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Cosmological bounces occur in many gravity theories. We define singularity scattering maps relating
large scale geometries before and after the bounce (assuming no BKL oscillations) and encoding
microscopic details of the theory. By classifying all suitably local maps we uncover three universal laws:
scaling of Kasner exponents, canonical transformation of matter, and directional metric scaling. These are
indeed obeyed by Bianchi I bounces in string theory, loop quantum cosmology, and modified matter
models; our classification then determines how inhomogeneities and anisotropies traverse bounces and
precisely extract model-dependent degrees of freedom.
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I. THREE UNIVERSAL LAWS

Toward a unification of bouncing scenarios.—An
important class of proposals to resolve the initial singularity
problem in cosmology are bouncing scenarios in which the
universe undergoes a contracting phase followed by the
expanding phase that includes the present time (see [1]).
Such scenarios have been constructed through various
modified gravity theories [2], matter (often a scalar field)
violating the dominant energy condition [3–5], or quantum
gravity effects in string theory [6,7] and loop quantum
cosmology [8].
Viable bouncing cosmologies include a phase (e.g., slow

contraction [9,10]) responsible for our homogeneous,
isotropic, and flat universe, a mechanism responsible for
the bounce, and should reproduce unmodified Einstein
gravity at much larger scales than the duration of the
bounce. We do not attempt to review here the wide
literature on these topics, and we rely exclusively on this
last aspect. In this paper, we revisit this old problem by
abstracting away all microscopic details of the model, and
describing spacetime at large time scales as two singular
solutions to Einstein’s equations joined across the bounce.

Classification of junction conditions.—Many specific
junction conditions have been proposed [1,11], e.g., by
analytic continuation [12,13]. We encompass them into the
notion of singularity scattering map of a microscopic
theory, which maps a singular contracting solution of
Einstein’s equations to the expanding solution resulting
from the given theory. This map encapsulates all the
information needed to describe, at large scales, arbitrarily
inhomogeneous and anisotropic bounces for that theory.
Einstein’s equations become ultralocal [14–16] near a

spacelike singularity. Provided the microscopic theory
respects this ultralocality, its singularity scattering map
may not involve spatial derivatives. Einstein’s constraint

FIG. 1. Cyclic spacetime arising from colliding plane gravita-
tional waves, in null coordinates (the future is up) [17]. Left: area
element A of plane-symmetry orbits, depicted as the height of
spacetime “bubbles.” Right: singular locus A ¼ 0 across which
we apply the junction ðgþ; kþ;ϕþ

0 ;ϕ
þ
1 Þ ¼ ðe2ðk−−1=3Þg−; k−;

ϕ−
0 ;ϕ

−
1 þ ϕ−

0 Þ. For this example of junction, the evolution
problem is well-posed.
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equations restrict the map further. Our main contribution is
to characterize all possible ultralocal singularity scattering
maps in the presence of a scalar field. For proofs and an
application to plane-symmetric cyclic spacetimes, see
our companion paper [17] together with Fig. 1 below.
Interestingly, our standpoint distinguishes between univer-
sal and model-dependent aspects of junction relations.
First law: scaling of Kasner exponents. Our classifica-

tion uncovers three universal laws obeyed by any ultralocal
bounce. First, Kasner exponents scale as

ðjgj1=2K∘ Þafter ¼ −γðjgj1=2K∘ Þbefore; ð1Þ

with a dissipation constant γ ∈ R, which involves the
spatial metric g in synchronous gauge, its volume factor

jgj1=2, and the traceless partK∘ of the extrinsic curvature as a
(1,1) tensor.
Second law: canonical transformation. Matter, modeled

away from the bounce as a minimally coupled massless
scalar ϕ, undergoes a canonical transformation:

Φ∶ ðπϕ;ϕÞbefore ↦ ðπϕ;ϕÞafter preserves dπϕ ∧ dϕ; ð2Þ

as explicited in (10) given below, where πϕ is the
momentum conjugate to ϕ. The matter map Φ further

depends on a scalar invariant χ ∼ ðTrK∘ 3
=ðTrK∘ 2Þ3=2Þbefore.

