scenarios on S2 and future stars.

Scenario Star Semimajor axis [AU] Injected spin χinj Period [week] Measurements

Scenario I S2 1060 f0.2; 0.5; 0.7; 0.9; 0.95g 823 2080, weekly
Scenario II S2 1060 f0.2; 0.5; 0.7; 0.9; 0.95g 823 1040 × 2, semiweekly
Scenario III Star of half S2 orbit 530 f0.1; 0.2;…; 0.8; 0.9; 0.95g 291 800, weekly
Scenario IV S2 1060 f0.7g 823 2080 × 7, daily
Scenario V Star of one-fifth S2 orbit 212 f0.2; 0.5; 0.7; 0.9; 0.95g 73.6 1040, weekly
Scenario VI S102/S55-ish 920 f0.9g 665 2080, weekly

Summary of the differences among the four fake observation scenarios. For the parameters that are not specified for Scenarios II, III, IV,
V, and VI here, they take the same values as in Scenario I in Table II except that for Scenario VI the eccentricity is e ¼ 0.721. The
estimated posteriors are shown in the top and the bottom panels of Fig. 2 for Scenarios I and II, Fig. 4 for Scenario III, Fig. 6 for Scenario
V, and Fig. 5 for Scenario VI.
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Fig. 5. In this scenario, both stars are observed with the
same number of measurements N, the same stellar orbit
measurement accuracy σr, and the same duration of
observation T. The dimensionless spin uncertainty σχ is
then scaling only to the semimajor axis a and the
eccentricity e. The closer the orbit and the larger
the eccentricity, the more accurately we can constrain
the black hole spin. Plugging into the values of those

two quantities for the two stars, respectively, from Tables II
and III, we can obtain the dimensionless spin uncertainty
ratio constrained from the orbits of S2-ish to S102/S55-ish
using Eq. (29) for any black hole spin value. It is 0.34 for
the two scenarios considered. This is consistent with the
MCMC results shown in Fig. 5, where the uncertainty ratio
is 0.129=0.267 ≈ 0.48 for χinj ¼ 0.9.
The above example uses both the Fisher matrix and the

MCMC method. In general, with the Fisher matrix, we
know from Eq. (29) that an orbit with smaller semimajor
axes and larger eccentricity can provide better constraints
on the black hole spin. From Eq. (29), we also know that
with the same semimajor axis a, which translates to the
same orbital period P with Kepler’s third law, larger
eccentricity (highly eccentric orbits) can constrain the
black hole spin more precisely given the same observation
strategy. This is because with the same semimajor axis, the
pericenter of the more eccentric orbit is closer to the black
hole and thus more impacted by the black hole’s gravita-
tional potential. This is why S2 can provide better con-
straints (as is the case in our simulation shown in Fig. 5) on
the black hole spin than what S102/S55 can do, even
though S102/S55 has a shorter period. In addition, by
observing n times as often, we can improve the measure-
ment error bars of spin by a factor of

ffiffiffi
n

p
to guide our

numerical simulation in terms of observation strategy
choices.
Similarly, from Eq. (29) we can see that if we cannot

observe S2 for 40 years weekly in order to determine the
black hole spin, which is most likely, the solution is to find
a closer star or improve the instrument measurement
precision. If we have k stars whose orbits are similar to
S2 and we observe each of them equally frequently and for
the same amount of time duration, we are expected to see an
improvement of a factor of

ffiffiffi
k

p
in the measurement

uncertainty of black hole spin.
Another application of Eq. (29) is on the number of years

of weekly observations required to reach a spin measure-
ment uncertainty of about 0.1 with the recently discovered
stars S62, S4711, and S4714, with respect to the telescope
resolution σr. The resolution used in their discoveries is 6.5
mas [33], but we also list the scenarios where better
resolutions are achieved. The eccentricity and semimajor
axis values are taken from Table 1 of [33]. The results are
shown in Table IV. Note that theoretically for the same
measurement resolution, e.g., σr ¼ 10 μ as, stars S62 and
S4714 can constrain the black hole spin sooner than S2.
However, S62 and S4714 are 4 magnitudes fainter than S2
[33]. This can cause larger uncertainties on the orbital
measurements of the former rather than the latter, and hence
lead to a cross-row comparison in Table IV.

C. Testing no-hair theorem

According to the black hole no-hair theorem, a black
hole is completely characterized by its mass M, angular

FIG. 4. The marginalized posteriors of the dimensionless spin χ
for different injected values χinj ∈ ½0; 1� in Scenario III (see
Table III). The vertical thin lines are injected values. The star has
an S2-ish orbit except that its orbit is half-sized. It is observed
once per week for 800 weeks.

