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Quantum cosmological models are commonly described by means of semiclassical approximations in
which a smooth evolution of the expectation values of elementary geometry operators replaces the classical
and singular dynamics. The advantage of such descriptions is that they are relatively simple and display the
classical behavior for large universes. However, they may smooth out an important inner structure and to
include it a more detailed treatment is needed. The purpose of the present work is to investigate quantum
uncertainty in the basic background variables and its influence on primordial gravitational waves. To this
end we quantize a model of the Friedmann-Lemaitre-Robertson-Walker universe filled with a linear
barotropic cosmological fluid and with gravitational waves. We carefully derive the dynamical equations
for the perturbations in quantum spacetime. The quantization yields an equation of motion for the Fourier
modes of gravitational radiation, which is a quantum extension to the usual parametric oscillator equation
for gravitational waves propagating in an expanding universe. The two quantum effects from the
cosmological background that enter the enhanced equation of motion are (i) a repulsive potential resolving
the big bang singularity and replacing it with a big bounce and (ii) uncertainties in the numerical values
for the background spacetime dynamical variables. First we study the former effect and its consequences
for the primordial amplitude spectrum and carefully discuss the relation between the bounce scale and the
physical predictions of the model. Next we investigate the latter effect, in particular, the extent to which it
may affect the primordial amplitude of gravitational waves. Making use of the WKB approximation, we
find an analytical formula for the amplitude spectrum as a function of the quantum dispersion of the
background spacetime.

DOI: 10.1103/PhysRevD.103.083529

I. INTRODUCTION

Theories of the origin of primordial structure that are
based on models of a quantum bounce replacing the big
bang singularity (see, e.g., [1,2]) are often formulated in
terms of the “effective” or “trajectory” dynamics of the
early Universe. The goal of the present work is to construct
and study an enhanced framework that incorporates a full
quantum description of the homogenous cosmological
spacetime and its full action on the perturbations to
homogeneity propagating thereon (see, e.g., [3–6] for other
proposals).
There are two distinct consequences of the description of

the background spacetime by means of a wave function.
First, the singular dynamics of elementary classical vari-
ables is replaced with nonsingular dynamics of quantum
expectation values yielding semiclassical bouncing trajec-
tories. This aspect of quantum cosmological spacetimes
and its effect on the propagation of quantum fields has been
widely studied for cosmological applications. Second, the
background spacetime wave function implies some spread

in the background dynamical variables and, in particular, in
the coupling between the perturbations and the background
mode. The consequences of the latter are rarely studied
[7,8]. We will illustrate the origin of this effect with a
simple example. Note that there are many ways in which
the classical cosmological evolution in terms of the scale
factor a may be replaced by a semiclassical evolution of a.
For instance, the classical scale factor may be replaced with
the expectation values of various powers of the quantum
scale factor as follows: aðηÞ ¼ hânðηÞi1=n, where n is a
nonzero value. In Fig. 1 we plot the evolution of the scale
factor in conformal time for a unique wave function and a
few values of n. The plot shows, in particular, that for
negative values of n the Universe generically undergoes a
phase of accelerated contraction before being decelerated,
halted, and pushed into expansion, and that the dynamics
may exhibit a degree of asymmetry between its contracting
and expanding phases. This is a purely quantum spread
effect, which demonstrates that “quantum forces” are not
necessarily purely repulsive even when they ultimately
revert the dynamics of the Universe. The ambiguity
illustrated by this example is neglected by semiclassical
trajectories in which all the above scale factors evolve the
same. It is therefore necessary to find if this neglected
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structure could produce some observable cosmological
effects.
In this work we consider cosmological implications of

the presence of quantum uncertainties in a universe under-
going a bounce. We omit the nonessential, though possible,
phase of inflation and instead focus on fluid-dominated
universes. Moreover, we restrict our attention to the
universe from which the density perturbations are absent.
In other words, we investigate the effect of quantum
uncertainties of the background spacetime on the dynami-
cal law of primordial gravitational waves in fluid-driven
bouncing universes. Quantum bounces in such universes
have been previously studied within the Bohm–de Broglie
approach in [9]. The results obtained therein are in fact
reproduced in a semiclassical limit of our model. We go
beyond the semiclassical description and add spread to the
background, which produces an extra structure in the
dynamical coupling between the gravitational waves and
the background. As we shall see, it influences the evolution
of the amplitude of primordial gravitational waves and their
final state. It is clear that the existence of this influence
must be universal to all quantum cosmological models
irrespective of the employed quantization procedure or the
assumed background symmetries.
The outline of the paper is as follows. In Sec. II we

briefly describe the Hamiltonian formalism for the inves-
tigated cosmological model and its quantization. Our
discussion includes the issue of backreaction and entangle-
ment between the background spacetime and the perturba-
tions. We also discuss the existence of the classical limit,
which is necessary for cosmological applications. The main
result of this section is the quantum evolution equation for
the modes of gravitational radiation. In Sec. III we first
employ a semiclassical method based on infinitesimally
narrow wave packets to study the quantum bounce and the
resultant quantum evolution equation. We numerically

solve that equation and discuss the cosmological implica-
tions of the obtained result. Then we employ the full
quantum approach and discuss the new qualitative features
that it brings in at the level of the aforementioned equation.
We resort to the WKB approximation in order to analyti-
cally investigate the evolution of the gravity-wave ampli-
tude in a function of the spread of the quantum background.
The main findings are summarized and discussed in
Sec. IV.

II. QUANTUM COSMOLOGICAL MODEL

A. Classical and quantum Hamiltonian

Let us assume a flat universe with toroidal topology
Σ ¼ T3 and the line element

ds2 ¼ −N2dt2 þ a2ðδab þ habðxÞÞdxadxb; ð1Þ

where the coordinate volume equals
R
Σ d

3x ¼ V0 and the
physical volume equals V ¼ a3V0. The metric perturba-
tions hab and their conjugate momenta πab are resolved into
the Fourier coefficients

ȟabðk⃗Þ ¼ V−1
0

Z
Σ
habðxÞe−ik⃗ x⃗d3x;

π̌abðk⃗Þ ¼
Z
Σ
πabðxÞe−ik⃗ x⃗d3x; ð2Þ

which are next expressed in a new tensorial basis with two
distinct polarization modes of the gravitational wave,

ȟ� ¼ ȟabAab
� ; π̌� ¼ π̌abA�

ab; ð3Þ

where Aabþ ¼ 1ffiffi
2

p ðvawb þ vbwaÞ, Aab
− ¼ 1ffiffi

2
p ðvavb − wbwaÞ,

and v⃗ and w⃗ are such that jk⃗j−1k⃗, v⃗, and w⃗ form an
orthonormal frame with respect to the fiducial metric δab.
The new variables satisfy the usual commutation relation
fπ̌�ðk⃗Þ; ȟ�ð⃗lÞg ¼ δ�;� · δk⃗;−⃗l, and the reality condition for

the field habðxÞ implies ȟ�ðk⃗Þ ¼ ȟ��ð−k⃗Þ and π̌�ðk⃗Þ ¼
π̌��ð−k⃗Þ.
The physical Hamiltonian for the fluid-driven homo-

geneous and isotropic universe with linear tensor pertur-
bations thereon reads [10]

H ¼ Hð0Þ þ
X
k⃗

Hð2Þ
k⃗
; ð4Þ

where

Hð0Þ ¼ gp2;

Hð2Þ
k⃗

¼ −g
�
q
γ

�
−2
jπ̌�ðk⃗Þj2 −

k2

4g

�
q
γ

�6wþ2
3−3wjȟ�ðk⃗Þj2; ð5Þ

FIG. 1. Semiclassical dynamics of the scale factor obtained
from various quantum dynamical variables of which all satisfy
the classical limit for large volumes. [All the plots were obtained
for a unique wave function of Eq. (33) with K ¼ 3

4
, σ ¼ 2,

x0 ¼ 30, p0 ¼ −4.]
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where g ¼ 16πG
V0

, and w is the ratio of the fluid’s pressure to

its energy density γ ¼ 4
ffiffi
6

p
3ð1−wÞ, whereas q ¼ γa

3−3w
2 and p ¼

3ð1−wÞγ
8g a

3þ3w
2 H (where H ¼ _a

Na is the Hubble rate) are
canonical background variables. It follows from the
Friedmann equation that the background Hamiltonian
Hð0Þ ¼ a3þ3w

