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We report a new one-parameter family of spherically symmetric, inhomogeneous, and time-dependent
solutions of the vacuum Brans-Dicke field equations which are conformal to the Roberts scalar field
geometries of Einstein gravity. The new solution is spherical and time-dependent and contains a naked
central singularity. We use it as a seed to generate another two-parameter family of solutions using a known
symmetry of vacuum Brans-Dicke gravity.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) conflicts with
quantum mechanics, as demonstrated by the fact that
attempts to quantize GR produce, in the low-energy limit,
theories of gravity which deviate from GR due to extra
degrees of freedom or higher order terms in their field
equations. From the theoretical point of view, therefore, GR
must be modified in order to make it compatible with
quantum field theory. A more urgent motivation to explore
gravity beyond Einstein’s theory comes from observational
cosmology. If the present acceleration of the universe
discovered in 1998 with type Ia supernovae is to be
explained within the realm of GR, one needs an incredibly
fine-tuned cosmological constant Λ or a completely ad hoc
dark energy sourcing the Einstein equations. Instead of
postulating these rather embarrassing and ad hoc ingre-
dients of the standard Λcold dark matter cosmological
model, a viable alternative consists of modifying gravity at
large scales, while preserving GR at small scales.
Moreover, while the linear approximation to GR is well
tested at Solar System scales and has received a spectacular
confirmation with the LIGO detections of gravitational
waves [1–4], the theory is not tested at most spatial scales
and in most curvature regimes [5,6]. Currently, the most
popular alternative to GR to explain the cosmic acceleration
without invoking dark energy is probably the class of fðRÞ
theories of gravity, whereR is the Ricci scalar of the metric
connection [7] (see [8] for reviews). fðRÞ theories are
nothing but scalar-tensor theories in disguise, with a
vanishing Brans-Dicke coupling ω and equipped with a
complicated potential for the scalar degree of freedom
f0ðRÞ [8].

Brans-Dicke theory [9] is the prototypical alternative to
GR and the simplest representative of scalar-tensor gravity
[10]. Analytical solutions of the field equations are useful
to understand the physics of this theory and its scalar-tensor
generalizations. Inhomogeneous and time-dependent scalar
field solutions are rare both in Einstein and in alternative
gravity and it is interesting to expand the meager catalog
available. One example of a spherically symmetric, inho-
mogeneous, and time-dependent solution of the Einstein
equations is the Roberts geometry, which is sourced by a
massless, minimally coupled scalar field1 [12]. The Roberts
solution has been used as an example in the study of critical
phenomena occurring during the gravitational collapse of
scalar fields [13–16], is of interest for Cosmic Censorship
[12] and wormhole formation [17–22], and has been the
subject of some attention due to the difficulty of obtaining
dynamic and inhomogeneous analytical solutions of the
Einstein equations [20,21,23].
The Roberts geometry [12] (with an error corrected in

Refs. [14,15,23–26]) is a spherical, continuously self-
similar spacetime since it admits a homotheticKilling vector
field ξc satisfying £ξgab ¼ 2λgab, where λ is a constant [12].
Its stability was studied in [27,28]. Here we adopt2 the
corrected and slightly generalized Roberts solution given by
Burko in double null coordinates ðu; v; ϑ;φÞ [23],

ds̃2 ¼ −dudvþ r2ðu; vÞdΩ2
ð2Þ; ð1:1Þ

r2ðu; vÞ ¼ 1

4
½ð1 − 4σ2Þv2 − 2uvþ u2�; ð1:2Þ

where dΩ2
ð2Þ ≡ dϑ2 þ sin2 ϑdφ2 is the line element on the

unit two-sphere and the scalar field is
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1A version with a conformally coupled scalar has also been
proposed [11].