FIG. 5. The marginalized posteriors of the dimensionless spin χ
for injected value χinj ¼ 0.90 for S2 (blue) in Scenario I in
Table II and S102/S55-ish (green) in Scenario VI in Table III. The
vertical thin line is an injected value. Both stars are observed once
per week for 2080 weeks or 40 years. The differences of the two
orbits are their eccentricities and the semimajor axes, which are
taken from the values for S2 and S102/S55.
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momentum (or spin) J, and charge q. For an astrophysical
black hole which is electrically neutral, it is fully described
by two quantities, M and J. As a consequence, the
quadrupole moment Q2 of its external spacetime is given
by Q2 ¼ −J2=M. The quadrupole moment can cause the
stellar orbits around the black hole to precess, and the
precession rate is on the order of 1 μarcsec for a highly
eccentric orbit around the Galactic Center supermassive
black hole with orbital period of years. This makes it
possible to use the stellar orbit data from the modern
infrared telescopes to test the no-hair theorem. In reality,
there is perturbing external quadrupole moment QX (see
Sec. II) due to the S star cluster, dark matter, and
intermediate-mass black holes that are close to the
Galactic Center. This should also be taken into consid-
eration. In this study, we employ the most optimistic
possible scenario, equivalent to perfect knowledge of
any external tidal potential.
We first apply our MCMC code to the VLTorbital data of

S2 to obtain the marginalized posterior probabilities of spin
J and quadrupole moment Q2, and they are both flat. The
existing data are not sufficient for us to draw a conclusion
on the no-hair theorem. This is not surprising because we
cannot even constrain spin yet.

1. Can the S2 orbit test no-hair theorem?

Can any strategies of observations on S2 enable us to test
the no-hair theorem in the future? Applying the same
method that is used in Sec. IV B 2, we conduct fake
observations of S2 again. Specifically, we first do
Scenario IV. The injected parameters and the observing
strategy can be found in Table III and its reference Table II.
We use our code to generate fake observed orbital data
points with noise in them for the S2 star around our
Galactic Center for an injected black hole spin χinj ¼ 0.7
and quadruple moment Q2;inj ¼ 0.648. We virtually
observe the star daily for 40 years. We then use MCMC
to obtain the marginalized posterior probability distribution
of Q2 for the choice of χinj and Q2;inj values. In the

parameter estimation, Q2 is treated as an independent
parameter on J and M, so it does not follow Q2 ¼
−J2=M. For this setup, it is equivalent to see how well
the quadrupole term Q, including the external quadrupole
moment QX, can be constrained. The posteriors pðQ2Þ for
different injected values are all flat. This means, we cannot
constrain the quadrupole term or the no-hair theorem even
if we observe S2 daily for 40 years with GRAVITY’s
resolution limits.
The 40 years daily measurements of S2 orbit with

GRAVITYare not sufficient to constrain the no-hair theorem
mainly because even at a periapsis distance of about 120AU
or 2800 times the mass of the black hole, the star is not close
enough to the supermassive black hole to be significantly
affected by the black hole’s quadrupole moment for the
telescopes to observe. In order to use S2 to constrainQ2, we
will have to improve our angular measurement precision by
at least 2 orders of magnitude and the radial velocity
uncertainty by 1 order of magnitude from our virtual
experiments, compared to GRAVITY’s limits.

2. Highly eccentric stars at 1 mpc for no-hair theorem

Because S2 with even GRAVITY’s resolution will not
work, we ponder what kind of stellar orbits and observation
strategies are needed to test the no-hair theorem then. In
Sec. IV B 2 we have briefly discussed the possible exist-
ence of stars closer to the Galactic Center than the newly
found S62, S4711, and S4714 that are also supported by
theories [51,52]. The next generation of extremely large
telescopes will discover stars with orbital periods as small
as 1–2 years given their increased sensitivity and angular
resolution [34]. We assume that we are lucky enough to
find a star orbiting around the Galactic Center on an orbit
that has a fifth of the semimajor axis of S2 (∼200 AU or
1 mpc). We also assume that all its other orbital parameters
including the eccentricity are the same as S2. This star has
an orbital period of 73.6 weeks, and we observe it once per
week for 1040 weeks (20 years and 14 full orbits) in our
simulation Scenario V; see Tables III and II. With this fake
observation scenario, we can start to measure the quadru-
pole moment Q2 for different injected Q2;inj. See the top
panel of Fig. 6 for the posteriors PðQ2Þ. In this figure, also
plotted is the measurement of dimensionless spin χ for the
various injected values in the bottom panel. We can see that
while Q2 can be measured to a visually distinguishable
extent, the black hole spin can be measured at a very
high precision, ∼0.01. As an example, we show in Fig. 7
the corner plot of posteriors of all modeled parameters
for a specific case, χinj ¼ 0.900 and Q2;inj ¼ −1.232 in
Scenario V.

3. Effects from ambient perturbers

Now let us discuss how these constraints can be affected
by the target star’s ambient perturbers, such as a stellar

TABLE IV. How many years of weekly observations are
required to reach σχ ∼ 0.1 with S2, S62, S4711, and S4714?

Star σr¼6.5 mas σr¼0.65 mas σr¼65μ as σr¼10μ as

S2 � � � � � � � � � 40
S62 410 88 19 5.5
S4711 3100 670 150 42
S4714 300 66 14 4.1

The number of years of weekly observations required to reach a
black hole spin measurement precision similar to Scenario I (see
the top panel of Fig. 2). The uncertainties in the estimation of
numbers of years are less than 10%, which are straightforward
with Eq. (29) and the uncertainties of the orbital parameters in
Table 1 of [33]. Note that mas is milliarcseond and μ as is
microarcsecond.
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cluster or an intermediate-mass black hole. We first con-
sider the perturbations from other stars within the stellar
orbit based on the study in [53], because the small stellar
cluster may induce orbital precession of the same order of
magnitude as that due to general relativistic effects. The
additional stellar cusp has a very small contribution [see
their Eq. (10)] to the advance of the periapsis but only
competes general relativistic effects on long timescales.
The vector resonant relaxation could also contribute to the
orbital precession. Their Fig. 3 which plots Eq. (30) and
Fig. 4 which checks Eqs. (28)–(30) using an N-body
simulation show the transition from the domination by
general relativistic effects to that by stellar perturbations
under certain conditions. For the distances of interest

