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Associating the formation sites of haloes with the maxima of the smoothed linear density field, we
present nonperturbative predictions for the Lagrangian and evolved halo correlation functions that are valid
at all separations. In Lagrangian space, we find significant deviations from the perturbative bias calculation
at small scales, in particular, a pronounced exclusion region where ξ ¼ −1 for maxima of unequal height.
Our predictions are in good agreement with the Lagrangian clustering of dark matter proto-haloes
reconstructed from N-body simulations. Our predictions for the mean infall and velocity dispersion of
haloes, which differ from the local bias expansion, show a similar level of agreement with simulations.
Finally, we displace the initial density peaks according to the Zeldovich approximation in order to predict
the late-time clustering of dark matter haloes. While we are able to reproduce the early evolution of this
conserved set of tracers, our approximation fails at the collapse epoch (z ¼ 0) on nonlinear scales
r ≲ 10h−1 Mpc, emphasizing the need for a nonperturbative treatment of the halo displacement field.
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I. INTRODUCTION

Upcoming galaxy surveys will map out the positions of
galaxies in the Universe over large volumes with unprec-
edented precision [1–5]. A detailed understanding of the
clustering statistics of these luminous tracers of the large-
scale matter distribution is necessary in order to harvest
the late time Universe and use it as a laboratory for
fundamental physics. However, as recognized long ago,
galaxy formation in cold dark matter (CDM) cosmologies
preferentially takes place inside the potential wells of
virialized CDM structures or haloes [6–8]. This allows
us to consider the somewhat simpler problem of halo
clustering, which can be expressed as a biased version
[9–14] of the clustering of the underlying matter distribu-
tion (see [15] for a recent review). Simulations provide a
straightforward way to investigate halo clustering and allow
us to study the phenomenology of their n-point functions.
Notwithstanding, the theoretical understanding of the
measured correlation functions is still rudimentary for all
but the largest scales.
The clustering of peaks of the 3-dimensional density

field as a proxy for the initial formation sites of virialized
structures was pioneered by [10], following earlier works
by [16] on the collapse of spherical overdensities and by

[17] on a statistical approach to the distribution of virialized
structures. Peak correlations were initially investigated for
Gaussian random fields in the high-threshold limit in order
to explain the bias of massive clusters [9,18]. Later, these
calculations were extended to include exclusion [19],
arbitrary peak thresholds [20,21], non-Gaussianities [22]
and anisotropies to incorporate redshift space distortions
[23–25]. With the identification of virialized cosmological
objects with a point process of “peak patches” in the initial
(Lagrangian) space [26–28] (see also [29]), the peak
approach provided a useful framework to understand the
scale-dependence, stochasticity and gravitational evolution
of the clustering of virialized structures [30–32]. While the
association between virialized dark matter haloes and peaks
of the initial density field is fairly tight for objects of mass
significantly above the characteristic mass1 M ≫ M�, it
weakens with decreasing M, as shown by detailed studies
of cosmological numerical simulations [33–35]. However,
an identification based on a local energy definition can
improve the correspondence [29]. Overall, this approach
can be extended to include (local and nonlocal) constraints
motivated by nonlinear structure formation (along the lines
of, e.g., [36–38]), or embedded in an effective field theory
[39]. Nonetheless, a simpler Lagrangian peak constraint a
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1The characteristic halo massM� is the mass at which the peak
height ν ¼ δc=σ equals to one.
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la [10] (possibly combined with excursion set theory, see
[37]) already provides a useful framework to understand
the bias arising in clustering statistics of nonlinear Large-
Scale Structure (LSS). For instance, it provides a physical
explanation for the assembly bias of massive haloes
[40,41], and their sub-Poissonian noise [42]. It also predicts
the low-order halo bias parameters (from a two-parameters
only description of the halo collapse barrier) with reason-
able accuracy [43–46] (see also [47] for an extension to the
tidal shear bias). Furthermore, it can be implemented to
investigate the merger history of haloes (and other cosmic
web components) across cosmic time [48].
The baryon acoustic oscillation (BAO) feature in the

galaxy correlation function and power spectrum has proven
to be an important ruler for measuring the expansion
history of the Universe and inferring the equation of state
of dark energy. Large scale motions degrade the linear
BAO feature, motivating so called reconstruction methods
[49–51] (see also [52–55] for early work on the topic) that
aim to undo the effect of the bulk motions. Most of the
studies of BAO smoothing and reconstruction are based on
the local bias model, where the BAO in Lagrangian space
is given by linear theory and halo motions are unbiased
with respect to the dark matter displacement. It has been
shown that peaks show a more pronounced BAO feature,
in agreement with what is observed for proto-haloes in
Lagrangian space [32]. Furthermore, halo velocities do
deviate from the underlying dark matter velocities on all but
the largest scales, again in agreement with what is predicted
by the peak model [32,56]. In this study we will present
a detailed comparison of mean-streaming and displace-
ment dispersion measurements of peaks and haloes in
simulations.
Peak theory in a broad sense has also been extremely

successfully over the past decades in describing the cosmic
web formation and evolution, including clusters but also
filaments, walls and voids. Building on the seminal work of
[57], the skeleton picture [58] extended peak theory and
was able to accurately describe the fully connected cosmic-
web, its length and curvature [59], its connectivity [60], and
its impact on galaxy formation [61,62]. Specific works also
focused on voids. [63,64, e.g] or saddle points only [65]
and their respective clustering properties [66], and cosmic
web configurations in the initial conditions [67].
In this paper, we extend our previous work on the

nonperturbative peak correlation function in one spatial
dimension [68] (hereafter BCDP) to the more realistic
3-dimensional (3D) case. First, in Sec. II, the formalism to
predict the clustering of peaks in the initial Gaussian
density field is described and explicit correlations in the
simpler case of signed critical points are derived. Section III
then computes numerically the peak correlations and
compares to a large-scale bias expansion for fixed peak
heights and bins. The induced shot noise correction is
discussed, while pairwise velocity statistics in the peak

model are computed and compared again to first-order bias
expansions. From the statistical knowledge of the velocity
field, we then study the time evolution of peak clustering by
taking into account their Zeldovich displacement in Sec. IV.
Finally, Sec. V compares our results to the statistics of
peaks in random field realizations. We wrap up in Sec. VI.
When making predictions for realistic ΛCDM cosmologies
throughout this paper, we will consider a WMAP7 cosmol-
ogy with parameters Ωm ¼ 0.272, σ8 ¼ 0.81, ns ¼ 0.967.
We will also consider power law power spectra of the
form Plin ¼ Akns .

