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We provide a detailed study of reheating in the kination regime in a scenario where the particle content is
produced by gravitational production of massive scalars decaying into massless scalars and fermions which
eventually reheat the Universe. A detailed calculation is given by using Boltzmann equations and decay
rates obtained using formalism of quantum field theory in curved spacetime. By numerical calculations the
reheating temperature is found to be in the 109–1013 GeV regime. Moreover, the fermionic channel of
decay is found to be the dominant channel of decay when the mass m of the decaying particle is small
raising the reheating temperature as opposed to a single scalar decay channel.
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I. INTRODUCTION

The inflationary scenario [1–4], in which the Universe
underwent a period of rapid expansion in the very early
stages of its existence, is now a widely accepted paradigm
in physics. The explosive nature of this expansion leaves
behind a cold dark universe void of all matter, which must
subsequently be created; the Universe must be reheated
after inflation [5,6]. Several methods for producing the
necessary matter content have been investigated during the
development of the theory; from the original collision
of bubbles [3] to the now almost standard way of decay
through oscillations of the inflaton [2]. Although these are
perhaps the most widely used methods for reheating,
ultimately one only needs a mechanism of creating radi-
ation to eventually drive the expansion of the Universe.
A while ago it was realized that by using the result of

gravitational particle creation, a feature of quantum field
theory in curved spacetime, another mechanism for reheat-
ing the Universe might be realized [7,8]. As a consequence
of this phenomenon, particles will be created by the very
change of the metric itself as it changes from de Sitter
metric into a postinflationary metric. Some time ago, Ford
considered a scenario where the Universe changes metric
from de Sitter into either radiation- or matter-dominated
era and found that gravitational particle creation is capable
of reheating the Universe [7]. Spokoiny on the other
hand considered an entirely different model altogether,
one which is also capable of reheating the Universe. In
Spokoiny’s scenario the Universe ends up in a period he

called deflation [8], nowadays better known as kination [9],
which can be realized when the kinetic energy of the
inflaton dominates that of its potential energy. In this case
the equation of state takes the form ρ ¼ p corresponding to
a universe dominated by stiff matter. While the idea of
reheating by particle creation through a sudden or smooth
change of the metric has received a lot of attention lately
[10–20], it is by no means the only mechanism capable of
reheating: the very expansion itself creates particles making
it possible to reheat the Universe using it [21].
In our previous article [21] we investigated this type of

reheating where massive scalars gravitationally created in
the stiff-matter era, decayed to massless scalars (radiation)
which ultimately reheat the Universe. The standard model,
or some other model, particles are eventually produced
from these relativistic particles. It was found that this
mechanism is capable of reheating the Universe to temper-
atures of about 104–1012 GeV. In the present article we
will develop the model further and incorporate also a
fermionic decay channel into the model. We therefore have
two channels for the massive scalar to decay, fermionic
and scalar, allowing us to explore a more general and
realistic situation.
Two major ingredients of our study are the use of curved

spacetime decay rates instead of the common Minkowskian
decay rates and the use of the Boltzmann equations to
describe the process. Describing particle decay in curved
spacetime involves considerable conceptual and technical
issues which make the generalization of normal in-out
formalism from Minkowskian space nonapplicable [22–25].
We are therefore led to use the concept of added-up
probability introduced in Ref. [23] for describing the decay
in curved spacetime. This concept has recently been used in
studying particle decay in spatially flat Robertson-Walker
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universes for scalar and fermionic decay channels [25,26].
Although the Boltzmann equations are used in an integrated
form, the model, together with the curved spacetime
quantum field theoretic aspects, presents a novel approach
to study reheating and also gives us a more precise picture of
the whole process.
The paper is structured in the following way. In Sec. II

we present our model and discuss the assumptions made.
The procedure for obtaining the reheating temperature is
described in Sec. III and the results obtained in Sec. IV.
Finally, in Sec. V we discuss the results.

II. THE MODEL

In this section we will introduce all the necessary
ingredients that make up our model and discuss the
assumptions made regarding them.