(semimajor axis about 1 mpc for the star of one-fifth the
size of the S2 orbit), the stellar perturbation effects should
be included only when the stellar cusp consists of mostly
10 M⊙ black holes or when it consists of solar mass stars
but the total mass is over 200 M⊙ as seen from Fig. 3
of [53].
We also discuss the effect from a possible massive dark

perturber, such as an intermediate-mass black hole. A
number of IMBH candidates have been suggested near
the Galactic Center [54–56]. An IMBH orbiting around the
black hole can cause Kozai oscillations of the orbital
parameters of a star if the IMBH is located outside of
the stellar orbit. Research with stars and IMBHs at greater
distances (50 mpc or larger for a star and 300 mpc or larger
for the IMBH) has been nicely performed [57], but it cannot
be directly applied to our cases where both the star and the
IMBH are much closer to the black hole at 1 mpc level. We
use the work in [58] and focus on the Kozai mechanism.
The inner orbit is a star of one-fifth the size of the S2 orbit
with a semimajor axis about ain ¼ 1 mpc. For the Kozai
mechanism to operate, the IMBH must lie outside the orbit
of the star as illustrated in Sec. 4.4 of [58]. For the Kozai
effect to dominate, it also requires the Kozai oscillation
period to be smaller than the other effects on the inner orbit.
Therefore, the semimajor axis of IMBH’s orbit aout should
be large enough but as small as possible, too, to have larger
and dominating perturbations on the inner orbit. We first
consider aout ¼ 2 mpc given that the star is highly eccentric
(e ≈ 0.9) and the apoapsis is nearly 2ain. With Eq. (16) and
Fig. 10 of [58], we can scale the Kozai oscillation period as
TK ≈ 0.9 yearsðaoutain

Þ2ð ain
mpcÞ1.5 MBH

MIMBH
ð1 − e2outÞ for a 50°–85°

relative inclination between the inner and the outer orbits.
For ain ¼ 1 mpc, aout ¼ 2 mpc, MBH ¼ 4.5 × 106 M⊙,
MIMBH ¼ 1000 M⊙, and eout ¼ 0, the Kozai period is
about 1.6 × 104 years. Note that MIMBH > 1000 M⊙ at
this distance is ruled out by observational constraints in
[58]. The general relativistic precession timescale is
440 years at a ¼ 1 mpc and e2 ¼ 0.8 using Eq. (1) of
[58]. Because the Kozai period is much greater than the
general relativistic precession timescale, the Kozai effect
from the IMBH will be damped by the general relativistic
precession for the star in the inner orbit. For the IMBH at
larger distances than 2 mpc, the Kozai oscillation period
will be even longer and washed out by the general
relativistic precession effect. If an IMBH is inside the
star’s orbit, then it is a discussion similar to that on the inner
stellar cluster’s effect on the target star of observation.
Following the discussion in Sec. 3 of [58], the principal
impact of likely nearby IMBHs is on the distribution of S-
star orbital parameters over millions of years. An IMBH
can also produce small stepwise perturbations to individual
stellar orbits when it passes closely nearby, but this requires
fine-tuning and is very unlikely to occur for the few stars
expected to be monitored over OðdecadeÞ to constrain the

FIG. 6. Posteriors of Q2 and χ for Scenario V in Table III. The
thin vertical lines are the injected values. The top panel shows the
marginalized posteriors of quadrupole Q2 for different injected
values χinj and their corresponding injected quadruple values
Q2;inj ¼ −χ2injM3. The bottom panel is for the posteriors of the
dimensionless spin χ. The star has an orbit that is one-fifth the
semimajor axis of S2. It is observed once per week for about
seven full orbits.
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central black hole’s properties, given a putative IMBH’s
orbital period is likely comparably long.

V. CONCLUSIONS

We have introduced a Markov chain Monte Carlo
method to constrain the Galactic Center black hole proper-
ties with a model of the Galactic Center stellar orbits. We
also use Fisher matrix method to check against MCMC

when the scenarios allow. Several main conclusions come
out of this work.
First, we conclude that we are not able to constrain the

black hole spin or test the no-hair theorem with the existing
data of the S2 stellar orbit from Keck and/or VLT
measurements taken from 1995 to 2007 (2009 for VLT).
We then provide strategies for future observations on

how to constrain the black hole spin with the S2 orbit based
on simulated fake observation scenarios, assuming future