II. PEAK CLUSTERING IN
LAGRANGIAN SPACE

The statistical properties of the Gaussian field and its
derivatives are fully encoded in the multipoint moments of
its power spectrum. The variance of the field and its
derivatives is given by

σ2i ¼
Z

d3k
ð2πÞ3 PsðkÞk2i; ð1Þ

where PsðkÞ ¼ PlinðkÞW2
RðkÞ is the filtered linear matter

power spectrum and the filter is taken to be a Gaussian for
definiteness, WRðkÞ ¼ expð−k2R2=2Þ. Note however that
the effective halo window function has been shown to be
different from a Gaussian, see for instance [69]. It is
convenient to introduce the spectral parameters γ ≡
σ21=σ0=σ2 and R⋆ ≡ σ1=σ2 which quantify the width of
PsðkÞ and the characteristic radius of the peaks, respec-
tively. For later convenience, we will also define the
velocity bias as Rv ≡ σ0=σ1. The correlation between
the field properties at distinct locations are given by the
correlation functions

ξi;lðrÞ ¼
Z

d3k
ð2πÞ3 PsðkÞkijlðkrÞ; ð2Þ

where jl are the spherical Bessel functions of order l.
The number density of maxima in a smoothed field δs at

Lagrangian position q is given by the set of points that have
a vanishing gradient and negative definite Hessian

nðqÞ ¼ j detHðqÞjδðDÞðσ1ηÞΘð−max
i
λiÞ; ð3Þ

where σ2λi are the ordered (λ3 < λ2 < λ1) eigenvalues of
the Hessian Hij ¼ ∂i∂jδs and σ1η ¼ ∇δs is the gradient of
the field. The symmetric Hessian matrix Hij has six
independent components

σ2ζ1 ¼ H11; σ2ζ2 ¼ H22; σ2ζ3 ¼ H33;

σ2ζ4 ¼ H12; σ2ζ5 ¼ H13; σ2ζ6 ¼ H23; ð4Þ
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such that the determinant yields

detH ¼ σ32ðζ1ζ2ζ3 þ 2ζ4ζ5ζ6 − ζ1ζ
2
6 − ζ3ζ

2
4 − ζ2ζ

2
5Þ

¼ σ32λ1λ2λ3: ð5Þ

Furthermore, the trace reads trH ¼ σ2ζ, where the peak
curvature ζ is given by

ζ ¼ ζ1 þ ζ2 þ ζ3 ¼
X
i

λi: ð6Þ

Together with the gradient of the field and the field itself,
we thus have to consider ten field variables at each of the
points under consideration. This number would increase to
thirteen should we also consider peak velocities or dis-
placements. Based on the spherical collapse model, we
expect that overdense perturbations collapse into haloes
whenever they cross a critical collapse threshold δc on a
given smoothing scale. It is often convenient to express the
overdensity at the peak location in terms of the peak height
or significance ν ¼ δ=σ0.
The mean abundance of peaks is given by [70]

n̄ ¼ hnðqÞi ¼
Z

dXwðXÞP1ptðXÞ; ð7Þ

where P1pt is the one-point distribution of the field and its
first and second derivatives gathered in the state vector
XT ¼ ðσ0ν; σ1η; σ2ζÞ and wðXÞ is the localized peak
number density in field space encoding the peak weight

wðXÞ ¼ j detHjδðDÞðσ1ηÞΘð−max
i
λiÞ: ð8Þ

We will often impose further constraints on the peak height
and consider fixed peak heights encoded by a Dirac delta
function or bins in peak height encoded by a top-hat
window.
To study the clustering of peaks, let us introduce now

their two-point correlation function as

1þ ξðrÞ ¼ 1

n̄2

Z
dX1

Z
dX2wðX1ÞwðX2ÞP2ptðX1;X2jrÞ;

ð9Þ

where the two-point probability distribution function is
given as a multivariate Gaussian

P2ptðX1;X2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ20j detCj
p exp

�
−
1

2
XT · C−1 · X

�
;

ð10Þ

of the joint state vector XT ¼ ðXT
1 ;X

T
2 Þ at the two spatial

positions r1 and r2 with r ¼ jr2 − r1j. The covariance

matrix Cij ¼ hXiXji can be explicitly computed from
the power spectrum [70].
As explained in BCDP and [71], the peak correlation

can be evaluated by drawing samples from the condi-
tional distribution of peak curvatures given the peak
height and a vanishing density gradient. Reordering and
splitting the state vector as XT ¼ ðmT;nTÞ with mT¼
ðσ0ν1;σ1η1;σ0ν2;σ1η2Þ and nT ¼ ðσ2ζ1;σ2ζ2Þ, we can write
down the conditional probability of peak curvatures given
the peak amplitude and vanishing gradient Pðm ∩ nÞ ¼
PðmÞPðnjmÞ. Starting from a Cholesky decomposition of
the covariance matrix of the curvature component2 Ω−1

n;n ¼
QQT and a vector N0 of normal distributed random
numbers, we can generate a sample of the conditional
distribution of peak curvatures as

N ¼ μn þ QTN0; ð12Þ

where μn ¼ −mTC−1
m;mCm;n. To efficiently check the neg-

ative definiteness of the Hessian, we use the Sylvester
criterion, first checking H11 < 0 then H11H22–H2

12 > 0

and finally detH < 0 for both points. If all of these criteria
are satisfied we add up the absolute values of the deter-
minant in Eq. (8).

A. Signed critical points

As we have pointed out above, the evaluation of the peak
correlation function requires a numerical sampling of the
components of the Hessian at the two locations. We thus
cannot write down a closed form analytic expression for the
peak correlation function. What prevents us from doing so
is the absolute value of the determinant in Eq. (8) and the
negative definiteness constraint. Without these two com-
plications, we can indeed derive a closed form expression
for signed critical points. A similar calculation was per-
formed in [72], where the determinant weight in Eq. (3) was
dropped altogether, by weighting with 1=j detHj.
The expected abundance of signed critical points with

height or significance, ν, is given by

n̄crit ¼
e−

ν2

2 γ3νðν2 − 3Þ
12

ffiffiffi
3

p
π2R3⋆

: ð13Þ

This formula can be obtained along the lines of the BBKS
derivation of the peak abundance, or upon integrating out
the curvature variables after rewriting the prefactor as
derivatives. For a large significance ν ≫ 1, this abundance

2We will split the covariance matrix and its inverse as

C ¼
�
Cm;m Cm;n

CT
m;n Cn;n

�
; Ω ¼ C−1 ¼

�
Ωm;m Ωm;n

Ωm;n
T Ωn;n

�
:

ð11Þ
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agrees with the abundance of maxima, since in this limit all
of the critical points considered here are maxima. Note also
that it is equivalent to the derivative of the Euler
characteristic.
The full result for the correlation function of signed

critical points is derived in the Appendix A and has the
form

1þ ξðrÞ ¼ AðrÞeBðrÞ: ð14Þ

For a power-law power spectrum with n ¼ 0 and for critical
points with fixed heights νþ Δν=2 and ν − Δν=2, the
exponential is given by

BðrÞ ¼ −
1

2
mTC−1

m;mm ¼ ν2

4
þ 7Δν2

80
−
96Δν2

r̃6
þ 12Δν2

r̃4

−
6Δν2

5r̃2
−
81Δν2r̃2

22400
−
ν2r̃2

32
þ 11Δν2r̃4

179200
þ ν2r̃4

768
;

ð15Þ

where herem¼σ0ðνþΔν=2;03;ν−Δν=2;03Þ and r̃¼ r=R.
For Δν > 0, negative powers of the separation are present
in the exponential, driving the probability to zero at small
separations. This behavior is the same as we observed i
n BCDP for critical points in 1D density fields. This
suppression on small scales leads to > 1% deviations from
the Δν ¼ 0 case for r < r1%, where

r1% ¼ 96001=6RΔν1=3: ð16Þ

In the limit of zero separation, the prefactor scales like
limr→0AðrÞ ∝ 1=r10 for Δν ≠ 0 and limr→0AðrÞ ∝ 1=r2 for

Δν ¼ 0. In Fig. 1 we show the numerical and analytical
correlation functions of signed critical points as well as the
peak correlation function for the same peak height and peak
height difference. While the agreement between peaks and
critical points is not perfect except on large scales, it is
interesting to note that the position of the exclusion scale is
in close correspondence.