2We follow the notations of Ref. [29].
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ϕ̃ ¼ � 1

2
ln

�ð1 − 2σÞv − u
ð1þ 2σÞv − u

�
; ð1:3Þ

where σ is a constant. In order for the areal radius squared
(1.2) and for the argument of the logarithm in Eq. (1.3) to be
positive, it must be jσj < 1=2. In the limit σ → 0 the scalar ϕ̃
disappears and one recovers Minkowski spacetime. We also
note that the right-hand side of Eq. (1.2) can be written as

r2ðu; vÞ ¼ 1

4
½ð1 − 2σÞv − u�½ð1þ 2σÞv − u�; ð1:4Þ

which will be useful later. Therefore, the origin r ¼ 0

corresponds to u ¼ ð1� 2σÞv. Since r2 ≥ 0, Eq. (1.4)
guarantees that the argument of the logarithm in the
Roberts scalar field (1.3) is positive (the absolute value of
this argument appearing in this equation in [23] is redun-
dant). In the region in which the gradient of the scalar field is
timelike, the Roberts solution reproduces [23] a 1967 stiff
fluid solution of Gutman and Bespalko [30].
The Einstein equations reduce to

R̃ab ¼ 8π∇aϕ̃∇bϕ̃; ð1:5Þ

where R̃ab is the Ricci tensor, while the Ricci scalar is

R̃ ¼ 8πg̃ab∇aϕ̃∇bϕ̃ ¼ −32πϕ̃;uϕ̃;v ¼
8πσ2uv

r4
; ð1:6Þ

and diverges as r → 0, where there is a spacetime singu-
larity. This singularity is not covered by apparent horizons,
whose radii would be the positive roots of the equation
g̃ab∇ar∇br ¼ 0. For the Roberts solution, this equation
reads

g̃ab∇ar∇br ¼ −
1

4r2
½ð1 − 4σ2Þv − u�ðu − vÞ ¼ 0; ð1:7Þ

and the only roots are v ¼ u or v ¼ u
1−4σ2 (remember that

jσj < 1=2). But, using Eq. (1.2), v ¼ u would imply
r2 ¼ −σ2u2 < 0, which is impossible. Similarly, v ¼
u=ð1 − 4σ2Þ would imply r2 ¼ − σ2u2

1−4σ2 < 0, which is also
impossible (the exceptions are u ¼ v ¼ 0, which corre-
sponds to r ¼ 0 and to the absence of apparent horizon
positive roots). Therefore, there are no apparent horizons
and the central singularity is naked. The Misner-Sharp-
Hernandez mass, MMSH, is defined by 1 − 2MMSH=r ¼
g̃ab∇ar∇br [31,32], which gives

MMSH ¼ r
2
ð1 − g̃ab∇ar∇brÞ ¼ −

σ2uv
2r

: ð1:8Þ

It is negative in the entire region uv > 0 forming the past
and future light cone of the origin r ¼ 0.

In the following, we regard the Roberts scalar field
solution of GR as the Einstein frame version of a Brans-
Dicke counterpart, which constitutes a new solution
explored in this paper. Analytical solutions of scalar-tensor
gravity with the gravitational scalar field ϕ propagating
along null fronts are unknown, except for certain exact
plane waves—some of them are obtained by matching
spacetime regions along null shells [33,34] and others are
exotic stealth wave solutions of Brans-Dicke-Maxwell
gravity [35]. It is interesting, therefore, to examine the
Brans-Dicke analogue of the Roberts solution and, pos-
sibly, similar solutions of fðRÞ gravity.
Let us recall some basics: The Jordan frame action of

vacuum Brans-Dicke theory is [9]

SBD ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
ϕR −

ω

ϕ
∇cϕ∇cϕ − VðϕÞ

�
; ð1:9Þ

where ϕ is the gravitational scalar field (approximately
equivalent to the inverse of the gravitational coupling Geff ),
VðϕÞ is the scalar field potential, and ω is the constant
“Brans-Dicke coupling” parameter, while g is the deter-
minant of the spacetime metric gab. By varying this action,
one obtains the vacuum Brans-Dicke field equations [9]