16g H2 ¼ a3þ3w

96
ρV0 equals 1=96 of the energy of

matter in the entire universe when its physical and
coordinate volumes are equal, V ¼ V0. The Hamiltonian
(4) generates the dynamics with respect to a fluid variable
that has been removed from the phase space. This choice of
internal clock variable yields the lapse N ¼ a3w.
We fix the coordinates by setting V0 ¼ l3P, i.e.,

the coordinate volume equals the Planck volume.
Furthermore, we assume that the present volume of the
universe equals V0 ¼ r · 1.25 × 10185l3P, where r > 1 is the
ratio of the volume of the universe to the volume of its
observable patch. This implies the present value of the scale
factor to be a0 ¼ 5 × 1061r1=3. We set the pivot scale to
correspond to a tenth of the diameter of the observable
universe, i.e., λ�;phys ¼ 5 × 1060lP, which yields the coor-
dinate pivot wave number k� ¼ 20πr1=3l−1P . Given the
present value of the Hubble rate, H ¼ 11.5 × 10−62l−1P ,
and the redshift of the matter-radiation equality era,
zeq ¼ 3400, we are able to estimate the value of the
Hamiltonian for the radiation-dominated universe (i.e.,
w ¼ 1

3
),

Hð0Þ ¼ 2.3 × 10120r
4
3mP; ð6Þ

where r needs still to be determined. It follows that if the
radiation-dominated era in the expanding universe begins at
the volume VT with a transition from another fluid-
dominated era with w then the primordial value of the
Hamiltonian must read1

Hð0Þ
w ¼ 2.3 × 10120r

4
3mPV

w−1
3

T ð7Þ

(where the dimensionless VT gives the number of Planck
volumes). Although the value of r is irrelevant for the
classical dynamics of the model, the quantum corrections
that we study below must depend on it, as does the value of
the canonical variable q ∝ r1=3. Therefore, quantum cosmo-
logical dynamics depends on the size of the entire universe.
The Hamilton equations generated by the classical

Hamiltonian (4) yield the following gravitational wave
propagation equation in conformal time, η ¼ R ðqγÞ

6w−2
3−3wdt,

μ00�;k⃗
þ
�
k2 −

ðq 2
3−3wÞ00
q

2
3−3w

�
μ�;k⃗ ¼ 0; ð8Þ

where μ�;k ¼ ðqγÞ
2

3−3wh�;k. As we show below, introducing
quantum effects to the background dynamics changes this
equation in a significant way.
Quantization of the Hamiltonian (4) may be carried

out as follows. The phase space is the Cartesian
product of the homogenous and inhomogeneous sector,
ðq; pÞ ×Qðȟ�;k⃗; π̌�;k⃗Þ. Note that the background canonical
variables have a nontrivial range, ðq; pÞ ∈ Rþ ×R. In this
case, the canonical prescription that tells us to replace q and
p with the usual position and momentum operators Q̂ and
P̂ does not work properly for the following reasons: (i) the
momentum operator on the half line is not self-adjoint and
thus it cannot be considered as an elementary observable;
(ii) the Hamiltonian operator as the square of the momen-
tum operator is not self-adjoint either and requires impos-
ing a suitable boundary condition on the wave functions.
It seems more appropriate to use the dilation instead of
the momentum operator, D̂ ¼ 1

2
ðQ̂ P̂þP̂ Q̂Þ. The dilation

operator is self-adjoint and the Hamiltonian operator, which
is the square of the ratio of dilation to position “ðD̂

Q̂
Þ2,” is

self-adjoint for a wide class of symmetric orderings. The
quantum zero-order Hamiltonian can be shown to generi-
cally contain a purely quantum term,

p2 ↦ P̂2 þ ℏ2
K

Q̂2
; K > 0; ð9Þ

which is a repulsive potential ∝ Q̂−2. The new term
prevents the universe from reaching the singularity and
generically replaces it with a bounce. More details on the
above quantization and the unitary dynamics generated by
the quantum Hamiltonian (9) may be found in [11].
Quantization of the perturbation variables is straightfor-

ward as they have the usual ranges, which means that
the canonical prescription works well in their case. Thus,
ȟ�ðk⃗Þ and π̌�ð−k⃗Þ are replaced with the usual position and
momentum operators on the real line. Finally, the total
quantum Hamiltonian reads [10]

H↦ Ĥ¼ Ĥð0Þ þ
X
k⃗

Ĥð2Þ
k⃗
;

Ĥð0Þ ¼g

�
P̂2þℏ2K

Q̂2

�
;

Ĥð2Þ
k⃗

¼−g
�
Q̂
γ

�−2
jπ̂�ðk⃗Þj2−

k2

4g

�
Q̂
γ

�6wþ2
3−3wjĥ�ðk⃗Þj2: ð10Þ

The Hilbert space is given by the tensor product
Hhom ⊗ Hinhom, where Hhom and Hinhom stand for the

1We apply the Israel junction conditions at the transition
between different fluid-dominated cosmological spacetimes. We
do not assume any particular mechanism for the transition, we
simply consider a single cosmic fluid with an effective equation
of state, which at some point of cosmological expansion turns
into radiation.
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background and perturbation Hilbert spaces, respectively.
The background Hilbert space Hhom ¼ L2ðRþ; dqÞ is
given by the square-integrable functions on the half
line, q > 0. The perturbation Hilbert space Hinhom ¼Q

k⃗;� L2ðR; dh�ðk⃗ÞÞ is the product of the usual Hilbert
spaces given by the square-integrable functions on the real
line. Note that the operator Ĥð0Þ acts nontrivially on the
states of the background geometry and is a c number while
acting on the states of the perturbations. On the other hand,

the operator Ĥð2Þ
k⃗

acts nontrivially on both the background

geometry and the perturbations.

B. Quantum dynamics

The Hamiltonian (10) is valid if the perturbation vari-
ables and their spatial derivatives are much smaller than the
unity, and their energy satisfies the following relation:

jHð2Þj ≪ Hð0Þ: ð11Þ

This is consistent with the assumption that the backreaction
of the perturbations on the background should be
neglected. This makes the Hamilton equations, or equiv-
alently Eq. (8), identical with the linearized Einstein
equations (see, e.g., [12]), and the backreaction is to be
deduced from higher-order dynamics.2 Similarly, we will
impose the lack of backreaction at the quantum level.
Let us for the moment assume that the state is given by

the product of a background state and a perturbation state
for all times,

jψi ¼ jψBi · jψPi ∈ H ⊂ Hhom ⊗ Hinhom: ð12Þ

This assumption breaks the Schrödinger equation produced
by the quantum Hamiltonian (10). We determine the
dynamical law confined to the product states (12) by
applying the variational method. We introduce the quantum
action

SQðψB;ψPÞ ≔
Z

hψB;ψPjiℏ
∂
∂t − ĤjψB;ψPidt; ð13Þ

whose variation leads to the dynamical equations3

iℏ
∂
∂t jψBi ¼ Ĥð0ÞjψBi þ hψPjĤð2ÞjψPi · jψBi;

iℏ
∂
∂t jψPi ¼ hψBjĤð0ÞjψBi · jψPi

þ hψBjĤð2ÞjψBi · jψPi; ð14Þ

which may be further simplified,

iℏ
∂
∂t jψBi ¼ Ĥð0ÞjψBi; ð15aÞ

iℏ
∂
∂t jψPi ¼ hψBjĤð2ÞjψBi · jψPi; ð15bÞ

if the backreaction term hψPjĤð2ÞjψPi · jψBi is removed,
and the term hψBjĤð0ÞjψBi · jψPi is discarded, as it only
adds an overall phase factor to the state jψBi · jψPi. It
follows that the background state jψBi has to be determined
solely from the zero-order Hamiltonian, in accordance with
our initial assumption. Note that the expectation value
hψBjĤð2ÞjψBi is an operator only on Hinhom. The key
difference brought by the quantum framework is that,
instead of being based on the classical solutions to
the background geometry, the perturbation Hamiltonian
hψBjĤð2ÞjψBi involves now the expectation values of the
background dynamical variables.
The simple product state (12) does not exhaust all the

possible states in the framework and, in general, will evolve
into an entangled state. In fact, the most general state that
may satisfy the assumption of the lack of backreaction
reads

jψ ð1Þ
B i · jψ ð1Þ

P i þ jψ ð2Þ
B i · jψ ð2Þ

P i þ � � � ; ð16Þ

and the application of the variational method leads to the
following equations:

iℏ
∂
∂t

2
6664
jψ ð1Þ

P i
..
.

jψ ðnÞ
P i

3
7775¼

2
6664
hψ ð1Þ

B jĤð2Þjψ ð1Þ
B i � � � hψ ð1Þ

B jĤð2Þjψ ðnÞ
B i

..