III. NUMERICAL IMPLEMENTATION

A. Fixed peak height

In this section we discuss peaks of fixed (equal and
unequal) significance, their small scale exclusion and the
large scale bias convergence.
The peak correlation function is shown in Fig. 2. Like

peaks in one dimensional density fields, we find that
equal height bins (Δν ¼ 0) at the same smoothing
scale do not exhibit exclusion, and the correlation function
keeps growing in the limit r → 0. As we increase the
difference in peak significance, the correlation function
tends to −1 over an increasing region at small separations.
This region corresponds to a vanishing probability of
finding two peaks closer than the exclusion radius
(P ∝ 1þ ξ → 0). On larger scales, the Δν ≠ 0 correlation
functions asymptote to the Δν ¼ 0 case. In this regime,
the two-point functions entering the covariance matrix
are much smaller than the corresponding moments
(ϵ ∼ ξi;l=σ2i ≪ 1), so that we can expand the peak corre-
lation function in the small quantity ϵ. At leading order,
the corresponding peak two-point function is described by
the linear scale dependent bias [10,21,30]

FIG. 1. Correlation function of signed critical points or extrema
in a density field characterized by a ns ¼ 0 power law power
spectrum. We compare our analytical formula for Δν ¼ 0
(dashed) and Δν ¼ 0.5 (solid) with a numerical implementation
of critical points (red squares) and peaks (green triangles) in the
Δν ¼ 0.5 case. The vertical line indicates the estimate of the
exclusion scale as given by Eq. (16).

FIG. 2. Peak correlation function for a R ¼ 2.2h−1 Mpc
smoothed density field with peak heights ν� ¼ ν̄� Δν=2. The
auto-correlation of ν̄ ¼ 2 peaks (black solid) does not show any
exclusion. As we increase the separation of peak height, a region
of zero probability, i.e., ξ ¼ −1 arises at small separations. For
larger radii the finite separation correlation function asymptotes
to the Δν ¼ 0 case. The characteristic scales where this happens
can be estimated as r1% ≈ 96001=6Δν1=3R and is shown by the
vertical lines.
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ξðr; ν1; ν2Þ ≈ b10ðν1Þb10ðν2Þξ0;0ðrÞ
þ ½b10ðν1Þb01ðν2Þ þ b01ðν1Þb10ðν2Þ�ξ2;0ðrÞ
þ b01ðν1Þb01ðν2Þξ4;0ðrÞ; ð17Þ

where ξij is defined in Eq. (5) and the bias factors bij are
given by derivatives with respect to the peak height and
curvature [31,73–75],

σi0σ
j
2bij ¼

1

n̄

Z
dXωðXÞ ∂i

∂νi
∂j

∂ζj P1 ptðXÞ: ð18Þ

This linear bias model differs from the usual scale
independent linear bias model (ξ ¼ b21ξlin) due to the
fact that ξ0;0 contains an explicit smoothing scale, and the
presence of the higher derivative terms (ξ2;0; ξ4;0) which
enhance the BAO [30] (see the bottom panel of Fig. 3).

We can also calculate the next and next-to-next-to-leading
order corrections as done in [31,71] and, more system-
atically, from the peak perturbative bias expansion
[74,76]. However, let us stress that these bias expansions
converge very slowly and, for any realistic perturbative
order, cannot capture the peak of the correlation function
just outside the exclusion zone and even less so the very
nonlinear exclusion itself (as emphasized by the one
dimensional analysis of [68]). In this regime, at low and
intermediate separations, our full numerical integration is
mandatory.

B. Peak height bins

Eventually we want to use peaks as a proxy for haloes. In
order to estimate the agreement between the peak model
predictions and the properties of actual haloes, we consider
a suite of 16 Gadget N-body simulations initialized at

FIG. 3. Correlation function of bin IV in Lagrangian space modeled by two distinct peak heights with ν̄ ¼ 2.4, Δν ¼ 0.24 (red solid)
and ν̄ ¼ 2.4, Δν ¼ 0 (red dashed). The points show the measured proto-halo correlation function. Upper left panel: correlation function.
We see that the peak correlation function with Δν ¼ 0 follows the upturn of the correlation function with respect to linear bias, but does
not show exclusion, whereas the Δν ¼ 0.24 result does. Upper right panel: r3 weighted correlation function, quantifying the
contribution to the low-k power spectrum. Regions where the curve is below (above) linear bias lead to negative (positive) stochasticity
corrections. Lower panel: bias with respect to the smoothed linear power spectrum. We clearly see that inside the BAO scale the
correlation function is consistently lower than suggested by linear bias (gray horizontal line). This behavior is correctly reproduced by
the linear peak bias in Eq. (17), which agrees with the full calculation down to separations of r ≈ 30h−1 Mpc.
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redshift z ¼ 99 using second order Lagrangian perturbation
theory (see [77] for more details). These gravity-only
simulations follow the evolution of 10243 dark matter
particles in a cubic box of dimension 1500h−1 Mpc. Haloes
are identified using a Friends-of-Friends (FoF) halo finder
in the z ¼ 0 nonlinear density field. Their constituent
particles can be traced back to the simulation initial
conditions—or Lagrangian space—to identify the halo
progenitor—or proto-halo—whose centre of mass gives
the proto-halo (Lagrangian) position. We bin the whole
halo distribution into five mass bins, each of which is
spanning a factor of three in mass. The properties of these
halo catalogues are summarized in Table I.
As we have seen above, the peak model predictions

depend on the peak height ν and the smoothing scale R.
In this study we consider haloes (and consequently proto-
haloes) in a number of mass bins and each mass in the
bin would correspond to a different filter scale. We have
found in [77] that the cross-correlation between proto-
haloes and the Gaussian density field can be reasonably
well described by a single Gaussian filtering scale. When
quantifying the properties of the underlying density field
at the proto-halo position, we will thus filter the initial
density field with a Gaussian filter at the scale fitted in
[77] (which was based on the same simulations and halo
sample) and quoted in Table I. We have ascertained that a
change in the width of the mass bins (at fixed central
mass) does not change the extent of the exclusion scale in
the proto-halo correlation function. This is consistent
with the observation that the scatter of the threshold
does not significantly depend on the width of the mass
bin [33,43].
For such a fixed filter scale we find that the observed

distribution of peak heights, i.e., linear overdensities at
the peak location, is approximately Gaussian, as we show
in Appendix D. Hence, our findings for the distribution
of actual proto-halo peak heights would suggest to
sample the peak height from a Gaussian. To simplify
the modeling and accelerate the evaluation of the peak
correlation function, we chose instead to implement a
finite peak height difference even for the auto-correlation