A. Background

The Universe in the postinflationary scenario is
described by a four-dimensional spatially flat Robertson-
Walker metric

ds2 ¼ dt2 − aðtÞ2dx2 ð1Þ
given in standard coordinate time t with a dimensionless
scale factor aðtÞ. The scale factor is chosen as aðtÞ ¼ b0tn
with b0 a positive parameter controlling the expansion rate
of the Universe and n ∈ ½0; 1Þ. The matter content of the
Universe is assumed to be of the perfect fluid type
characterized by a dimensionless parameter ω through
ρ ¼ ωp, where p is the pressure and ρ the energy density
of the fluid. The parameter ω is related to n via the
usual relation n ¼ 2=ð3ωþ 3Þ [27]. The stiff matter is
described by ω ¼ 1, radiation by ω ¼ 1=3 and ordinary
matter approximated by ω ≈ 0 [27,28]. Consequently, the
Universe dominated by stiff matter is described by the
parameter n ¼ 1=3, radiation-dominated Universe by
n ¼ 1=2 and the matter-dominated Universe by n ¼ 2=3.
Since the scale factor is dimensionless, the parameter b0
depends on n. This parameter appears in the Boltzmann
equations only through the particle creation rate in the stiff-
matter era so its units are fixed to be GeV1=3.
We consider a massive scalar field ϕ with mass m

propagating in this spacetime which interacts with a
massless scalar field χ and a massless Dirac spinor field
ψ . The Lagrangian density is given by

L ¼ Lϕ þ Lχ þ Lψ ; ð2Þ
where the massive scalar Lagrangian density is given by

Lϕ ¼
ffiffiffiffiffiffi−gp
2

ð∂μϕ∂μϕ −m2ϕ2 − ξRϕ2Þ; ð3Þ

where g is the determinant of the metric, R the Ricci scalar
and ξ is the coupling to gravity. The value ξ ¼ 1=6 is

known as conformal coupling in four dimensions and
ξ ¼ 0 is the minimal coupling. The massless scalar is
described by

Lχ ¼
ffiffiffiffiffiffi−gp
2

�
∂μχ∂μχ −

1

6
Rχ2

�
−

ffiffiffiffiffiffi
−g

p
λϕχ2; ð4Þ

where λ ≠ 0 is the scalar coupling constant. The spinors are
incorporated into general relativity via the tetrad field eaμ,
where the latin indices refer to local inertial coordinates
while greek indices refer to general coordinates. With this
formalism, the fermion Lagrangian is given by

Lψ ¼ i
ffiffiffiffiffiffi−gp
2

ðψ̄γμ∇μψ − ð∇μψ̄ÞγμψÞ −
ffiffiffiffiffiffi
−g

p
hϕψψ̄ ; ð5Þ

where h ≠ 0 is the fermionic coupling constant and
ψ̄ ¼ ψ†γ0 the Dirac conjugate spinor. The curved space
gamma matrices are defined via the tetrad as γμ ¼ eaμγa

satisfying the anticommutation relations fγμ; γνg ¼ 2gμν.
The matrix γa is the usual flat spacetime gamma matrix.
The covariant derivative appearing in (5) is defined with the
help of a spin connection Γμ as

∇μ ≔ ∂μ þ Γμ; ð6Þ

where

Γμ ¼
1

8
½γa; γb�eaν∂μebν: ð7Þ

In the above, the massive ϕ particle is arbitrarily coupled
to gravity while the massless fields are assumed to be
conformally coupled. The reason for this lies in the added-
up method which requires the decay products to be
massless conformally coupled particles in order for the
decay rate to make physical sense [23]. Moreover, the use
of conformally coupled massless particles simplifies the
model considerably because there is no gravitational
creation of these particles by the expansion of spacetime
[29–31] and therefore the only contribution to the relativ-
istic energy density comes from the decaying particles.