Third law: directional metric scaling. The metric after
the bounce is obtained by a different nonlinear scaling in
each proper direction of K, specifically

gafter ¼ expðσ0 þ σ1K þ σ2K2Þgbefore; ð3Þ

where σ0, σ1, σ2 are arbitrary for scattering maps (8) with
γ ¼ 0 and are explicited in (9) in terms of Φ, γ for γ ≠ 0.
Model-dependence.—The three laws are universal in the

renormalization group sense; they constrain macroscopic
aspects of bounces regardless of their origin from different
microscopic corrections to Einstein’s equations. Contrary
to field theory universality classes, which depend on
finitely many parameters, ultralocal singularity scattering
maps depend on a whole map, namely Φ.
After introducing the set up, the ultralocality assumption,

and our classification of singularity scattering maps, we
study the maps associated with specific theories: the pre-
big bang scenario, loop quantum cosmology, and some
modified matter models. Our first-principles calculations in
homogeneous (but anisotropic) Bianchi I universes are
consistent with the universal scattering laws (1)–(3), which
suggests that these theories respect ultralocality. The ultra-
locality conjecture near a singularity [14] is known numeri-
cally to hold in a slow contraction phase [10] and we argue
in this text that it may hold through the bounce.

II. SINGULARITY SCATTERING MAPS

ADM formalism.—We focus on bouncing scenarios in
which corrections to Einstein gravity are negligible away
from the bounce locus, which we model as a spacelike
singularity hypersurfaceH (cf. [17] for timelikeH), but are
essential at (small) time scales tb around H. Provided
spatial inhomogeneities are mild (see below), the spacetime
on each side is well described at larger time scales by a
solution of the Einstein equations which is singular along
H, and these two solutions are connected using a suitable
junction. We model matter as a scalar field that is minimally
coupled and massless away from the bounce.
We work with a Gaussian (or synchronous gauge)

foliation in which the metric reads gð4Þ ¼ −dt2 þ gðt; xÞ,
with the bounce hypersurface being at the proper time
t ¼ 0. Each constant-time hypersurface is endowed with a
Riemannian metric g ¼ gab and an extrinsic curvature
K ¼ Kb

a, such that Kac ¼ Kb
agbc is symmetric. Here,

a; b;… are local coordinate indices on each time slice.
We consider the ADM formulation of Einstein’s equations:

−∂2
tϕþ TrðKÞ∂tϕ ¼ −∇a∇aϕ;

∂tgab þ 2Kab ¼ 0;

∂tKb
a − ðTrKÞKb

a ¼ Rb
a − ∂aϕ∂bϕ;

ðTrKÞ2 − TrðK2Þ − ð∂tϕÞ2 ¼ −Rþ ∂aϕ∂aϕ;

∇aKa
b − ∂bðTrKÞ þ ∂tϕ∂bϕ ¼ 0; ð4Þ

three evolution and two constraint equations. We normalize
speed of light and Newton constant as c ¼ 8πG ¼ 1.
Quiescent regime.—The Einstein vacuum equations (4),

with ϕ ¼ 0, are expected to exhibit BKL oscillations
(named after Belinski, Khalatnikov, and Lifshitz) as differ-
ent directions repeatedly expand and contract [14–16].
The matter field ϕ allows all directions to contract, hence
suppressing oscillations (while allowing anisotropies) and
leading to quiescent cosmological singularities, a class
identified by Barrow [18]. Our work focuses on this regime.
Near the singularity, asymptotic profiles describing the

main behavior of a solution are found [16,19] by neglecting
spatial derivatives compared to t derivatives, namely
neglecting right-hand sides of (4). This family of asymp-
totic profiles (denoted by a � subscript) reads

g�� ðtÞ ¼ e2ðln jt=t�jÞk�g�; K�� ðtÞ ¼ −ð1=tÞk�;
ϕ�� ðtÞ ¼ ϕ�

0 ln jt=t�j þ ϕ�
1 ; ð5Þ

parametrized by singularity data ðg�; k�;ϕ�
0 ;ϕ

�
1 Þ pre-

scribed on each side � ¼ sgnðtÞ of the bounce. The
asymptotic metric is expressed in terms of the matrix
exponential of ðk�b

aÞ, and t� > 0 is a time scale.
The singularity data must satisfy the constant trace

relation Trk� ¼ 1 together with an asymptotic form of
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the Hamiltonian and momentum constraints (where ∇� is
the connection associated with g�),