FIG. 7. Corner plot for the posterior distributions of the parameters for the case of injected χinj ¼ 0.900 andQ2;inj ¼ 1.232 in Scenario
V in Table III.
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achievable measurement accuracy. With the best measure-
ment resolution by the GRAVITY telescope when it
observes at an angular uncertainty of 10 μarcsec and a
radial velocity uncertainty of 500 m=s, we can constrain
the black hole spin at 0.1 precision if S2 is observed once
per week for 40 years as shown in Fig. 2 for Scenario I in
Table II. If we can find a closer star that is half the size of
the S2 orbit, then we can measure the spin sooner than
using S2 as shown in Fig. 4 for Scenario III.
We also derive an analytic expression to scale the

uncertainty of the spin measurement using the Fisher
matrix in terms of the observation strategy, the star’s orbital
parameters, and the instrument precision; see Eq. (29).
After demonstrating the correctness of this equation with a
concrete example labeled Scenario VI and its simulation
results shown in Fig. 5, we continue to apply it to the spin
measurement with the recently found stars S62, S4711, and
S4714. The numbers of years of weekly observations
required to reach a σχ ∼ 0.1 uncertainty are shown in
Table IV.
In respect of the black hole no-hair theorem, we

conclude that with the S2 orbit it is not possible to test
the theorem even with 40 years of daily measurements
using GRAVITY’s resolution limits on the S2 orbit in
Scenario IV in Table III. In order to test the no-hair theorem
with GRAVITY’s best resolution, we need a closer star. It is
expected to find stars with orbital periods of 1–2 years by
the next generation large telescopes [34]. In our simulations
we use a stellar orbit around the Galactic Center that is one-
fifth the size of the S2 orbit. With such a star, we can start to
measure the quadrupole moment and test the black hole no-
hair theorem with 20 years of weekly observations as
shown in Fig. 6 for Scenario V. It is necessary to understand
the distribution of visible and dark matter outside the black
hole to better constrain the no-hair theorem; however,
without such knowledge, we can treat the quadrupole
moment as an independent parameter on the black hole
spin and a term that combines the quadrupole moment of
both the black hole and the external sources in the vicinity
of Sgr A*, and see how well we can measure it as shown
in Fig. 6.
Several other scenarios can be further studied based on

our investigation. The epochs of the observations are
equally spaced in our simulations. If these measurements
are rearranged such that they are more frequently made
when the star is close to the periapsis of its orbit around the
black hole than the apoapsis, the parameter measurement
uncertainties in the model are expected to reduce. Another
factor to consider is that the telescope measurement
resolution can be changed in future scenarios. In this work
it is chosen to be the limits of GRAVITY telescope for all
the fake observations we present. However, if the resolution
can be further improved, we can have better observation
strategies using less observation time to test the black hole
no-hair theorem. In addition, if several more closer stellar

orbits are found, then we can use them to jointly constrain
the black hole properties.
Another direction to explore is to use the radio images of

supermassive black holes. The Event Horizon Telescope
measurements are complementary to stellar proper motions
and therefore could break some degeneracies and make
constraints on the black hole nature of the central remnant
easier [4–10].
In Sec. IV C 3 we briefly discuss the perturbing effects

from a stellar cluster and an IMBH on our interpretation of
the orbits. However, existing observations do not provide
enough information to constrain the ambient density of
perturbers. Dynamical processes have long been expected
to produce a high density of nearby massive objects, as yet
inaccessible to direct electromagnetic observation [22,
59–64]. This dark density is most likely to be constrained
indirectly, via its gravitational effects (e.g., [64,65]).
Anisotropies in the ambient density can partially mimic
the effects of modified theories of gravity; for example, a
quadrupolar gravitational perturbation could be sourced by
the black hole or an external cluster density.
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APPENDIX A: EQUATIONS OF MOTION

In this Appendix, we point out that different properties of
an ensemble of stellar orbits probe different physics. For
example, the orbit location probes different parts of the
potential: distant orbits preferentially probe an external
potential while nearby orbits probe the black hole.
Similarly, different symmetry-breaking effects only occur
from certain physical processes; for example, spherically
symmetric potentials cannot cause the orbital plane to
precess, while quadrupolar Newtonian potentials and frame
dragging cause an ensemble of orbits to evolve in distinctly
different ways. By isolating these symmetries and their
impact on observations, we can easily model how a
collection of measurements of several stellar orbits can best
constrain properties of the Galactic Center environment.
In the text, we adopted simple approximations to general

relativity at low post-Newtonian order, neglecting many
common factors such as the mass ratio. Because orbital
perturbations we hope to identify are small, influences from
small factors such as the mass ratio (≃10−6) can be of
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similar order to the minute effects we seek to identify at
targeted separations. For this reason, in this section we
carefully review relevant post-Newtonian expressions,
targeting typical separations (i.e., 10 year orbits) and
post-Newtonian accuracy ideally comparable to the tar-
geted astrometric resolution of μ as per year at 8 kpc (i.e.,
≃0.26 Myear, or Δv=c ≃ 10−7).
Post-Newtonian theory for binary and N-body motion is

well-developed; see [39] for a review in the context of
stellar orbits around supermassive black holes; [66] for a
discussion of orbit-averaged spin precession; and [40,67],
for technically sophisticated and highly detailed discus-
sions in general and for binary motion, specifically.