of peaks in the same mass bin.3 We show the results of
this implementation of the peak model in comparison to
measurements of the proto-halo correlation function in
Fig. 3. We see that the Δν ≠ 0 case reproduces the
exclusion scale but overpredicts the correlation function
just outside the exclusion scale at R ≈ 20h−1 Mpc. The
bottom panel of Fig. 3 shows that, for r > 40h−1 Mpc,
the full peak correlation functions with and without
exclusion match each other and also agree with the
linear peak correlation function. Notice that the proto-
halo correlation function has an amplitude lower than
b210ξlin (linear bias) indicated by the horizontal gray line.
In particular, the linear, scale-independent biasing b210ξlin
is only approached beyond the BAO scale and not within
it. On these large scales we only show the perturbative
peak bias model due to the slow convergence of the peak
sampling algorithm for large r. However, at these scales
the nonlinear peak correlation function has converged to
the linear peak bias approximation. Assuming linear bias
within the BAO scale might thus lead to biased estimates
of the amplitude of fluctuations. The mismatch between
the peak and proto-halo correlation functions just outside
of the exclusion scales might be related to the peak
selection function being more complicated than the
Gaussian filter employed here. We have explored sam-
pling from the actual Gaussian peak height distribution
and will discuss the results in Sec. V below. While the
Gaussian sample of peak heights does show exclusion,
the transition between the continuous and excluded
regions is significantly smoother than what is observed
for proto-haloes and the Δν ≠ 0 peak sample.
We show the cross-correlation between proto-halo mass

bins II and IV in Fig. 4. In this cross-correlation setting, the
individual smoothing scales differ and so do the peak
heights. A pronounced exclusion region is also found in
that case both in the measurements and in our modeling
based on peak correlation functions with different height
and smoothings. The predicted size of the exclusion
region agrees with the measurements of the proto-halo
cross-correlation function, but there is up to 20% discrep-
ancy just outside the exclusion zone, after the maximum of
the correlation function at roughly 10h−1 Mpc. Here, the
measured correlations are found to lie above the linear bias
prescription but below the peak model. These are probably

TABLE I. Properties of the five proto-halo mass bins con-
structed from FoF haloes found at z ¼ 0, namely Gaussian
smoothing scale, mean peak height, peak height root mean
square scatter, Lagrangian bias and mean mass. The Gaussian
smoothing scale R was determined in [77] by fitting the halo-
matter cross-power spectrum with the linear peak bias template.

Bin R½h−1 Mpc� ν̄ Δν b1 M½h−1 M⊙�
I 1.68 1.34 0.36 0.11 7.73 × 1012

II 2.2 1.7 0.36 0.35 2.33 × 1013

III 3.1 2 0.36 0.82 6.92 × 1013

IV 4.3 2.4 0.36 1.65 2.01 × 1014

V 6.3 2.9 0.36 3.17 5.68 × 1014

3If the distribution of peak heights in the bins is Gaussian
ν ∼N ðν̄; σÞ then the difference between the peak heights is
a Gaussian ν2 − ν1 ∼N ðΔν ¼ ν̄2 − ν̄1; σΔ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

p
Þ. The

mean of the absolute value of the peak height difference is then
given by 2=

ffiffiffi
π

p
σ ≈ 1.12σ for a single bin and

Δ̄ν ¼
ffiffiffi
2

π

r
σΔ exp

�
−
Δν2

2σ2Δ

�
þ Δνerf

�
Δνffiffiffi
2

p
σΔ

�
ð19Þ

for distinct bins. The single-bin result is recovered for σΔ ≫ Δν.
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due again to our filter not properly describing the proto-
halo selection function as well as tidal effects or the impact
of the FoF halo finder.

C. Shot noise corrections

Small scale exclusion is relevant for the large-scale (low-
k) corrections to the halo stochasticity in the power
spectrum [42,78]. To see how this sensitivity arises, let
us consider the expression of the halo power spectrum in
terms of the correlation function

PhhðkÞ ¼
1

n̄
þ 4π

Z
d ln r r3ξhhðrÞj0ðkrÞ: ð20Þ

For small wave numbers the above expression simplifies to

Phhðk → 0Þ ≈ 1

n̄
þ 4π

Z
d ln r r3ξhhðrÞ: ð21Þ

Thus, the low-k power spectrum is just the r3-weighted
logarithmic integral over the correlation function aug-
mented by the Poisson noise 1=n̄. The integral arises from
the contribution of distinct pairs, while the Poisson noise
corresponds to “self-pairs”. For the linear correlation
function (and linearly biased versions of it) the above
integral vanishes. This changes once higher order pertur-
bative corrections or exclusion corrections are taken into
consideration.
Instrumental for the understanding of stochasticity is

the ability to describe the integrand in the above equation,
i.e., r3ξ. We show this r3-weighted correlation function in
the top right panel of Fig. 3, which emphasizes that
both the peak and proto-halo correlation functions consid-
erably deviate from linear biasing at small separations. The
regions where the full peak or halo correlation function lies
below the linear bias curve lead to a negative stochasticity

correction on large scales, while the part of the curve that
lies above leads to a positive stochasticity correction.
Depending on which of the two effects dominates, the
overall stochasticity correction can be either positive or
negative. Generally, we can remark that the peak model
captures the behavior of the r3-weighted correlation func-
tion quite well.

D. Velocities

Having studied the clustering of peaks and their corre-
spondence to proto-halo positions in Lagrangian space, let
us now focus on their velocities. For the proto-haloes we
define the velocity as the mean velocity of their constituent
dark matter particles. In the Zeldovich approximation [79],
the Lagrangian velocity is directly related to the halo
displacement Ψ ¼ v=Hf and thus determines the position
of the haloes in Eulerian space. We will make use of this
fact below in Sec. IV. The statistics of the Zeldovich
displacement is straightforward to implement since it is the
anti-derivative of the linear density field due to Poisson
equation ΨðkÞ ¼ −{k=k2δsðkÞ. As such, the joint statistics
of Φ ¼ ðX;ΨÞ follows a Gaussian with zero mean and
covariance matrix

C ¼
� hX · XTi hX ·ΨTi
hΨ · XTi hΨ ·ΨTi

�
¼

�CX;X CX;Ψ

CT
X;Ψ CΨ;Ψ

�

¼
�ΩX;X ΩX;Ψ

ΩT
X;Ψ ΩΨ;Ψ

�−1
¼ Ω−1; ð22Þ

where Ω ¼ C−1 is the precision matrix.
In contrast to the 1D case considered in BCDP, the three

dimensional velocities have two components, with different
statistical properties: one along the separation of the peaks
and one transverse to it. Let us start by considering the
mean streaming velocity along the separation axis r̂12

FIG. 4. Cross correlation function between mass bins II and IV. Left panel: In the correlation function we see that the choice of the
smoothing radii and peak heights correctly captures the exclusion scale observed for the proto-halo cross-correlation in the simulations.
Right panel: Correlation function weighted by r3, highlighting the contributions to the low-k power spectrum amplitude. The regions
that are below (above) the linear bias curve lead to negative (positive) shot noise corrections.
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v12;k ¼
hðv2 − v1Þ · r̂12ð1þ δpk;1Þð1þ δpk;2Þi

1þ ξ

¼ hðv2 − v1Þ · r̂12wðXÞi
hwðXÞi ; ð23Þ

where wðXÞ is the peak condition at both locations and
hwðXÞi ¼ ð1þ ξpkÞn̄2pk. For convenience, and to make
connections to the displaced peaks discussed below, we
express velocities in units of displacements. Performing the
Gaussian integral over the velocity components of the state
vector, we thus have