. . .
. ..

.

hψ ðnÞ
B jĤð2Þjψ ð1Þ

B i � � � hψ ðnÞ
B jĤð2Þjψ ðnÞ

B i

3
7775

×

2
6664
jψ ð1Þ

P i
..
.

jψ ðnÞ
P i

3
7775;

iℏ
∂
∂t jψ

ðnÞ
B i ¼ Ĥð0Þjψ ðnÞ

B i; ð17Þ

which are supplemented with the condition hψ ðnÞ
B jψ ðmÞ

B i ¼
δnm. Note that the perturbation vectors jψ ðmÞ

P i’s do not

backreact on the background states jψ ðmÞ
B i’s. Nevertheless,

2Recall that the reduced Hamiltonian is obtained by solving the
constraints at linear order and assuming that all quadratic and
higher-order terms are negligible in the equations of motion.
Hence, in order to properly account for the backreaction effect,
one needs to go beyond linear order, which includes solving
quadratic or higher-order dynamical constraints as well.

3We could as well restrict the variations to δψP because the
dynamics of the background has been assumed to be independent
and thus generated by Ĥð0Þ alone.
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they interact with each other through the nondiagonal
elements of the above matrix. With this equation, we
implement the classical condition of the lack of back-
reaction at quantum level. It reveals the rich physics of
primordial fields in quantum cosmological spacetimes.
In what follows, we restrict our attention to the simplest

product state (12) and postpone the study of compound
states to future papers. This is equivalent to the additional
assumption that the off-diagonal terms in the matrix (17)
are negligible, and therefore each summand in (16) evolves
independently according to Eqs. (15a) and (15b). The
Hamiltonian Ĥp ¼ hψBjĤð2ÞjψBi has the following form:

Ĥp ¼ S
X
k⃗

1

2
ðjπ̂�ðk⃗Þj2 þ Ω2

kjĥ�ðk⃗Þj2Þ; ð18Þ

where S ¼ 2ghðQ̂γ Þ
−2i and Ω2

k ¼ k2

4g2
hðQ̂γ Þ

6wþ2
3−3wi

hðQ̂γ Þ
−2i are determined

from the fully quantum background dynamics. The equa-
tions of motion for the perturbation variables read

1

S
d
dt

�
1

S

dĥ�;k⃗

dt

�
¼ −Ω2

kĥ�;k⃗: ð19Þ

In analogy with the classical case, we introduce a new time
parameter and a new dynamical variable,

η ¼
Z ��

Q̂
γ

�−2�3w−1
3w−3

dt;

μ̂�;k ¼
��

Q̂
γ

�−2� 1
3w−3

ĥ�;k: ð20Þ

The above quantum-level definitions lead, as shown below,
to the form of the dynamical law that closest resembles the
classical counterpart (8). Interestingly, these definitions
emphasize the role played by the moment hQ̂−2i that could
be viewed as yielding the “semiclassical” scale factor

ajsem ¼ hðQ̂γ Þ
−2i 1

3w−3. It has to be stressed that there are, in
principle, infinitely many quantum quantities correspond-
ing to a given classical one and we simply chose the most
convenient one. The choice of a new clock and new
variables cannot affect the physical predictions of the
model. The definitions (20) lead to the following equation
of motion:

μ̂00�;k⃗
þ
�
k2c2g −

ðhQ̂−2i 1
3w−3Þ00

hQ̂−2i 1
3w−3

�
μ̂�;k⃗ ¼ 0; ð21Þ

where c2g ¼ hðQ̂γ Þ
6wþ2
3−3wihðQ̂γ Þ

−2i3wþ1
3−3w. Equation (21) is a quan-

tum version of the gravitational wave propagation equa-
tion (8). Comparing it with Eq. (8) we notice that it
incorporates two distinct quantum effects on the evolution

of gravitational waves. The first effect is due to the quantum
term in the background Hamiltonian, which replaces the
classical singularity with a bouncing behavior of the
expectation values of dynamical variables such as hQ̂−2i
or hQ̂6wþ2

3−3wi. The second effect is due to the quantum
uncertainty in the background spacetime. The latter
influences both the speed of gravitational waves c2g and

the interaction potential V ¼ ðhQ̂−2i 1
3w−3Þ00

hQ̂−2i 1
3w−3

. Notice that the

uncertainty effect vanishes at the semiclassical level where
all the expectation values hQ̂ni are replaced by the
respective semiclassical expressions hQ̂in. Moreover, both
effects vanish away from the bounce when hQ̂−2i−1

2

becomes large, as we show below.
Let us switch to the Heisenberg form for the equation of

motion and solve the dynamics for the operator Q̂2. Let us
first notice the closed algebra of the operators

½Q̂2; Ĥð0Þ� ¼ 4iD̂; ½D̂; Ĥð0Þ� ¼ 2iĤð0Þ;

½Q̂2; D̂� ¼ 2iQ̂2; ð22Þ

which allows us to immediately integrate the dynamics

D̂ðtÞ ¼ 2Ĥð0Þtþ D̂ð0Þ;
Q̂2ðtÞ ¼ 4Ĥð0Þt2 þ 4D̂ð0Þtþ Q̂2ð0Þ: ð23Þ

Thus, for large jtj we find,

lim
t→�∞

c2g ¼
�

1

Ĥð0Þ

�3wþ1
3−3whĤð0Þ3wþ1

3−3wi ¼ const:;

lim
t→�∞

ðhQ̂−2i 1
3w−3Þ00

hQ̂−2i 1
3w−3

¼ 0; ð24Þ

which should be true for any state since hĤð0Þi > 0.4 The
above limits show that the oscillation frequency of every
mode is asymptotically fixed and well-defined vacuum
states for remote past and remote future exists.

C. Gravitational wave amplitude

Our convention for the physical dimensions is as
follows: the spacetime coordinates are given in units of
length, whereas the scale factor, and thus q, are dimension-
less. The momentum coordinate p has the dimension of
mass times length. Analogously, the perturbation variables

4A heuristic argument can be as follows: The positive self-
adjoint operator Q̂2ðtÞ can be viewed as an infinite matrix that can
be diagonalized at any moment of time. For large times, the
elements of this matrix are dominated by the elements of 4Ĥð0Þt2,
which has positive eigenvalues too. Therefore, any matrix
operator of the form Q̂2nðtÞ should be dominated at large times
by the elements of ð4Ĥð0Þt2Þn.
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h�ðk⃗Þ and π�ð−k⃗Þ have no dimension and the dimension of
mass times length, respectively.
Let us introduce the annihilation and creation operators

ĥk⃗ðtÞ ¼
1ffiffiffi
2

p ðâk⃗h�kðtÞ þ â†
−k⃗
hkðtÞÞ;

π̂k⃗ðtÞ ¼
1ffiffiffi
2

p
�
âk⃗

1

S
_h�kðtÞ þ â†

−k⃗

1

S
_hkðtÞ

�
; ð25Þ

where âk⃗’s are constant, whereas hkðtÞ are the isotropic
mode functions which solve the isotropic Eq. (19). Upon
setting h�k

1
S
_hk − hk 1

S
_h�k ¼ 2iℏ, the Hamiltonian Ĥp

becomes minimal at t0 on the vacuum state j0i such that
â�;k⃗j0i ¼ 0 if

hkðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
Ωkðt0Þ

s
;

_hkðt0Þ
Sðt0Þ

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏΩkðt0Þ

p
: ð26Þ

We actually push the above condition to the infinite past,
i.e., t0 → −∞, where the spacetime is classical and flat at
all cosmological scales, as follows from Eq. (24).
The predictions for primordial gravitational radiation are

often given in terms of the amplitude spectrum, which is
deduced from the equal-time correlation function, where
we assume that the interesting coordinate distances
jx⃗ − y⃗j ≪ 1 (or, k ≫ 1) are small in comparison to the
size of the universe. Furthermore, the isotropy μk⃗ ¼ μk is
assumed. Following the convention of [12], we define the
spectrum of amplitude of quantum fluctuations of the
gravitational waves (per each polarization mode) as

δĥðkÞ ¼
ffiffiffiffiffiffi
V0

p

hðQ̂γ Þ
−2i 1

3w−3

jμkj
2π

k
3
2: ð27Þ

The amplitude δĥðkÞ is time dependent. However, for long-
wavelength modes, once their amplitude is set after the
bounce, it remains to a large degree constant during a
substantial part of the subsequent cosmological evolution.
It is well known that the amplitude (27) is singular for

k → ∞. The singularity can be removed by means of the
adiabatic subtraction [13]. Nevertheless, we assume that
this procedure should not produce any effect at the relevant
scales. We provide the asymptotic expansion of the
amplitude for the quantum model studied below in the
Appendix C.