1 − k�a
bk

�b
a ¼ ðϕ�

0 Þ2; ∇�
a k�a

b ¼ ϕ�
0 ∂bϕ

�
1 : ð6Þ

In our context, a data set ðg�; k�;ϕ�
0 ;ϕ

�
1 Þ is called

quiescent if Kasner exponents k�i (eigenvalues of k�)
are positive. The trace and Hamiltonian constraints readP

i k
�
i ¼ 1 and 1 −

P
iðk�i Þ2 ¼ ðϕ�

0 Þ2, respectively.
Asymptotic profiles are generally not exact solutions.
Validity of asymptotic profiles.—Asymptotic profiles are

defined for all times �t ∈ ð0;∞Þ, but are only good
approximations in some range tb ≪ jtj ≪ ts: indeed, cur-
vature generically blows up as t → 0� so that (e.g., higher-
curvature) corrections become important at a small time
jtj ≃ tb, while the spatial derivatives neglected in (4) stop
being negligible at some large time scale ts since they decay
slower than time derivatives at jtj → ∞.
Our assumption of mild spatial inhomogeneities is that

tb ≪ ts. Equivalently, we require that at time tb (bounce
duration), spatial derivative terms in (4) such as ∇a∇aϕ=ϕ,
∂aϕ∂aϕ or R are parametrically smaller than the typical
scale 1=t2b of the left-hand sides, so that they remain smaller
on some time interval ðtb; tsÞ. Under this assumption we
retrieve the data for the asymptotic profile as the (approx-
imately constant for tb ≪ jtj ≪ ts) values

ðg�;k�;ϕ�
0 ;ϕ

�
1 Þ

≔ ðjt=t�j2tKg;−tK;t∂tϕ;ϕ− t ln jt=t�j∂tϕÞtb≪jtj≪ts : ð7Þ

In the idealized cases tb ¼ 0 (singular bounce) or ts ¼ ∞
(spatially homogeneous case), the singularity data can be
defined as t → 0� or t → �∞ limits of (7), respectively.
The new notion.
We denote by IðHÞ the set of all singularity data

ðg�; k�;ϕ�
0 ;ϕ

�
1 Þ obeying (6). We define a singularity

scattering map as a local diffeomorphism-covariant map
S∶IðHÞ → IðHÞ. By general covariance and locality, S is
characterized by its effect on any small ball, so the topology
of H is irrelevant. We also introduce the corresponding
junction condition ðgþ; kþ;ϕþ

0 ;ϕ
þ
1 Þ ¼ Sðg−; k−;ϕ−

0 ;ϕ
−
1 Þ.

See Fig. 1 for an example map, and an application.
Mathematical advances.—The existence of solutions to

Einstein’s equations asymptotic to quiescent profiles (5)
and satisfying the junction conditions is proven in the
companion paper [17] based on the earlier work [16,19].
We also refer to [20–23] for recent progress on the theory of
weak solutions with singularities. Our definition is a
generalization to singularity hypersurfaces of Israel’s junc-
tion conditions [24] for hypersurfaces across which the
metric remains regular. Our junction conditions are rem-
iniscent of kinetic relations for phase boundaries in fluid
dynamics and material science [22,25].

III. A CLASSIFICATION OF BOUNCING LAWS

Ultralocality.—As observed in [14,16,19], the massless
scalar field ϕ suppresses BKL oscillations, so that spatial
derivatives can be neglected near a quiescent singularity of
Einstein’s equations; each spatial point undergoes an
(almost) independent evolution. We assume that the micro-
scopic physics responsible for the bounce does not spoil
this decoupling of spatial points. Namely, we focus on
ultralocal scattering maps, for which the value of
ðgþ; kþ;ϕþ

0 ;ϕ
þ
1 Þ at a point x of H depends on

ðg−; k−;ϕ−
0 ;ϕ

−
1 Þ at x but not on (spatial) derivatives.