B. Decay in curved spacetime

Cosmological calculations most often use decay rates
obtained in Minkowski spacetime [27,32]. The reason
for this lies in the numerous conceptual issues and
technical difficulties one encounters when treating particle
interaction using the formalism of quantum field theory
in curved spacetime [22,33–35]. Ultimately, however, the
Minkowskian field theory is only an approximation and
when curvature of spacetime cannot be neglected anymore
the curved spacetime particle decay rates should be used.
The problem of calculating decay rates in curved spacetime
has attained a wealth of interest in recent times and curved
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space decay rates have been obtained for various processes
[25,26,36–41]. For our purposes, it is only necessary
to recall the obtained differential decay rates for a
massive scalar to decay into fermions or scalars in curved
spacetime.
The differential decay rate for a massive scalar to decay

into massless conformally coupled scalars was obtained in
Ref. [26] for a general power-law expansion as

ΓχðtÞ ¼
λ2t
32

jHð2Þ
α ðmtÞj2; ð8Þ

where Hð2Þ
α is the Hankel function of the second kind. For

decay into massless fermions, it was found in Ref. [25] that
the differential decay rate is given by

Γψ ðtÞ ¼
h2tn

32

���� ddt ðt
1−n
2 Hð2Þ

α ðmtÞÞ
����
2

: ð9Þ

In both Eqs. (8) and (9) the index α of the Hankel function
is given by

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − nÞ2 − 4nð2n − 1Þð6ξ − 1Þ

p
2

; ð10Þ

where the index n is the same n as in the scale factor.
Furthermore, from the asymptotic form of the Hankel

function HαðzÞð2Þ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπzÞp

exp½−iðz−απ=2−π=4Þ�, we
see that asymptotically the decay rates reproduce the
Minkowskian results, namely ΓχðtÞ ∼ λ2=ð16πmÞ and
ΓψðtÞ ∼ h2m=ð16πÞ.

C. Boltzmann equations

With the necessary background reviewed, we move now
to present and solve the integrated Boltzmann equations
governing the evolution of the energy densities. We begin
with the energy density ρϕ of the massive ϕ particles for
which the integrated Boltzmann equations read as

_ρϕðtÞ þ 3HðtÞρϕðtÞ ¼ −ΓχðtÞρϕðtÞ − ΓψðtÞρϕðtÞ þ wϕðtÞ;
ð11Þ

where H ¼ _a=a is the Hubble parameter. In this equation
we have neglected the inverse scattering terms where the
decay particles scatter back into the massive particles for
simplicity because their treatment using quantum field
theory in curved spacetime is inherently difficult.
Indeed, it is not known how to treat this process using
the added-up formalism. The second term on the left-hand
side accounts for the dilution of the (nonrelativistic)
particles, while the first and second terms on the right-
hand side describe the decay into massless scalars and
fermions, respectively. The last term wϕ is the contribution
of the gravitationally created massive particles to the energy

density. It is assumed that this creation occurs in the stiff-
matter-dominated era only and after the transition it is zero.
This assumption can be justified as follows. Although it is
possible that some residual stiff matter exists after the
transition, it is quickly diluted away since ρstiff ∝ a−6 and
we do not therefore consider the particle creation from this
residual stiff matter to be significant enough to affect our
results. Moreover, while there is gravitational particle
creation in the matter and radiation dominated eras as
well, we do not consider these contributions to be signifi-
cant enough to affect our model because the bulk of matter
creation occurs early in the stiff matter era. Furthermore,
their contribution cannot be calculated because the field
modes for the massive scalar particle are not exactly known
in these cases.
In our previous article [21] we derived the contribution

wϕ using the results of particle creation in a stiff-matter-
dominated Universe of Ref. [42] and found it to be