III. INTERNAL STRUCTURE OF THE BOUNCE

In this section, we argue in favor of the dynamical
significance of the inner structure of quantum bounces. We
demonstrate the effect of the background wave function on
the form of the gravitational wave propagation equa-
tion (21). First, however, we discuss a semiclassical

description of the quantum bounce that neglects its inner
structure and the interaction potential it leads to.

A. Semiclassical description

In what follows, we derive the gravitational wave
propagation equation (21) by means of the Ehrenfest
equations. Given the dynamics of the expectation values
of elementary variables hQ̂iðtÞ and hP̂iðtÞ, we form the
approximate dynamics of the expectation values of
the relevant compound observables. According to the
Ehrenfest theorem, the dynamics of the elementary expect-
ation values generated by the zero-order Hamiltonian Ĥð0Þ

of Eq. (10) reads

d
dt

hQ̂i ¼ 2ghP̂i; d
dt

hP̂i ¼ 2gℏ2KhQ̂−3i: ð28Þ

We assume the probability density in the scale-factor
representation

ρðx; tÞ ¼ δðx − qðtÞÞ; ð29Þ

which is a mathematical idealization of a probability
density peaked around a semiclassical solution for which
hQ̂iðtÞ ¼ qðtÞ. It is not an exact solution to the Schrödinger
equation (15a), but an approximate one, which allows one
to immediately obtain the dynamics of the expectation
values of any function of Q once the dynamics of q is
known. Discarding the higher moments of Q in the wave
function may only be temporarily a valid approximation
due to the natural spreading of the probability distribution
with time. We find the solution to (28) to read

hQ̂iðtÞ ¼ qb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkmaxtÞ2 þ 1

q
; ð30aÞ

hP̂iðtÞ ¼ qbk2maxt

2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkmaxtÞ2 þ 1

p ; ð30bÞ

where qb¼
ffiffiffiffiffiffiffiffiffiffi
2gℏ2K

Hð0Þ
sem

r
, kmax¼Hð0Þ

sem

ℏ
ffiffiffi
K

p , andHð0Þ
sem ¼ gðhP̂i2 þ ℏ2K

hQ̂i2Þ

is assumed to be equal to the classical value Hð0Þ
sem ¼ Hð0Þ.

We plot a typical solution in Fig. 2. The classical and
semiclassical trajectories are the same away from the
singularity, which proves the correct behavior of the
semiclassical model. Close to the singularity, the classical
and semiclassical trajectories diverge as the former termi-
nates (or originates) in the singularity, whereas the latter
avoids the singularity through a bounce.
We assume the quantum universe to be filled with a fluid

with an effective equation of state, which at some point of
cosmological expansion becomes radiation so that a con-
nection with the observable universe can be made. Making
use of the relations below Eq. (5), we obtain the scale factor
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of the universe at the bounce, from which we infer the
redshift at the bounce,

zb ¼
�

10120r

ð1 − wÞ ffiffiffiffi
K

p
� 2

3ð1−wÞ
zT

1
3
−w
1−w; ð31Þ

where zT is the fluid-to-radiation transition redshift. If the
early Universe had not undergone the fluid transition, then
we have zb ≈ 10120 rffiffiffi

K
p and the physical wavelength of the

pivot mode at the bounce reads λ�;phys ≈ 5 × 10−60
ffiffiffi
K

p
r lP.

This implies a huge value of
ffiffiffi
K

p
r for a cosmological scenario

in which the observable cosmological scales are around the
order of lP at the bounce. In general, we note that the bigger
the universe is and the more energy it contains, the smaller
the volume at which it bounces. The inverse is true for the
value of

ffiffiffiffi
K

p
. Because the amount of energy in the

observable universe is so huge, the quantum correction
preventing the singularity comes to dominate the dynamics
at the Planck volume only if the value of

ffiffiffiffi
K

p
is very large.

Nevertheless, we may fine-tune the model to yield a bounce
exactly at Planck scale.
We shall now turn to the evolution of the coefficients

c2gðtÞ and VðtÞ in the gravitational wave propagation
equation (21). It is straightforward to obtain them in the
current approximation,

c2gðtÞ
����
sem

¼ q
6wþ2
3−3wðtÞ

q
6wþ2
3−3wðtÞ ¼ 1; ð32aÞ

VðtÞ
����
sem

¼ q00ðtÞ
qðtÞ ¼ k2max

�
q2b
γ2

ð1þ ðkmaxtÞ2Þ
	6w−2

3w−3

×
ð2 − 6wÞðkmaxtÞ2 þ ð6 − 6wÞ
ð3w − 3Þ2½1þ ðkmaxtÞ2�2

; ð32bÞ

where prime 0 denotes differentiation with respect to
conformal time η defined in Eq. (20). We note that the

typical length scale influenced by the bounce is given by
the factor ðqbγ Þ

6w−2
3w−3kmax and thus, we introduce a dimension-

less quantity k̃ ¼ ðqbγ Þ
6w−2
3−3w k

kmax
to express the scale depend-

ence of the gravity-wave amplitude. Similarly, the typical
timescale at which the bounce operates is given by kmax;
hence we introduce a dimensionless quantity t̃ ¼ kmaxt.
In the semiclassical treatment of Eq. (21), the gravita-

tional waves propagate at the speed of light and interact
with the potential (32b) induced by the evolution of the
universe. A similar potential was obtained within the
Bohm–de Broglie approach in [9] where the long-
wavelength amplitude spectrum was found to have the
spectral index nt ¼ 6w

1þ3w.
5 In Fig. 3 we provide an inde-

pendent verification of their result by numerical integration
of the primordial amplitude for a few values of w and a
range of modes k̃. The analytical computation of the
primordial spectrum for this and other interaction potentials
is discussed in Sec. III C. The time evolution of a few
modes of the primordial gravitational wave is plotted
in Fig. 4.
Let us describe the relation between the primordial

amplitude and the value of K and w. One might think that
since the larger the value ofK the less redshifted and milder
the bounce is, the amplitude should decrease as K
increases. However, it can be shown that the amplitude

scales with K as At ∝ K
5w−1
2ð1−wÞ (see Sec. III C for the explicit

formulas). It follows that, for w < 1
5
, the larger the value of

K (and the stronger the quantum effect), the smaller the
primordial amplitude as one would expect. On the other
hand, when w > 1

5
, this relation becomes inverted; that is,

the larger the value of K, the larger the primordial
amplitude. Hence, respecting the upper bound on the

FIG. 3. The primordial amplitude spectrum δhðk̃Þ in a semi-
classical universe with a big bounce and a cosmological fluid for
a few values of w ¼ ρ

p.

FIG. 2. The evolution of q in the classical (dashed line, K ¼ 0)
and semiclassical (solid line, K ¼ 3

4
) background model.

