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We study the cosmology of the dark sector consisting of (ultra)light scalars. Since the scalar mass is
radiatively unstable, a special explanation is required to make the mass much smaller than the UV scale.
There are two well-known mechanisms for the origin of scalar mass. The scalar can be identified as a
pseudo-Goldstone boson, whose shift symmetry is explicitly broken by nonperturbative corrections, like
the axion. Alternatively, it can be identified as a composite particle like the glueball, whose mass is limited
by the confinement scale of the theory because no scalar degree of freedom exists at high scales. In both
cases, the scalar can be naturally light, but interaction behavior is quite different. The lighter the axion
(glueball), the weaker (stronger) its interaction. As the simplest nontrivial example, we consider the dark
axion whose shift symmetry is anomalously broken by the hidden non-Abelian gauge symmetry. After the
confinement of the gauge group, the dark axion and the dark glueball get masses and both form
multicomponent dark matter. We carefully consider the effects of energy flow from the dark gluons to the
dark axions and derive the full equations of motion for the background and the perturbed variables. The
effect of the dark axion–dark gluon coupling on the evolution of the entropy and the isocurvature
perturbations is also clarified. Finally, we discuss the gravothermal collapse of the glueball subcomponent
dark matter after the halos form, in order to explore the potential to contribute to the formation of seeds for
the supermassive black holes observed at high redshifts. With the simplified assumptions, the glueball
subcomponent dark matter with the mass of 0.01–0.1 MeVand the axion main dark matter component with
the decay constant fa ¼ Oð1015–1016Þ GeV and the mass ofOð10−14–10−18Þ eV can provide a hint on the
origin of the supermassive black holes at high redshifts.

DOI: 10.1103/PhysRevD.103.083528

I. INTRODUCTION

The discovery of the Higgs boson completed the
Standard Model, which explains most of the phenomena
in the Universe including nuclei, atoms, and their inter-
actions. However, various studies based on precise mea-
surements of the cosmic microwave background (CMB),
velocity distributions of stars and galaxies, and large-scale
structures (LSS) show that only 4% of the Universe is
understood by our knowledge of the Standard Model, and
96% must be filled with dark matter and dark energy, for
which we do not know their origin [1].
Among dark matter candidates, particles classified

as “weakly interacting massive particles” (WIMP) were

considered as the best candidate. This is because their
freeze-out relic abundance can naturally explain the present
amount of dark matter, and they can be tested by different
ongoing searches. Their mass scale can also be related to
new physics that explains why the electroweak scale is
stable against various quantum corrections.
However, there is no conclusive evidence of WIMP dark

matter so far, and the alternative candidates got more
attention in recent years. The masses of these candidates
are not limited to a narrow range, and various ideas have
been proposed, particularly focusing on the detection
possibility [2]. For such a broad range of dark matter
mass, there is no clear guiding principle to specify its
natural range. Especially, it is extremely unnatural to
consider a light scalar compared to the probing scales
unless there is a special reason for it.
It is quite interesting to notice that an ultralight scalar

dark matter is allowed by cosmological and astrophysical
observations, because the scalar can act as an oscillating
classical field whose averaged equation of state is the same
as that of cold dark matter (CDM). Further interesting
phenomena can arise from its field nature at small scales.
The fuzzy dark matter [3] and the QCD axion [4–7] are
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good examples. Both candidates, the axion or axionlike
particle, can be naturally light by their approximate shift
symmetry, which is explicitly broken by the controllable
nonperturbative corrections. The consequence of the global
symmetry is that the lighter the axion becomes, the weaker
its interaction is. Therefore, a large occupation number of
the (ultra)light axion is allowed, and it can be described by
the evolution of scalar condensate.
On the one hand, there is another natural way to obtain a

light scalar dark matter. When the asymptotically free
gauge group has confinement at low energy, the gauge
fields are confined into scalar particles—glueballs—whose
mass is limited by the confining scale. Unlike in the case of
the axion, the lighter the glueballs, the stronger the
scattering cross section among glueballs. The number-
changing interactions are active, so the occupation
number is always limited by its temperature during its
cosmological evolution. In this case, the relic density is
determined by the freeze-out mechanism. Because of this
property, the light dark glueball becomes a good candidate
for self-interacting dark matter (SIDM) [8,9], which is one
of the ways to make the cored density profile around the
centers of galaxies [10]. As a subcomponent hot dark
matter, it can also play the role to suppress small-scale
perturbations [11].
These two mechanisms to obtain a light scalar dark

matter provide a completely different microscopic nature of
dark matter and yield different predictions for small-scale
evolution.
In this paper, we study the cosmology of light scalar dark

matter, focusing on the origin of its mass and the conse-
quences associated with it. We cover two mechanisms
discussed above at the same time in a minimal setup: the
dark sector, consisting of the axion, and the confining
hidden gauge symmetry without light fermions. In this
setup, the axion’s shift symmetry is nonperturbatively
broken by a Chern-Simons-type coupling between the
axion and the dark gauge field—i.e., gluon. After the
confinement of the gauge group, the axion and the glueball
get masses and become a part of multicomponent dark
matter. The idea that the mass of the ultralight scalar dark
matter originates from a confining hidden gauge symmetry
was studied in Refs. [12,13], but comprehensive study on
its cosmological evolution is still lacking.
We derive a complete set of the equations of motion for

the background and the perturbed variables of the dark
axion and the dark gluon/glueball densities. Since the
axion-gluon coupling provides energy transfer from
the dark gluon to the dark axion, we clarify its effect on
the thermodynamics of the dark gluon fluid and entropy
evolution. We also quantify the transfer of the isocurvature
perturbation through the same coupling.
The multicomponent dark matter which simultaneously

contains feebly interacting and strongly interacting par-
ticles has an interesting cosmological consequence. When

the glueball dark matter becomes a subcomponent, the
stronger self-interaction between the glueballs is allowed
and opens the possibility to form a black hole in the early
Universe [14,15]. This may provide a possible answer to
the question about the origin of observed supermassive
black holes at high redshifts [16–19]. We discuss the
parameter space to provide the solution and possible
caveats.
The paper is organized as follows: In Sec. II, we establish

basic formalism from the Lagrangian to the dynamical
equations of the background and perturbation variables of
the coupled axion-gluon fluid. In Sec. III, we focus on the
background evolution of the glueball and the axion dark
matter. The parametric dependence of the relic abundance
of the glueball and the axion is also presented. Section IV is
devoted to the evolution of the perturbed variables. For the
initial conditions, we have three modes: adiabatic pertur-
bation, isocurvature perturbation induced by the initial
misalignment of the axion, and the temperature fluctuation
of the dark gluon fluid. In Sec. V, we discuss the
implication of the glueball subcomponent dark matter for
the early formation of the supermassive black holes.
Section VI presents conclusions.

II. AXION DARK MATTER AND CONFINING
DARK SECTOR

A. General description of the model

Our starting Lagrangian of the dark sector is composed
of the ultralight axion ϕ, whose field range is 2πfa, and the
dark gauge symmetry with the confinement scale Λ
(Λ ≪ fa). The coupling between the axion and the dark
gauge bosons is given as

−
Lhffiffiffiffiffiffi−gp ¼ 1

2
ð∂μϕÞ2 þ

1

4
ðGa

μνÞ2 þ
g2hϕ

32π2fa
Ga

μνG̃
aμν; ð2:1Þ

where Ga
μν is the dark gluon field strength and gh denotes

the dark (hidden) gauge coupling. For illustration, SUðNÞ
is taken as our dark gauge group. Although we will not
consider an extremely large value of N and only take
N2 ¼ Oð10Þ in concrete examples, we keep N-dependence
explicitly in our discussion in order to organize the results
using the large-N expansion.
Below the confinement scale, the dynamics of the gauge

fields can be described by the composite bosons, the
glueballs. The most relevant glueball for dark matter
physics is the lightest glueball, φg. Considering the
large-N limit (dominated by planar diagrams) and the 4π
factor from the naive dimensional analysis (with the cutoff
of the order of Λ), the effective Lagrangian of φg can be
expanded in ð4π=NÞðφg=mgÞ as [20–24]
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−
Lheffffiffiffiffiffiffi−gp ¼ 1

2
ð∂μϕÞ2 þ VðϕÞ þ 1

2
ð∂μφgÞ2 þ

1

2
m2

gφ
2
g

þ a3
3!

�
4π

N

�
mgφ

3
g þ

a4
4!

�
4π

N

�
2

φ4
g

þ a5
5!

�
4π

N

�
3 φ5

g

mg
þ � � � ; ð2:2Þ

where the lightest glueball’s mass is denoted bymg¼OðΛÞ,
and the coefficients ai are expected to be Oð1Þ.
The axion also gets a scalar potential from the gluody-

namics, which can be written as a power series in ðϕ=NfaÞ2
around its CP-conserving minimum [25,26]:

VðϕÞ ¼ N2Λ4

�
c2
2

ϕ2

N2f2a
þ c4

4!

ϕ4

N4f4a
þ � � �

�

¼ 1

2
m2

aϕ
2 þ c4

4!c2

m2
a

N2f2a
ϕ4 þ � � � : ð2:3Þ

In this expansion, the axion mass is given by

m2
a ¼

1

f2a

Z
d4xE

�
g2h

32π2
GEG̃EðxEÞ

g2h
32π2

GEG̃Eð0Þ
�

ϕ¼0

¼ ð10−12 ffiffiffiffiffi
c2

p
eVÞ2

�
Λ

MeV

�
4
�
1015 GeV

fa

�
2

; ð2:4Þ

where the integral is evaluated for Euclidean continuation
of Eq. (2.1). The 1=N2 factor for the quartic term of the
axion potential leads to the suppression of anharmonic
effects as long as the initial misalignment of the axion field
is ϕi ≲ fa.
The glueball is not the lightest particle in our dark sector,

and the symmetry allows the decay of the glueball to two
axions as φg → ϕϕ. We can infer the glueball lifetime from
the lattice calculation. The leading axion-glueball inter-
action can be obtained from the axion-dependent glueball
mass term:

mg ¼ mgðϕ ¼ 0Þ
�
1þ g2

ϕ2

N2f2a
þO

�
ϕ4

N4f4a

��
; ð2:5Þ

where g2 ≃ −0.5 (−0.6) for N ¼ 3 (4) [27,28]. Because the
coefficient g2 is not suppressed in the large-N limit [27], its
value is expected to remain asOð1Þ for all N ≥ 3. Through
the interaction term ϕ2φ2

g from Eq. (2.5) and the cubic term
φ3
g in Eq. (2.2), the one-loop diagram of the glueball

provides the following effective Lagrangian, which is
relevant for the glueball decay:

ΔLeffffiffiffiffiffiffi−gp
����
one-loop

¼ c�
g2a3m3

g

4πN3f2a
ϕ2φg: ð2:6Þ

Here c� is the Oð1Þ coefficient whose explicit value is not
available at this moment. From Eq. (2.6), the lifetime of the
glueball is estimated as