The ultralocality assumption is supported, for micro-
scopic theories with higher-curvature or higher-derivative
corrections, by checking that spacetime invariants are
dominated by time derivatives. For instance, based on
the asymptotic profiles (5) (henceforth we set t� ¼ 1),

jdϕj2
gð4Þ ¼ −ð∂tϕÞ2 þ gab∂aϕ∂bϕ ∼ −ϕ2

0jtj−2;

where the spatial part is negligible because gab ≲ jtj−2kmax ,
where kmax is the largest Kasner exponent, and generically
kmax < 1 due to (6). As another example, spatial gradients
are also negligible in the Kretschmann scalar jRiemj2

gð4Þ ¼
4
9
ð1 − r2 − 2χr3 þ 2r4Þ=jtj4 þOðlog4 jtj=jtj4kmaxÞ, where

we defined χ� ¼ ð9=2ÞTrðk
∘�
=r�Þ3 ∈ ½−1; 1� and r� ¼

rðϕ�
0 Þ ¼ ð1 − 3

2
ðϕ�

0 Þ2Þ1=2 ¼ ð3
2
Trðk

∘�Þ2Þ1=2 ∈ ½0; 1�.
One may also test ultralocality in a given theory by

numerical calculations far from a homogeneous universe,
similar to how ultralocality was observed in [10] in a
supersmoothing phase preceeding a possible bounce.

Consequences.—Ultralocality forces k
∘þ ¼ P

n βnðk
∘−Þn

for some functions βn of scalar invariants ϕ−
0 ;ϕ

−
1 ; χ

−. As we
prove in [17], the constraint ∇þkþ ¼ ϕþ

0 ∂ϕþ
1 in (6) can be

fulfilled for all ðg−; k−;ϕ−
0 ;ϕ

−
1 Þ only if k

∘þ ffiffiffiffiffiffi
gþ

p
¼ γk

∘− ffiffiffiffiffi
g−

p
,

our law (1). We eventually prove that any ultralocal
scattering map is either an isotropic map, Siso

M;φ;ϵ (8), or
an anisotropic map, Sani

Φ;γ (9).
Isotropic ultralocal scattering.—For γ ¼ 0, the con-

straints (6) fix jϕþ
0 j and make ϕþ

1 constant, but leave the
spatial metric arbitrary:

Siso
M;φ;ϵ∶ ðg−; k−;ϕ−

0 ;ϕ
−
1 Þ ↦ ðgþ; kþ;ϕþ

0 ;ϕ
þ
1 Þ

¼ ðexpðMÞg−; δ=3; ϵ
ffiffiffiffiffiffiffiffi
2=3

p
;φÞ ð8Þ

for any constant φ ∈ R, sign ϵ ¼ �1, and any linear
combination M ¼ P

2
n¼0Mnðϕ−

0 ;ϕ
−
1 ; χÞðk−Þn.

The isotropic scattering map Siso
M;φ;ϵ physically describes

an irreversible bouncing scenario in which almost all
information is lost: (i) Since kþ ¼ δ=3, the bounces
produce an isotropic and homogeneous expansion, (ii) the
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matter field is constant in space, and (iii) the metric is
scaled differently along different eigenvectors of k−.
Anisotropic ultralocal scattering.—For γ ≠ 0, con-

straints restrict the matter map Φ to be a canonical trans-
formation with ϵ ¼ sgnγ [see (10) below]. Explicitly,
Sani
Φ;γ∶ðg−; k−;ϕ−

0 ;ϕ
−
1 Þ ↦ ðgþ; kþ;ϕþ

0 ;ϕ
þ
1 Þ reads

ðϕþ
0 ;ϕ

þ
1 Þ ¼Φðχ;ϕ−

0 ;ϕ
−
1 Þ; k

∘þ ¼ ϵðrþ=r−Þk
∘−
;

gþ ¼
����γr

−

rþ

����
2
3

exp

�
3k
∘−

2r−
ðξ− χσÞþ σ

�
9ðk

∘−Þ2
2ðr−Þ2 − δ

��
g−;

ð9Þ

where ∂ϕ−
0
ξ ¼ −2ϵðϕþ

0 =r
þÞ∂ϕ−

0
ϕþ
1 and ξ vanishes at

ϕ−
0 ¼ � ffiffiffiffiffiffiffiffi

2=3
p

, and σ ¼ 3ð∂χξþ 2ϵðϕþ
0 =r

þÞ∂χϕ
þ
1 Þ.

