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It has recently been proved that, in the presence of vortex flows, the fluctuation dynamics of a rotating
photon-fluid model is governed by the Klein-Gordon equation of an effective massive scalar field in a
(2þ 1)-dimensional acoustic black-hole spacetime. Interestingly, it has been demonstrated numerically
that the rotating acoustic black hole, like the familiar Kerr black-hole spacetime, may support spatially
regular stationary density fluctuations (linearized acoustic scalar “clouds”) in its exterior regions. In
particular, it has been shown that the composed rotating acoustic black-hole-stationary-scalar-field
configurations of the photon-fluid model exist in the narrow dimensionless regime α≡ Ω0=mΩH ∈
ð1; αmaxÞ with αmax ≃ 1.08 (here ΩH is the angular velocity of the black-hole horizon and fΩ0; mg are the
effective proper mass and the azimuthal harmonic index of the acoustic scalar field, respectively). In the
present paper, we use analytical techniques in order to explore the physical and mathematical properties
of the acoustic scalar clouds of the photon-fluid model in the regime ΩHrH ≫ 1 of rapidly spinning
central supporting acoustic black holes. In particular, we derive a remarkably compact analytical formula
for the discrete resonance spectrum fΩ0ðΩH; m; nÞg which characterizes the stationary bound-state
acoustic scalar clouds of the photon-fluid model. Interestingly, it is proved that the critical (maximal)
mass parameter αmax, which determines the regime of existence of the composed acoustic black-hole-
stationary-bound-state-massive-scalar-field configurations, is given by the exact dimensionless relation

αmax ¼
ffiffiffiffi
32
27

q
.
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I. INTRODUCTION

Kerr black-hole spacetimes [1] are characterized by
the presence of an ergoregion [2], a region outside the
black-hole horizon in which matter fields are bound to
corotate with the central spinning black holes. Interes-
tingly, it has been demonstrated, both analytically [3]
and numerically [4], that this physically intriguing
feature of spinning black-hole spacetimes allows them
to support spatially regular stationary configurations of
bosonic (integer-spin) fields that corotate with the
central black hole.
The stationary hairy scalar-field configurations, which in

the linearized regime have received the nickname “scalar
clouds” in the physics literature [3,4], are characterized by
proper frequencies that are in resonance with the angular
velocity ΩH of the central supporting spinning black hole
[3,4]. In particular, the characteristic proper frequency of a
stationary scalar cloud with an azimuthal harmonic indexm
coincides with the critical (marginal) frequency for the
superradiant scattering phenomenon [5,6] in the rotating
black-hole spacetime [3,4,7]:

ω ¼ mΩH: ð1Þ

In addition, spatially regular (bounded) bosonic clouds
are characterized by the simple upper bound [3,4]

ω2 < μ2; ð2Þ

where μ is the proper mass [8] of the supported stationary
scalar field. The relation (2) implies that the corotating
massive scalar-field configurations are spatially bounded to
the central black hole and cannot radiate their energy and
angular momentum to infinity.
Intriguingly, an analogous physical phenomenon in a

rotating photon-fluid system has recently been revealed in
the highly important work of Ref. [9]. Photon fluids are
nonlinear optical systems whose physical and mathematical
properties can be described by the hydrodynamic equations
of an interacting Bose gas [9–12]. In particular, it has been
shown [9,13] that photon-fluid systems are characterized
by the presence of long-wavelength elementary excitations
(phonons) that behave as massive scalar fields in an
effective acoustic curved spacetime.
Fluid systems are known to provide physically interest-

ing platforms and mathematically elegant toy models for
analogue gravity investigations [14–17]. For example, the
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intriguing physical phenomenon of superradiant scattering,
which characterizes the spinning Kerr black-hole space-
time, has also been analyzed in rotating photon-fluids
models [18–21]. In particular, a rotating black-hole space-
time has been studied in the physically interesting work
of Ref. [22]. In addition, an acoustic black hole which
is enclosed in a cylindrical cavity has been analyzed
in Ref. [23].
The dynamics of massive phonons over a draining vortex