τφg
∼ 1018 Gyr

�
N
3

�
6
�

fa
1013 GeV

�
4
�
GeV
mg

�
5

: ð2:7Þ

In the parameter space we will focus on, the glueball is
cosmologically stable, so that both the axion and glueball
are dark matter of the Universe.
For cosmology, we consider the case that the dark sector

and the visible sector are thermally decoupled at the
beginning. In such a case, dark gluons/glueballs are
thermalized by their own interactions at a temperature
Tg that could be different from the SM photon temperature
Tγ . Starting from the gluon fluid (Tg ≫ Λ), as the Universe
expands, Tg drops and crosses the dark critical temperature
Tg;c ¼ OðΛÞ, and the confining phase transition occurs.
Below Tg;c, all gluons are confined into the glueballs, and
the evolution is described by the massive glueball fluids.
The dark gluon temperature also affects the evolution of

the dark axions. The leading term of the axion potential
induced by the gluothermodynamics is

VðTg;ϕÞ ¼
1

2
m2

aðTgÞϕ2: ð2:8Þ

The axion mass maðTgÞ is well described by the dilute
instanton gas approximation in the deconfining phase,

maðTgÞ ≃ma

�
Tg;c

Tg

�
ηa

for Tg ≳ Tg;c; ð2:9Þ

with ηa ¼ 11N=6 − 2. For N ¼ 3 (4), ηa ¼ 3.5 (5.3) [29].
After the confinement (Tg ≲ Tg;c), the axion mass is
saturated to its zero-temperature value, maðTgÞ ≃ma [30].
Actually, the temperature dependence of the axion

potential implies the existence of the energy flow from
the gluon fluid to the axions as the temperature decreases.
Then, a natural question is whether or not the entropy of the
dark gluon also evolves during the energy transfer. In order
to make it clearer, let us discuss the gluothermodynamics in
more detail. The free energy density of the gluon/glueball
fluid can be evaluated from the gluon partition function for
a given temperature Tg. If the topological θ term

θ≡ ϕ

fa
ð2:10Þ

is vanishing, the free energy density fg is only the function
of the temperature as fgðTgÞ ¼ −pg, where pg is the
pressure of the gluon/glueball fluid. The energy ðρgÞ and
entropy (sg) densities are obtained by the thermodynamic
relations, sg ¼ −dfg=dTg and ρg ¼ Tgsg − pg. On the
other hand, the situation is a little bit different for the
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nonvanishing θ term. Because the gluon partition function
also depends on θ, the free energy density (the negative of
the pressure for the gluon fluid with the θ term) is evaluated
as [27]

fgþθðTgÞ ¼ −pg þ VðTg;ϕÞ; ð2:11Þ

where pg ≡ −fgðTgÞ. The second term of the rhs represents
the contribution of the vacuum energy density generated
by the nonperturbative gluothermodynamics. The energy
density of the gluon fluid with the θ term also can be
decomposed into the sum of the vacuum energy density and
the pure gluonic contribution as ρgþθðTgÞ ¼ ρg þ VðTg;ϕÞ.
Then, the thermodynamics relations provide

sgþθ ¼ −
dfgþθðTgÞ

dTg
¼ dpg

dTg
−
∂VðTg;ϕÞ

∂Tg

¼ ρgþθðTgÞ − fgþθðTgÞ
Tg

¼ ρg þ pg

Tg
¼ sg: ð2:12Þ

The relation sgþθ ¼ sg implies that the entropy of the dark
sector is mostly given by the gluonic excitations, not by the
axionic excitations. This is the natural consequence,
because the axion is homogeneously distributed in space,
and its time evolution is negligible compared to the thermal
process of the gluon plasma. On the other hand, the entropy
and the energy density of the gluon fluid depend not only
on its temperature but also on the axion field value as
Eq. (2.12) and

ρg ¼ Tg
dpg

dTg
− pg − Tg

∂VðTg;ϕÞ
∂Tg

: ð2:13Þ

From the continuity equation of the dark sector, we can
explicitly show that the entropy of the dark sector in a
comoving volume sga3 is conserved for whatever value of
ϕ during adiabatic evolution.
Based on this observation, before discussing the explicit

evolution of each component, we address general equations
of motion for axion and gluon as the fluids including their
homogenous and perturbation parts.

B. Dynamics of the axion-gluon/glueball fluids

The axion dark matter is described by the evolution of
the classical field, ϕðxÞ. The dark gluon/glueball densities
and their perturbations can be parametrized by its temper-
ature evolution TgðxÞ and ϕðxÞ, as discussed in the previous
section. In this context, fϕðxÞ; TgðxÞg are good variables to
derive full equations of motion of the dark sector, including
their perturbations. Considering the fluid description, the
evolution of energy densities and pressures are deduced
from the evolution of ϕ and Tg with the help of the Einstein
equations, gluothermodynamics, and the lattice calculation.

We introduce the conformal Newtonian gauge for the
inhomogeneous part of the metric tensor:

ds2 ¼ aðτÞ2ð−ð1þ 2ΨÞdτ2 þ ð1þ 2ΦÞdx⃗2Þ; ð2:14Þ

where the conformal time τ and the conformal Hubble rate
H are related with the proper time t and the Hubble
expansion rate H ¼ _a=a as

τ ¼
Z

dt
a
; H≡ 1

a
da
dτ

¼ a0

a
¼ aH: ð2:15Þ

Here, we use the notation

0≡ d
dτ

; _≡ d
dt

ð2:16Þ

for the time derivatives. For most of the discussion in
Secs. II and IV, we take the conformal time τ as the
argument of the time-dependent variables, whereas the
proper time t is mainly used in Sec. V when discussing
the evolution after dark matter halos form.
Expanding ϕ and Tg near the homogeneous solutions

ϕðτ; x⃗Þ ¼ ϕðτÞ þ δϕðτ; x⃗Þ; ð2:17aÞ

Tgðτ; x⃗Þ ¼ TgðτÞ þ δTgðτ; x⃗Þ; ð2:17bÞ

the equation of motion of the background axion field is
given by

ϕ00 þ 2Hϕ0 þ a2
∂VðTg;ϕÞ

∂ϕ ¼ 0: ð2:18Þ

The corresponding background energy density and pres-
sure are

ρa ¼
ϕ02

2a2
þ VðTg;ϕÞ; pa ¼

ϕ02

2a2
− VðTg;ϕÞ: ð2:19Þ

From Eqs. (2.18) and (2.19), the continuity equation for the
background axion is obtained:

ρ0a þ 3Hð1þ waÞρa ¼
∂V
∂Tg

T 0
g: ð2:20Þ

wa ≡ pa=ρa is the equation of state for the axion. Since
the axion-gluon fluid is isolated from the visible sector, the
total energy and pressure of dark sector should satisfy the
continuity equation without source terms:

ρ0aþg þ 3Hðρaþg þ paþgÞ ¼ 0: ð2:21Þ

This leads to the evolution of the gluon/glueball fluid as
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ρ0g þ 3Hð1þ wgÞρg ¼ −
∂V
∂Tg

T 0
g; ð2:22Þ

where wg ¼ pg=ρg. Together with Eqs. (2.12) and (2.13),
we can derive the conservation of the dark entropy as we
claimed:

s0g þ 3Hsg ¼ 0: ð2:23Þ
The evolution of the Fourier-transformed perturbed

axion field variable δϕ for a given wave number k is
described by

δϕ00 þ 2Hδϕ0 þ
�
k2 þ a2

∂2V
∂ϕ2

�
δϕþ ϕ0ð−Ψ0 þ 3Φ0Þ

þ 2a2
∂V
∂ϕΨþ a2

∂2V
∂ϕ∂Tg

δTg ¼ 0: ð2:24Þ

From this, the evolution of the fluid perturbation variables
δρa, δpa, va and πa,

δρa ¼
ϕ0δϕ0 þ ϕ02Φ

a2
þ ∂V

∂ϕ δϕþ ∂V
∂Tg

δTg; ð2:25aÞ

δpa ¼ δρa − 2
∂V
∂ϕ δϕ − 2

∂V
∂Tg

δTg; ð2:25bÞ

ðρa þ paÞva ¼ a−2kϕ0δϕ; paπa ¼ 0; ð2:25cÞ

can also be calculated. We follow the definition and
convention of the variables in Refs. [31–33].
On the one hand, from Eq. (2.13), the gluon/glueball

fluid perturbations δpg and δρg can be related with δTg and
δϕ as

δρg ¼
�
T2
g
d2pg

dT2
g
−

∂2V
∂ðlnTgÞ2

�
δTg

Tg
−
� ∂2V
∂ϕ∂ lnTg

�
δϕ;

δpg ¼
dpg

dTg
δTg: ð2:26Þ

Similarly, from Eqs. (2.24) and (2.25), we derive the
equations of motion for the fluid perturbations:

δ0a ¼ −kua − 3ð1þ waÞΦ0

−
�
3Hþ 1

2

∂ lnV
∂ lnTg

T 0
g

Tg

��
δpa

δρa
− wa

�
δa

þ 1

2
ð1 − waÞ

d
dτ

�∂ lnV
∂ lnTg

δTg

Tg

�
; ð2:27aÞ

u0a ¼ −Hð1 − 3waÞua þ kð1þ waÞΨþ k
δpa

δρa
δa

−
1

2
ð1 − waÞ

∂ lnV
∂ lnTg

�
T 0
g

Tg
ua − k

δTg

Tg

�
; ð2:27bÞ

δ0g ¼ −kug − 3ð1þ wgÞΦ0 − 3H
�
δpg

δρg
− wg

�
δg

þ 1

2

ρa
ρg

� ∂ lnV
∂ lnTg

T 0
g

Tg

	�
δpa

δρa
− 1

�
δa þ ð1 − waÞδg




− ð1 − waÞ
d
dτ

�∂ lnV
∂ lnTg

δTg

Tg

��
; ð2:27cÞ

u0g ¼ −Hð1 − 3wgÞug þ ð1þ wgÞkΨþ k
δpg

δρg
δg

þ 1

2
ð1 − waÞ

∂ lnV
∂ lnTg

�
T 0
g

Tg
ug − k

δTg

Tg

�
; ð2:27dÞ

where δa ¼ δρa=ρa, ua ¼ ð1þ waÞva, and we use the same
definitions for δg, ug.
Although Eq. (2.27) is not a closed form, it is straight-

forward to express fδpa; δpg; δTg; δϕg in terms of
fδa; δg; uag. One can also take the perturbed variables as
fδϕ; δTg; ugg using Eqs. (2.25) and (2.26) for solving
Eq. (2.27). The nontrivial ingredients in our differential
equations are the terms proportional to ∂V=∂Tg, which
originate from the nonperturbative interactions between the
gluon and the axion. The effect of these terms becomes
larger as Tg approaches Tg;c and suddenly disappears after
the confinement.
As the initial conditions for cosmological evolution, the

amount of dark gluons can be parametrized by the ratio
between the entropies of the dark sector and the visible
sector, sg=sSM. Even though dealing with the entropy ratio
between two sectors would make it easier to trace the
evolution of the densities, in order to get a more intuitive
picture about how cold the gluons are compared to the
visible sector, we will use the ratio parameter between the
temperatures. Taking a period around the phase transition,
the photon temperature when Tg arrives at Tg;c is denoted
by Tγ;c. Then, we define the ratio parameter r as

r≡
�
g�SðTγ;cÞ
2ðN2 − 1Þ

sg
sSM

�
1=3

≃
Tg;c

Tγ;c
; ð2:28Þ

where sg (sSM) is the entropy density of the gluon fluid (the
SM sector), and g�S is the effective number of degrees of
freedom in entropy for the SM sector.
So far, we have ignored the effect of dissipation for the

axion’s motion induced by the background dark gluon
plasma. It is not crucial in our discussion, but let us clarify
how small its effect is. Including the friction term (γfr)
induced by gluon plasma, the equation of motion of the
background axion is written as [34]