The matter map.—Constraints also imply the law (2),
that Φ is a canonical transformation at fixed k

°−
=r−. It

preserves dðϕ0=rðϕ0ÞÞ ∧ dϕ1 ¼ dϕ0 ∧ dϕ1=rðϕ0Þ3 up to
the sign ϵ ¼ sgnγ (see example in Fig. 2):

det

�∂ϕ−
0
ðϕþ

0 =r
þÞ ∂ϕ−

0
ϕþ
1

∂ϕ−
1
ðϕþ

0 =r
þÞ ∂ϕ−

1
ϕþ
1

�
¼ ϵ∂ϕ−

0

�
ϕ−
0

r−

�
¼ ϵ

ðr−Þ3 : ð10Þ

For Siso
M;φ;ϵ, the constant mapΦ sits at a singular point of the

symplectic form (10) but it is a limit of canonical trans-
formations. As γ → 0 with fixed ϕþ

1 =γ and γϕþ
0 =r

þ, Sani
Φ;γ

tends towards an isotropic map Siso
M;φ;ϵ with restrictions on

the metric factor M. These maps with kþ ≃ δ=3 are good
candidates to approximate supersmoothing models.

IV. SELECTED EXAMPLES OF BOUNCES

Reduction to Bianchi I.—We now exhibit the two
features (1) and (2) for singularity scattering maps of
several models (pre-big bang, modified matter, etc.) in
spatially homogeneous bounces. As we have argued, these
laws and Eq. (3) can also be derived model-independently

from an ultralocality assumption, without spatial homo-
geneity. Now, though, we work with a (d ¼ 3) Bianchi I
metric,

gð4Þ ¼ −dt2 þ ωðtÞ2=3
X3
i¼1

e2αiðtÞdxidxi; ð11Þ

with anisotropic stress parameters αi summing to zero and
the volume factor ω ≔ jgj1=2.
Asymptotic profiles.—As explained before (7), spatial

homogeneity means that ts ¼ ∞, namely the bounce, is
well-described for all jtj ≫ tb by the asymptotic profiles
(5), which are exact Bianchi I solutions to Einstein’s
equations with a free scalar field. Explicitly, in the notation
(11) we consider bounces that are asymptotic to

ω ¼ �ω�
0 ðt − t�0 Þ; ϕ ¼ ϕ�

0 ln jt − t�0 j þ ϕ�
1 ;

αi ¼
�
k�i −

1

3

�
ln jt − t�0 j þ ν�i ; ðϕ�

0 Þ2 þ jk�j2 ¼ 1;

ð12Þ

at t → �∞ for some constants ðt�0 ;ω�
0 ; k

�
i ; ν

�
i ;ϕ

�
0 ;ϕ

�
1 Þ,

such that
P

i ν
�
i ¼ 0, the Kasner exponents k�i (eigenval-

ues of k�) sum to 1, and jk�j2 ¼ Trðk�Þ2.
We are interested in the map that relates parameters

describing the two limits. Invariance under time trans-
lations and coordinate redefinitions of each xi ensures that
t−0 ; lnω

−
0 ; ν

−
i appear precisely as shifts of tþ0 ; lnω

þ
0 ; ν

þ
i ,

respectively, so ðtþ0 − t−0 ;ω
þ
0 =ω

−
0 ; ν

þ
i − ν−i ; k

þ
i ;ϕ

þ
0 ;ϕ

þ
1 Þ

only depend on ðk−i ;ϕ−
0 ;ϕ

−
1 Þ. For brevity we focus here

on ðωþ
0 =ω

−
0 ; k

þ
i ;ϕ

þ
0 ;ϕ

þ
1 Þ and not the metric and time offset.