flow in the photon-fluid model has been investigated
recently in Ref. [9] as the acoustic analogue of the (more
familiar) dynamics of massive scalar fields in rotating
curved black-hole spacetimes. In particular, it has been
explicitly proved [9] that the dynamics of linearized
acoustic excitations in the photon-fluid model with a
draining vortex flow are governed by the familiar Klein-
Gordon equation of an effective scalar field of proper mass
Ω0 that propagates in an acoustic (2þ 1)-dimensional
spinning black-hole spacetime which, like the familiar
Kerr black-hole spacetime, possesses an ergoregion.
Intriguingly, using direct numerical techniques, it has

been explicitly demonstrated in Ref. [9] that the acoustic
spinning black-hole spacetime may support stationary
linearized density fluctuations (acoustic scalar “clouds”)
in its exterior regions. In particular, it has been revealed [9]
that the composed acoustic black-hole-stationary-massive-
scalar-field configurations of the photon-fluid model are
characterized by the narrow regime of existence [9,24]

α≡ Ω0

mΩH
∈ ð1; αmaxÞ with αmax ≃ 1.08; ð3Þ

where ΩH is the angular velocity that characterizes the
acoustic horizon of the central supporting spinning
black hole.
The main goal of the present paper is to explore,

using analytical techniques, the physical and mathematical
properties of the composed acoustic spinning black-hole-
stationary-linearized-scalar-field configurations of the pho-
ton-fluid model. In particular, we shall derive a remarkably
compact analytical formula for the discrete resonance
spectrum fΩ0ðΩH; m; nÞg [25] that characterizes the spa-
tially regular stationary acoustic scalar clouds in the
dimensionless regime ΩHrH ≫ 1 [26] of rapidly spinning
central supporting black holes. In addition, we shall
provide a simple analytical explanation for the existence
of the numerically observed [9] interesting upper bound
α < αmax ≃ 1.08 [see Eq. (3)] on the regime of existence of
the composed acoustic black-hole-stationary-bound-state-
massive-scalar-field configurations.

II. DESCRIPTION OF THE SYSTEM

We study the physical and mathematical properties
of density fluctuations in a rotating photon-fluid model.
Intriguingly, a formal equivalence has recently been

established in the physically important work of Ref. [9]
between the dynamics of linearized acoustic phonons that
propagate on top of an inhomogeneous photon fluid and the
dynamics of linearized massive scalar fields in a spinning
curved spacetime. In particular, it has been explicitly
proved in Ref. [9] that, in the presence of vortex flows,
the dynamics of acoustic density fluctuations in the long-
wavelength regime of the photon-fluid model are governed
by the Klein-Gordon equation of a massive scalar field in
an effective (2þ 1)-dimensional curved spacetime.
The effective acoustic spacetime of the (2þ 1)-

dimensional rotating photon-fluid model can be described,
using polar coordinates, by the nontrivial curved line
element [9,27]

ds2 ¼ −
�
1 −

rH
r
−
Ω2

Hr
4
H

r2

�
dt2 þ

�
1 −

rH
r

�
−1
dr2

− 2ΩHr2Hdθdtþ r2dθ2: ð4Þ

Here rH is the radius of the acoustic black-hole horizon,
which is determined as the circular ring at which the inward
radial velocity vr of the fluid flow equals the speed of sound
cs [9,28,29]. The physical parameter ΩH in the curved line
element (4) is the angular velocity of the effective acoustic
horizon.
Interestingly, like the familiar Kerr black-hole solution

of the Einstein field equations, the rotating acoustic
spacetime (4) of the photon-fluid model is characterized
by the presence of an effective ergoregion, whose outer
boundary [9]

rE ¼ 1

2
rH
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Ω2

Hr
2
H

q �
ð5Þ

is determined by the condition gtt ¼ 0.
As explicitly proved in Ref. [9], the spatial behavior of

density fluctuations of the form

ρðt; r; θÞ ¼ ψðrÞffiffiffi
r

p eimθ−iΩt ð6Þ

in the effective acoustic spacetime (4) of the rotating
photon-fluid model are governed by the radial differential
equation