ð1þ ξpkÞ
v12;k
Hf

¼ hðv2 − v1Þ · r̂12ð1þ δpk;1Þð1þ δpk;2Þi
Hf

¼ −
1

n̄2pk

Z
dXXT ·C−1

X ·CXΨ · UT
k

×
wðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ6 detCX

p exp
�
−
1

2
XT ·C−1

X · X
�
:

ð24Þ
Here, the velocity difference is expressed in terms of the
state vector of the displacement at the two positions, Ψ ¼
ðΨ1;Ψ2Þ using a linear transformation

Ψ2 −Ψ1 ¼ U ·Ψ; ð25Þ
where

U ¼

0
B@

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

1
CA; ð26Þ

and Uk ¼ r̂12 · U. The Gaussian integral was performed
using the relation detC ¼ detCX= detΩΨ together with

ΦT ·C−1 ·Φ ¼ XT ·C−1
X · X þ ðΨ − μÞT ·ΩΨ · ðΨ − μÞ;

ð27Þ
where μT ¼ −XT ·ΩXΨ ·Ω−1

Ψ ¼ XT ·C−1
X ·CXΨ.

In the large separation limit, where ϵ ∼ ξi;l=σ2i ≪ 1, we
can expand to linear order in ϵ and recover the linear
velocity bias in the peak model [23,30]

v12;k
Hf

≈ b10

�
ξ−1;1 −

σ20
σ21

ξ1;1

�
þ b01

�
ξ1;1 −

σ20
σ21

ξ3;1

�
; ð28Þ

where the bias coefficients are defined in Appendix C. Note
that this has a richer structure than the velocity bias in the
local bias model, which would only yield the term propor-
tional to ξ−1;1 (and in most cases this term even lacks the
explicit smoothing used here).
The mean relative displacement is shown in Fig. 5, the

red solid line being the full numerical implementation of
Eq. (24) which is the novelty of this work. For comparison,

we also display the linear and first order peak prediction
given by Eq. (28). Like the density correlator, there is a
pronounced small scale exclusion both in the model and the
data. The relative infall has to go to zero on small scales as
there are no pair closer than the exclusion scale. The linear
bias predictions (both with and without peak corrections)
fail at roughly 30h−1 Mpc. Below this scale only the full
peak calculation is in close agreement with the data,
capturing both the maximum of the mean relative velocity
at roughly 10–20h−1 Mpc and the exclusion zone with zero
mean mass weighted relative velocity at low separation.
The velocity dispersion along the separation and

perpendicular to the separation are defined respectively as

σ2
12;k ¼

h½ðv2 − v1Þ · r̂12�2ð1þ δpk;1Þð1þ δpk;2Þi
1þ ξpk

; ð29Þ

σ212;⊥

¼ h½ðv2 − v1Þ − ðv2 − v1Þ · r̂12r̂12�2ð1þ δpk;1Þð1þ δpk;2Þi
1þ ξpk

;

ð30Þ
such that for instance (and equivalently for the
perpendicular component if Uk is replaced by U⊥)

ð1þ ξpkÞ
σ2
12;k

ðHfÞ2 ¼
1

n̄2pk

Z
dX½ðXT ·C−1

X ·CXΨ · UT
k Þ2

þ Uk ·Ω−1
Ψ · UT

k �
wðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ6 detCX

p

× exp

�
−
1

2
XT ·C−1

X · X

�
: ð31Þ

FIG. 5. Mass weighted velocity correlation (mean infall) of
peaks with smoothing scale R ¼ 4.3h−1 Mpc compared to the
measured velocity correlator for proto-haloes in bin IV of the
simulations. The agreement is fairly good except for a slightly too
low amplitude of the peak predictions at the peak of the mean
infall. Clearly the velocity correlator inherits the exclusion from
the density correlation function. The linear bias works down to
separations of 30h−1 Mpc.
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Eventually, at leading order, we get [23]

σ212;⊥
ðHfÞ2 ≈

2

3
σ2v;pk −

2

3

�
ξ−2;0 þ ξ−2;2

− 2
σ20
σ21

ðξ0;0 þ ξ0;2Þ þ
σ40
σ41

ðξ2;0 þ ξ2;2Þ
�
; ð32Þ

σ2
12;k

ðHfÞ2 ≈
1

3
σ2v;pk −

1

3

�
ξ−2;0 − 2ξ−2;2

− 2
σ20
σ21

ðξ0;0 − 2ξ0;2Þ þ
σ40
σ41

ðξ2;0 − 2ξ2;2Þ
�
; ð33Þ

where σ2v;pk ≡ σ2−1 − σ40=σ
2
1.

The peak and halo displacement dispersion are shown in
Fig. 6. Again, we display both the full numerical calcu-
lation in black as given by Eq. (29)–(31), the novelty of this
work, and the first order peak prediction of Eq. (32)–(33) in
red. On large scales the displacement dispersions of matter
(gray) and peaks (black) deviate due to the explicit
smoothing scale in the peak displacement dispersion and
due to explicit velocity bias effects. The measured halo
displacement dispersions follow the prediction of the peak
model down to small separations. The linear peak bias
prediction provides a good description of the full peak
dispersion down to separations of 40h−1 Mpc (red) but fails
to predict the bump in the velocity dispersion between 10
and 20h−1 Mpc—notably parallel to the separation—
together with the exclusion at small separations which

are both well captured by the full peak calculation. The
exact amplitude of the bump shows some difference
between the haloes and the peak model, similarly to the
density and relative velocity correlators.

IV. EVOLUTION TO EULERIAN SPACE

The strategy of evolving the 3D peaks to Eulerian space
closely follows the steps laid out in BCDP, but we will
spell out the important steps for the readers convenience.
In particular, we will consider the Zeldovich displacement
of a peak according to the initial velocity field at the peak
location. At the perturbative level this calculation was per-
formed in [31,32]. The motivation for using the Zeldovich
approximation for displacing the haloes is two-fold. First,
haloes are extended objects and in the model we are
working with they are patches of conserved mass whose
center of mass is simply moving from their Lagrangian to
their Eulerian position while the mass distribution collapses
around this center of mass. This kind of objects is
particularly amenable to a perturbative treatment since
they never experience shell-crossing. The second reason
is computational convenience. In the Zeldovich approxi-
mation the displacement field is linear in the underlying
field and thus Gaussian (the inferred density is not). This
allows us to work with the Gaussian multipoint-PDF of the
field, field derivatives and displacements.
In this description, the number density of Eulerian

peaks reads

1þ δpkðrÞ ¼
1

n̄pk

X
pk

δðDÞðr − rpkÞ ¼
Z

d3q0δðDÞ½r − q0 −DþΨðq0Þ�
X
pk

δðDÞðq0 − qpkÞ;

¼
Z

d3q0
Z

d3k
ð2πÞ3 exp½ik · ðr − q0Þ�wðXÞ exp½−iDþk ·Ψðq0Þ�; ð34Þ

FIG. 6. Mass weighted velocity dispersion parallel (left panel) and perpendicular (right panel) to the separation vector for mass bin IV.
We show the simulation measurement as black squares and the predictions of the peak model (black), linear velocity bias (red) and the
underlying matter distribution (gray). Due to the velocity bias and smoothing, there is an offset between the large-scale limit of the linear
matter and halo velocity dispersion, i.e., σ2v. On small scales there are even more significant deviations from the linear matter dispersion.
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and their correlation function