Rab −
R
2
gab ¼

ω

ϕ2

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�

þ 1

ϕ
ð∇a∇bϕ − gab□ϕÞ − V

2ϕ
gab; ð1:10Þ

□ϕ ¼ 1

2ωþ 3

�
ϕ
dV
dϕ

− 2V

�
: ð1:11Þ

A second representation of scalar-tensor gravity, the
Einstein conformal frame [36] is obtained by means of the
conformal transformation of the metric

gab → g̃ab ¼ ϕgab; ð1:12Þ

and the scalar field redefinition

ϕ → ϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j
16π

r
ln
�
ϕ

ϕ�

�
; ð1:13Þ

where ϕ� is a constant and ω ≠ −3=2. In terms of these new
variables, the vacuum Brans-Dicke action (1.9) assumes the
Einstein frame form

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
R̃
16π

−
1

2
g̃ab∇aϕ̃∇bϕ̃ − Ṽðϕ̃Þ

�
; ð1:14Þ

where
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Ṽðϕ̃Þ ¼ VðϕÞ
ϕ2

����
ϕ¼ϕðϕ̃Þ

: ð1:15Þ

We label Einstein frame quantities with a tilde. Formally,
(1.14) is the Einstein-Hilbert action coupled to a standard
matter scalar field. The vacuum field equations in the
Einstein frame are

R̃ab −
1

2
g̃abR̃ ¼ 8π

�
∇aϕ̃∇bϕ̃ −

1

2
g̃abg̃cd∇cϕ̃∇dϕ̃

�
− Ṽðϕ̃Þg̃ab; ð1:16Þ

g̃ab∇̃a∇̃bϕ̃ −
dṼ

dϕ̃
¼ 0: ð1:17Þ

Given a solution of the Einstein equations sourced by a
minimally coupled scalar field, we can interpret it as the
Einstein frame counterpart of a Jordan frame Brans-Dicke
gravity and map it to its representation in the Jordan frame.
As a caveat, in general the Jordan frame scalar field
potential VðϕÞ obtained from a reasonable Einstein frame
potential Ṽðϕ̃Þ is physically unmotivated, but this fact will
not be of concern here since the Roberts solution that we
consider has zero potential and this property transfers to the
Jordan frame, as is well known [37,38].
Now, on to fðRÞ gravity: Metric fðRÞ theories of

gravity are a subclass of Brans-Dicke gravity with
action [8]

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π
fðRÞ; ð1:18Þ

in vacuo, where fðRÞ is a nonlinear function of the Ricci
scalar R. By introducing the new scalar field ϕ≡ f0ðRÞ
with potential

VðϕÞ ¼ ϕRðϕÞ − fðRðϕÞÞ; ð1:19Þ

one shows [8] that the action (1.18) is equivalent to the
vacuum Brans-Dicke action,

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π
½ϕR − VðϕÞ�; ð1:20Þ

with the Brans-Dicke parameter ω ¼ 0 and the poten-
tial (1.19).

II. A NEW SOLUTION OF VACUUM
BRANS-DICKE THEORY

We now regard the Roberts spacetime ðg̃ab; ϕ̃Þ as the
Einstein frame version of a Brans-Dicke solution ðgab;ϕÞ,
which we map back to the Jordan conformal frame. Their
relation is

ds2 ¼ ϕ−1ds̃2; ð2:1Þ

ϕ ¼ ϕ� exp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16π

j2ωþ 3j

s
ϕ̃

�
: ð2:2Þ

Applying these to the Roberts solution [Eqs. (1.1)–(1.3)]
yields

ds2 ¼
�ð1 − 2σÞv − u
ð1þ 2σÞv − u

�∓2
ffiffiffiffiffiffiffiffi

π
j2ωþ3j

p
½−dudvþ r2ðu; vÞdΩ2

ð2Þ�;