�
Δ

d
dr

�
Δ

d
dr

�
− Vðr;ΩÞ

�
ψðrÞ ¼ 0; ð7Þ

where

Δ≡ 1 −
rH
r
: ð8Þ

The effective radial potential of the photon-fluid system is
given by the functional expression
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Vðr;ΩÞ ¼−
�
Ω−

mΩHr2H
r2

�
2

þΔ
�
Ω2

0þ
m2

r2
þ rH
2r3

−
Δ
4r2

�
:

ð9Þ

The physical parameter Ω0, which plays the role of an
effective scalar mass, is the rest energy of the collective
excitations (phonons) [9]. The θ-periodicity of the angular
function eimθ in the field decomposition (6) implies that the
azimuthal harmonic index jmj of the scalar perturbation
modes is an integer [30].
In the next section, we shall use analytical techniques

in order to derive the discrete resonance spectrum
fΩ0ðΩH; m; nÞgn¼∞

n¼0 of the composed acoustic black-
hole-stationary-bound-state-linearized-massive-scalar-field
configurations. The radial eigenfunctions that characterize
the stationary scalar clouds of the acoustic curved space-
time (4) are determined by the ordinary differential equa-
tion (7) with the physically motivated boundary conditions
of spatially regular (bounded) scalar eigenfunctions at the
acoustic black-hole horizon and at spatial infinity [9]:

ψðr ¼ rHÞ < ∞ ð10Þ

and

ψðr → ∞Þ ∼ e−
ffiffiffiffiffiffiffiffiffiffiffi
Ω2

0
−Ω2

p
r for Ω2 < Ω2

0: ð11Þ

III. THE DISCRETE RESONANCE SPECTRUM OF
THE COMPOSED ACOUSTIC BLACK-HOLE
SCALAR-CLOUDS CONFIGURATIONS OF

THE PHOTON-FLUID MODEL

In the present section, we shall analyze the discrete
resonance spectrum fΩ0ðΩH; m; nÞg that characterizes
the composed acoustic black-hole-stationary-bound-state-
linearized-massive-scalar-field configurations of the pho-
ton-fluid model [9]. The stationary bound-state scalar
clouds of the effective rotating black-hole spacetime (4)
are characterized by the resonance condition [9]

Ω ¼ mΩH < Ω0: ð12Þ

Interestingly, we shall now prove that the resonance
spectrum fΩ0ðΩH; m; nÞg of the acoustic scalar clouds can
be studied analytically in the eikonal large-frequency
regime [31]

ΩHrH ≫ m ð13Þ

of the central supporting spinning black hole.
To this end, it is convenient to write the radial differe-

ntial equation (7), which determines the spatial behavior
of the scalar eigenfunctions in the acoustic black-hole

spacetime (4), in the form of the mathematically compact
Schrödinger-like ordinary differential equation

d2ψ
dy2

− VðyÞψ ¼ 0; ð14Þ

where the tortoise radial coordinate y is defined by the
differential relation [32]

dy ¼ Δ−1dr: ð15Þ

Substituting into Eq. (9) the resonant frequency Ω ¼
mΩH [see Eq. (1)], which characterizes the stationary
acoustic scalar clouds of the photon-fluid model, one
obtains the functional expression

VðrÞ ¼ −ðmΩHÞ2
�
1 −

r2H
r2

�
2

þ Δ
�
Ω2

0 þ
m2

r2
þ rH
2r3

−
Δ
4r2

�

ð16Þ

for the effective radial potential V½rðyÞ� of the composed
acoustic black-hole-stationary-bound-state-massive-scalar-
field configurations.
We shall now show explicitly that the Schrödinger-like

ordinary differential equation (14) for the spatially regular
stationary scalar clouds in the rotating acoustic black-hole
spacetime (4) is amenable to a standard WKB analysis
[33–37] in the dimensionless regime ΩHrH ≫ 1 of rapidly
spinning supporting black holes.
Interestingly, the potential (16) of the composed acoustic

black-hole-stationary-scalar-clouds configurations has an
effective binding well in the vicinity of the acoustic
horizon. As shown in Refs. [33,34,37], in the eikonal
large-frequency regime (13), one can express the WKB
resonance condition for the bound-state field configura-
tions of the one-dimensional Schrödinger-like ordinary
differential equation (14) in the remarkably compact form