ξðrÞ ¼ hδpkð0ÞδpkðrÞi ¼
1

n̄2pk

Z
d3Q

Z
d3k
ð2πÞ3 exp½ikðQ − rÞ�hexp½−iDþk · ðΨ1 −Ψ2Þ�wðX1ÞwðX2Þi − 1; ð35Þ

where Q ¼ q2 − q1 is the Lagrangian separation of the peaks, Ψ1 and Ψ2 are the halo displacements at the respective
positions and Dþ is the amplitude of the growing mode in the linear regime of structure formation. Using Eq. (25), then
Eq. (35) yields

ξðrÞ ¼ 1

n̄2pk

Z
d3Q

Z
d3k
ð2πÞ3

Z
dX exp½ik · ðQ − rÞ�

×
wðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ6 detCX

p exp

�
−
1

2
XT ·C−1

X · X −
1

2
D2þk2U ·Ω−1

Ψ · UT − iDþkXT ·C−1
X ·CXΨ · UT

�
− 1: ð36Þ

The Gaussian integral over wave numbers, k, can be trivially performed and leaves us with a convolution

hδpkð0ÞδpkðrÞi ¼
Z

d3QFðQjrÞ − 1; ð37Þ

where

FðQjrÞ ¼ 1

n̄2pk

Z
dX

wðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ20 detCX

p exp

�
−
1

2
XT ·C−1

X · X

�

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ3 detΣ
p exp

�
−
1

2
ðQ − r − Ψ̄ÞT · Σ−1 · ðQ − r − Ψ̄Þ

�
; ð38Þ

with Ψ̄ ¼ DþXT ·C−1
X ·CXΨ · UT; and Σ ¼ D2þU ·Ω−1

Ψ · UT: ð39Þ

This expression can be compared to the corresponding expression for the Zeldovich correlation function for dark matter, for
which the mean displacement vanishes Ψ̄ ¼ 0.

Defining μ ¼ r̂ · Q̂ as well as Σij ¼ Σ⊥ðδðKÞij − Q̂iQ̂jÞ þ ΣkQ̂iQ̂j and Σ−1
ij ¼ Σ−1⊥ ðδðKÞij − Q̂iQ̂jÞ þ Σ−1

k Q̂iQ̂j, we get

ðQ − r − Ψ̄ÞiΣ−1
ij ðQ − r − Ψ̄Þj ¼ ðQ − Ψ̄Þ2Σ−1

k þ r2Σ−1⊥ þ 2ðΨ̄Σ−1
k −QΣ−1

k Þrμþ ðΣ−1
k − Σ−1⊥ Þr2μ2: ð40Þ

The angular integral can be performed analytically using

Z
1

−1
dμ exp

�
−
1

2
αμ2 þ βμþ γ

�
¼ exp

�
β2

2α
þ γ

� ffiffiffiffiffiffi
π

2α

r �
erf

�
α − βffiffiffiffiffiffi
2α

p
�
þ erf

�
αþ βffiffiffiffiffiffi

2α
p

��
; ð41Þ

leaving only one numerical integral in Eq. (37) over the magnitude of the Lagrangian separation Q. Upon performing the
angular integration, we arrive at

hδpkð0ÞδpkðrÞi ¼ 4π

Z
∞

0

dQQ2FðQjrÞ − 1; ð42Þ

where now

FðQjrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3 detΣ

p exp

�
β2

2α
þ γ

� ffiffiffiffiffiffi
π

2α

r �
erf

�
α − βffiffiffiffiffiffi
2α

p
�
þ erf

�
αþ βffiffiffiffiffiffi

2α
p

��

with α ¼ ðΣ−1
k − Σ−1⊥ Þr2; β ¼ ðQ − Ψ̄ÞΣ−1

k r; γ ¼ −
1

2
ðQ − Ψ̄Þ2Σ−1

k : ð43Þ

BALDAUF, CODIS, DESJACQUES, and PICHON PHYS. REV. D 103, 083530 (2021)

083530-10



In Fig. 7, we show the explicit function FðQjrÞ, which is
indeed of Gaussian form at a shifted position. Its width
is of order the Lagrangian displacement dispersion, i.e.,
∼10h−1 Mpc. After integrating over this function, we thus
get to the correlation function of peaks in Eulerian space. In
the left-hand panel of Fig. 8, we compare the resulting full
correlation function of the Zeldovich displaced peaks as
given by Eq. (42) to the evolved peak correlation function
at linear order, which for the autocorrelation of the sample
is given by [30]

ξðrÞ ≈ ðb10 þDþÞ2ξ0;0ðrÞ
þ 2ðb10 þDþÞðb01 −DþR2

vÞξ2;0ðrÞ
þ ðb01 −DþR2

vÞ2ξ4;0ðrÞ: ð44Þ

The linear bias part ðb10 þ 1Þ2ξ0;0 is shown as the
horizontal colored lines on the right-hand panel of
Fig. 8 where the ratio with respect to the linear dark
matter correlation is shown. We clearly see that both the
haloes in the simulations and the peak predictions fall
significantly below this linear bias prediction for scales
between 20h−1 Mpc and the BAO scale and are con-
sistent one with the other. Below that scale, the peak
prediction captures well the behavior of the first stages of
structure formation beyond linear theory but fails to
capture the right amplitude of the bump and size of
the exclusion zone toward lower redshifts (although the
qualitative shape is similar). Note that on the left-hand
panel of Fig. 8, we also display the correlation function
of the proto-haloes displaced by the mean Zeldovich
displacement field of their particles. As expected the
exclusion zone is more pronounced in this case and is
filled by the subsequent highly nonlinear evolution. The
observed disagreement between the Zeldovich displaced
proto-halo centers and Zeldovich displaced peaks is
presumably due to the 20% deviations between the peak
model and the actual halo correlation and displacement
discussed above in Figs. 3 and 5.

FIG. 7. Integrand FðQjrÞ of Eq. (37). The vertical lines indicate
the Eulerian scale r, and the offset between this scale and the
center of the Gaussian of the same color is given by the mean
infall hv12i=Hf.

FIG. 8. Correlation function of Zeldovich evolved peaks (left panel) and ratio of peak/halo and matter correlation function (right
panel). The lines show the peak correlation function corresponding to various redshifts and the points show the measured halo
correlation function in the initial conditions and today. The evolved peaks capture the reduction of the extent of the exclusion zone. We
show the correlation function of haloes identified at z ¼ 0 traced back to z ¼ 0.5, z ¼ 1 and zi ¼ 99. The stars in the left panel show the
correlation function of the zi ¼ 99 proto-haloes displaced by the actual mean Zeldovich displacement field of its constituent particles. In
the right-hand panel, we show the ratio of the evolved peak correlation function to the linear dark matter correlation and superimpose the
linear prediction from Eq. (44) (dashed lines) in addition to the full calculation given by Eq. (42) (solid lines). Note that both the
prediction and the proto-halo clustering is below the horizontal linear bias prediction.
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V. COMPARISON TO PEAKS
IN REALIZATIONS