5Authors of [9] consider the spectral index of the power
spectrum rather than the amplitude spectrum, hence the differ-
ence by factor 2.
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amplitude one may decrease the value of K as much as one
wishes for w > 1

5
. Note that the case w ¼ 1

5
is a borderline

for which the primordial amplitude does not actually
depend on K. Its value for w ¼ 1

5
, zT ¼ 1028, and r ¼ 2

reads At ≈ 1014.6.6

Let us assume that the gravitational wave amplitude at
the pivot scale should not exceed 10−5, to be consistent
with the Planck data for k� ¼ 0.002 Mpc−1 [15]. This in
turn puts constraints on the free parameter K. In Fig. 5 we
plot the required value of K as a function of the fluid’s type.
We find huge values allowed for almost all w’s. In Fig. 6 we
plot the redshift (and the energy density in Fig. 7) at the
bounce if the pivot scale amplitude reads 10−5. These
results clearly suggest that for the modes of interests we
may avoid the so-called trans-Planckian problem as the
observable modes when propagating through the bounce,
where they are the shortest, may exceed the Planck length
by a number of orders of magnitude. On the other hand,
they indicate that there might be the problem of unnaturally
large value of K. On the grounds that it is a quantum
correction, one expects that it should be of order of unity in
Planck units, while it has to be of many, many orders of
magnitude larger for w < 1

5
in order to produce At ¼ 10−5.

There are two ways to argue for the possibility of a large
K in our quantum model. Both arguments refer to the ways
in which we think about quantization of gravitational
systems. First, note that we do not know which choice
of basic variables is correct for quantization of gravitational
systems. In the preceding section, we chose dilation D̂ and
position Q̂ but we did not specify the ordering of these
operators in the Hamiltonian. In [16] it was actually shown that − 1

4
< K < ∞ depending on the chosen ordering. Thus,

large values of K can be easily accommodated by theory.
The second argument is more subtle and is based on the
nature of dynamics in quantum gravity. It is known (see,
e.g., [17] and references therein) that quantities like the

FIG. 4. The evolution of the amplitude of a few modes in a
semiclassical universe with a big bounce and a cosmological fluid
with w ¼ 0.5. For clarity, the maximum amplitude of h has been
normalized to unity.

FIG. 5. The white regions represent the admissible values of the
parameter K as functions of w (r ¼ 2, zT ¼ 1028).

FIG. 6. The white region represents the admissible values of the
bounce redshift zb as functions of w (r ¼ 2, zT ¼ 1028).

FIG. 7. The white region represents the admissible values of the
bounce energy density ρb as functions of w (r ¼ 2, zT ¼ 1028).

6The value zT ¼ 1028 corresponds to the “end-of-inflation”
redshift [14].
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scale of the bounce are not physically meaningful (or
unambiguous) in quantum gravity unless one indicates the
internal clock used for computing those quantities. This
property is referred to as the time problem. It follows that
the scale of the bounce obtained in the present model is tied
to the specific choice of clock t that we have made for the
derivation of the model. One might have chosen another
clock and found much more Planckian, or even sub-
Planckian, scale of the bounce issued from a weaker
repulsive potential, i.e., a smaller value of K. The contra-
diction between those two conclusions would be, however,
only illusory as it was shown in [18] that the physical
predictions for the classical phase of the cosmological
evolution derived from both models must agree with each
other, as for instance, in regard to the predicted value of the
amplitude of primordial gravitational waves in a large
expanding universe. Finally, let us note that the value of K
allowed by the cosmological observations can be extremely
large [19].
Above we have derived and described the semiclassical

model. It remains to verify whether adding a substantial
amount of quantum spread to the cosmological background
can alter the model in some important ways, in particular,
whether the final gravity-wave amplitude is modified in this
case due to some modifications of the gravity-wave
propagation speed (32a) or modifications of the interaction
potential (d32b). We shall investigate this issue below.

B. Quantum description

The mathematical idealization of the probability density
made above yields immediately the quantum dynamics of
the universe with the classical behavior for large volumes.
The interaction potential issued from such an approxima-
tion seems rather universal as it was also found in another
trajectory approach [9]. Trajectories are the usual way in
which quantum cosmological bounces are described.
However, this description completely neglects the quantum
uncertainty in the numerical values for the size and the
expansion rate of the universe close to the bounce. It is
legitimate to ask whether the amount of uncertainty that is
completely negligible for the presently large universe might
have played a significant role when the universe was small.
The nonvanishing uncertainty should be reflected in the
dynamics of the coefficients c2gðtÞ and VðtÞ of Eq. (21) as
they depend on higher-order moments. As a result, the
primordial structure and gravitational waves could be
influenced by this purely quantum effect.
In what follows we solve the complete dynamics of the

background model without any approximation and plot the
resulting interaction potential. The analytically integrable
solutions are very few and they require numerical integra-
tion of the expectation value of Q̂−2. We use an analytical
three-parameter solution to the background Schrödinger
equation (15a),

hqjψBi ∝
ffiffiffi
q

p
σe−

1

σ2þit
ðip2

0
σ2tþp0q0t−q2=4−q20=4Þffiffiffiffiffiffi

2π
p ðσ2 þ itÞ

× I ffiffiffiffiffiffiffi
Kþ1

4

p
�
qð2ip0σ

2 þ q0Þ
2ðσ2 þ itÞ

�
; ð33Þ

where InðxÞ is the modified Bessel function of the first
kind, ℏ ¼ 1 ¼ g, and q0, p0, and σ are free parameters. The
evolution of the associated density distribution is plotted in
Fig. 8. We see a wave packet moving toward the boundary
q ¼ 0 and strongly self-interfering as it bounces against the
repulsive potential. The spread of the wave packet is
growing as it moves away from the boundary.
The evolutions of the coefficients c2gðtÞ and VðtÞ

obtained from the solution (33) are plotted in Figs. 9
and 10, respectively. The speed of waves squared c2gðtÞ
consists of two maxima separated by a minimum exactly at
the bounce and it rapidly decreases to the value c2g ¼ 1 as
t → �∞. The fact that c2gðtÞ ≥ 1 follows from the Schwarz
inequality. The brief decline in c2g exactly at the moment of
the bounce is due to the momentary reduction of the spread
as the wave packet bounces off the potential. The fact that
c2g becomes larger than unity is interpreted as the break-
down of the “semiclassical spacetime” interpretation of the
model rather than as a superluminal propagation of the
gravitational waves. We do not expect, however, a signifi-
cant influence of the dynamical c2g on the amplification of
long-wavelength gravitational waves, precisely because
they are assumed to satisfy k2 ≪ V at the bounce and
the term ∝ k2 in Eq. (21) is simply negligible.

FIG. 8. The evolution of the density distribution in q yielded
by the exact wave packet (33) with p0 ¼ −4, x0 ¼ 30, and
σ ¼ 2 (K ¼ 3

4
).
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Similarly, the interaction potential VðtÞ in Fig. 10 dis-
plays an extra structure that does not occur for the semi-
classical solution given by Eq. (29).

C. WKB approximation

The available analytical solutions do not allow for
obtaining an analytical formula for the interaction potential
V and the numerical integration of V is cumbersome for
large K. Therefore, we resort to the WKB approximation
[20]. We assume the solution to the Schrödinger equa-
tion (15a),

hxjψBiðtÞ ¼ Aðx; tÞ exp ½iSðx; tÞ=ℏ�; A; S ∈ R; ð34Þ

which when expanded in ℏ yields at lowest order,

∂tS ¼ −g
�
S2;x þ

ℏ2K
x2

�
; ∂tA2 ¼ −2g∂xðA2S;xÞ; ð35Þ

where S is the Hamilton’s principal function

Sðt; xÞ ¼ g
Z

t;x
�
1

4
x2;t0 −

K
x2

�
dt0; ð36Þ

where the integral is taken over the semiclassical trajecto-
ries with fixed initial condition and A2 behaves like the
density of particles following the semiclassical trajectories.
Let us assume the probability distribution at the moment of
the bounce to read

ρðx; 0Þ ¼ ρðxÞ: ð37Þ
The solution (34) reads now

hxjψBiðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðxbðx; tÞÞ

∂xb
∂x

r
· exp ½iSðx; tÞ=ℏ�; ð38Þ

where

x2bðx;tÞ¼
1

2

�
x2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4−16g2ℏ2Kt2

q �
;