Vminffiffiffiffiffiffiffiffiffiffiffiffi
2V 00

min

p ¼ −
�
nþ 1

2

�
; n ¼ 0; 1; 2;…; ð17Þ

where V 00 ≡ d2V=dy2. The effective binding potential Vmin
and its second spatial derivative V 00

min in the WKB reso-
nance condition (17) are evaluated at the minimum point
r ¼ rmin of the potential (16), where

V 0 ≡ dV
dy

¼ 0 for rðyÞ ¼ rmin: ð18Þ

Substituting the effective binding potential (16) of the
composed spinning black-hole-acoustic-scalar-clouds con-
figurations into Eq. (18), one finds the relation
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Ω2
0 ¼

4ðmΩHÞ2ðr2min − r2HÞrH
r3min

f1þO½ðΩHrHÞ−2�g

for ΩHrH ≫ 1 ð19Þ

in the eikonal large-frequency regime (13) of the central
supporting acoustic black hole.
Substituting the relation (19) into the WKB equa-

tion (17), one finds the resonance equation

4rHðr2min − r2HÞ − ðrmin − rHÞðrmin þ rHÞ2

¼ −
2rH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2min − 6r2H

p
mΩH

�
nþ 1

2

�
ð20Þ

for the radial location of the minimum r ¼ rmin of the
effective binding potential (16) that characterizes
the composed acoustic black-hole-stationary-scalar-clouds
configurations.
As we shall now show, the (rather cumbersome) reso-

nance equation (20) can be solved analytically using

an iteration scheme. The zeroth-order solution rð0Þmin ≡
rminðΩHrH → ∞Þ of the resonance equation (20) is given
by the simple asymptotic value

rð0Þmin ¼ 3rH: ð21Þ

Next, substituting

rmin ¼ 3rH½1þ αðΩHrHÞ−1� ð22Þ

into the resonance equation (20), one finds

α ¼ nþ 1
2ffiffiffiffiffi

12
p

m
f1þO½ðΩHrHÞ−1�g; ð23Þ

which yields the functional expression [see Eq. (22)]

rmin¼3rH

	
1þ 1ffiffiffiffiffi

12
p

m

�
nþ1

2

�
ðΩHrHÞ−1þO½ðΩHrHÞ−2�




ð24Þ

for the radial location of the minimum of the effective
binding potential (16).
Finally, substituting Eq. (24) into the relation (19), one

obtains the discrete resonance spectrum

Ω0 ¼ mΩH

ffiffiffiffiffi
32

27

r 	
1 −

ffiffiffi
3

p

16m

�
nþ 1

2

�
ðΩHrHÞ−1

þO½ðΩHrHÞ−2�


; ð25Þ

which characterizes the composed acoustic black-hole-
stationary-bound-state-linearized-massive-scalar-field con-
figurations of the photon-fluid model.

IV. NUMERICAL CONFIRMATION

It is of physical interest to test the accuracy of
the analytically derived resonance formula (25) which
characterizes the composed acoustic black-hole stationary
scalar-field configurations of the photon-fluid model. The
corresponding effective field masses fΩ0ðΩH; m;nÞg of the
acoustic scalar clouds were recently computed numerically
in the interesting Ref. [9].
In Table I, we display the dimensionless ratios αnumerical

and αwkb for the fundamental (n ¼ 0) resonant mode of
the stationary bound-state acoustic scalar clouds with
m ¼ 1 and for various values of the dimensionless angular
velocity ΩHrH of the central supporting spinning black
hole. Here fαnumericalðΩHrHÞg are the exact (numerically
computed [9]) values of the dimensionless ratio Ω0=mΩH,
which characterizes the composed acoustic black-hole
stationary bound-state linearized massive scalar-field
configurations, and fαwkbðΩHrHÞg are the corresponding
analytically derived values of this dimensionless physical
parameter as given by the WKB resonance formula (25).
Interestingly, the data presented in Table I reveal an

excellent agreement between the numerical data of Ref. [9]
and the analytically derived WKB resonance formula (25)
of the composed acoustic black-hole-stationary-massive-
scalar-field configurations. It is worth noting that the
agreement between the numerical data of Ref. [9] and
the analytically derived WKB resonance formula (25) of
the composed acoustic black-hole-stationary-bound-state-
linearized-massive-scalar-field configurations is generally
better than 0.1% in the ΩHrH ≳ 1 regime. This observation
is quite remarkable, since the analytically derived WKB