The first scattering law (1) that we will verify in concrete
bounces translates, in Bianchi I notations, to ωþ

0 ðkþi − 1
3
Þ ¼

γω−
0 ðk−i − 1

3
Þ for some γ ∈ R. In particular, ωþ

0 rðϕþ
0 Þ ¼

jγjω−
0 rðϕ−

0 Þ. The second law states Eq. (10).
Pre-big bang scenario.—Our first concrete model

is a singular bounce inspired from string theory
[6,7,26], described by string frame fields ϕSF, g

ð4Þ
SF and

obeying suitably truncated metric-dilaton equations.
Bianchi I solutions related by scale-factor duality
are glued along tSF ¼ 0, assuming that higher derivative
and/or higher loop corrections resolve the singularity. They

are ϕSF ¼ ln jgð4ÞSF j1=2 − ln jtSFj and gð4ÞSF ¼ −dt2SF þP
3
i¼1 e

2ui�jtSFj2βi�dxidxi on both sides �tSF > 0. The
constants ui�; βi� obey

P
i β

2
i� ¼ 1, and each β2iþ ¼ β2i−.

Only β� and differences uiþ − ui− are coordinate-invariant;
they depend on β− and how the singularity is resolved.

The Einstein frame metric gð4Þ ¼ e−ϕSFgð4ÞSF , proper time t,
and canonically normalized scalar ϕ ¼ ϕSF=

ffiffiffi
2

p
then take

the form (12) with, in particular, ω�
0 ðk�i − 1

3
Þ ¼

βi� − 1
3

P
j βj�. Among the 23 choices of βþ allowed by

scale-factor duality, βþ ¼ −β− gives an interesting junc-
tion, with ωþ

0 ðkþi − 1
3
Þ ¼ −ω−

0 ðk−i − 1
3
Þ,

FIG. 2. Image of equally spaced constant-ðϕ−
0 =r

−Þ (vertical
lines) and constant-ϕ−

1 (curved lines) under the matter map Φ of
the pre-big bang scenario (13) (βþ ¼ −β−, uþ ¼ u−). It preserves
dðϕ�

0 =r
�Þdϕ�

1 so each region here has the same area.
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ϕþ
0 ¼ −ð2

ffiffiffi
2

p
þ 4ϕ−

0 Þ=ð4þ 3
ffiffiffi
2

p
ϕ−
0 Þ; ð13Þ

and ϕþ
1 ¼ ðrþ=r−Þϕ−

1 þ fðβ−Þ, where the function f
depends on how the singularity is resolved. Interestingly,
regardless of f both laws (1) and (2) are obeyed. The
matter map Φ is depicted in Fig. 2.
All other sign choices (except the trivial βþ ¼ β−)

violate these laws. By our general classification above,
this means that the corresponding junction conditions
would not extend to inhomogeneous spacetimes (specifi-
cally, applying the transformation pointwise would violate
the momentum constraint).
Modified gravity and loop quantum cosmology.—Both

in loop quantum cosmology [27,28] and in quite general
modified gravities [2] (Brans–Dicke theory, kinetic gravity
braiding, mimetic gravity, etc.), the densitized shear K

° ffiffiffi
g

p
is continuous (up to a sign) across Bianchi I bounces. To
derive this, the authors of [2] assumed that modifications of
gravity are encapsulated in an effective stress-tensor,
preserve spatial rotation invariance, and are strong enough
to lead to a bounce but are negligible away from it.
This is precisely our first universal scattering law (1)

(with γ ¼ −1), which we have proven without any sym-
metry assumption. It would be very interesting to determine
the precise scattering maps for some models and check our
second scattering law (2) directly.
Bounces with modified matter.—Consider now Einstein

gravity coupled to a scalar field with Lagrangian Lðϕ; XÞ
where X ¼ −j∇ϕj2 ¼ _ϕ2. It is beyond the scope of this
paper to analyze which specific models lead to bouncing
solutions (exemplified in Fig. 3); such bounces arise with
ekpyrotic matter [29], ghost condensates, Brans–Dicke
theory in Einstein frame, etc. For our setting, Bianchi I
solutions should asymptote to free scalar ones (12) at
t → �∞, where X → 0 and jϕj → ∞, so we demand L ≃
X=2 (free scalar) in these limits.
In Bianchi I spacetimes (11), the action (per comoving

volume) is S ¼ R ðLðϕ; _ϕ2Þ − _ω2=ð3ω2Þ þ 1
2

P
i _α

2
i Þωdt.