To test and validate our results, we have implemented
a grid-based peak finder that can be applied to realiza-
tions of cosmological density fields. We run this peak
identification algorithm on the initial Gaussian density
distribution of the simulation volume described above or
alternative realizations in smaller volumes. To select
candidate grid cells for maxima, we first demand the
density field at a grid vertex to be concave, i.e., the
Hessian to be negative definite. We will assume that
the Hessian be constant in the vicinity of the grid point
Hijðx0Þ ≈HijðxÞ. By Sylvester criterion, the negative
definiteness can be ensured by requiring the k ¼ 1, 2, 3
upper left minors Mk of the Hessian to satisfy
ð−1ÞkMk > 0. As a next step we check whether a
maximum can be found in a unit cell centered on the
grid point under consideration. For this purpose we
expand the gradient of the density field as

∇iδðxÞ ≈∇iδðx0Þ þHijðx0Þðx − x0Þj: ð45Þ

Therefore, on requiring ∇iδðxÞ ¼ 0, the separation of the
maximum candidate from the grid point is simply given by

ðx − x0Þi ¼ H−1
ij ðx0Þ∇jδðx0Þ: ð46Þ

We will associate a maximum to grid point x0 if
maxijðx − x0Þij < L=2Nc. This Newton-method approach
might lead to the identification of several maxima within

one grid cell. To avoid this case, we pick the maximum
with the largest amplitude within the cell. We emphasize
here that removing multiple peaks from a single cell does
not induce any exclusion. The cell sizes employed in this
study are significantly smaller than the typical exclusion
separations observed in our measurements and we have
ensured convergence by runs with smaller grid sizes.
In Fig. 9, we show the result of the realization sample for

the R ¼ 4.3h−1 Mpc, ν̄ ¼ 2.4 sample corresponding to
simulation halo mass bin IV. We select peaks using a
cubic grid with Nc ¼ 512 cells per dimension in a cubic
box with side length L ¼ 400h−1 Mpc. The small volume
helps with resolution on small scales, but requires us to
average over 200 realizations to reduce the error bars. For
the numerical implementation Δν ¼ 0 case, we select a
narrow bin of peak heights ν ∈ ½2.35; 2.45�. For the Δν ≠ 0
case, we cross-correlate peaks from two samples with νA ∈
½2.20; 2.33� and νB ∈ ½2.47; 2.60�.
As we can see, both in the initial conditions and in the

evolved field, the grid results are in very good agreement
with the numerical sampling presented in the main text of
this paper. The initial conditions show a clear exclusion
regime and the evolution both increases the clustering
amplitude on intermediate scales and reduces the exclusion
radius.
We also sample peak heights from a Gaussian distribu-

tion, aiming to reproduce the actual distribution of peak
heights observed for the proto-haloes in the simulation (see
Appendix D). As shown in the right panel of Fig. 9, this
leads to a significantly smoother transition to the exclusion
regime.

FIG. 9. Left panel: peak correlation functions averaged over 200 grid realizations for two distinct peak height bins of finite width
δν ≈ 0.13 with ν̄ ¼ 2.4. The bin centers are separated by Δν ¼ 0.24 (red) and Δν ¼ 0 (green). For both cases we show the grid
measurement and theory and find good agreement. We show the Zeldovich evolved peak correlation from the grid (red triangles) and
theory (red dashed). Right panel: peaks selected from a Gaussian distribution of peak heights rather than peak height bins. Here we select
a sample of maxima from a Gaussian distribution centered at ν̄ ¼ 2.4 with standard deviation Δν ¼ 0.24 and show the auto-correlation
of this sample (red squares) in comparison to the proto-haloes (black squares). Clearly the distribution of peak heights leads to effective
exclusion, but the transition to the exclusion region is much smoother than what is seen for proto-haloes in the simulations. The evolved
peak correlation function (red triangles) fails to reproduce the peak of the proto-halo correlation function (black triangles) outside the
exclusion region.
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VI. CONCLUSIONS

This study presents the first implementation of the
nonperturbative correlation function of peaks of the linear,
three-dimensional density field (Lagrangian space) and its
perturbative evolution to the halo formation epoch
(Eulerian space). Unlike other numerical implementations
of perturbative bias expansions, the approach considered
here deals with discrete tracers from the onset. Our results
can be summarized as follows:

(i) At fixed smoothing scale, unequal height peaks
exhibit exclusion while equal height peaks do not.
This arises from the fact that, on a given smoothing
scale, a single local density maximum can be
split into two nearby peaks at no cost. Using this
approach we can reproduce the clustering of proto-
haloes observed in N-body simulations.

(ii) The above behavior can be analytically and therefore
quantitatively understood for signed critical points.

(iii) Imposing an upper bound (lower bound on the
absolute value as peaks have negative curvatures)
on the three negative eigenvalues of the Hessian can
generate exclusion even for equal height peaks.

(iv) Peak velocity statistics deviate from the underlying
matter velocity statistics significantly. These devia-
tions are in accordance with what is seen for proto-
haloes in N-body simulations.

(v) We derive a closed form expression for the non-
perturbative clustering of Zeldovich displaced peaks
and study its behavior down to the smallest scales
(the exclusion region). The nonperturbative, evolved
peak clustering reproduces the halo-clustering down
to separations of 10–20h−1 Mpc. Like for haloes,
the evolved peaks exclusion region shrinks with
time. However, our peak-based prediction fails to
reproduce the detailed shape of the transition from
exclusion to mildly nonlinear regime as measured
for haloes.

(vi) While in this study we apply a Gaussian filter, there
is evidence for a mixed Gaussian plus top-hat
filtering being in better agreement with simulations
]80 ]. Improvement could also arise from [44] taking

into account the upcrossing constraint which, for the
Gaussian smoothing employed here, amounts to a
simple multiplicative weight [19,37]. To circumvent
the limitations inherent to the peak model, one could
also rely on the mass peak patch picture as was done
recently in [81], where the nonlinear exclusion
effects where notably studied in the initial conditions
and after an adaptive 2LPT displacements of the
halos thanks to fast peak patch simulations. A
careful comparison of both approaches will be the
subject of future works.

As we have shown in this study, the statistics of halo
displacements do differ from the matter displacements in a

way that is captured by the peak model. Halo displacements
are at the core of reconstruction techniques that aim to undo
the effect of long-wavelength motions. In these methods the
halo displacement is estimated from the smoothed halo
correlation function, ignoring scale-dependent density and
velocity bias. We expect that accounting for these distinct
scale dependencies will improve the performance of
reconstruction algorithms for future surveys.
Furthermore, in the halo model, galaxy correlation

functions are calculated by convolving the distribution of
halo centers with the corresponding matter (galaxy) profile.
In its standard implementation, the halo model relies on a
linear bias model for the correlation of halo centers and
leads to an unphysical constant contribution for low
wavenumbers. As pointed out by [82–84], this is related
to the halo stochasticity covariance. Finally, we also
anticipate that a nonperturbative description of the two-
halo contribution along the lines considered here could be
helpful toward a more accurate description of the transition
region between the two-halo and the one-halo terms
[85,86]. For specific galaxy populations, the exclusion
region may even be visible in the real space correlation
function (see e.g., Fig. 9 of [87]). In such cases, a
perturbative description of the two-halo term would not
be accurate enough.
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APPENDIX A: SIGNED CRITICAL POINTS