Sðx;tÞ¼ g3ℏ2K
x2bðx;tÞ

t−
ffiffiffiffi
K

p ð1þg2ℏ2Þ
2ℏ

arctan
�
2gℏ

ffiffiffiffi
K

p

x2bðx;tÞ
�
: ð39Þ

Within the WKB approximation, the sought expectation
value hQ̂−2i reads

hQ̂−2iðtÞ ¼
Z

∞

0

x−2ρðxbðx; tÞÞ
∂xb
∂x dx

¼
Z

∞

0

ρðxbÞdxb
x2b þ 4g2ℏ2K

x2b
t2
; ð40Þ

where in the last line we switched to the Heisenberg picture.
The formula (40) yields an analytical expression for some
choices of ρð·Þ and thereby it yields an analytical expres-
sion for the interaction potential V.
Let us assume the density distribution at the bounce to

read

ρðxÞ ¼ x
2q2bσ

χ½qbð1−σÞ;qbð1þσÞ�ðxÞ; ð41Þ

where χ½qbð1−σÞ;qbð1þσÞ�ðxÞ is the characteristic function, qb
is a fixed bouncing point, and 0 < σ < 1 is a free
dimensionless parameter. We then find

hQ̂2iðtÞ ¼ q2b

�
1þ σ2 þ ln j 1þσ

1−σ j
2σ

ðkmaxtÞ2
�
;

hQ̂−2iðtÞ ¼ 1

8q2bσ
ln

���� ð1þ σÞ4 þ ðkmaxtÞ2
ð1 − σÞ4 þ ðkmaxtÞ2

����;
hQ̂ijt¼0 ¼ qb;

ðΔQ̂Þ2jt¼0 ¼ hQ̂2i − q2b ¼ q2bσ
2: ð42Þ

FIG. 9. The speed of gravitational waves squared c2g of the
propagation equation (21) generated by the background dynam-
ics in the analytical state (33). We set p0 ¼ −4, q0 ¼ 30,
σ ¼ 2, K ¼ 3

4
.

FIG. 10. The interaction potential V of Eq. (21) issued from the
fully quantum background dynamics described by (33). We set
p0 ¼ −4, q0 ¼ 30, σ ¼ 2, K ¼ 3

4
, w ¼ 1

3
.
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It follows from the last equality that σ has the interpretation
of the relative volume dispersion. Notice that for σ → 0
one naturally retrieves the semiclassical description of
Sec. III A as

ρðxÞ → δðx − qbÞ;
hQ̂2iðtÞ → q2bð1þ ðkmaxtÞ2Þ;

hQ̂−2iðtÞ → 1

q2bð1þ ðkmaxtÞ2Þ
;

ðΔQ̂Þ2jt¼0 → 0: ð43Þ

Hence, Eqs. (42) provide a one-parameter extension to the
semiclassical model with the free parameter being the
spread of the wave function. The resultant formulas for
the interaction potential and the speed of gravitational
waves are given in Appendix A.
The interaction potential V in time t̃ ¼ kmaxt produced

by the density distribution (41) is plotted for a few values of
σ in Fig. 11. It is apparent that the potential is very sensitive
to the value of σ. In fact, the height and the width of its peak
can be altered by many orders of magnitude by the spread
of the wave packet. Thus, it is natural to expect that the
amplitude spectrum generated by these potentials can also
be substantially altered.
In Fig. 12 we plot the evolution of the renormalized

speed of gravitational waves. For the studied WKB states
(σ > 0), the speed decreases just before the bounce and
then at the bounce it increases back to its asymptotic value.
It behaves symmetrically in time after the bounce. As
before, we interpret this behavior as a breakdown of the
semiclassical interpretation of dynamics. This behavior
suppresses the value of the k2 term in Eq. (8) precisely
at the moment when it is already subdominant, and
therefore, the dynamical effect of the varying speed of

gravitational waves is negligible. The speed has been
normalized so that it asymptotically converges to unity.
The fact that it asymptotically converges to a different value
than unity is not physically relevant, as this discrepancy is
removed by simply redefining the length scale so that the
measured wave number is keff ¼ c∞g k, where c∞g is the
asymptotic value of cg. In this way, the measured speed of
gravitational waves equal to unity is retrieved.
In Fig. 13 we plot the numerically integrated evolution of

the amplitude of a selected mode both in the semiclassical
and the WKB approximation. We obtain a noticeable
suppression of the amplitude in the WKB approximation.
Now we turn to the analytical computation of the

primordial amplitude spectrum for the interaction potentials
issued from the WKB approximation. We solve the wave
propagation equation (21) by employing the piecewise

FIG. 12. The gravity-wave speed in the semiclassical approxi-
mation (dispersion σ ¼ 0) and in the WKB approximation
(dispersion σ ¼ 0.2 and σ ¼ 0.5).

FIG. 11. The interaction potential V in the semiclassical
(dispersion σ ¼ 0) and the WKB approximation (dispersion
σ ¼ 0.2 and σ ¼ 0.5).

FIG. 13. The evolution of a selected mode in the semi-
classical (dispersion σ ¼ 0) and the WKB (dispersion σ ¼ 0.4)
approximation.
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approximation used also in [9].7 Below we restrict our
discussion to a sketch of the derivation, details of which are
found in Appendix B.
In agreement with our result for the semiclassical case,

we assume that the modes of interest are much longer than
the length scale imposed by the interaction potential,
k̃−1 ≫ 1. Such modes cross the potential when c2gk2 ¼ V
at times −t̃c and t̃c much larger than the timescale imposed
by the interaction potential t̃c ≫ 1. Therefore, we assume
that for jt̃j ≥ t̃c the potential V is completely classical. This
will simplify the evaluation of the solution in this evolution
regime. Moreover, since the speed of gravitational waves cg
in the WKB approximation does not converge to unity for
large jt̃j’s, we use the effective wave number, k̃eff ¼ c∞g k̃
and keff ¼ c∞g k, where c∞g ¼ limjt̃j→∞ cg. It is to be stressed
that only the effective quantities are measurable.
The dynamics is solved separately in two distinct

evolution regimes. The first already mentioned regime
spans from the remote past up to the moment when a
particular mode crosses the interaction potential −t̃c. In this
regime, we solve the wave equation (21) in its asymptotic
form,

μ̂00�;k þ
�
ðc∞g kÞ2 þ

2ð3w − 1Þ
ð1þ 3wÞ2η2

�
μ̂�;k ¼ 0; ð44Þ

to which analytical solution in terms of the Hankel
functions is known (see Appendix B for details).
The other regime spans the time interval during which a

particular mode is inside the potential, between −t̃c and tc.
Inside this evolution regime, we use the integral form of
Eq. (21) expanded in powers of keff and compute only the
lowest-order term,

μhQ̂−2i 1
3ð1−wÞ ¼A1ðkeffÞþA2ðkeffÞ

Z
η

0

dη1hQ̂−2i− 2
3w−3: ð45Þ

One may show that this solution exhibits the following late-
time behavior:

lim
t̃→þ∞

μhQ̂−2i 1
3ð1−wÞ ¼ Ã1 − πÃ2 þOðt̃n<0Þ; ð46Þ

where Ã1 ¼ A1 − π
2
A2 and Ã2 ¼ A2. Hence the primordial

amplitude spectrum in this approximation must be propor-
tional to this particular linear combination of constants Ã1

and Ã2.
The values of Ã1 and Ã2 are obtained from matching

solutions from the two regimes at the time of the potential
crossing −t̃c. On the other hand, the first regime solution is
chosen by the demand that it corresponds to the Bunch-
Davies vacuum in the remote past. This procedure yields Ã1

subdominant and Ã2 dominant as for small k̃eff . The final
result is the primordial amplitude spectrum, which is
proportional to jÃ2j, and reads

δĥðk̃effÞ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j1−3wjp
3ð1−wÞ

� 2
3wþ1

���� 2Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1−3wjp þD

����
×

�
γ

qb

� 2w
w−1 1

2
kmax

ffiffiffiffiffiffi
V0

p
ð1þσ2Þ− 1

3wþ1k̃
6w

3wþ1

eff ; ð47Þ

where C and D are constants in the general solution to
Eq. (44) inside the first evolution regime,

C ¼ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c∞g kηc

q
Hð2Þ

ν ðc∞g kηcÞ;

D ¼ c2
2

Hð2Þ
ν ðc∞g kηcÞffiffiffiffiffiffiffiffiffiffiffiffiffi
c∞g kηc

p
þ c2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c∞g kηc

q
½Hð2Þ

ν−1ðc∞g kηcÞ −Hð2Þ
νþ1ðc∞g kηcÞ�; ð48Þ

where c2 ¼
ffiffiffiffiffiffiffiffi
πgℏ

p
e−i

π
2
ðνþ1

2
Þ and ν ¼ 3ð1−wÞ

2ð3wþ1Þ.
One can easily deduce from Eq. (47) that the spectral

index nt ¼ 6w
3wþ1

is unaffected by the spread of the back-
ground wave function. However, the absolute values of the
amplitudes change under the influence of the spreading
cosmological background. As keffηc is independent of σ,
the relation between the semiclassical and the “quantum”
amplitude spectrum reads

δĥðk̃effÞ ¼ ð1þ σ2Þ− 1
3wþ1 · δĥðk̃effÞjσ¼0: ð49Þ

The quantum factor in the above equation takes values from
the interval 0<ð1þσ2Þ 3w

3wþ1≤1 for fluids with − 1
3
≤ w ≤ 1.