1. Post-Newtonian two-body equations of motion

Working to v2 (1PN) beyond Newtonian order in
velocity and leading order in spin-orbit coupling, the
post-Newtonian Lagrangian for two-body motion has the
form [39]

L¼ ηM

�
1

2
v2þGM

r
þ1

8
ð1−3ηÞv4

þGM
2r

ð3þ ηÞv2þ η_r2−
GM
r

�
þLspinþLquad; ðA1Þ

using units with c ¼ 1 for simplicity. Here Lspin and
Lquad terms are due to the black hole spin and the
quadrupole moment. The Lagrangian corresponds to the
Hamiltonian [68]

H ¼ μ½HN þH1PN þHSO� ðA2Þ

HN ¼ p2

2
−
M
r

ðA3Þ

H1PN¼ 1

8
ð3η−1Þp4−

1

2
½ð3þηÞp2þηp2

r �
M
r
þM2

2r2
ðA4Þ

HSO ¼ 2
LN=μ · J

r3
: ðA5Þ

These approximations, plus the limit η → 0, reproduce the
equations of motion adopted in the text. These Hamiltonian
expressions also enable straightforward derivation of the
orbit-averaged precession equations. As a concrete exam-
ple, the contribution of black hole spin to the orbit-averaged
precession equations for LN, AN follow from the Lie
algebra

ð∂tLaÞSO ¼ fLa;HSOg ¼ 2ϵabcJbLc

r3
; ðA6Þ

ð∂tAaÞSO ¼ fðp × L −Mr̂Þa; HSOg

¼
�
ðp × L −Mr̂Þa;

1

r3

�
ð2J⃗ · L⃗Þ

þ fðp × L −Mr̂Þa; Ldg2Jd=r3

¼ −3
ϵabcrbLc

r5
ð2J⃗ · L⃗Þ þ ϵabc

2Jb
r3

Ac; ðA7Þ

using fLa; Vbg ¼ ϵabcVc for any vector V rotating with L
(here, L⃗, p⃗, r⃗). Both orbit averages can be performed
trivially, substituting r⃗¼ pðx̂cosθþ ŷ sinθÞ=ð1þ ecosθÞ
and dt ¼ dθL=r2 for the special case A⃗ ¼ ex̂; we find

hr−3i ¼ 2π

P
M
p3

; ðA8Þ

hr cos θr−5i ¼ 2π

P
eM
p3

: ðA9Þ

Critically, the second term does not orbit average to zero.
We therefore find

hð∂tAÞSOi ¼
2M
p3

½J⃗ − 3ðJ⃗ · L̂ÞL̂� × A: ðA10Þ

Are these approximations adequate? First and foremost,
as emphasized in the text, most post-Newtonian and mass
ratio effects do not break symmetry in a way that can be
confused with the influence of precession: even if they did
matter quantitatively, they would not matter qualitatively.
Second, for a single star, the backreaction of the star on the
BH’s orbit is small at typical high mass ratio (η ≃ 10−6); the
leading-order effect is purely Newtonian, corresponding to
orbits around the center of mass; and higher-order PN
effects are suppressed by Oðv2Þ ≃M=r ≃ 102 − 103. For a
single star, the finite mass ratio is a minute perturbation at
separations where precession can be measured astrometri-
cally; see Fig. 1.
As emphasized in the text, however, this modification

does not break symmetry and therefore does not signifi-
cantly influence the quantitative accuracy to which pre-
cession-induced modulations can be measured.

2. Post-Newtonian N-body equations of motion

When many bodies are included, we must carefully
account for the often significant perturbations from neigh-
boring stars, as well as the collectively weakly significant
reaction of the black hole to the ambient stellar potential.
Finally, the BH spin will precess to conserve total

angular momentum as the stars precess [39] due to
Lens-Thirring effects, as well due to the ambient gravita-
tional potential [69]. As the spin precesses, the leading-
order spin-orbit precession will be modulated, an effect that
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can be comparable to quadrupolar precession effects from
the central supermassive black hole.

APPENDIX B: FISHER MATRIX FOR
NEWTONIAN ORBITS

To constrain properties of the Galactic Center, we must
first identify the Newtonian orbit. In this section we review
how to calculate the Fisher matrix for Newtonian orbital
parameters using our toy-model likelihood equation for
special cases and in relative generality.

1. Fisher matrix for Keplerian orbits

In the discussion above, we adopted as coordinates the
initial velocity and position. This choice of coordinates is
particularly compatible with our equations of motion and
subsequent analytic calculations (e.g., including non-
Newtonian perturbations). While straightforward for
brute-force calculations, the above approach is rarely
analytically tractable. Alternatively, the perturbed orbit
Δr can be reduced to (a) changes of a, e, and the
Newtonian orbital phase Φ0 and (b) changes in the ori-
entation of the orbit. Using the chain rule, we can build up
the total perturbation as additive contributions from both
factors, each individually simple and particularly tractable in
suitable coordinates.
Specifically, using as coordinates the orientation of the

orbital frame (three parameters) as well as a, e, Φ0 (three
parameters), we can express

Δr⃗ðtÞ¼ C⃗aðtÞΔaþ C⃗eΔeþ C⃗ΦΔΦ0þð−iLβr⃗ÞΔΘβ; ðB1Þ

where Cα;X for α ¼ x, y, z are the Cartesian components

of the vectors C⃗X and where ΔΘβ is a small (constant)
rotation vector and Lα are the generators of rotations.
As a concrete example, for circular orbits r⃗ ¼
a½cosðΩNTÞx̂þ sinðΩNTÞŷ�, with T as the observation
time and ΩN the rotation rate of the star,