ð2:3Þ

ϕ ¼ ϕ�

�ð1 − 2σÞv − u
ð1þ 2σÞv − u

��2
ffiffiffiffiffiffiffiffi

π
j2ωþ3j

p
; ð2:4Þ

where ϕ� > 0 (this constant is omitted without conse-
quences in the expression of ds2) and r is given
by Eq. (1.2).
The Jordan frame areal radius is

Rðu; vÞ ¼ rðu; vÞffiffiffiffi
ϕ

p ¼ 1

2

�ð1 − 2σÞv − u
ð1þ 2σÞv − u

�∓ ffiffiffiffiffiffiffiffi
π

j2ωþ3j
p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4σ2Þv2 − 2uvþ u2

q
; ð2:5Þ

where we used Eq. (1.2), from which it follows that the
Jordan frame origin R ¼ 0 corresponds to r ¼ 0 or to
u ¼ ð1� 2σÞv, which gives again r ¼ 0. Therefore, there
is a one-to-one correspondence between R ¼ 0 and r ¼ 0.
The Jordan frame scalar (2.4) diverges at the origin R ¼ 0.
When they exist, the apparent horizons of a spherically

symmetric metric are located by the roots of the equation
∇cR∇cR ¼ 0, which here takes the form

∇cR∇cR ¼ 2guvR;uR;v ¼ −4ϕR;uR;v

¼ −4
�
r;u −

rϕ;u

2ϕ

��
r;v −

rϕ;v

2ϕ

�
; ð2:6Þ

where we used the inverse metric

ðgμνÞ ¼

0
BBBBB@

0 −2ϕ 0 0

−2ϕ 0 0 0

0 0 ϕ
r2 0

0 0 0 ϕ
r2 sin2 ϑ

1
CCCCCA: ð2:7Þ

We must recover Minkowski space in the limit σ → 0 in
which ϕ → const and ds2 → −dudvþ r2ðu; vÞdΩ2

ð2Þ.
Then, R depends on both u and v in an essential way
and this is true also for σ ≠ 0. Hence the vanishing of R;u or
R;v does not make sense physically. We conclude that there
are no roots of Eq. (2.6) and no apparent horizons.
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The Jordan frame Ricci scalar is obtained from the trace
of Eq. (1.10),

R ¼ ω

ϕ2
∇aϕ∇aϕþ 3□ϕ

ϕ
þ 2Ṽ

ϕ
; ð2:8Þ

where the second and third terms in the right-hand side are
zero, as ϕ is a free scalar field that satisfies □ϕ ¼ 0
[cf. Eq. (1.11)]. The Ricci scalar becomes

R ¼ ω

ϕ2
gab∇aϕ∇bϕ ¼ 2ω

ϕ2
guv∂uϕ∂vϕ

¼ 16πωσ2

j2ωþ 3j
ϕuv
r4

¼ 16πωσ2

j2ωþ 3j
uv
ϕR4

; ð2:9Þ

where we used the inverse metric (2.7), and

∂uϕ ¼∓ 2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

j2ωþ 3j
r

ϕv
r2

¼∓ 2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

j2ωþ 3j
r

v
R2

; ð2:10Þ

∂vϕ ¼ �2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

j2ωþ 3j
r

ϕu
r2

¼ �2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

j2ωþ 3j
r

u
R2

: ð2:11Þ

When ω ≠ 0, the Ricci scalar diverges as R → 0 together
with ϕ and there exists a naked central singularity. When
ω ¼ 0, the Ricci scalar vanishes identically, but the Brans-
Dicke scalar field ϕ still diverges at the origin with the
Kretschmann scalar K≡ RabcdRabcd. This is given, for
general values of ω, by