As observed in [2], the equation of motion ∂tðω _αiÞ ¼ 0
for αi states that λi ¼ ω _αi are constants so their t → �∞
limits �ω�

0 ðk�i − 1
3
Þ coincide. This proves in such space-

times our first scattering law (1) with γ ¼ −1, for any
modified matter Lagrangian L that exhibits bounces.
Next, we switch to the Hamiltonian formalism with

momenta πϕ ¼ 2ω _ϕ∂XL, πω ¼ − 2
3
_ω=ω, πi ¼ ω _αi conju-

gate to ϕ;ω; αi. By Liouville’s theorem, the symplectic
form ϖ ¼ dπϕ ∧ dϕþ dπω ∧ dωþ dπi ∧ dαi is time-
invariant so its t → �∞ limits coincide. The asymptotics
L ≃ X=2 and (12), including the Hamiltonian constraint,
give

ϖt → �∞
¼ � dðð3

2
jλj2Þ1=2ϕ�

0 =rðϕ�
0 ÞÞ ∧ dϕ�

1 þ dλi ∧ dν�i ,
and these limits must coincide. At fixed λ, this means
�dðϕ�

0 =r
�Þ ∧ dϕ�

1 are equal, so the map Φ is a canonical
transformation as stated in (10) with ϵ ¼ sgnγ ¼ −1. This
establishes the second scattering law (2) for modified-
matter bounces. One can check that ϕþ

0 ;ϕ
þ
1 only depend on

ϕ−
0 ;ϕ

−
1 , and the scattering map takes the explicit form (9)

given in our model-independent analysis.

V. OUTLOOK ON UNIVERSALITY AND
MODEL-DEPENDENCE

Our notion of singularity scattering map extracts the
macroscopic effects induced by a microscopic model.
Remarkably, based solely on the ultralocality postulate,
we establish a full classification together with universal
laws, while leaving room for model-dependence to affect
the universe after the bounce. The universal laws are
obeyed by a wide range of models: (1) continuity of
densitized shear K

° ffiffiffi
g

p
, (2) canonical transformation of

matter, and (3) directional metric scaling.
In the pre-big bang scenario our approach selects the

natural choice of signs, βþ ¼ −β−, and leads us to an
anisotropic scattering map characterized by an explicit Φ;
cf. (13). For modified matter models, the map depends on
the Lagrangian yet obeys the universal scattering laws (in
homogeneous cases, at least) and fits in our classification.
We shall treat inhomogeneous bounces in [30].
The keys for our classification were the constraint

equations and the fact that space derivatives are negligible
near the singularity. Our method should generalize to other
matter fields, a cosmological constant, bounces that do not
asymptote to general relativity, and Penrose’s conformal
cyclic cosmology [31,32]. For compressible fluids we find
in [22] an interesting interplay between geometric singu-
larities, fluid shock waves, and phase transitions.

FIG. 3. Bianchi I symmetric modified matter bounces with
Lagrangian L ¼ 1

2
_ϕ2 − 2j _ϕje−ϕ2=2=tb þ e−ϕ

2

=t2b for fixed t−0 ;ϕ
−
0 ,

and ω−
0 (normalized to 1). Each color corresponds to one value of

ϕ−
1 , which affects t → þ∞ asymptotics ω ≃ ωþ

0 ðt − tþ0 Þ and ϕ ≃
ϕþ
0 lnωþ ðϕþ

1 − ϕþ
0 lnωþ

0 Þ manifested in the two plots.
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