wϕðtÞ ¼
3ðmbÞ13=3

32b
t½Aið−ð3mt=2Þ2=3Þ2

þ Bið−ð3mt=2Þ2=3Þ2�; ð12Þ

where Ai and Bi refer to the Airy functions. At this point we
mention that the parameter b in the above equation differs
from b0 introduced in the scale factor, because of different
scale factor choices made between this paper and Ref. [42].
In Ref. [42] the scale factor aðηÞ ¼ bη1=2, with η being the
conformal time, was chosen. These two are parameters are
related to each other [25] and in the stiff matter era the
relation is b0 ¼ ð3=2Þ1=3b2=3.
We obtain a formal solution for the differential

equation (11) as

ρϕðtÞ ¼
1

aðtÞ3 e
−
R

t

t0
½Γχðt0ÞþΓψ ðt0Þ�dt0

×
Z

t

t0

aðt0Þ3wϕðt0Þe
R

t0
t0
½Γχðt00ÞþΓψ ðt00Þ�dt00dt0; ð13Þ

where t0 denotes the initial time taken to be the time when
inflation ends. We have also assumed that the initial energy
density ρϕðt0Þ is zero because at the end of inflation the
Universe is practically empty of matter. Even though there
might be a contribution to the energy density from particles
created by the change of the metric from de Sitter into stiff
matter [16], its contribution is negligible as long as the time
when inflation ends is sufficiently far away from the
spacetime singularity [21].
The Boltzmann equations governing the evolution of the

energy density for the relativistic particles χ and ψ , namely
ρrel ≡ ρψ þ ρχ , read as

_ρrelðtÞ þ 4HðtÞρrelðtÞ ¼ ½ΓχðtÞ þ Γψ ðtÞ�ρϕðtÞ; ð14Þ
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where the second term on the left side accounts for the
dilution and the right-hand side expresses the creation of χ
and ψ particles as the massive scalar decays into these. The
formal solution of (14) is given as

ρrelðtÞ ¼
1

aðtÞ4
Z

t

t0

½Γχðt0Þ þ Γψ ðt0Þ�ρϕðt0Þaðt0Þ4dt0: ð15Þ

Here we have set the initial energy density ρrelðt0Þ to zero
reflecting the fact that no decay has occurred. Finally, the
energy density of the background in the stiff-matter-
dominated era is given by [28]

ρstiffðtÞ ¼
1

24πGNt2
; ð16Þ

where GN is Newton’s gravitational constant.

III. REHEATING VIA GRAVITATIONAL
PARTICLE PRODUCTION

In this section wewill outline the procedure for obtaining
the reheating temperature. It should be noted that there exist
two different types of scenarios which could occur under
the model investigated. First, it may be that the energy
density ρϕ of the gravitationally created particles grows
very slowly so that the energy density ρrel of the decay
products dominates when equilibrium with the background
energy density ρstiff is reached. In this case the Universe
becomes radiation dominated at the transition.
On the other hand, it may be that the energy density ρrel

increases more slowly so that the energy density ρϕ
dominates at the equilibrium point. In this case the
Universe ends up being temporarily matter dominated
and only later turns to a radiation-dominated universe as
the massive particles decay. We must consider these two
possible scenarios separately.

A. Matter-dominated era

If the energy density of matter is equal to the energy
density of the background, provided that the energy density
of the massive particles is greater than that of the relativistic
particles at that point, the Universe ends up as matter
dominated. In this case we start with the condition

ρϕ ¼ ρstiff ; with the restriction ρrel < ρϕ: ð17Þ

From this equality we obtain the time teq at which the two
energy densities are equal and we can calculate the energy
density at this time. The evolution of the Universe is then
described by ordinary Boltzmann equations in the matter-
dominated era without any particle creation processes. The
energy density after teq is given as a solution of the ordinary
Boltzmann equation,