TABLE I. Stationary bound-state massive scalar clouds linearly
coupled to acoustic spinning black holes of the photon-fluid
model. We present, for various values of the black-hole dimen-
sionless angular velocity ΩHrH, the exact (numerically computed
[9]) values of the dimensionless ratio α≡ Ω0=mΩH for the
fundamental (n ¼ 0) resonant mode of the stationary spatially
regular massive scalar clouds with m ¼ 1. We also present the
corresponding analytically derived values of the dimensionless
ratio α≡ Ω0=mΩH as calculated directly from the WKB reso-
nance formula (25). One finds a remarkably good agreement
between the analytically derived formula (25) and the numeri-
cally computed values [9] of the dimensionless ratio Ω0=mΩH,
which characterizes the composed acoustic black-hole stationary
bound-state massive scalar-field configurations. Note that the
agreement between the numerical data of Ref. [9] and the
analytically derived WKB resonance formula (25) is generally
better than 0.1% in the ΩHrH ≳ 1 regime.

ΩHrH αnumerical αwkb

2 1.058 1.059
4 1.073 1.074
6 1.078 1.079
8 1.081 1.081
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resonance spectrum (25) is formally valid in the eikonal
large-ΩHrH regime.

V. SUMMARY

The recently published highly important work of Ref. [9]
has revealed the physically interesting fact that, in the
presence of vortex flows, the dynamics of fluctuations in a
rotating photon-fluid model is governed by the Klein-
Gordon equation of an effective massive scalar field in a
spinning acoustic black-hole spacetime. In particular, it has
been demonstrated numerically [9] that corotating acoustic
scalar clouds, spatially regular bound-state configurations
which are made of stationary linearized massive scalar
fields, can be supported by the central spinning (2þ 1)-
dimensional acoustic black holes.
The important numerical results presented in Ref. [9]

have nicely demonstrated the fact that, for a given value of
the horizon angular velocity ΩH of the central supporting
black hole, the stationary bound-state acoustic clouds of the
photon-fluid model are characterized by a discrete reso-
nance spectrum fΩ0ðΩH; m; nÞgn¼∞

n¼0 for the effective mass
parameter of the supported scalar fields. In particular, it has
been revealed that the composed acoustic black-hole-sta-
tionary-bound-state-massive-scalar-field configurations of
the photon-fluid model [9] exist in the narrow dimension-
less regime α≡ Ω0=mΩH ∈ ð1; αmaxÞ with αmax ≃ 1.08.
In the present paper we have used analytical techniques

in order to explore the physical and mathematical proper-
ties of the composed bound-state acoustic black-hole-sta-
tionary-linearized-massive-scalar-field configurations. In
particular, we have derived the remarkably compact
WKB analytical formula [see Eq. (25)]

Ω0

mΩH
¼

ffiffiffiffiffi
32

27

r 	
1−

ffiffiffi
3

p

16m

�
nþ1

2

�
ðΩHrHÞ−1þO½ðΩHrHÞ−2�




ð26Þ

for the discrete resonant spectrum that characterizes
the acoustic scalar clouds in the dimensionless regime
ΩHrH ≫ m of rapidly spinning central supporting black
holes. The analytically derived formula (26) for the discrete
resonant spectrum of the composed acoustic spinning black-
hole-massive-scalar-field configurations was shown to agree
remarkably well with direct numerical computations [9] of
the corresponding resonant modes of the photon-fluid model.
Interestingly, from the resonance formula (26), one finds

the asymptotic upper bound

�
Ω0

mΩH

�
max

¼
ffiffiffiffiffi
32

27

r
ð27Þ

on the regime of existence of the composed acoustic black-
hole-stationary-bound-state-massive-scalar-field configura-
tions of the photon-fluid model. Our results therefore
provide a simple analytical explanation for the intriguing
upper bound (3) on the regime of existence of the cloudy
acoustic black-hole spacetimes that has recently been
observed numerically in the physically interesting work
of Ref. [9].
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