In this Appendix, we discuss the technical details of the
derivation of the closed-form expression for the correlation
function of signed critical points discussed in Sec. II A. We
first split the state vector intomT ¼ ðσ0ν1; σ1η1; σ0ν2; σ1η2Þ
and nT ¼ ðσ2ζ1; σ2ζ2Þ so that
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1þ ξcrit ¼
1

n̄2crit

Z
d8mwmðmÞ

Z
d12n det½H1;ij� det½H2;ij� exp

�
−
1

2
mT ·Ωm;m ·m −mT ·Ωm;n · n −

1

2
n ·Ωn;n · n

�
:

¼ 1

n̄2crit

Z
d8mwmðmÞ det½∂βPij

� det½∂βOij
�
Z

d12n exp

�
−
1

2
mT ·Ωm;m ·m − βT · n −

1

2
nT ·Ωn;n · n

�
: ðA1Þ

Here we have written the components of the determinant prefactors as derivative operators with respect to the components
of βT ¼ mTΩm;n with

P ¼

0
B@

1 4 5

4 2 6

5 6 3

1
CA; O ¼

0
B@

7 10 11

10 8 12

11 12 9

1
CA; ðA2Þ

and we have defined wmðmÞ ¼ δðDÞ½σ1η1�δðDÞ½σ1η2�. We can now perform the Gaussian integral over n and obtain

1þ ξcrit ¼
1

n̄2crit

Z
d8m det½∂βPij

� det½∂βOij
� exp

�
−
1

2
mTΩm;mmþ 1

2
βTΩ−1

n;nβ

�
: ðA3Þ

Taking the β derivatives and combining terms in the exponential4 yield

1þ ξcrit ¼
1

n̄2crit

Z
d8mwmðmÞD exp

�
−
1

2
mT · C−1

m;m ·m

�
: ðA4Þ

The m-integration collapses due to the weight function wmðmÞ, which sets the gradients to zero and the peak heights to a
specific value. Taking the derivatives, the prefactor evaluates to

D ∼ ϵi1;i2;i3ϵj1;j2;j3

�Y6
i¼1

mC−1
m;mCm;npðκiÞ þ

X
κ

�
Ω−1

n;n;κ5;κ6

Y4
i¼1

mC−1
m;mCm;npðκiÞ

þmC−1
m;mCm;npðκ5ÞmC−1

m;mCm;npðκ6Þ
Y4
i;j

Ω−1
n;n;κi;κj þ

Y
Ω−1

n;n;κi;κj

��
; ðA5Þ

where κ is a permutation of the derivative indices ðP1;i1 ; P2;i2 ; P3;i3 ; O1;j1 ; O2;j2 ; O3;j3Þ and where pðiÞ
j ¼ δðKÞij . Eventually,

we get

1þ ξcrit ≈ AðrÞeBðrÞ; ðA6Þ
with

AðrÞ ¼ D
n̄2crit

; ðA7Þ

and

BðrÞ ¼ −
1

2
mTC−1

m;mm ¼ ν2

4
þ 7Δν2

80
−
96Δν2

r̃6
þ 12Δν2

r̃4
−
6Δν2

5r̃2
−
81Δν2r̃2

22400
−
ν2r̃2

32
þ 11Δν2r̃4

179200
þ ν2r̃4

768
: ðA8Þ

This exponential suppresses 1þ ξ for nonvanishing peak
height differences Δν ≠ 0.

APPENDIX B: CURVATURE CUTOFF

While we had already explored the effect of nonvanish-
ing peak height difference in BCDP, we had not explored
the effect of a cutoff in peak curvature on exclusion. In
practice we implement this cutoff as an upper bound λmax
on the largest (lowest magnitude) eigenvalue of the ordered
set λ3 < λ2 < λ1 < λmax < 0. As we show in Fig. 10, the

4The inversion of block matrices yields for the relation
of the blocks of the covariance and precision matrix that
C−1
m;m ¼ Ωm;m −ΩT

m;nΩ−1
n;nΩm;n.
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curvature cutoff does indeed lead to small-scale exclusion
with Rexcl ≈ 6Rλ2=3cut . When measuring the eigenvalues of
the Hessian at the proto-halo positions, we do not find such
a cutoff. This might be due to the fact that our single
Gaussian filter is too simplistic. Furthermore, [33] have
found that a fraction of the haloes do actually form at the
saddle point between two peaks.

APPENDIX C: ABUNDANCE OF PEAKS
AND CRITICAL POINTS AND

BIAS PARAMETERS

The eigenvalues λi of the HessianHij can be rewritten as

x ¼ λ1 þ λ2 þ λ3; ðC1Þ
y ¼ λ1 − λ3; ðC2Þ

z ¼ λ1 − 2λ2 þ λ3: ðC3Þ

When calculating the abundance, we can integrate out y and
z analytically yielding

n̄pk ¼
1

ð2πÞ2R3⋆

Z
dνwðνÞe−ν2

2G0ðν; γνÞ; ðC4Þ

where

Giðν; γνÞ ¼
Z

dxxifðxÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1 − γ2Þ

p e
−ðx−γνÞ2
2ð1−γ2Þ; ðC5Þ

with

fðxÞ ¼
ffiffiffiffiffiffi
2

5π

r
1

20
½ð10x2 − 32Þe−5x2

2 þ ð155x2 þ 32Þe−5x2
8 �

þ 1

2
xðx2 − 3Þ

�
erf

� ffiffiffi
5

2

r
x
2

�
þ erf

� ffiffiffi
5

2

r
x

��
: ðC6Þ

The bias parameters are then commonly defined as

bijðνÞ ¼
1

n̄pk

1

ð2πÞ2R3⋆

Z
dxb̃ijðν; xÞfðxÞe−ν2

2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1 − γ2Þ
p e

−ðx−γνÞ2
2ð1−γ2Þ; ðC7Þ

where the explicit expression for the coefficients up to
second order are given by

b̃10ðν; xÞ ¼
1

σ0

ν − γx
1 − γ2

; ⇒ b10ðνÞ ¼
1

σ0

ν − γx̄
1 − γ2

;

b̃01ðν; xÞ ¼
1

σ2

x − γν

1 − γ2
; ⇒ b01ðνÞ ¼

1

σ2

x̄ − γν

1 − γ2
; ðC8Þ

where x̄ ¼ G1ðνÞ=G0ðνÞ.

APPENDIX D: SCATTER IN THE SIMULATIONS

In Fig. 11 we show the distribution of smoothed densities
at the proto-halo position normalized by the standard

FIG. 10. Effect of finite peak height separation Δν and peak
curvature cutoff λmax on exclusion in the correlation function.
Imposing an upper limit on the largest eigenvalue (lower limit on
the lowest magnitude eigenvalues) of the Hessian leads to
exclusion effects similar to the finite peak height difference.

FIG. 11. PDFs of the density at protohalo position for bins II and IV. We overplot a Gaussian distribution (solid) and log-normal
distribution (dashed), the latter providing a better description of the measurements. The vertical dashed line gives the mean of the
measured distribution and the vertical dashed line gives the median.
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deviation of the smoothed density field σ0 for bins II and
IV. The smoothing scales are given in Tab. I and is
motivated by fits to the cross-power spectrum between
proto-haloes and the underlying Gaussian density field

[77]. The distribution of measured densities at the proto-
halo position is well described by a log-normal distribution
but not too far off from a Gaussian distribution. We have
checked that the difference between both is minor.
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