ρmat
ϕ ðtÞ ¼

�
t2=3eq

t2=3

�
3

e−fðteq;t;2=3Þ × ρϕðteqÞ; ð18Þ

where the superscript mat indicates that this corresponds
to the energy density in the matter-dominated era. The
function f is defined as

fðt0; t; nÞ ¼
Z

t

t0

½Γχðt0Þ þ Γψ ðt0Þ�dt0; ð19Þ

where the index n is implicit in the decay rates Γ and labels
the Universe matter content. In this case n ¼ 2=3 corre-
sponds to the matter-dominated Universe. The massless
particle energy density ρmat

rel in the matter-dominated era is
given by

ρmat
rel ðtÞ ¼

�
1

t2=3

�
4
Z

t

teq

½Γχðt0Þ þ Γψðt0Þ�ρmat
ϕ ðt0Þðt02=3Þ4dt0

þ ρrelðteqÞ
�
t2=3eq

t2=3

�
4

; ð20Þ

where the last term describes the dilution of the initial
energy density calculated at the equilibrium. The Universe
continues to be matter dominated until the energy densities
of the massive and massless particles are equal. Once again
the energy densities are then equated

ρmat
rel ðtÞ ¼ ρmat

ϕ ðtÞ ð21Þ

to obtain time τeq when they are equal. The Universe
transfers to radiation-dominated era and we can calculate
the energy density at this time, which is then used as an
initial condition. The energy densities in the radiation-
dominated era are given by

ρradϕ ¼
�
τ1=2eq

t1=2

�
3

e−fðτeq;t;1=2Þ × ρmat
ϕ ðτeqÞ ð22Þ

for the massive scalars and

ρradrel ðtÞ ¼
�

1

t1=2

�
4
Z

t

τeq

½Γχðt0Þ þ Γψðt0Þ�ρradϕ ðt0Þðt01=2Þ4dt0

þ ρmat
rel ðτeqÞ

�
τ1=2eq

t1=2

�
4

; ð23Þ

for the massless scalars.
The function f now has n ¼ 1=2, corresponding to

radiation-dominated era. The final step in the calculation
scheme is the calculation of the reheating temperature. To
obtain this, we maximize the function ρradrel with respect to
the time t. This gives us the reheating time trh and also the
effective reheating temperature π2

30
g�T4

rh ¼ ρradrel;max. Because
the numerical values of the constant term and degrees of
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freedom g� is of the order of unity when the fourth root is
taken, we neglect these factors when obtaining the reheat-
ing temperature.

B. Radiation-dominated era

The other possible situation is when the energy density
of the massless particles dominates the energy density of
the massive particles when the equilibrium is reached with
the background energy density ρstiff. In this case

ρrel ¼ ρstiff ; with the restriction ρrel > ρϕ ð24Þ

and the Universe ends up straight into radiation domina-
tion. The massive particle energy density is given as a
solution of the Boltzmann equations

ρradϕ ðtÞ ¼
�
t1=2eq

t1=2

�
3

e−fðt0;teq;1=2Þ × ρϕðteqÞ; ð25Þ

where the index n ¼ 1=2 in the function f indicates that we
are in the radiation-dominated Universe. The energy
density for massless particles is given as

ρradrel ðtÞ ¼
�

1

t1=2

�
4
Z

t

teq

½Γχðt0Þ þ Γψðt0Þ�ρradϕ ðt0Þðt01=2Þ4dt0

þ ρrelðteqÞ
�
t1=2eq

t1=2

�
4

; ð26Þ

where teq is the time when the background stiff matter
energy density ρstiff and the energy density of the massless
particles ρrel is equal. The reheating time is obtained in
exactly the same way by maximizing the radiation energy
density.

IV. NUMERICAL RESULTS

In the previous section we have established the pro-
cedure how to obtain the reheating temperature. The
integrations must be performed numerically and for this
we used PYTHON programming with Planck units where
GN ¼ 1. Using Planck units allows us to explore the widest
possible range of parameters and after the calculations have
been performed, the results can of course be expressed in
terms of natural units straightforwardly.
We are still required to fix a total of six parameters: the

initial time t0 marking the end of inflation, the mass m of
the decaying particle, the expansion parameter b and the
coupling constants λ, ξ and h. We will first shortly discuss
the values where these parameters were set and after that we
take a look at the numerical results for the reheating
temperature and discuss the features the results presented.