K ¼ 4σ2ϕ2

j2ωþ 3j2r8 f�4
ffiffiffi
π

p
σuvj2ωþ 3j3=2½ð4σ2 − 1Þv2 þ u2� þ 3σ2u2v2ð2ωþ 3Þ2

þ 2πj2ωþ 3j½2ð10σ2 − 3Þu2v2 þ 2ð1 − 4σ2Þuv3 þ ð1 − 4σ2Þ2v4 þ 2u3vþ u4�
� 16π3=2σuv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ωþ 3j

p
½ð4σ2 − 1Þv2 þ u2� þ 48π2σ2u2v2g: ð2:12Þ

III. “CONFORMAL ROBERTS” IS NOT A
SOLUTION OF f ðRÞ GRAVITY

Let us consider now the possibility that the new Brans-
Dicke solution is also a solution of fðRÞ gravity. Since
there is no potential, it must be [cf. Eq. (1.19)]

VðϕÞ ¼ ϕR − fðRÞ ¼ 0; ð3:1Þ

which integrates to fðRÞ ¼ f0R, where f0 is a constant. In
addition, it must be ω ¼ 0 and then the putative solution
becomes

ds2ð0Þ ¼
�ð1 − 2σÞv − u
ð1þ 2σÞv − u

�∓2
ffiffiffiffiffiffi
π=3

p
½−dudvþ r2ðu; vÞdΩ2

ð2Þ�;

ð3:2Þ

ψ ¼ ϕ�

�ð1 − 2σÞv − u
ð1þ 2σÞv − u

��2
ffiffiffiffiffiffi
π=3

p
; ð3:3Þ

and it would seem that these expressions could provide a
solution of GR. This is not true because, according to
Eq. (2.9), ω ¼ 0 also implies R ¼ 0 and, in GR, it is
instead R ∝ ∇cψ∇cψ which, in general, is incompatible
with R ¼ 0.
We conclude that the vacuum Brans-Dicke geometry in

Eqs. (3.2), (1.2), and (3.3) is not a solution of fðRÞ gravity
nor of the Einstein-Klein-Gordon equations.

IV. ANOTHER TWO-PARAMETER
FAMILY OF SOLUTIONS

Vacuum Brans-Dicke theory is invariant under the
operation [39]

gab → ĝab ¼ ϕ2αgab; ð4:1Þ

ϕ → ϕ̂ ¼ ϕ1−2α; ð4:2Þ

for α ≠ 1=2 (the conformal transformation of the metric
(4.1) has nothing to do with the conformal map relating
Jordan and Einstein frames). A hat denotes geometric
quantities constructed with the conformally rescaled metric
ĝab. The well-known transformation properties under the
map ĝab ¼ Ω2gab [29,40–42],

ĝab ¼ Ω−2gab; ð4:3Þ

ffiffiffiffiffiffi
−ĝ

p
¼ Ω4 ffiffiffiffiffiffi

−g
p

; ð4:4Þ

R̂ ¼ Ω−2
�
R −

6□Ω
Ω

�
; ð4:5Þ

plus the use of Eq. (4.2), yield
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R ¼ ϕ2αR̂ −
6αð1 − αÞ
ð1 − 2αÞ2 ϕ

6α−2ĝab∇̂aϕ̂∇̂bϕ̂

þ 6α

1 − 2α
ϕ4α−1□̂ ϕ̂ : ð4:6Þ

The d’Alembertian in the right hand side of Eq. (4.6) can be
written as

6α

1 − 2α

ffiffiffiffiffiffi
−ĝ

p
□̂ ϕ̂ ¼ 6α

1 − 2α
∂μð

ffiffiffiffiffiffi
−ĝ

p
ĝμν∂νϕ̂Þ; ð4:7Þ

and is integrated to aboundary termwhenplaced in the action
integral. By dropping this term (which is irrelevant in the
variation leading to the Brans-Dicke field equations), the
vacuum Brans-Dicke action (1.9) without potential reads

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
ϕ̂ R̂−

�
ω

ð1 − 2αÞ2 þ
6αð1 − αÞ
ð1 − 2αÞ2

�

×
ĝab

ϕ̂
∇̂aϕ̂∇̂bϕ̂

	
: ð4:8Þ

If we rename the Brans-Dicke coupling as

ω̂ðω; αÞ ¼ ωþ 6αð1 − αÞ
ð1 − 2αÞ2 ; ð4:9Þ

then the action reads [39]