ϕ̈þ ð3H þ γfrÞ _ϕþm2
aðTgÞϕ ¼ 0: ð2:29Þ

In the deconfining phase, γfr ¼ ΓsphðTgÞ=2f2aTg, where the
sphaleron rate is estimated by [35]
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ΓsphðTgÞ ¼
Z

d4x

�
g2h

32π2
GG̃ðxÞ g2h

32π2
GG̃ð0Þ

�
Tg

¼ Oð0.1–1Þ
�
g2hN
4π

�
5
�
N2 − 1

N

�
T4
g ð2:30Þ

for g2h=4π ≲ 0.1. Note that this is not a Euclidean correlator
like Eq. (2.4), but evaluated in real spacetime. Around the
critical temperature Tg ∼ Tg;c, the gauge coupling can be as
large as g2hN=4π ¼ Oð1Þ. In this regime, the sphaleron rate
is expected as ΓsphðTg;cÞ ∼ T4

g;c from the argument of
dimensional analysis and the calculation using the
AdS=CFT correspondence [36]. After the confining phase
transition, no reliable calculation has been done so far. A
crude estimation based on the dimensional analysis is that
the dissipation rate is at most proportional to the entropy
density (or number density) of the glueballs as γfr ∼ sg=f2a.
Because the time dependence of the Hubble rate and the
dissipation rate are given as H ∝ a−2 (a−3=2) in the
radiation-dominated era (matter-dominated era) and
γfr ∝ a−3, the gluon-induced friction term is important
only when the temperature of the visible sector becomes
greater than

Tγ > Oð1Þ
�
109 GeV

Nr3

��
1014 GeV

fa

�
2
�
g2hN
4π

�−5
: ð2:31Þ

Comparing this with the temperature when the axion starts
to oscillate in our scenario (Tγ < TeV), it is always
irrelevant.

III. EVOLUTION HISTORY

A. Evolution of the background gluon and glueballs

In Eqs. (2.20)–(2.27), we establish the continuity equa-
tions for the background and perturbative variables based
on the equations of motion of the axion field and gluo-
thermodynamics. In this section, some features of the
background evolution of gluon and glueball fluids are
discussed in more detail.
The evolution of ρg and pg is particularly easy for

Tg ≫ Tg;c and Tg ≪ Tg;c. In the limit of Tg ≫ Tg;c, gluons
are a relativistic fluid, and the contribution of the axion to
the evolution of ρg, pg is negligible, because from
Eq. (2.13) and Tg;c ∼ Λ,

Tg

ρg

∂VðTg;ϕÞ
∂Tg

∼
ϕ2

Nf2a

�
Λ
Tg

�
11N=3

≪ 1: ð3:1Þ

Therefore, the usual scaling relations hold as

pg ¼
π2

45
ðN2 − 1ÞT4

g;

ρg ≈
π2

15
ðN2 − 1ÞT4

g ¼ 3pg: ð3:2Þ

As the gluon temperature approaches Tg;c, Eq. (3.2) does
not hold anymore, because the strong interactions among
gluons become significant [37] and the axion contribution
in Eq. (2.13) is also increasing. The true evolution can only
be figured out by the lattice calculation. We adopt the lattice
data for θ ¼ 0 to evaluate pgðTgÞ [38–40] and deduce the
densities of the gluons for the nonzero θ using Eqs. (2.12)
and (2.13).
At Tg ¼ Tg;c, the dark gluons are combined into dark

glueballs, whose masses are multiples of the confining
scale Λ [41–44]. Here, Λ should be defined with a certain
regularization scheme. Taking the MS scheme [45] shows
the relation Λ=

ffiffiffi
σ

p ¼ 0.5þ 0.34=N2 for N ≥ 3, where σ is
the string tension. The relation between the critical temper-
ature and the string tension is evaluated as Tg;c=

ffiffiffi
σ

p ¼
0.59þ 0.46=N2 based on the study for 2 ≤ N ≤ 8 [46]. As
a result, we get

Tg;c

Λ
≃ 1.2þ 0.1

N2
: ð3:3Þ

The phase transition is first-order if N > 2. In order to
understand how long the phase transition happens, we can
compare the energy density in the deconfined phase with
that in the confined phase at Tg;c. The former is the energy
density of the gluon plasma of Oð0.1N2T4

g;cÞ, while the
latter is the sum of the glueball tower of Oð0.1T4

g;cÞ. Thus,
as N increases, larger latent heat is released and the
transition period becomes longer.
Let us shortly discuss how we evaluate the energy

density of the glueballs. Since the lightest glueball mass
is calculated as

mg

Tg;c
≃ 5.7 −

1.2
N2

; ð3:4Þ

where we use the relation mg=
ffiffiffi
σ

p ¼ 3.64 for N ¼ 3 [42],
and mg=

ffiffiffi
σ

p ¼ 3.37þ 1.93=N2 based on the results for
2 ≤ N ≤ 5 [47], all glueballs are nonrelativistic at Tg;c.
Using the spectral density ρ̂ðmÞ, the energy density of
glueballs at Tg ≤ Tg;c can be written as

ρgðTgÞ ¼
Z

∞

0

dmρ̂ðmÞm
�
mTg

2π

�
3=2

e−m=Tg : ð3:5Þ

For θ ¼ 0 (the effect of the axion-induced θ term will be
discussed later), the glueballs are well described by the
eigenstates of the spin (J), the parity (P), and the charge
conjugation (C): JPC. The lightest glueball corresponds to
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0þþ [48]. ρ̂ðmÞ contains information about the tower of the
glueballs. It turns out that the spectral density can be
successfully approximated by the sum of the discrete low-
lying resonances with a mass mJPC (<mth) and the
continuum spectrum of the Hagedorn tower [49–51],

ρ̂ðmÞ ≃
X
m<mth

ð2J þ 1Þδðm −mJPCÞ

þ nN
m

�
2πTH

3m

�
3

em=THΘðm −mthÞ; ð3:6Þ

where n2 ¼ 1, nN≥3 ¼ 2. In the large-N limit, the Hagedorn
temperature TH is related with Tg;c as [50–52]

TH

Tg;c
≃ 1.16 −

0.9
N2

: ð3:7Þ

We use the closed Nambu-Goto string model for glueballs
to provide the relation between TH and the string tension,
TH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3σ=2π
p

[50]. The threshold mass mth is not a
physical quantity. It is shown that taking mth ¼ 2mg ≃
10TH is good enough to reproduce the lattice results [51].
Actually, from the closed string description of the glueball
spectrum, the continuum approximation works well for
TH ≪ m.
Note that even if N increases, the number of glueball

degrees of freedom does not increase. Therefore, the
contribution from the Hagedorn glueballs to ρg near
the confinement is insensitive to N and becomes
Oð0.01–0.1ÞT4

g;c. The low-lying glueball contributions with
mJPC < 2mg are Oð10–50Þ% of it. For this estimation, the
glueball spectrum of Refs. [42,43] is used in the case of
N ¼ 3. For the larger value of N, we adopt the spectrum
0þþð�Þ, 2þþ of Refs. [53,54]. In fact, the glueball spectrum
calculated using the lattice has a large uncertainty except for
a few low-lying modes in the case of N > 3. However, we
can reasonably assume that there is no significant change in
the spectrum even for higher values of N [55].
Now, we turn our attention to the effect of the axion

on the glueball spectrum. First of all, the nonzero axion
field value can change the glueball mass as δm=m ¼
Oðϕ2=N2f2aÞ from Eq. (2.5). Its contribution is smaller
than 10% for N ≥ 3, so it is ignorable. Secondly, for the
nonzero axion value, the parity is no longer a good quantum
number. This leads to mixing between the glueballs with
different P eigenvalues. For instance, Ref. [56] shows that
the mixing between 0þþ and 0−þ is not suppressed even in
the large-N limit as φg ¼ 0þþ → φg ¼ 0þþ þOðθÞ0−þ. It
is also noticed that this mixing only shifts the lightest state,
while the heavier state φ−þ ¼ 0−þ remains intact. Through
the cubic interaction of 0þþ as in Eq. (2.2), the interaction
between φg and φ−þ,

ΔL ∼
4πϕ

Nfa
mgφ

2
gφ−þ; ð3:8Þ

is induced, and it may allow the decay of φ−þ to two φg’s
when the axion has the nonzero expectation value. However,
mφ−þ ≃ 1.5mg < 2mg for N ¼ 3 [42,43], and this inequality
is expected to hold forN > 3 from the argument of the large-
N expansion. Therefore, the axion-induced decay to the
lightest glueballs seems to be kinematically forbidden
for N ≥ 3. On the one hand, the existence of the mixing
between 0−þ and 0þþ in the presence of a θ term can
also imply the direct decay ofφ−þ to the lightest glueball and
the axion from an interaction like ðm2

g=faÞϕ0−þ0þþ.
If this term is not canceled in the mass eigenbasis, the
corresponding lifetime of φ−þ is estimated as τφ−þ→φgϕ ∼
20 Myrðfa=1015 GeVÞ2ðMeV=mgÞ3, which can be shorter
than the age of the Universe.
Although there are large uncertainties in estimating the

effect of the axion on the dynamics of heavier glueballs, we
expect that (i) its effect on the glueball masses is small,
(ii) the heavier glueballs become less stable, and (iii) they
interact more with other glueballs. This means that the
approach using the spectral density Eq. (3.5) works well
near the critical temperature, Tg ∼ Tg;c, even if the axion
degree of freedom is included.
The lower limit of the actual transition period is given by

the period obtained assuming the quasiequilibrium tran-
sition. This is the case when the pressures of the deconfin-
ing/confining phases are equal and the latent heat is
released adiabatically as the Universe expands. In this
situation, the temperatures of the confining and deconfining
phases are the same and maintain at around Tg;c during the
transition, and the entropy is conserved. The duration of the
phase transition is estimated by the conservation of dark
entropy:

acf ¼ aci

�
sgluonðTg;cÞ
sglueballðTg;cÞ

�
1=3

≃ aciN2=3; ð3:9Þ

where acf (aci) is the scale factor when the phase transition
ends (starts), while sgluonðTg;cÞ [sglueballðTg;cÞ] denotes the
entropy density of the dark gluon (glueball) at Tg ¼ Tg;c.
The N dependence of the duration is obtained from
sgluonðTg;cÞ ≃ 0.1N2T3

g;c ≃ N2sglueballðTg;cÞ.
The phase transition becomes stronger in first order as N

increases. Thus, the additional entropy is generated during
the transition and makes the glueballs hotter than the
previous estimation. However, this effect is negligible
unless N ≳ 4π, because the nucleation temperature is just
around Tg;c, and the strong interactions of the gluon
and glueball fluids provide a large friction coefficient
for the bubble wall propagation. For N ¼ 3, acf ≃ 2aci
is obtained numerically, which is well matched with our
parametric estimation N2=3. The assumption of dark
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entropy conservation will be kept in the following
discussion.
After the phase transition, the evolution of the glueball

temperature is calculated using the conservation of the
dark entropy. The Hagedorn spectrum can slow down the
decreasing rate of Tg, but numerically its contribution
becomes gradually suppressed and negligible in compari-
son with that of the lightest glueball when a≳ 10acf
(T ≲ 0.55Tg;c). The detailed freeze-out process of the
low-lying stable glueballs other than the lightest one is
provided in Ref. [57] for N ¼ 3 with θ ¼ 0. Their abun-
dance is also quite suppressed after the glueball temper-
ature becomes smaller than 0.5Tg;c. As we already
discussed, the mass spectrum of the heavier glueballs for
N > 3 is not much affected by the evolution of the axion.
Furthermore, the role of the axion is generically to make the
heavier glueballs unstable, so that the corresponding
abundance could be further suppressed compared to the
case with θ ¼ 0. Therefore, from now on, we will just focus
on the evolution of the lightest glueball.
The relevant scattering processes to maintain the thermal

equilibrium of φg are two-to-two (2 → 2) and three-to-two
(3 → 2) scatterings, whose rates are estimated as