A. Fixing the parameters

The initial time t0 was set to be the time when inflation
ends. Although not exactly known, we fixed it to be t0 ¼
1011 corresponding to about t0 ∼ 10−32 sec, a value com-
monly found in the literature [27,32]. For the expansion
parameter b we ran the simulation with the range of
b ∈ ½10−1; 101�. For the couplings constants λ, ξ and h
the following values were given. The coupling λ, which was
assumed to be small in order for the perturbative expansion
in λ=m to work, was fixed to run with the mass through the
relation λ ¼ γm with values γ ¼ 10−1; 10−2; 10−3. Note that
the ratio λ=m is a dimensionless quantity. The gravitational
coupling ξ was chosen to be conformal because the
gravitational particle creation rate in Ref. [42] was calculated
for conformally coupled massive scalars.
The parameter h, corresponding to the fermionic coupling,

was fixed to be h ¼ 10−14. This value allowed us to explore
the widest mass range possible; for values smaller than
h ¼ 10−14 numerical errors were produced and for larger
values the mass range was smaller. Moreover, if only one
channel of fermionic decay is considered, it can be thought
of as the singlet neutrino coupling. But since the coupling h
is dimensionless, we may consider multiple channels of
decay and the parameter h as an effective coupling. Hence,
if we have multiple fermionic decay channels Γψ i

, we may
consider them as

P
i Γψ i

¼ P
i g

2
i h

2
i Γ̃ψ , where gi and hi

denote the degrees of freedom of the particle and the
coupling constant of the respective channels of decay.
The quantity Γ̃ψ is defined as Γψ ¼ h2Γ̃ψ with Γψ given
by Eq. (9). We may then identify h2eff ¼

P
i g

2
i h

2
i and think

of h as an effective coupling.
The mass of the decaying particle was constrained to the

widest range possible which did not produce errors in the
numerical integrations. Since we are not considering any
particular particle physics theory, it is not necessary to try
to restrict into any specific mass range. This range was
found to be in the range of 10−14–10−7 in Planck units
which corresponds to about 105–1012 GeV providing a
fairly large account of masses. The lower bound of the mass
range seems to coincide with the value of the coupling h in
that for masses lower than the value of the coupling h,
numerical errors were produced. The simulation was run
with the parameters fixed as described above and the plots
were produced with a grid of 100 × 100 points of the
parameters m and b. While discussing the results obtained,
we will focus on contrasting the results with our previous
work [21] where the same scenario was considered with a
single scalar decay channel.

B. Reheating temperature

The reheating temperature Trh (Fig. 1) was found to be
practically independent of the parameter b and to lie on
the interval of about 10−10–10−6 in Planck units depen-
ding on the parameters used. This corresponds to about
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109–1013 GeV.We note that the obtained reheating temper-
ature should be considered as an upper bound because the
thermalization may actually be delayed for various reasons
[43]. In contrast to our previous work [21], the lower bound
of the reheating temperature is much higher. This is the
result of the presence of a fermionic decay channel, which
dominates the scalar decay channel near the spacetime
singularity [25] regardless of the mass of the particle or its
couplings. This in turn raises the reheating temperature.
This dominance is valid only near the spacetime singularity
and not valid for large times. Hence, as the time t grows
sufficiently large this dominance ceases to exist.
The small area on the right upper corner in Fig. 1

corresponds to the situation where the Universe ends up
straight into the radiation-dominated era skipping the tem-
porarymatter dominated era.Moreover, our numerical results
show that the reheating time and transition to radiation
dominated universe seem to be practically identical.
In Fig. 2 the reheating temperature is plotted with three

values for the ratio λ=m for b ¼ 0.1. Comparing the three
curves in Fig. 2, we observe that the reheating temperature
falls with the mass until at some point the fermionic
channel of decay starts to dominate over the scalar channel
raising the reheating temperature back up. If the decay
channel is only to massless scalars, the reheating temper-
ature would fall in a linear fashion as the mass decreases
[21]. On the other hand the reheating temperature decreases
in a linear fashion when the mass increases when only
the fermionic channel is present, as was found in the
simulation. The value of the mass at which the fermionic
channel starts to dominate depends largely on the values of
both couplings h and λ. For higher λ it is seen from Fig. 2
that this value is smaller. The reason for this is that by
increasing λ, decay into the scalar channel becomes more