C⃗a ¼ r̂þ ∂ΩN

∂a Tav̂; ðB2Þ

C⃗Φ ¼ av̂; ðB3Þ

C⃗e ¼ 0.5af½−3þ cosð2ΩNTÞ�x̂þ sinð2ΩNTÞŷg; ðB4Þ

−iLxr⃗ ¼ ½ŷ ẑ−ẑ ŷ�abr⃗b ¼ −aẑðr̂ · ŷÞ; ðB5Þ

−iLyr⃗ ¼ ½−x̂ ẑþẑ x̂�abr⃗b ¼ aẑðr̂ · x̂Þ; ðB6Þ

−iLzr⃗¼ ½x̂ ŷ−ŷ x̂�abr⃗b¼ ax̂ðr̂ · ŷÞ−aŷðr̂ · x̂Þ¼−av̂; ðB7Þ

and rotations around z are degenerate with the change in
orbital reference phase Φ0.
In terms of these coordinates, the Fisher matrix for the

idealized measurements in Eq. (C1) can be expressed in the
particularly analytically tractable form

Γαβ ¼
N
σ2r

2
666666664

R
dt
T

P
b
Cb;aCb;a

R
dt
T

P
b
Cb;aCb;e

R
dt
T

P
b
Cb;aCb;Φ

R
dt
T

P
b
Cb;a½−iLβ r⃗�b

R
dt
T

P
b
Cb;eCb;a

R
dt
T

P
b
Cb;eCb;e

R
dt
T

P
b
Cb;eCb;Φ

R
dt
T

P
b
Cb;e½−iLβr⃗�b

R
dt
T

P
b
Cb;ΦCb;a

R
dt
T

P
b
Cb;eCb;Φ

R
dt
T

P
b
Cb;ΦCb;Φ

R
dt
T

P
b
Cb;e½−iLβr⃗�b

R
dt
T

P
b
Cb;a½−iLβr⃗�b

R
dt
T

P
b
Cb;e½−iLβr⃗�b

R
dt
T

P
b
Cb;Φ½−iLβr⃗�b

R
dt
T ½Lαr⃗� · ½Lβ r⃗�

3
777777775
: ðB8Þ

We confirm this representation reproduces the results
provided above. Being analytically tractable even for
eccentric orbits, this general form is particularly well-suited
to marginalization via Eq. (24).
For circular orbits, the expressions involved can be

approximately evaluated, using the following rules:

hr̂ar̂bi ¼
1

2
½δab − L̂aL̂b�; ðB9Þ

hv̂av̂bi ¼
1

2
½δab − L̂aL̂b�; ðB10Þ

hr̂av̂bi ¼ 0; ðB11Þ

and by applying these rules, we find the expressions for the
Fisher matrix components:

Γaa ¼
N
σ2r

Z
dt
T

X
b

Cb;aCb;a

¼ N
σ2r

Z
dt
T
ð1þ t2a2ð∂ΩN=∂aÞ2Þ; ðB12Þ

ΓΦΦ ¼ Na2

σ2r
; ðB13Þ

Γee ¼
5Na2

2σ2r
; ðB14Þ
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Γae ¼ 0; ðB15Þ

ΓaΦ ¼ ΓaΘz
¼ N

σ2r

Z
dt
T
ta2ð∂ΩN=∂aÞ; ðB16Þ

ΓeΦ ¼ 0; ðB17Þ

ΓΘxa ¼ ΓΘya ¼ ΓΘxe ¼ ΓΘye ¼ ΓΘxΦ ¼ ΓΘyΦ ¼ 0; ðB18Þ

ΓΘxΘx
¼ ΓΘyΘy

¼ Na2

2σ2r
; ðB19Þ

ΓΘyΘy
¼ Na2

σ2r
; ðB20Þ

ΓΦΘz
¼ −

Na2

σ2r
: ðB21Þ

The terms in this circular-orbit Fisher matrix have quali-
tatively different behavior. On the one hand, changes in the
orbital period (a) lead to significant, increasing dephasing
across multiple orbits; as a result, the orbital radius can be
measured with high accuracy, increasing rapidly as the
measurement interval increases [Γaa ∝ ðωTÞ2Nða=σrÞ2].
By contrast, all other changes in a circular orbit are
geometrical, producing small or variable separations.
While our ability to measure these parameters also
increases with the number of measurements (∝N ∝ T),
the accuracy to which these parameters can be measured is
significantly smaller. Finally, the circular-orbit Fisher
matrix decomposes trivially into diagonal terms (almost
all) plus one 2 × 2 block (ln a, Φ); this nearly degenerate
2 × 2 block can be trivially diagonalized

Γab ¼
Na2

σ2r

�
1þ T2

3
að∂aΩÞ2 T

2
að∂aΩÞ

T
2
að∂aΩÞ a2

�

¼ Na2

σ2r

�
1þ 3

4
Φ2

orb − 9
8
Φorb

− 9
8
Φorb

9
4
Φ2

orb

�
; ðB22Þ

using Ta∂aΩN ¼ −3Φorb=2 for Φorb ¼ ΩNt the orbital
phase. The relative significance of the two terms depends
on how many orbital cycles have occurred.