σ2→2v ∼
vfð4π=NÞ4
32πm2

g
; σ3→2v2 ∼

ð4π=NÞ6
ð4πÞ3m5

g
; ð3:10Þ

where vf is the relative velocity of the final particles from
the scattering.
As the Universe expands, the 3 → 2 process freezes out

when most of the 2 → 2 processes are still active. This is
because the interaction rate of the 3 → 2 process is
proportional to the square of the number density of the
glueballs, while that of the 2 → 2 processes is linearly
proportional to the number density of the glueballs. Before
the freeze-out of 3 → 2 interactions, the glueball density
and pressure are the function of its temperature as

ρgðTgÞ ¼ mg

�
mgTg

2π

�
3=2

e−
mg
Tg

�
1þ 27

8

Tg

mg
þO

�
T2
g

m2
g

��
;

pgðTgÞ ¼ Tg

�
mgTg

2π

�
3=2

e−
mg
Tg

�
1þ 15

8

Tg

mg
þO

�
T2
g

m2
g

��
:

ð3:11Þ

A distinguishing property of the chemical equilibrium
maintained by the number-changing self-interaction is that
its temperature drops much slower than the photon temper-
ature due to the entropy-damping effect. From entropy
conservation sg ∝ 1=a3, the temperature scales as Tg ∼
1= ln a [8]. As a consequence, the energy density drops
faster than that of a cold dark matter,

ρg ≃ Tgsg ∝
1

a3 ln a
; ð3:12Þ

since the 3 → 2 self-interaction converts the mass energy to
kinetic energy. This behavior ends when the process freezes
out at Tg ¼ Tg;fo with

ρ2gðTg;foÞ ≃
ð3mgTg;foÞðHjTg¼Tg;fo

Þ
hσ3→2v2i

: ð3:13Þ

After that, the glueballs still maintain kinetic equilibrium
by the 2 → 2 interactions, but they act as free-streaming
particles for their background evolution. Using Eq. (3.13)
and the dark entropy conservation, the freeze-out temper-
ature is evaluated as

mg

Tg;fo
þ 5

4
ln

mg

Tg;fo
þ 3

4
ln

mg

MeV
≃ 28.2þ 3

2
ln

r
0.01

−
7

2
ln
N
3

ð3:14Þ

when it happens during the radiation-dominated era. As a
specific example, for N ¼ 3, r ¼ 0.01, and mg ¼ 1 MeV,
we get

Tg;fo ≃ 0.04mg ≃ 0.2Tg;c: ð3:15Þ

The relation Tg;fo ¼ Oð0.2ÞTg;c is not much sensitive to the
values of r and mg that we are interested in.
Meanwhile, we can argue that the impact of the axion

dynamics on the evolution of the lightest glueballs is
negligible. The main reason is that after the confining
phase transition, the axion potential becomes independent
of the glueball temperature—i.e., ∂Tg

VðTg;ϕÞ ¼ 0.
According to Eqs. (2.12) and (2.13), the gluothermody-
namic quantities (pg, sg, ρg) are decoupled from the axion
dynamics as long as the relaxation time for the number-
changing process Γ−1

3→2 ∼m−1
g ða=acfÞ6 is shorter than the

axion oscillation period m−1
a ∼m−1

g ðfa=mgÞ. If the axion
starts oscillating before the glueball freeze-out, it is also
plausible that the glueball energy density is modulated by
the axion-induced θðtÞ term after Γ−1

3→2 ≳m−1
a . However, its

maximum contribution, as in Eq. (2.5) for ϕ ∼ fa, is less
than 10% from the beginning, and the oscillating amplitude
is redshifted such as δmg=mg ∼ θðtÞ2=N2 ∝ cosðmatÞ=a3.
As its oscillation period becomes shorter than the relax-
ation time of the glueball’s chemical process, its effect is
also averaged out to be zero. Hence, the impact of the
axion is negligible over time and does not change our
main results.
During the evolution of the glueballs, the photon temper-

ature also evolves. When the dark glueballs freeze out, the
photon temperature becomes
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Tγ;fo ≃ 3 keV

�
N
3

�
1=2

�
0.01
r

�
3=2

�
mg

MeV

�
5=4

: ð3:16Þ

One can also easily evaluate the case that the freeze-out of
the dark glueball happens after the matter-radiation equality
for mg < keV.
So far, we have specified all the history of the gluons

and glueballs in order to identify the time dependence of
the glueball temperature TgðτÞ, which is relevant to the
evolution of the perturbative variables [Eq. (2.27)].
However, for the final relic density of the glueballs, it
can be evaluated in a much simpler way from the
conservation of the entropy of dark sector as

Ωgh2≃ 0.014

�
N2 − 1

10

��
r

0.01

�
3
�

Tg;fo

10 keV

��
3.94

g�SðTγ;cÞ
�

≃ 0.014

�
N2 − 1

10

��
r

0.01

�
4
�

Tγ;c

5MeV

��
3.94

g�SðTγ;cÞ
�

≃ 0.12

�
N2− 1

10

��
r

0.003

�
3
�

mg

100MeV

��
3.94

g�SðTγ;cÞ
�
:

ð3:17Þ

B. Evolution of the background axion

The dilute instanton gas approximation works well for
the axion potential before the confining transition occurs.
However, it is no longer valid to describe the axion
potential in the confining phase. The lattice studies can
provide a part of the information for the axion potential—
i.e., the coefficient of each term in the perturbative
expansion [Eq. (2.3)] as [58]

c2 ≃ 0.3þ 1

N2
; c4 ≃ −2.7c2: ð3:18Þ

For the evolution of the axion field, further information is
necessary. An interesting feature of the axion potential
induced by the confinement without light fermions is that it
is not a single branch, but is composed of multiple (N)
branches, where for each branch the period of the scalar
potential is 2πNfa [59]. The general expression of the
scalar potential for a kth branch is

Vk ¼ N2Λ4h

�
ϕ

Nfa
þ 2πðk − 1Þ

N

�
; ð3:19Þ

where k ¼ 1;…; N, and hðψÞ is the 2π-periodic function.
The full shape of the axion potential is not available.
However, the analytic form of hðψÞ in a certain range of the
axion was studied in the large-N limit using the holo-
graphic description of the pure SUðNÞ gauge theory
[60,61]. The shape of the potential highly relies on the
size of the ’t Hooft coupling λh ¼ g2hN at the KK scale. By
comparing the axion potential in the dual gravity theory and

that of the lattice calculation given by Eq. (3.18), we find
that λh ¼ 10–20 gives a reasonable matching.
At high temperatures for the gluons, the instanton

approximation for the axion potential is valid, and there
is a single branch. During the phase transition, branches
will emerge, and the axion can be located in a different
branch in a different patch of the Universe. If each branch
provides a stable axion trajectory, we have to consider the
effect of them seriously.
Following the approach of the holographic description

[60], we can estimate the tunneling rate per volume
between the kth and (k − 1)th branches as

Γtunneling ∼ Λ4e−Sðk→k−1Þ ; ð3:20Þ

where the Euclidean action is

Sðk→k−1Þ ¼ Oð10−11ÞN ðN=kÞ3
ð1þ Oð1Þk2

N2 Þ2
: ð3:21Þ

This can be significantly large only when N ≳ 103.
Therefore, in our consideration with N2 ¼ Oð10Þ, all
branches with higher energy densities are quite unstable,
and the transition to the lowest energy state will occur
almost immediately. As a result, the effective potential of
the axion is well described by

VðϕÞ ¼ min
k
VkðϕÞ; ð3:22Þ

and one can think of the evolution of the axion within the
range 2πfa.
Without worrying about the effect of other branches,

Eq. (2.18) gives

ϕ00 þ 2Hϕ0 þ a2m2
aðTgÞϕ ¼ 0 ð3:23Þ

for ϕ≲ fa. If the second term of the lhs is much larger than
the third term, the axion field is approximately constant
because of the large Hubble friction. This is the slow-roll
limit. In the opposite case, the axion field oscillates with the
oscillation frequency maðTgÞ. Such evolution can be
well approximated by the simple transition at a ¼ aosc,
where aosc is the scale factor to give 3H ¼ amaðTgÞ
[3H ¼ maðTgÞ]. For each epoch,

ϕðτÞ ≃ ϕi ≡ faθiða < aoscÞ

≃AðτÞ cos
�Z

τ
dτ̃aðτ̃ÞmaðTgðτ̃ÞÞ

�
: ða > aoscÞ

ð3:24Þ

Here, θi is the initial misalignment angle of the axion
field, and AðτÞ is a slowly varying function with
A0=A ≪ amaðTgÞ. The axion acts like dark energy during
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a < aosc, while for a > aosc, the axion plays the role of cold
dark matter because hwai ≃ 0 by averaging out the fast
oscillation. The initial axion value ϕi is not deterministic.
Since both θi ≪ 1, and jθi − πj ≪ 1 need some tuning or
special model building, here we take

θi ¼ Oð1Þ: ð3:25Þ
Since the axion’s mass depends on the history of the dark

gluons [Eq. (2.9)], there are two characteristic scales which
determine the evolution history of the axion: aosc (onset of
the axion oscillation) and aci (onset of the confining phase
transition). As the scale factor approaches aci, the con-
tribution of the gluons to the axion’s potential becomes
substantial, and the axion mass is saturated. The evolution
of the axion mass is smooth compared to the gluon
thermodynamic relaxation timescale—i.e., _ma=ma ∼
NH ≪ Tg, unless N is very large.
Using Eq. (2.9) and the definition of aosc, we find that the

quantity

Rðr; faÞ≡
�

r
0.01

�
2
�
6 × 1013 GeV

fa

�
ð3:26Þ

determines whether or not the axion starts to oscillate
before the confining transition. If Rðr; faÞ > 1, the axion
starts to oscillate in the deconfining phase. The correspond-
ing photon temperature is

Tγ;osc ≃ Rðr; faÞ
1

2þηaTγ;c: ð3:27Þ
Otherwise [Rðr; faÞ < 1], the axion oscillation occurs after
the phase transition. It happens when the photon temper-
ature becomes