powerful thereby diminishing the effect of the fermionic
channel because λ is larger in comparison to h. We ran the
simulation also for larger values of h. This had the effect of
shifting the curves of Fig. 2 to the right while their shape
remained the same; an increase of an order of magnitude in
h corresponds to a shift of about 1 order of magnitude in
mass m to the right.
There is also a small bend on the left-hand side of

Fig. 2 where the three curves meet. This is present only in
the case where the expansion parameter b is small, and for
values larger than about b ¼ 1 the curves would jointly
increase in a linearly fashion. This small bend can be
attributed to the fact that the Universe ends up straight
into radiation domination at these values. We will explain
this transition into radiation domination in more detail in
the next section, but here it suffices to say that when m
and b are small, there is less gravitational particle creation
which decreases the energy densities and thereby the
reheating temperature. At sufficiently low b and m, the
particle creation is so weak that the reheating temperature
starts to decrease.
Finally, we notice that the mass of the decaying particle

is smaller than the reheating temperature i.e., Trh > m at
least for the parameter range used. If thermal equilibrium is
assumed, this would imply that the number density of ϕ
quanta is higher than the number density of the relativistic
particles in the thermal bath indicating that multiparticle
processes may play a dominant role in order to decrease
the number of particles. It is, however, known that the
distribution of the ϕ particles or the decay products are not
equilibrium distributions and the single-particle decay itself
is not energy conserving [25,26,36,37,42], but the relativ-
istic particles thermalize afterwards. Hence, when the
system is out of equilibrium, the equilibrium description
does not work and Trh > m would then not indicate the

FIG. 1. Reheating temperature Trh as a function of mass m
and expansion parameter b in Planck units with the values
λ=m ¼ 10−3, h ¼ 10−14 and ξ ¼ 1=6. The coupling is conformal,
h ¼ 10−14 and b ¼ 0.1.

FIG. 2. Reheating temperature in Planck units as a function of
massmwith three values of the ratio λ=m; 10−1 (blue, solid), 10−2

(green, dashed) and 10−3 (red, dotted). The coupling is con-
formal, h ¼ 10−14 and b ¼ 0.1.

JUHO LANKINEN, OSKARI KERPPO, and IIRO VILJA PHYS. REV. D 103, 083522 (2021)

083522-6



dominant role of multiparticle processes. For a more in
depth look at this, we refer the reader to [21].

C. Transition times and different phases

Taking a look at Fig. 3, we consider first the transition
into the temporary matter-dominated era. We see that the
expansion parameter b does have an effect on this time. In
general, increasing the expansion parameter b shortens the
time it takes for the Universe to reach a matter-dominated
era as does increasing the mass m of the decaying particle.
These are reasonable to expect because the particle creation
in a stiff-matter-dominated Universe is most effective when
the mass m and the parameter b are large [42]. Hence, the
particle creation is so explosive for these large values that
the Universe reaches the temporary matter-dominated era
almost instantly. In contrast to our previous work in
Ref. [21] though, the time the Universe spends in this
matter-dominated era is a few orders of magnitude shorter.
This is because in the present case there exist two different
channels for the massive scalar to decay which decrease
the energy density of these massive particles in this era
more effectively. It seems reasonable to expect that the
presence of more channels of decay would shorten this time
even further.
We would now like to discuss the transition straight into

the radiation-dominated era. The possibility of this scenario
depends on the parametersm and b and can be attributed to
particle creation in the stiff-matter era and particle decay in
curved spacetime. The decay rate for the massive scalar to
decay into massless scalars is faster the more massive
the particle is [26,36,37] while the situation is reversed for
the fermionic channel for which the decay rate is faster the
lighter the particle is [25]. Hence, in the upper right corner