In Fig. 14 we plot the dependence of the gravity-wave
amplitude on the dispersion σ for selected values of w.
It universally leads to the quantum dampening of the

FIG. 14. The suppression of primordial gravitational wave
amplitude δĥ in function of dispersion σ for a few selected fluids
as given by Eq. (49).

7See, in particular, Sec. IV B in [9]: “Piecewise approximation
and matching in the flat spatial section case.”

PRZEMYSŁAW MAŁKIEWICZ and ARTUR MIROSZEWSKI PHYS. REV. D 103, 083529 (2021)

083529-12



amplitude. The suppression may be mild and rather
irrelevant or, in the case when w ≈ − 1

3
, large and significant

leading to observable effects.
We found that the quantum spread does not affect the

spectral index. We expect this to be a quite general property
that follows from the fact that the long-wavelength modes
enter the potential when the potential is still classical. Thus,
the constants in Eq. (45), A1 and in particular A2 that
becomes dominant for small keff , are determined already in
the classical universe. On the other hand, the integral in
Eq. (45) does not depend on keff but may be sensitive to the
details of the dynamics in the vicinity of the bounce. Hence,
the quantum spread can alter the amplitude of the long-
wavelength modes by an overall factor that does not depend
on scale.

IV. CONCLUSIONS

We studied the effect of the bounce and quantum
uncertainties in the background geometry on the gravita-
tional waves propagating across the primordial universe.
We first analyzed the semiclassical description in which the
wave packets are assumed to be infinitely narrow. We
reproduced a class of interaction potentials for gravitational
waves that had been previously obtained within the Bohm–
de Broglie trajectory approach. We obtained the amplitude
spectra in agreement with the results of [9]. Next we studied
a free parameter of our model K and the way it determines
the redshift of the bounce and the matter density at the
bounce given the known bound on the primordial gravi-
tational waves amplitude at the physically relevant scales.
We found a large space of admissible parameters for all
cosmological fluids, which produced plausible cosmologi-
cal scenarios.
We then enhanced the treatment by the inclusion of

quantum spread. By employing the WKB approximation
we were able to obtain an analytical relation between
dispersion σ and the evolution of gravitational waves. We
found that the spread induces qualitative changes to
the dynamical law of gravitational waves. One way the
uncertainties enter the dynamical law is by varying the
speed of gravitational waves as the universe bounces.
The other way they manifest themselves is by altering
the interaction potential. We found that these important
changes of the dynamical law ultimately have no effect on
the spectral index of the primordial amplitude for long-
wavelength modes. The amplitude on the other hand
becomes multiplied by an overall factor independent of
the wavelength. The factor, however, is rather irrelevant
for most cosmological fluids; nevertheless, it can cause a
significant suppression of the amplitude in cases when
w ≈ − 1

3
.

The finding that the quantum spread does not influence
the cosmological predictions for most cosmological
fluids is very important theoretically. It implies that the
semiclassical analysis is completely sufficient in those
cases at linear order. It might also imply that it will never
be possible to discern any difference between classical and
quantum bounce scenarios.
The finding that the quantum spread may significantly

suppress the primordial amplitude for some cosmological
fluids, even if they themselves are not physically appealing,
indicates that one should verify the possible effect of
quantum spread every time that one introduces a form of
matter not included in our work. We note that it is not clear
from our work why the amplitude is suppressed rather than
amplified. It might be the case that there exist quantum
states of the background spacetime that amplify the
amplitude of gravitational waves.
Finally, let us observe that the effect of uncertainties

illustrates the basic fact about quantum mechanics and
semiclassical descriptions thereof. Namely, there are infi-
nitely many ways in which one can replace a given classical
observable with a function of expectation values of oper-
ators that behaves like the classical observable for large
universes. All such functions provide semiclassical expres-
sions for a given classical observable but with a different
behavior exactly in the regime where classical mechanics
breaks down. This is illustrated by the examples of the scale
factor described in the Introduction and shows a serious
limitation on the physical interpretation of semiclassical
descriptions. It is also illustrated by the nontrivial evolution
of the coupling of the gravitational waves and indicates that
any semiclassical description must be verified whether it
indeed reproduces the correct quantum behavior.
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APPENDIX A: GRAVITY-WAVE PROPAGATION
EQUATION IN WKB APPROXIMATION

In the WKB approximation, the gravity-wave propaga-
tion equation (21) reads

μ̂00�;k⃗
þ ðk2c2gðtðηÞÞ − VðtðηÞÞÞμ̂�;k⃗ ¼ 0; ðA1Þ

where ηðtÞ ¼ R
t ð γ2

8q2bσ
ln j ð1þσÞ4þðkmaxt0Þ2

ð1−σÞ4þðkmaxt0Þ2 jÞ
3w−1
3w−3dt0 and
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VðtÞ ¼
−256ðkmaxtÞ2ðσ þ σ3Þ2ð−5þ 6wÞð8σÞ2−6w3−3wΛ12w−8

3−3w k2maxðq
2
b
γ2
Þ6w−23w−3

ððkmaxtÞ2 þ ð1 − σÞ4Þ2ððkmaxtÞ2 þ ð1þ σÞ4Þ2ð3w − 3Þ2

þ
16σð1þ σ2Þðð1 − σ2Þ4 − 2ðkmaxtÞ2ð1þ 6σ2 þ σ4Þ − 3ðkmaxtÞ4Þð8σÞ2−6w3−3wΛ9w−5

3−3wk2maxðq
2
b

γ2
Þ6w−23w−3

ððkmaxtÞ2 þ ð1 − σÞ4Þ2ððkmaxtÞ2 þ ð1þ σÞ4Þ2ð3 − 3wÞ ; ðA2Þ

where Λ ¼ ln j ðkmaxtÞ2þðσþ1Þ4
ðkmaxtÞ2þðσ−1Þ4 j,

c2gðtÞ ¼
4
1þw
w−1ð3 − 3wÞΓð 2

3−3wÞðF− − FþÞ

ln jð1þσÞ4þðkmaxtÞ2

ðσ−1Þ4þðkmaxtÞ2
j

σ

�3wþ1
3−3w

ð1 − σ2Þ 4
3−3wð1þ σ2Þ3wþ1

3−3wðð1 − σÞ 4w
w−1ð1þ σÞ 4

3ðw−1Þ − ð1 − σÞ 4
3ðw−1Þð1þ σÞ 4w

w−1ÞΓð 1−3w
3ðw−1ÞÞ

; ðA3Þ

where F� ¼ ð1� σÞ 8
3−3w

2F1ð3wþ1
3w−3 ;

2
3w−3 ;

1−3w
3−3w ;−

ðkmaxtÞ2
ðσ�1Þ4 Þ.