Tγ;osc ≃ Rðr; faÞ12Tγ;c: ð3:28Þ
The initial energy density of the axion at Tγ ¼ Tγ;osc is

approximated as

ρa ≃
1

2
m2

aðTg;oscÞf2aθ2i : ð3:29Þ

After that, the axion field oscillates with the time-
dependent frequency. We notice that for the combination

Na ¼
a3ρa

maðTgÞ
; ð3:30Þ

Eq. (2.20) gives

N0
a þ

�
3Hþm0

aðTgðτÞÞ
maðTgðτÞÞ

�
waNa ¼ 0: ð3:31Þ

For NH ≪ amaðTgÞ, the mass of the axion changes much
more slowly compared to the oscillation timescale. Such a

fast oscillation implies a vanishing averaged equation of
state hwai ¼ 0 during the cosmological evolution.
Therefore, Na is nearly conserved and ρa=maðTgÞ ∝ 1=a3.
In summary, if Rðr; faÞ > 1, the axion starts to oscillate

before the confining phase transition (Tγ;osc > Tγ;c), and
the present relic density of the axion dark matter becomes

Ωah2 ≃ 0.8 × 10−3θ2i

�
r

0.01

�
4
�

Tγ;c

5 MeV

�
Rðr; faÞ−

3þηa
2þηa :

ð3:32Þ

If Rðr; faÞ < 1, the axion oscillates after the confining
phase transition (Tγ;osc < Tγ;c). The corresponding axion
dark matter density is estimated as

Ωah2 ≃ 0.8 × 10−3θ2i

�
r

0.01

�
4
�

Tγ;c

5 MeV

�
Rðr; faÞ−3

2

≃ 0.05θ2i

�
r

0.01

��
Tγ;c

5 MeV

��
fa

1015 GeV

�
3=2

≃ 0.15
�

ma

10−22 eV

�
1=2

�
fa

1017 GeV

�
2

: ð3:33Þ

As shown in Eqs. (3.32) and (3.17), the glueballs
dominate the dark matter density if the axion oscillates
earlier than the confining phase transition. The reason is
simply that the initial axion energy density is bounded by
the confining scale Λ4 ∼ T4

g;c. On the one hand, when r2=fa
is small enough, so that the axion starts to oscillate after the
phase transition, the axion becomes a dominant component
of dark matter.
The left and right panels of Fig. 1 show the evolution of

energy densities for axion- and glueball-dominated dark
matter scenarios, respectively. Figure 2 shows the para-
metric dependence of the dark matter which gives the
correct relic density. The axes are represented by Tγ;c, the
photon temperature when the confining phase transition of
the dark gauge sector starts, and ma, the zero-temperature
axion mass, defined in Eq. (2.4) with Eq. (3.18), respec-
tively. As we discussed, the dark matter today is dominated
by the axion in the region Tγ;osc < Tγ;c, and by the glueball
in the opposite region Tγ;c < Tγ;osc.
The initial amount of the dark gluon plasma is limited by

the constraint on the effective extrarelativistic degrees of
freedom ΔNeff as [62]

ΔNeff ¼
�
ρg
ρνe

�
BBN

¼ 2ðN2 − 1Þr4
ð7=4Þð4=11Þ4=3

¼ 0.07

�
N2 − 1

10

��
r
0.2

�
4 ≲ 0.3: ð3:34Þ

There are various astrophysical observations to
constrain the mass of the glueball and axion dark matter.
We shortly summarize the relevant bounds. When the

JO, KIM, KIM, and SHIN PHYS. REV. D 103, 083528 (2021)

083528-10



glueball dominates dark matter, its self-interaction gives
observable effects if the scattering rate is large enough to
reach the isothermal profile around the center of the halo.
The self-interaction can also be detectable from the merger
of dark matter halos, because the glueballs will be slowed

down during the collision if their scattering cross section is
large enough. This leads to the offset between the dark
matter and the collisionless components like stars. From
these observations, the cross section of the glueball like
self-interacting dark matter is bounded as (see Ref. [63] and
references therein)

σ2→2

mg
≃
�
4

N

�
4 1

m3
g
≃
�
4

N

�
4
�
60 MeV

mg

�
3

cm2=g

≲Oð0.5–5Þ cm2=g: ð3:35Þ

In terms of the glueball mass, it should be greater than
Oð50Þ MeV if it is the dominant component of dark matter.
The phenomenology of heavier glueball dark matter was
studied in Ref. [64].
If the axion is the dominant component of dark matter,

there is a lower bound on the axion mass due to its
fuzziness. The de Broglie wavelength reaches the astro-
physical scale (∼kpc) if ma is around 10−22 eV, and it
suppresses the structure formation. The ultralight axion can
act like wave dark matter, with axions that are bound to or
interact with each other by gravity inside the halo, which
leads to the formation of solitonic cores and macroscopic
quasiparticles moving around the center. These structures
can have a great influence on the motion of stars. All these
considerations give a strong constraint on the axion mass in
the range ma ≲ 10−22–10−20 eV (see Refs. [65,66] and
references therein). There is another constraint on the mass
of the axion from the observation of highly spinning black
holes. This is because, if the axion mass is close to the
inverse of the size of the spinning black hole, a super-
radiance phenomenon occurs, and parts of black hole’s
mass and spin are removed by the superradiant axion cloud.
Current observations of the spinning supermassive black

FIG. 2. Parametric dependence of the relic abundances of the
glueball and the axion for ΩDMh2 ¼ 0.11. Here we take N ¼ 3.
ma is the zero-temperature axion mass, and Tγ;c ≃ Tg;c=r is the
photon temperature when the confining phase transition of the
dark sector starts. The parameters fr (real lines), fa (dashed
lines)g are evaluated to give ΩDMh2 ¼ 0.11 for each point in the
plot. In the region above the line Rðr; faÞ ¼ 1, the oscillation of
the axion starts earlier than the confinement phase transition and
the glueball dominates the dark matter abundance with the mass
mg ≃ 6rTγ;c. Below Rðr; faÞ ¼ 1, the axion starts to oscillate
after the transition and becomes the dominant component of dark
matter. Here, we did not impose the constraints from the current
bound, which are discussed in text.

FIG. 1. The examples of dark matter density evolutions. Here we take N ¼ 3. The left panel corresponds to the axion-dominated
scenario, while the right panel is for the glueball-dominated case. The parameters in the right panel are taken for illustration only,
because the corresponding values are ruled out by the self-interacting and warm dark matter constraints.
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holes with masses of 106–107 M⊙ provide interesting
constraints for the axion mass range 10−20–10−16 eV
(see Ref. [67] and references therein). Since the efficiency
of the black hole superradiance depends on the axion self-
interaction and the surrounding environment, the constraint
is rather model dependent.
When the dark matter is mostly composed of the axions

(Ωah2 ≃ 0.11), the fraction of the dark glueball subcom-
ponent dark matter becomes

fg ≡ Ωg

ΩDM
≃ 0.28

�
N2 − 1

10θ2i

��
r

0.01

�
3
�
1015 GeV

fa

�
3=2

≃ 0.02

�
N2 − 1

10

��
r

0.01

�
3
�

mg

0.05 MeV

�
: ð3:36Þ

One can think that there is no strong constraint on the
self-interactions of the glueball dark matter if fg ≲ 0.1.
However, as discussed in Sec. V, the evolution of the
glueball dark matter after structures form may alter the
cosmological history of the Universe from z ¼ 7–15.

IV. PERTURBATIONS

We now study the evolution of the cosmological per-
turbations for the axion and glueball dark matter.
Generically, both have nontrivial features compared to
the CDM. For example, the late-time transition of the
axion from dark energy to dark matter modifies the early
ISW effect [68]. The perturbation at scales smaller than the
effective de Broglie wavelength of the axion is suppressed
by its wave nature [3,69,70]. For glueballs, the number-
changing self-interaction also disturbs the growth of the
density perturbation at scales which enter the horizon well
before the freeze-out [11,71].
On the one hand, in our setup, the dark sector is

decoupled from the visible sector and the origin of their
abundance can be totally different from that of the SM
particles. Let us provide a simple example.
As the origin of Eq. (2.1), the axion field can be the

phase of a complex scalar field X. The corresponding
matter Lagrangian at high scales is

−
LMffiffiffiffiffiffi−gp ¼ j∂μXj2 þ Q̄iγμDμQþ λ

4

�
jXj2 − f2a

2

�
2

þ yXQ̄PLQþ H:c: ð4:1Þ

Here Q is the vector-like fermion charged under the dark
gauge group. The anomalous global symmetry

Uð1ÞPQ∶X → e−2iαX; Q → e−iγ5αQ ð4:2Þ

is spontaneously broken by the nonzero vacuum expect-
ation value of X, fa=

ffiffiffi
2

p
. Around the potential minimum, X

can be decomposed as

XðxÞ ¼ fa þ sðxÞffiffiffi
2

p e−iϕðxÞ=fa : ð4:3Þ

The axion ϕ is identified as the Goldstone boson, so it is
massless at perturbative level. The radial scalar s gets a
mass asms ¼

ffiffiffiffiffiffiffi
λ=2

p
fa, and the dark fermion mass is given

by MQ ¼ yfa=
ffiffiffi
2

p
. Assuming the hierarchy ms ≪ MQ,

integrating out the heavy fermion yields the following
effective Lagrangian:

−
LMeffffiffiffiffiffiffi−gp ≃

1

2
ð∂μsÞ2þ

1

2
m2

ss2þ
1

4

�
1þ g2hs

8π2fa

�
ðGa

μνÞ2

þ 1

2

�
1þ 2s

fa

�
ð∂μϕÞ2þ

g2hϕ
32π2fa

Ga
μνG̃

aμν: ð4:4Þ

The interaction between s (ϕ) and dark gluons is coming
from the one-loop diagram mediated by Q. Finally, we
obtain Eq. (2.1) at scales well below the mass of the radial
scalar ms, which is much larger than the confining scale of
the dark gauge symmetry.
If the inflation Hubble rateHI is given asms≲HI≪MQ,

Uð1ÞPQ is not restored during inflation. In the case that the
dominant scalar density is coming from the misalignment
mechanism, the oscillation of the radial field happens after
inflation around the potential minimum when H ∼ms.
These scalars will eventually decay to axions with the
decay rate Γs ∼m3

s=8πf2a and gluons with the branching
fraction Brðs → ggÞ ∼ ðNg2h=8π

2Þ2. The gluons are quickly
thermalized and form a thermal bath with temperature Tg,
while the produced axions are just redshifted. These
relativistic axions form dark radiation, whose abundance
is negligible when r is small enough.
Although this is just one of the production mechanisms

of the dark sector, it gives a good motivation to study the
isocurvature perturbation of dark matter from the initial
fluctuation of dark gluon temperature δTg;i. In this exam-
ple, in addition to the adiabatic perturbation, there are two
sources of the isocurvature perturbation. One is the fluc-
tuation of the axion field during inflation δϕi, and the other
is the fluctuation of the gluon temperature δTg;i induced by
the initial perturbation of the decaying scalar s. Because of
the condition ms ≲HI , the superhorizon modes of both the
radial scalar and the axion fields get independent fluctua-
tions as δsiðkÞ ≃HI=2π and δϕiðkÞ ≃HI=2π during infla-
tion. Therefore, δsi=si ∼ ðδρs=ρsÞiso ∼ ðδTg;i=Tg;iÞiso.
Because the dark axions and the dark gluons are coupled

with each other by the term ∂V=∂Tg, as in Eq. (2.27), both
perturbations could be important for the final isocurvature
perturbation of dark matter. Based on the evolution of the
background dark axion and dark gluon/glueball, we solve
the equations for the density perturbations focusing on the
effect of isocurvature perturbation transfer and obtain the
approximated solutions for the superhorizon modes (k ¼ 0)
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in order to understand the parametric dependence more
clearly.