2. Unknown black hole mass

Adding additional parameters, such as the black hole
mass, is straightforward:

Δr⃗ðtÞ ¼
X
A

C⃗λΔλ: ðB23Þ

For circular orbits, the effect of a perturbed black hole mass
is very similar to a perturbed orbital separation, producing a
significant dephasing with time without any (small) change
in position:

C⃗M ¼ ∂ΩN

∂M tav̂: ðB24Þ

Because the Newtonian orbital period only depends onffiffiffiffiffiffiffiffiffiffiffiffi
M=a3

p
, these two parameters are nearly degenerate in the

Fisher matrix: we can measure only one combination (the
orbital period) reliably. Marginalizing out the unknown
orbital radius a, we find the Fisher matrix for black hole
parameters does not depend as sensitively on the stellar
mass. For circular orbits specifically, all parameters except
M, a, Φ separate, allowing us to marginalize only a three-
dimensional matrix

ΓMM ¼ Na2t2

3σ2r

�∂ΩN

∂M
�

2

: ðB25Þ

3. Unknown black hole spin

The black hole spin enters via Ω⃗ in a particularly simple
way at leading order: ∂Ωα=∂Jβ ¼ δαβZJ. For example, the
Fisher matrix over J components has the form

Γαβ ¼
N
σ2r

Z
dt
T
∂Ωa

∂Jα
∂Ωb

∂Jβ ht
2½Laro� · ½Lbro�i

≃
N
σ2r

∂Ωa

∂Jα
∂Ωb

∂Jβ
T2

3
Tr½LaILT

b �

≃
NZ2

JT
2

3σ2r

Z
P

0

dt
P
Tr½LaILT

b �

¼ NZ2
JT

2½að1 − e2Þ�4
3σ2rPL

Tr½LaðA1x̂ x̂þðA2 − A1Þŷ ŷÞLT
b �;

ðB26Þ

where

A1 ≡
Z

2π

0

dθ
cos2 θ

ð1þ e cos θÞ4 ¼
ð1þ 4e2Þπ
ð1 − e2Þ7=2 ðB27Þ

and

A2 ≡
Z

2π

0

dθ
1

ð1þ e cos θÞ4 ¼
ð2þ 3e2Þπ
ð1 − e2Þ7=2 : ðB28Þ

Both integrals can be performed analytically when T=P is
an integer; in this special case we find

A2 ≃
T
P

Z
2π

0

dθ
1

ð1þ e cos θÞ4

¼ 2πT=P
ð1þ 3

2
e2Þ

ð1 − e2Þ7=2 ; ðB29Þ

A1 ¼ πT=P
1þ 4e2

ð1 − e2Þ7=2 : ðB30Þ
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Using the explicit form of the generatorsL in this frame, we
find the trace

Tr½LaðA1x̂ x̂þðA2 − A1Þŷ ŷÞLT
b � ¼

2
64
A2 − A1 0 0

0 A1 0

0 0 A2

3
75:

ðB31Þ

The ΓJaJb components are then a coefficient times a matrix,
and the other matrix components are expressed as follows:

ΓJaJb ¼
2NT2ð1 − e2Þ1=2

3πσ2ra4

2
64
A2 − A1 0 0

0 A1 0

0 0 A2

3
75; ðB32Þ

ΓaJx ¼
4πNT2

σ2ra5
Tr½ðJxLx þ JyLy þ JzLzÞ½x̂ x̂þŷ ŷ�LT

x �;

ðB33Þ

ΓaJy ¼
4πNT2

σ2ra5
Tr½ðJxLx þ JyLy þ JzLzÞ½x̂ x̂þŷ ŷ�LT

y �;

ðB34Þ

ΓaJz ¼
−8πNT2

σ2ra5
Tr½ðJxLx þ JyLy þ JzLzÞ½x̂ x̂þŷ ŷ�LT

z �;

ðB35Þ

ΓeJx ¼ ΓeJy ¼ 0; ðB36Þ

ΓeJz ¼
NT
σ2ra

; ðB37Þ

ΓΦ0Jx ¼ ΓΦ0Jy ¼ ΓΦ0Jz ¼ 0; ðB38Þ

ΓΘxJx ¼
NT

2πσ2ra
Tr½Lx½A1x̂ x̂þðA2 − A1Þŷ ŷ�LT

x �; ðB39Þ

ΓΘyJy ¼
NT

2πσ2ra
Tr½Ly½A1x̂ x̂þðA2 − A1Þŷ ŷ�LT

y �; ðB40Þ

ΓΘzJz ¼
−NT
2πσ2ra

Tr½Lz½A1x̂ x̂þðA2 − A1Þŷ ŷ�LT
z �: ðB41Þ

APPENDIX C: LIKELIHOOD AND MCMC

1. Bayesian formalism

To separate issues pertaining to measurement from
physics and from dynamics, we describe results using
three measurement scenarios: (a) an idealized measurement
model, where the position or velocity of each star can be
measured at known times, as if via an array of local

observers surrounding the black hole; (b) a plausible
model, where only the radial velocity and transverse angle
can be measured, on known null rays; and (c) a model for
pulsar timing.
Specifically, our first measurement model assumes each

star’s position r⃗α is measured to be x⃗α;k on times tk with
measurement error σr. We will henceforth use Greek
subscripts α to index stars or parameters; small roman
subscripts such as k to index measurements; and large
roman symbols to denote vector components. Since local
measurements are performed, the distance to the black hole
(and astrometry) do not enter into the analysis. For this
model, the probability distribution of the data is

pðDjλÞ ¼ ð2πσ2rÞ−3N=2 exp−
X
α;k

ðr⃗αðtkjλÞ − x⃗kÞ2
2σ2r

: ðC1Þ

Because of its simplicity, we will use this analytically trivial
model when illustrating how physics break the degeneracy.
A more realistic measurement model accounts for the

unknown distance to the Galactic Center; the unknown
mass of the Galactic Center black hole; and the fact that
only projected sky positions θ⃗k and radial velocities vr;k can
be measured. For this model, the probability distribution of
the data is