APPENDIX B: DERIVATION OF THE
GRAVITY-WAVE AMPLITUDE

We follow the notation introduced in Sec. III C. In the
first evolution regime, the potential is subdominant and the
time parameter satisfies jt̃j ≥ t̃c. The asymptotic behavior
for the expectation value of the inverse position squared is

lim
t̃→�∞

hQ̂−2i ¼ 1þ σ2

q2bt̃
2

; ðB1Þ

which, by the virtue of Eq. (20), yields the asymptotic
relation between the time parameters t̃ and η,

lim
t̃→�∞

kmaxηðt̃Þ

¼ � 3ð1 − wÞ
3wþ 1

jt̃j 1þ3w
3ð1−wÞð1þ σ2Þ 3w−1

3ðw−1Þ

�
γ2

q2b

� 3w−1
3ðw−1Þ

: ðB2Þ

Hence, the asymptotic form of Eq. (21) reads

μ̂00�;k þ
�
ðc∞g kÞ2 þ

2ð3w − 1Þ
ð1þ 3wÞ2η2

�
μ̂�;k ¼ 0; ðB3Þ

the solution of which is

μ ¼ ffiffiffi
η

p ½c1ðkÞHð1Þ
ν ðc∞g kηÞ þ c2ðkÞHð2Þ

ν ðc∞g kηÞ�; ðB4Þ

where ν ¼ 3ð1−wÞ
2ð3wþ1Þ. The solution (B4) is a sufficiently

accurate solution of Eq. (21) for jt̃j ≫ 1 and is used at
all times for which the potential is subdominant. This
happens before (or after) the potential crossing time −t̃c
(t̃c), which for small k̃eff modes reads

t̃c ¼
�
9

2

ð1 − wÞ2
j1 − 3wj k̃

2
eff

	 3ðw−1Þ
2ð1þ3wÞ½1þ σ2�3w−13wþ1; ðB5Þ

where k̃eff ¼ k̃c∞g .

On the other hand, at times −t̃c ≤ t̃ ≤ t̃c when the
interaction potential is dominant, the solution is approxi-
mated by the lowest order in keff terms of the formal
solution of Eq. (21),

μkhQ̂−2i 1
3ð1−wÞ ¼ A1ðkeffÞ þ A2ðkeffÞ

Z
dη1hQ̂−2i− 2

3w−3

− k2eff

Z
dη1hQ̂−2i− 2

3w−3

Z
dη2hQ̂−2i 1

3w−3μk;

ðB6Þ

where the quantity μkhQ̂−2i 1
3ð1−wÞγ

2
3ð1−wÞ corresponds to the

classical variable hk ¼ μk
a . Because the change in c2g does

not break the dominance of the interaction potential, the
present approximation neglects the evolution of c2g and
picks its value at infinity where the effective wave number
k̃eff ¼ k̃c∞g is defined. The asymptotic value of speed of
gravitational waves [see the definition below Eq. (21)],

c∞g ¼ hQ̂ 6wþ2
3ð1−wÞi∞hQ̂−2i

3wþ1
3ð1−wÞ
∞ ; ðB7Þ

is easily found in the WKB approximation. Indeed, as one
may show,

hQ̂ni∞ ¼ t̃nqnb
2ð2 − nÞ ½ð1þ σÞ2−n − ð1 − σÞ2−n�: ðB8Þ

After neglecting higher-order terms in Eq. (B6), the only
integral left reads

8σq2b
kmax

Z
dη1hQ̂−2i− 2

3w−3

¼ 2ð1þσÞ2 arctan
�

t̃
ð1þσÞ2

	

−2ð1−σÞ2 arctan
�

t̃
ð1−σÞ2

	
þ t̃ ln

�ð1þσÞ4þ t̃2

ð1−σÞ4þ t̃2

	
: ðB9Þ
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Therefore, the solution far away from the bounce, in the
leading terms, is

lim
t̃→−∞

μkhQ̂−2i 1
3ð1−wÞ ¼ Ã1 þ Ã2

1þ σ2

t̃
;

lim
t̃→þ∞

μkhQ̂−2i 1
3ð1−wÞ ¼ Ã1 − πÃ2 þOðt̃n<0Þ: ðB10Þ

We match the solutions at the point −t̃c, where μk can be
approximated by

μkð−t̃cÞ ¼ Ã1ð−t̃cÞ
2

3ð1−wÞ

�
1þ σ2

q2b

� 1
3ðw−1Þ

þ Ã2ð−t̃cÞ
3w−1
3ð1−wÞ

�
1þ σ2

q2b

� 3w−2
3ðw−1Þ ðB11Þ

and, from (B4), we also have [ηc ¼ ηðt̃cÞ]

μkð−ηcÞ ¼
Cffiffiffiffiffiffiffiffiffi
c∞g k

p ; μ0kð−ηcÞ ¼ D
ffiffiffiffiffiffiffiffiffi
c∞g k

q
: ðB12Þ

Assuming the Bunch-Davies vacuum normalization c1 ¼ 0

and c2 ¼
ffiffiffiffiffiffiffiffi
πgℏ

p
e−i

π
2
ðνþ1

2
Þ, the constants are

C ¼ c2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c∞g kηc

q
Hð2Þ

ν ðc∞g kηcÞ;

D ¼ c2
2

Hð2Þ
ν ðc∞g kηcÞffiffiffiffiffiffiffiffiffiffiffiffiffi
c∞g kηc

p
þ c2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c∞g kηc

q
½Hð2Þ

ν−1ðc∞g kηcÞ −Hð2Þ
νþ1ðc∞g kηcÞ�: ðB13Þ

Combining Eqs. (B11) and (B12) we obtain

Ã1 ¼ −
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 − 3wjp
3ð1 − wÞ

�3w−1
3wþ1

ð1þ σ2Þ 1
3wþ1

×
γ

1−3w
3ð1−wÞ

qb
ffiffiffiffiffiffiffiffiffi
kmax

p
� ð1 − 3wÞCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j1 − 3wjp −D

�
k̃

3ð1−wÞ
2ð3wþ1Þ
eff ;

Ã2 ¼
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 − 3wjp
3ð1 − wÞ

� 2
3wþ1

ð1þ σ2Þ− 1
3wþ1

×
γ

1−3w
3ð1−wÞ

qb
ffiffiffiffiffiffiffiffiffi
kmax

p
�

−2Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 − 3wjp −D

�
k̃

3ðw−1Þ
2ð3wþ1Þ
eff : ðB14Þ

Note that for cosmological fluids with − 1
3
≤ w ≤ 1 the

coefficient Ã1 scales with a positive power of k̃; therefore, it
is subdominant for k̃ ≪ 1. The dominant part of the

amplitude spectrum is determined by Ã2. Making use of
Eq. (B10), we find the spectrum of amplitude (27),

δĥðk̃effÞ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j1−3wjp
3ð1−wÞ

� 2
3wþ1

���� 2Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1−3wjp þD

����
×

�
γ

qb

� 2w
w−1 1

2
kmax

ffiffiffiffiffiffi
V0

p
ð1þσ2Þ− 1

3wþ1k̃
6w

3wþ1

eff : ðB15Þ

APPENDIX C: ASYMPTOTIC EXPANSION
OF THE AMPLITUDE SPECTRUM

In the present section we apply the adiabatic subtraction
described in Chap. 3 of [13] to regularize the amplitude
spectrum (27) based on the adiabatic expansion of the mode
functions μ�;k⃗ that satisfy Eq. (21). The obtained result
equally applies to the semiclassical model with cg ¼ 1. The
amplitude spectrum is obtained from the power spectrum
that is quadratic in the modes μk. Given that the modes
satisfy the initial condition (26) for t0 → −∞, we obtain

jμkj2 ¼
4gℏ
W

; ðC1Þ

where W−1 ¼ ðW−1Þð0Þ þ ðW−1Þð2Þ þOðT−4Þ with the
index (n) denoting the order of the adiabatic expansion.
We find

ðW−1Þð0Þ ¼ c−1g k−1;

ðW−1Þð2Þ ¼ c−3g
2

�ðhQ̂−2i 1
3w−3Þ00

hQ̂−2i 1
3w−3

− c
1
2
gðc−

1
2

g Þ00
�
k−3; ðC2Þ

where cg is defined below Eq. (21). If we were to compute

the two-point correlation function h0jμ̂ðxÞμ̂ðx0Þj0i ∝R
d3k eik⃗ðx−x0Þ

W the zero- and second-order terms ðW−1Þð0Þ
and ðW−1Þð2Þ would produce, respectively, quadratic and
logarithmic divergences as x → x0. The next-order term
ðW−1Þð4Þ scales at least as k−5; therefore, it must give a
finite contribution.
Finally, the regularized amplitude spectrum is found to

read [cf. Eq. (27)]

δĥðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμkj2 − 4gℏðW−1Þð0Þ − 4gℏðW−1Þð2Þ

q
2πV

−1
2

0 hðQ̂γ Þ
−2i 1

3w−3

k
3
2: ðC3Þ
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