A. Adiabatic perturbation

For the evolution of the multicomponent fields or fluids,
the perturbations can be decomposed into the curvature
(adiabatic) perturbation and the isocurvature (entropy)
perturbations. The adiabatic perturbation is the modes
perturbed along the direction of the background evolution,
so that

SXY ¼ H
�
δρX
ρ0X

−
δρY
ρ0Y

�
¼ 0 ð4:5Þ

for any different species X and Y [72–74]. SXY is the relative
entropy perturbation, whose name can be easily understood
from thermodynamics. For an isolated specieswhich satisfies
the continuity equation ρ0Xþ3HðρXþpXÞ¼0, the perturba-
tion of the entropy density sX is given as δsX=sX ¼
HδρX=ρ0X, hence SXY ¼ 3δ lnðsX=sYÞ.
The adiabatic mode can be described by the evolution of

the comoving curvature perturbation [75],

R ¼ Φ −
HðΦ0 −HΨÞ
H0 −H2

: ð4:6Þ

The corresponding initial condition for the adiabatic mode
is derived as

Ψi ¼ −Φi ¼ −
2

3
Ri; δγ;i ¼

4

3
Ri; ð4:7aÞ

δa;i ¼ −
2ηa
3

Ri; δg;i ¼
4

3
Ri; ð4:7bÞ

where δγ is for the photon fluid, and the index i indicates
the time at which the initial perturbation is defined. Here we
use the axion potential and mass in Eq. (2.9).
From Eqs. (2.20) and (2.22), we derive the solutions for

the superhorizon modes in the radiation-dominated era:

Ψ ¼ −Φ ¼ −
2

3
Ri; δγ ¼

4

3
Ri; ð4:8aÞ

δa ¼
�
ð1þ waÞ − ð1 − waÞ

m0
aðTgðτÞÞ

3HmaðTgðτÞÞ
�
Ri; ð4:8bÞ

δg ¼
�
ð1þ wgÞ þ

ð1 − waÞρa
ρg

m0
aðTgðτÞÞ

3HmaðTgðτÞÞ
�
Ri; ð4:8cÞ

where m0
aðTgðτÞÞ≡ dmaðTgðτÞÞ=dτ. As the scale factor

becomes larger than aci, the terms proportional to m0
a are

rapidly vanishing. One can show that from the continuity
equation for the coupled gluon-axion fluid,

Δðρaδa þ ρgδgÞja¼a�ci
¼ 0: ð4:9Þ

The detailed evolution of maðTgÞ around a ¼ aci does not
lead to a different final result.
Equation (4.8) states that the adiabatic perturbation

shares the same form as δX ¼ ð1þ wXÞRi after the con-
fining phase transition of the dark sector, and no history
dependence happens, because SXY ¼ 0 holds under the
time evolution for the superhorizon modes. This is the
characteristic feature of the adiabatic perturbation.

B. Isocurvature perturbation

The isocurvature perturbation is a mode perturbed along
a direction orthogonal to the direction of background
evolution. Taking SX as

SX ≡H
�
δρX
ρ0X

−
δρtot
ρ0tot

�
; ð4:10Þ

we can trace the evolution of the individual component of
the isocurvature perturbation. At the linear perturbation
level, the curvature perturbation cannot generate the iso-
curvature perturbations, and it is also conserved on the
superhorizon scales [73]. Thus, for the evolution of iso-
curvature perturbations, we can safely take Ri ¼ 0, so that
Φi ¼ 0, Ψi ¼ 0, and δρtot;i ¼ 0 as the initial conditions at
high temperatures, and we can solve the perturbation
equations for X with the initial nonzero δX;i.
The actual evolution of the density perturbation can be

numerically calculated based on Eq. (2.27) and compared
with the CMB and matter power spectrum. The form of the
perturbation becomes particularly simple if both the axions
and glueballs become CDM-like well before the matter-
radiation equality. In this case, the constraints on the
isocurvature perturbation can be easily provided by com-
paring the analytic formula in the superhorizon limit with
the criteria of the Planck 2018 [1]. For this reason, let us
focus on such a case.
The isocurvature perturbation of dark matter is

expressed as

ðδ̂DMÞiso ¼
Ωa

ΩDM
ðδ̂aÞiso þ

Ωg

ΩDM
ðδ̂gÞiso; ð4:11Þ

where the “hat” denotes the Gaussian random variables
satisfying hδ̂a;iδ̂g;ii ¼ 0, and ðδ̂a;gÞiso are related with
δ̂a;g;i as

� ðδ̂aÞiso
ðδ̂gÞiso

�
¼

�
T aa T ag

T ga T gg

��
δ̂a;i

δ̂g;i

�
: ð4:12Þ

For the superhorizon modes, the diagonal components of
the transfer matrix are T aa ≃ T gg ≃ 1. The off-diagonal
elements are calculated as follows.
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1. Induced by the initial displacement
of the axion field

The evolution of the isocurvature perturbation induced
by an initial density perturbation of the axion δa;i ¼
2δϕi=ϕi can be described by the input value of δa;i with
the condition Ri ¼ 0 and the associated solutions from
Eq. (2.27c). For Tg ≫ Tg;c, ∂V=∂Tg ≈ 0, and

Ψi ¼ −Φi ¼ 0; δγ;i ¼ 0; δg;i ¼ 0: ð4:13Þ
In the axion-dominated dark matter scenario (Ωa ≫ Ωg),
the dominant contribution is trivial: ðδ̂DMÞiso ≃ δ̂a;i. In the
opposite case (Ωa ≪ Ωg), the relevant equation for ðδ̂gÞiso
induced by the axion is

δ0g þ 3Hðc2g − wgÞδg
≃
ðwa − 1Þρa

ρg

m0
aðTgðτÞÞ

maðTgðτÞ
�
1þ 3Hc2g

Tg

T 0
g

�
δa;i; ð4:14Þ

where c2g ≡ ðdpg=d lnTgÞ=ð∂ρg=∂ lnTgÞ. Note that the
combination of 1þ 3Hc2gTg=T 0

g is vanishing in the limit
of ρa ≪ ρg because

T 0
g

Tg
≃
� ∂ρg
∂ lnTg

�
−1 dρg

dτ
≃ −3Hc2g: ð4:15Þ

This implies that the transfer matrix element T ga is of
OðΩ2

a=Ω2
gÞ. It is the consequence of the entropy conserva-

tion of the dark sector. So, the dominant contribution to the
isocurvature perturbation of dark matter is just that from the
axion dark matter.
In summary,

ðδ̂DMÞiso ≃ δ̂a;i for Ωg ≪ Ωa;

ðδ̂DMÞiso ≃
Ωa

ΩDM
δ̂a;i for Ωa ≪ Ωg: ð4:16Þ

2. Induced by the initial fluctuation
of the gluon temperature

For the initial fluctuation of the gluon temperature
δg;i ≈ 4δTg;i=Tg;i, the conditions Ri ¼ 0 and δϕi ¼ 0 for
the perturbative variables give the following initial values:

Ψi ¼ −Φi ¼ 0; ð4:17aÞ

δγ;i ¼ −ðN2 − 1Þr4δg;i; ð4:17bÞ

δa;i ¼ −
ηa
2
δg;i: ð4:17cÞ

In the glueball-dominated dark matter case, the contri-
bution of the axion is suppressed by its energy density, so
ðδ̂DMÞiso ≃ δ̂g;i. In the opposite case (Ωg ≪ Ωa), the effect

of the gluon temperature fluctuation to the axion perturba-
tion can be captured by Eq. (2.24). There are three stages of
the axion evolution: (I) a slow-rolling period [H≫maðTgÞ],
(II) a confining phase transition to give the saturation of the
axion mass maðTgÞ ¼ ma, and (III) an axion oscillating
period (H ≪ ma). For (I), the axion mass term is negligible
and

δϕ00 þ 2Hδϕ0 þ a2ϕ

�
3c2g
4

dm2
aðTgÞ

d lnTg

�
δg;i ≃ 0: ð4:18Þ

The solution becomes

δϕ

ϕ
≃

ηa
2ð2ηa þ 4Þð2ηa þ 5Þ

�
m2

aðTgÞ
H2

�
δg;i: ð4:19Þ

After the confining phase transition, the perturbation of the
axion in the periods (II) and (III) obeys the equation of
motion without a δma term:

δϕ00 þ 2Hδϕ0 þ a2m2
aδϕ ¼ 0: ð4:20Þ

The general solution to Eq. (4.20) can be written as the sum
of the Bessel functions,

δϕ ¼
�
4H
ma

�1
4
X
λ¼�

δϕλJλ=4

�
1

2

m2
a

H2

�
; ð4:21Þ

with the constant coefficients δϕ�. Matching Eq. (4.19)
with Eq. (4.21) at a ¼ aci determines δϕ� and gives the
solution during the periods (II) and (III). In the period (III),
δa is given by

δa ≃
ηa

2ηa þ 4

�
ma

Hci

�
2

δg;i; ð4:22Þ

where Hci is the Hubble rate at a ¼ aci. Note that the
transfer matrix element T ag is suppressed by the factor of
m2

a=H2
ci whenever the axion dominates the dark matter, but

no further suppression happens. Therefore,

ðδ̂DMÞiso ≃ δ̂g;i for Ωa ≪ Ωg;

ðδ̂DMÞiso ≃
�

ηa
2ηa þ 4

�
ma

Hci

�
2

þ Ωg

ΩDM

�
δ̂g;i for Ωg ≪ Ωa:

ð4:23Þ
C. Bound on the isocurvature perturbation

Since δϕi and δTg;i are independent random fluctuations,
the power spectrum can be decomposed as

Pðk; zÞ ¼ PRRðk; zÞ þ
X
X¼a;g

PII ;Xðk; zÞ; ð4:24Þ

where X ¼ a, g stand for the isocurvature perturbations
induced by δa;i and δg;i, respectively. For the decomposition
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of the power spectrum as Pðk; zÞ ¼ ð2π2=k3ÞPðkÞTðk; zÞ,
we can match the primordial spectrum PðkÞwith the values
we obtained for the superhorizon modes in the previous
section. From the observations, the adiabatic mode is nearly
scale independent. For the isocurvature perturbations, we
can also naturally assume they are nearly scale invariant if
they originate from the fluctuations of the scalar fields
during inflation as discussed in the beginning of Sec. IV.
Then,

PRR ¼ As

�
k
k�

�
ns−1

; PII ;X ¼ AX

�
k
k�

�
nX−1

; ð4:25Þ

where k� is the pivot scale of the wave number, and the
parameters fAX; nXg are constants.
Observation of the CMB presents the upper bound on the

isocurvature perturbation [1,76–78]. The constraint is
expressed by the bound on the isocurvature fraction βiso,
which is defined by