pðDjλÞ ¼ ð2πσ2θÞ−2N=2 exp

−
X
α;k

ðP⊥r⃗αðtkjλÞ − θ⃗kRÞ2
2σ2θ

ð2πσ2vÞ−N=2 exp

−
X
α;k

ðN̂ · ∂tr⃗αðtkjλÞ − vNÞ2
2σ2v

; ðC2Þ

combined with a prior for R, the distance to the Galactic
Center. A more realistic model still accounts for light
propagation time across the stellar orbit [70]; light bending
near the black hole note we are in harmonic coordinates;
higher-order terms in the Doppler equation [17,18].
Finally, the orbit of a pulsar around a black hole can be

reconstructed by timing. Pulsar timing corresponds to
fitting a model to pulse arrival times, to ensure they arrive
in regular intervals in the source frame. Roughly speaking,
the model corresponds to fitting the proper time of the
pulsar’s orbit, which can be measured to some accuracy.

2. Fisher matrix

To illustrate the mechanics of a Fisher matrix calculation,
we employ the idealized measurement model of Eq. (C1) in
the special case that the observed data are exactly as
predicted by some set of model parameters λ0 [i.e.,
x⃗k ¼ r⃗ðtkjλ0Þ]. Using a first-order Taylor series expansion
r⃗ðtkjλÞ − r⃗ðtkjλ0Þ ≃ δλb∂r⃗=∂λb for the position versus
parameters λ, we find the conditional probability of the
data given λ can be approximated by
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lnpðDjλÞ ¼ const −
1

2
Γabδλaδλb; ðC3Þ

Γab ¼
X
α;k

1

σ2r

∂r⃗α
∂λa

∂r⃗α
∂λb : ðC4Þ

This expression applies in general, no matter how the
solution rðtÞ is solved or approximated. By using an
approximate analytic solution, the orbit-averaged secular
solution in Eq. (10), we can estimate the accuracy to which
parameters can be measured using a simple orbit average
over a Newtonian solution. For example, for parameters λ
which do not appear in the unperturbed Newtonian sol-
ution, such as the black hole spin J or external potential, the
Fisher matrix takes the form

Γab¼
X
k

t2k
σ2r

∂ΩA

∂λa
∂ΩB

∂λb ð−iLAr⃗oðtkÞÞCð−iLBr⃗oðtkÞÞC: ðC5Þ

In fact, as a first approximation, these components of
the Fisher matrix can be approximated using the orbit’s
moment of inertia Iab;N ¼ hro;aro;bi:

Γab ≃
t3

3N
∂ΩA

∂λa
∂ΩB

∂λb Tr½ð−iLAÞIð−iLBÞT �: ðC6Þ

Having estimated the Fisher matrix and hence approxi-
mated pðfdgjλÞ by a Gaussian, we can further construct
marginalized distributions for λA in λ ¼ ðλA; λaÞ by inte-
grating out the variables λa.

3. Toy model: Tests in ⃗r using MCMC

We show that MCMC agree with both the numerical and
the analytic Fisher matrices via toy models: As a concrete
example, in the Cartesian coordinates with its origin at the
black hole center and fxi; yi; zig as the observables, we
model a Newtonian circular orbit with parameters
fa;Φ0; β; γ;ψg and measure its semimajor axis or radius
in two cases shown in the left panel of Fig. 8, as well as an
elliptical orbit with parameters fa; e;Φ0; β; γ;ψ ; Jx; Jy; Jzg
and measure its spin magnitude in two cases shown in the
right panel of Fig. 8. For the measurement of the radius
(denoted with symbol a as it is a semimajor axis with
e ¼ 0) of a circular orbit, the two cases are treating only the
semimajor axis as uncertain as shown in the black solid line
and treating all orbital parameters as uncertain as shown in
the blue solid line. The dashed lines show the measurement
uncertainty from the Fisher matrix method where both
the numerical Fisher matrix in Eq. (C3) and the analytic
Fisher matrix component for the radius in Eq. (B12) give
the same value, with a ¼ 2800M, N ¼ 700, σr ¼ 1.0M,
T ¼ 100 week, and Δt ¼ 1 day. Comparing the corre-
sponding solid and the dashed lines for the two cases,
respectively, we can see that MCMC agree well with the
Fisher matrix for the measurement uncertainties in the
radius of the orbits. A similar conclusion can be drawn for
the measurement of the magnitude of black spin. Note that
the numerical Fisher matrix in Eq. (C3) and the analytic
Fisher matrix in Eq. (B32) are used, and they are also the
same. They are evaluated using the same initial parameters
as the left panel, except that σr ¼ 0.1 M and e ¼ 0.01 and
evolved according to Eq. (1).

FIG. 8. Measuring properties of an orbit and a BH for idealized measurement model. Left panel: Demonstration of how accurately the
radius of Newtonian circular orbits can be measured by our MCMC code, assuming the only unknown parameter is the orbital radius
(black curves) and assuming no parameters are known (blue curves). For comparison, the dotted curves show the results from our Fisher
matrix calculations. Right panel: Demonstration of how accurately the black hole spin J can be measured, assuming the only unknown
parameter is the black hole spin magnitude χ ¼ J=M2 (black curves) and assuming both the orbit and black hole spin vector are
unknown (blue curves). The dotted curves show the result from Fisher matrix calculations.
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