SBD ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
ϕ̂ R̂−

ω̂

ϕ̂
ĝab∇̂aϕ̂∇̂bϕ̂

�
; ð4:10Þ

which is again of the Brans-Dicke form. Therefore, the
operation (4.1), (4.2), and (4.9) is a symmetry of vacuum
Brans-Dicke theory. It can be shown that, asα varies, it spans
a one-parameter Abelian group of symmetries [39]. This
property can be used to generate new solutions [43]. Here,
using the conformal relative of theRoberts solution as a seed,
we generate the new two-parameter family of solutions of
vacuum Brans-Dicke gravity,

dŝ2 ¼ ϕ2α−1½−dudvþ r2ðu; vÞdΩ2
ð2Þ�; ð4:11Þ

ϕ̂ ¼ ϕ0

�ð1 − 2σÞv − u
ð1þ 2σÞv − u

��2ð1−2αÞ ffiffiffiffiffiffiffiffi
π

j2ωþ3j
p

; ð4:12Þ

with r2 given by Eq. (1.2) and the Brans-Dicke coupling by
Eq. (4.9). These new solutions, labeled by the parameters σ
and α (or, equivalently, σ and ω̂) are spherically symmetric,
time-dependent, and conformal to theRoberts spacetime.By
repeating the analysis of the previous section, one concludes
that there is again a central naked singularitywhere the scalar
field diverges.

V. CONCLUSIONS

The geometry and Brans-Dicke scalar field shown in
Eqs. (1.2), (2.3), and (2.4) constitute a new solution of
vacuum Brans-Dicke theory without potential in the Jordan
frame. By construction, this solution is conformal to the
Roberts solution [Eqs. (1.1)–(1.3)] of GR with a minimally
coupled, massless scalar field as the matter source. This
new solution has no apparent horizons and harbors a central
naked singularity, where the Ricci curvature R, the
Kretschmann scalar RabcdRabcd, and the Brans-Dicke scalar
ϕ diverge. This spacetime structure is the same as that of its
Einstein frame cousin (studied in [12]) used to generate our
new solution.
A generalization of the Roberts solution to an Anti-de

Sitter “background,” conformal to the geometry [Eqs. (1.1)
and (1.2)] has been found by Roberts [44] and is, in
principle, useful in studies of the AdS=CFT correspon-
dence. This solution is conformal to the Λ ¼ 0 Roberts
solution [21,44]. We do not consider it here because,
when mapped to the Jordan frame, the negative cosmo-
logical constant Λ of the AdS background gives rise to the
negative potential VðϕÞ ¼ Λϕ2=ð8πÞ [45], as described by
Eq. (1.15), and to an imaginary scalar field mass (m2 ¼ Λ

8π)
and is, therefore, of no physical interest.
The fact that the scalar field of the Roberts-AdS

spacetime is exactly the same as in the Roberts solution
without Λ has been reported as interesting or surprising
[21,44]; in light of the fact that a cosmological constant in
the Einstein frame corresponds to a mass term in the Jordan
frame, and that a potential VðϕÞ ¼ m2ϕ2=2 disappears
completely from the Klein-Gordon equation (1.11), this
fact is perhaps not too surprising. Instead of mapping the
Roberts-Anti-de Sitter geometry to the Jordan frame, we
have used a known symmetry of vacuum Brans-Dicke
theory to generate a new two-parameter family of solutions.
Scalar fields in various theories of gravity either collapse

to GR black holes, as stated by well-known no-hair
theorems [46], or they seem to generate only naked
singularities or wormhole throats. Outside of the context
of asymptotically flat and stationary GR or scalar-tensor
gravity, a general theorem is not available. Future studies
will explore this direction.
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