βisoðkÞ≡ PIIðkÞ
PRRðkÞ þ PIIðkÞ

; ð4:26Þ

where PRR and PII are the power spectra defined in
Eq. (4.25), and related with the density perturbations as
PRR ¼ k3hR2

i i=2π2, PII ¼ P
X k

3hðδ̂DMÞ2iso;Xi=2π2. We
focus on the large scales in order to constrain the primordial
perturbations from the CMB data. The constraint on βiso for
the pivot scale is given by [1]

βisoðk� ¼ 0.002 Mpc−1Þ < 0.035: ð4:27Þ

This can be compared with the value calculated in our
scenario.
If the axion dominates dark matter—i.e., Ωg ≪ Ωa ≃

ΩDM [Rðr; faÞ < 1 for Eq. (3.26)]—the fraction βiso can be
expressed as

βiso ≃
δ2a;i
R2

i
þ
�

ηa
2ηa þ 4

�
ma

Hci

�
2

þ Ωg

ΩDM

�
2 δ2g;i
R2

i
; ð4:28Þ

where

ma

Hci
≃ 3Rðr; faÞ;

Ωg

ΩDM
≃ ðN2 − 1ÞRðr; faÞ32: ð4:29Þ

Because Rðr; faÞ < 1, the Ωg=ΩDM part is always domi-
nant in the second term of the rhs of Eq. (4.28).
In the opposite case, if the glueball is the main dark

matter component—i.e., Ωa≪Ωg≃ΩDM [Rðr; faÞ > 1]—
we have

βiso ≃
δ2g;i
R2

i
þ
�

Ωa

ΩDM

�
2 δ2a;i
R2

i
ð4:30Þ

and

Ωa

ΩDM
≃

1

ðN2 − 1ÞRðr; faÞ
3þηa
2þηa

: ð4:31Þ

Although the coupling between the axion and the gluon
is the key for the amount of axion dark matter, the
contributions of the same coupling to the isocurvature
perturbation are always subdominant. The perturbation is
just close to the sum of the independent elements, which
allows a large isocurvature perturbation of the subcompo-
nent dark matter.
For the initial isocurvature perturbation induced by the

axion misalignment, we can naturally take the form of
δa;i ≃HI=2πfa, where HI is the inflation Hubble rate. In
the axion-dominated case, then, Eq. (4.27) provides the
constraint as

�
N2 − 1

8

�
2
�

r
0.004

�
6
�
1015 GeV

fa

�
3
�

δg;i
10−3

�
2

þ
�

HI

5 × 1010 GeV

�
2
�
1015 GeV

fa

�
2

≲ 1: ð4:32Þ

In the glueball-dominated case (taking N ¼ 3),

�
0.001
r

�
4.73

�
fa

1010 GeV

�
2.36

�
HI=2πfa
0.008

�
2

þ
�

δg;i
4 × 10−6

�
2 ≲ 1: ð4:33Þ

Considering both cases, we find the upper bound on the
inflation Hubble rate as HI ≲ 1011 GeV within the
assumption of HI < fa. In the case of HI > fa, the axion
cosmology is more UV dependent. We have to consider
the restoration of Uð1ÞPQ symmetry during inflation, the
thermalization of the axions with the dark gluons, and the
formation of dark axion strings. If the axions are thermal-
ized with the gluons, the isocurvature perturbation will be
mostly given by δg;i. At the same time, the axion cosmic
strings can leave the large density fluctuation at small
scales. We relegate the study on the related cosmology to
future work.
The effect of subcomponent isocurvature perturbation

is not clear yet. Since the glueballs are strongly self-
interacting particles, it may provide nontrivial effects when
the glueball is the subcomponent dark matter with a large
isocurvature perturbation.
In the following section, we study the somewhat differ-

ent aspect of the subcomponent glueball dark matter in the
late-time Universe.
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V. SUBCOMPONENT GLUEBALL DM:
FORMATION OF SUPERMASSIVE

BLACK HOLES

The subcomponent self-interacting dark matter can
play a certain role in the formation of supermassive black
holes (SMBHs). If the self-interaction is strong enough, the
gravothermal collapse of the subcomponent dark matter can
occur at the center of the dark matter halo, leading to black
hole formation at high redshifts z≳ 7 [14]. From the quasar
observations, we have the list of SMBHs ðzobs;MBH)
as J1342þ 0928 (7.54; 7.8 × 108 M⊙), J1120þ 0641

(7.09; 2.0 × 109 M⊙), J2348−3054 (6.89; 2.1 × 109 M⊙),
and also J0100þ 2802 (6.3; 1.2 × 1010 M⊙) [16–19]. The
idea is that the formation of these SMBHs can be explained
by the evolution of the subcomponent dark matter.
In the standard mechanism on the formation and growth

of black holes, SMBHs can exponentially increase their
mass by the accretion of baryonic material. However,
because the radiation pressure slows down the absorption
of baryons, the rate is limited. The maximal growth rate is
captured by the Salpeter time based on the Eddington
limit [79,80],

tSal ¼
ϵσT

4πGmp
¼

�
ϵ

0.1

�
45 Myr; ð5:1Þ

where mp is the proton mass, σT is the Thomson scattering
cross section, G is the gravitational constant, and ϵ is the
efficiency factor which depends on the environment of the
black hole. If the seed black hole is generated at ti with a
mass Mseed, the black hole mass is bounded as

MBHðtÞ≲Mseede
t−ti
tSal : ð5:2Þ

If the seed black hole is formed at z ¼ 15, the maximal
black hole mass becomes ð2–6Þ × 104Mseed at z ¼ 7.
If the seed is formed at z ¼ 30, its mass becomes
ð6–10Þ × 105Mseed. Therefore, in order to explain the
SMBHs with masses of Oð109 M⊙Þ at z ∼ 7, a seed
mass should be greater than ð104–105Þ M⊙. This is quite
challenging in the standard theory of black hole formation.
On the other hand, by solving the gravothermal fluid

equations [14] and performing N-body simulation [15]
with the assumption that the host halo is isolated, it is
shown that such a heavy seed black hole could be generated
from the gravothermal collapse of the subcomponent dark
matter. Given the NFW density profile

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

ð5:3Þ

for the dominant DM component, the seed black hole is
formed with the mass

Mseed ≃ β1fgMh; ð5:4Þ

when the age of the Universe becomes

tðzcolÞ ¼ tðziÞ þ Δtcol: ð5:5Þ

Here,Mh is the mass of the host halo, and z corresponds to
the redshift. tðziÞ is the time when the virialized dark matter
halo is isolated, as we assume. Δtcol is the duration of the
gravothermal collapse of the subcomponent dark matter for
given initial conditions. β1 and Δtcol are both calculated
numerically. The fraction factor β1 ≃ 0.025=ðlnð1þ cÞ −
c=ð1þ cÞÞ in Ref. [14], where c is the concentration of the
NFW profile [Mh ¼ 4πρsr3sðlnð1þ cÞ − c=ð1þ cÞÞ], and
β1 ≃ 0.006 in Ref. [15]. By comparing the dark matter halo
density profiles of the two papers, we find that both results
are well matched. The formation period Δtcol is estimated
as the form

Δtcol ≃ β2f
−p
g trel; ð5:6Þ

where β2 ≃ 456ð480Þ, p ¼ 0ð2Þ in Ref. [14] ([15]), and the
apparent relaxation time of the subcomponent dark matter
at t ¼ tðziÞ is defined as

trel≡ mg

fgσgρsvs

¼ 0.28Myr
�
10 cm2=g
fgσg=mg

��
109 M⊙=kpc3

ρs

�
3=2

�
3 kpc
rs

�
:

ð5:7Þ
σg is the elastic scattering cross section between two
subcomponent dark matters (dark glueballs in our case),
and vs is the virialized velocity at r ¼ rs. Then the seed
black hole can form after the period

Δtcol ≃ 130 Myr

�
10 cm2=g

fpþ1
g σg=mg

�

×

�
109 M⊙=kpc3

ρs

�
3=2

�
3 kpc
rs

�
: ð5:8Þ

Note that Δtcol can be shorter than the age of the Universe
for a given z, tðzÞ ≃ 550 Myrð 10

1þzÞ3=2. Therefore, for the
isolated halo with a mass Mh ¼ 1012 M⊙, f

pþ1
g σg=mg ≳

ð1–10Þ cm2=g, and fg ≲ 0.001–0.01 can explain the
SMBH around z ¼ 7. We illustrate the formation of the
seed black hole and its growth history in Fig. 3 for the halo
mass Mh ¼ 1012 M⊙.
In our scenario, the dark glueball dark matter provides

such a strongly interacting subcomponent dark matter.
Since β2 and p are directly estimated in N-body simulation,
we take the result of Ref. [15] (β2 ¼ 480; p ¼ 2) as the
benchmark value. Then, the relevant combination of the
model parameters is f3gσg=mg, which is estimated as
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f3gσg
mg

¼
�
3

N

�
4
�
fg
mg

�
3

≃ 40 cm2=g

�
3

N

�
4
�
N2 − 1

10

�
3
�

r
0.005

�
9

: ð5:9Þ

For the final expression, Eq. (3.36) is used. Because it is
very sensitive to r, the ratio parameter is nearly predicted
from the explanation of the SMBH at high z. The
corresponding allowed range of the glueball mass is also
provided as mg ¼ Oð0.05Þ MeV for fg ¼ Oð0.01Þ. As to
the parameters of the dominant component of dark matter,
the axion, its decay constant is fa ¼ Oð1015–1016 GeVÞ,
and the axion mass becomes ma ¼ Oð10−14–10−18Þ eV.
This is safe from the current fuzzy dark matter constraints.
Interestingly, this axion mass of 10−18 eV is also related to
a supermassive black hole with the mass ofMBH ∼ 107 M⊙
through superradiance, as we discussed before. The axions
can be efficiently generated from the spinning black hole by
superradiant amplification. During the amplification, the
axion also takes away a sizable amount of the black hole’s
angular momentum, which gives a contradiction to the
observation [81]. However, if the self-interaction among the
axions is sizable, they will collapse before the axion cloud
is saturated [82], and the loss of angular momentum is
limited. For ma ∼ 10−18 eV, the GUT-scale decay constant
provides a sizable axion self-interaction to trigger boseno-
vae. In our case, the situation is more subtle because of

some nontrivial features of the axion potential. The
perturbative quartic coupling of the axion could be sup-
pressed by increasing N, but there is a kink structure of the
potential at around ϕ ∼ πfa. More detailed study is
necessary to provide the correct constraints on fa from
superradiance.
Several simplifications are used in the previous discus-

sion. Let us discuss possible caveats and an alternative
history of the seed black hole formation. The host halo
mass is taken as 1012 M⊙. This is because the halo mass is
expected to be greater than Oð103Þ times the mass of its
SMBH [83,84]. In N-body simulations [85–87], the
comoving number density of the cold dark matter halos
with Mh≥1012M⊙ is evaluated as ð10−5–10−6Þ ðMpcÞ−3
at z ¼ 7. Thus, the halo is also heavy enough to coincide
with the fact that observations of SMBHs around z ¼ 7
are rare.
However, since we consider the formation of the seed

black hole at higher redshifts (z > 7), the existence of such
an (isolated) heavy halo is questionable. If we extrapolate
the halo mass function obtained by the N-body simulation
[87], the comoving number density of the halos with
Mh ≥ 1012 M⊙ becomes ð10−8–10−9Þ ðMpcÞ−3 at z ¼ 10,
and 10−15 ðMpcÞ−3 at z ¼ 15. In this context, the issue of
the formation of heavy seed black holes is just transferred
to the problem of supermassive halo formation at high
redshifts.
On the one hand, based on N-body simulations, we can

define MhðzÞ at a given z in such a way that the comoving
number density of the halos with their masses greater than
MhðzÞ is given by 10−6ðMpcÞ−3. Then, MhðzÞ is evaluated
as 1012 M⊙ at z ¼ 7, 1011 M⊙ at z ¼ 10, and 1010 M⊙ at
z ¼ 15. It is more natural to think of the possibility that
when the seed black hole is formed at z > 7, the mass of the
host halo is smaller than 1012 M⊙, although it is still one
of the heaviest halos at zi. These heaviest halos get bigger
and bigger by mergers with nearby smaller halos or by
accretion of the gases. The actual merger history is
quite complex, but the heaviest halo is likely to remain
the heaviest. In this sense, we consider MhðzÞ as the
evolution of the host halo mass, and estimate the growth
rate ΓhðzÞ as

ΓhðzÞ≡ 1

MhðzÞ
dMhðzÞ

dt
≃

4

tðzÞ : ð5:10Þ

The last equality holds numerically for 7≲ z≲ 15. The
black hole growth rate by the accretion of baryons is much
greater than the halo growth rate. However, the halo mass is
still hierarchically larger than the black hole mass during
the evolution.
Another important feature is that in terms of the halo

mass, the relaxation time defined by Eq. (5.7) depends on z,
c, and Mh as

FIG. 3. Illustration of the black hole growth history for the
observed high-z black hole J1120þ 0641 with the assumption of
the isolated host halo (Mh ¼ 1012 M⊙) as in Refs. [14,15]. All
information in red illustrates parameter space for a seed black
hole (red dot). The seed black hole can be on the Eddington curve
or on the shaded area in which the observations are explained by
slower growth of the seed black hole. The time of collapse (zcol)
and the mass of the seed black hole Mseed are determined by
model parameters ffg; σg=mgg or fmg; rg for a given value of N.
We take N ¼ 3.
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trel ∝
ðlnð1þ cÞ − c

1þcÞ
3
2

ð1þ zÞ72c7
2M

1
3

h

: ð5:11Þ

The concentration parameter c also depends on the halo
mass and the redshift. The recent N-body simulation [88]
calculates the concentration parameter cðMh; zÞ as the
function of Mh and z in a wide range of Mh and z.
With reasonable extrapolation, we find cð1010M⊙;13.8Þ≃
cð1011M⊙;9.5Þ≃cð1012M⊙;7Þ¼4–5. Thus, cðMhðzÞ; zÞ
does not have significant z dependence. Including all these
considerations, Fig. 4 shows the apparent gravothermal
collapse period Δtcol as a function of Mh and z in the units
of ðf3gσg=mgÞ−1. The formation of the seed black hole is
more efficient for heavier halos at a given z. In order to see
whether or not the early formation of the seed is preferred
(z dependence), we have to compare Δtcol with the Hubble
time. Numerically, we find that the z dependence of Δtcol
for Mh ¼ MhðzÞ approximately scales as 1=ð1þ zÞ1.5 in
the range z ¼ 7–15 like the Hubble time. Therefore, if the
seed black hole can form, the formation happens at an
earlier time with a smaller mass.
Even if Δtcol is shorter than the age of the Universe at zi,

the isolated halo assumption may not be valid if the period
of the gravothermal collapse is longer than the halo growth
timescale 1=Γh. The general expectation is that the merger
process will hinder the gravothermal collapse. We consider
the conservative criterion for the formation of the seed
black hole as

ΓhðzÞΔtcolðzÞ ≲ 4ΔtcolðzÞ=tðzÞ≲ 1: ð5:12Þ

This condition means that the seed black hole can only
form when the collapse process is faster than the growth
rate of the halo mass. We take zi ¼ 15 as the initial redshift
for the virialized heaviest host halo. Then, Eq. (5.12) is
satisfied if

f3gσg
mg

≳ 40 cm2=g: ð5:13Þ

After the seed black hole is formed around z ¼ 15, its mass
is exponentially growing, and it becomes MBH ¼ 109 M⊙
at z ¼ 7 if the fraction of the glueball dark matter is given as
fg ¼ 2 × 10−4. This is the case of the fastest growth, so the
lower bound of fg to explain current observations of the
SMBHs is given by

fg ≳ 2 × 10−4: ð5:14Þ

So far, we have ignored the effect of the number-
changing interactions of the dark glueballs during the
gravothermal collapse. If the number-changing process
becomes efficient as the density increases, the sizable
pressure of the glueballs may disturb the collapse. To
simplify our discussion, in terms of the temperature of the
glueball dark matter (Tg) inside the dark matter halo
(r < rs), there are two totally different sources to increase
Tg. One is the gravothermal collapse. Because the gravi-
tationally bound system has a negative specific heat, as heat
flows outward, the glueballs become more and more
concentrated in a smaller volume with a larger virial
velocity. This results in temperature increasing, and leads
to the collapse as the heat outflow accelerates. On the other
hand, the 3 → 2 scatterings directly produce the large
kinetic energies of the daughter glueballs as Ekin≃mg=2,
respectively. These energies will be redistributed among
glueballs within the relaxation time, so that the overall
glueball temperature will increase compared to the virial
temperature, and inhibit the collapse.
In order to figure out the condition for the gravothermal

collapse to start, we require the criterion that the rate of
glueball temperature increase be small enough to satisfy

Δtcol
Tg

�
dTg

dt

�
3→2

≪ 1: ð5:15Þ

The temperature increase rate by the 3 → 2 scatterings is
estimated for the given glueball density ρg and the
velocity vg:

1

Tg

�
dTg

dt

�
3→2

¼ ξeffhσ3→2v2gin2g
mg

Tg
≃
hσ3→2v2giρ2g
m2

ghv2gi
; ð5:16Þ

FIG. 4. The expected duration of the gravothermal collapse of
the subcomponent dark matter Δtcol in the units of ðf3gσg=mgÞ−1,
defined as in Eqs. (5.6) and (5.7) with β2 ¼ 480, p ¼ 2. It is
plotted for the different halo masses and redshifts based on the
NFW profile of the dominant dark matter component with the
fitted concentration parameter cðMh; zÞ [88]. The end point of
each line corresponds to the halo mass Mh ¼ MhðzÞ. The actual
collapse time of the subcomponent dark matter will depend on the
halo growth history.
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where Tg ¼ mghv2gi, and ξeff is the efficiency factor of the
energy redistribution. ξeff could be suppressed if the mean-
free path of the glueball is much larger than the size of the
core. In our case, most of the glueballs are trapped by the
elastic scattering, so ξeff ≃ 1. Before the gravothermal
collapse accelerates, the glueball density and the velocity
are not much changed. For ρg ¼ fgρs, vg ¼ vs,

Δtcol
Tg

�
dTg

dt

�
3→2

≃ 0.06

�
10−3

fg

��
3

N

�
2
�
10−3

vs

�
2

×

�
keV
mg

�
4
�

ρs
1012 M⊙=kpc3

�
: ð5:17Þ

Therefore, we expect that the gravothermal collapse for the
SMBH would not be triggered if mg ≲ keV.
If mg is much larger than OðkeVÞ, the 3 → 2 interaction

is not effective before the gravothermal collapse happens.
The gravothermal collapse begins to accelerate after Δtcol.
During the collapse, the diffusion of the dark matter mass is
inefficient, and the glueballs concentrate their mass of
OðMseedÞ around the center by increasing the core density
and its temperature [89,90]. Then, the number-changing
interaction becomes gradually important. It is not clear how
it affects the last stage of the gravothermal collapse (the
formation of the seed black hole). This is because the
temperature increase rate caused by gravothermal collapse
is not known yet for such a high mass density of the core.
We leave it for future work.
There is also the lower bound on the glueball mass from

the cosmological evolution. If the glueball is light enough,
it becomes a warm or hot dark matter, so that its speed
around z ¼ 7–15 is greater than the escape velocity of the
halo. This means that the subcomponent dark matter is not
clustered, and it cannot provide a good initial condition.
After the dark glueball freeze-out, its velocity scales
as 1=a. The corresponding redshifted glueball velocity at
a given z is

vgðzÞ ≃ 10−3
�
1þ z
16

��
r

0.001

�3
2

�
100 eV
mg

�5
4 ð5:18Þ

if the freeze-out happens before the epoch of matter-
radiation equality, and

vgðzÞ ≃ 10−3
�
1þ z
16

��
r

0.001

�4
3

�
100 eV
mg

�10
9 ð5:19Þ

if the freeze-out happens in the dark-matter-dominated era.
In order to explain the SMBH formation, this value should
be hierarchically smaller than the virial velocity vs ∼ 10−3

during the period z ¼ 7–15. In our scenario, r is nearly

fixed as 0.005; see Eq. (5.9). This implies the lower bound
on mg as 100 eV.

VI. CONCLUSIONS

We have studied the cosmological evolution of dark light
scalars, whose masses and interactions originate from the
approximate global symmetry and the nonperturbative
dynamics of the hidden gauge symmetry. One is the feebly
interacting dark axion, and the other is the strongly interact-
ing dark glueball. Both can be dark matter if they are light
enough. The equations ofmotion are derived and evaluated to
identify the dark matter abundance and the perturbation
evolution induced by the coupling between the axion and the
dark gluon. We also explore the possibility that the sub-
component glueball dark matter contributes to the formation
of the supermassive black hole at redshift z ∼ 7.
Although we have dealt with the problems as closely as

possible, there are still many questions that have not been
covered by this paper. What would be the observable
consequences of the first-order confining phase transition?
In our discussion, we ignore gravitational wave productions
during the confining phase transition, because it is just
weakly first order unless N is very large. However, if the
phase transition happens around the recombination era, it
may leave a footprint on the CMB.What is the exact form of
the axion scalar potential and the effect of self-interactions?
The scalar potential of the axion is not a simple cosine form,
and a multibranch structure may provide the nontrivial
effects if the axion is produced around the spinning super-
massive blackhole by superradiant amplification.What is the
correct period of the gravothermal collapsewhen the fraction
of the subcomponent dark matter is small enough? So far,
there is no intensive study on thegravothermal collapse of the
subcomponent dark matter for such a small fraction. The
empirical form of the collapse time scale Δtcol should be
confirmed for fg ≪ 10% and higher scattering cross sec-
tions. What is the effect of the number-changing interactions
of the glueball darkmatter for the final stage of the black hole
formation? During the gravothermal collapse, one may think
of the possibility that the defining phase transition occurs,
because of the large density of the glueball darkmatter inside
the core. It would be very interesting to study the implication
of such a microscopic nature of the dark matter for the final
formation of the black hole.
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