of Fig. 3, a large amount of particle creation takes place and
since the decay into scalar channel is enhanced for large
mass, the decay is so fast that radiation domination is
almost immediately reached. As a consequence, the dom-
inant particle species present in this case are bosons.
The radiation dominated portion in the lower left corner

of Fig. 3 can also be explained by particle creation and
decay rates. Since m and b are small, there are fewer
particles created gravitationally and naturally it takes a
longer time to reach equilibrium with the background.
But as the decay into fermions is faster the smaller is the
mass [25], they have enough time to decay and radiation
domination is reached before equilibrium as ρrel increases.
These notions are supported by Fig. 4 where it is seen that
in this case the time it takes for the Universe to reheat is
quite long. If, on the other hand b is large and m is small,
more particles are created and there simply is not enough
time for these to decay until the equilibrium is reached.
Hence the Universe ends up in a matter-dominated period.
In contrast to our previous study in [21], this radiation-
dominated phase does not exist for the purely scalar decay
channel and it occurs because the fermionic matter domi-
nates the energy density.

V. DISCUSSION

In this paper we have provided a novel approach to
reheating in the kination epoch via the fermion and scalar
decay channels using the Boltzmann equations. In this
section we would like to discuss first some of the
assumptions made and then also provide more insight into
the interesting features the two channel decay has provided.
With regard to the assumptions, we have assumed that the
Universe exhibits a sudden transition from the stiff-matter
era either into a radiation- or matter-dominated era. This is
provided by the abrupt stop of particle creation after the

FIG. 3. Time of transition to a matter-dominated era as a
function of mass m and expansion parameter b given in Planck
units. The black areas in the upper right and lower left corners
correspond to transition straight into radiation domination. The
ratio λ=m ¼ 10−3 and coupling is ξ ¼ 1=6.

FIG. 4. Reheating time as a function of mass m and expansion
parameter b in Planck units. The ratio λ=m ¼ 10−3 and coupling
is ξ ¼ 1=6.
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change of phase has occurred. It is possible that there exists
some stiff matter after the transition, but as the background
energy density scales as ρstiff ∝ a−6, it is quickly diluted
away and we do not therefore consider the particle creation
from this residual stiff matter to be significant enough to
affect our numerical results. The second assumption con-
cerns the added-up formalism used to derive the decay rates
in curved spacetime. It is restrictive in the sense that the
decay product particles are assumed to be massless and
conformally coupled in order for the decay rate to make
physical sense in curved spacetime [23]. Often one may
consider this approximation of massless particles to be
sensible when the decay product masses are much smaller
than the decaying particle, i.e., mψ ; mχ ≪ mϕ; T. This type
of approximation must be taken with some caution though in
curved spacetime, because immediately as m ≠ 0 the con-
formal invariance of the theory is broken and gravitational
particle creation occurs. This in turn interferes severely with
the mutual interaction of the process [23,34,35]. It is not
clear if one may consider the decay products as having a
negligible, but nonzero mass in this case.
Finally, we ran the simulation also with a smaller t0 to

see how it affects the reheating temperature. From previous
results it is known that the decay rate into fermions
becomes more prominent as the spacetime singularity
t0 ¼ 0 is approached [25] and therefore we would expect
to see the fermionic channel becoming more dominant as

the time decreases. For the value of t0 ¼ 1010, which was
the smallest value that allowed a sensible range of param-
eters for calculation, we found no observable change in
order of the reheating temperature or on the transition times
although the numerical factors were changed. It can
therefore be inferred that the time t0 should be very small,
probably closer to the Planck time, in order for observable
effects to take place.
In summary, we have in this article explored reheating in

the kination epoch where the particle content is provided
by gravitational particle creation during the expansion of
the Universe. We used curved spacetime decay rates for a
massive scalar to decay into radiation via scalar and
fermionic channels. The reheating temperature was found
to be in the 109–1013 GeV regime and to be independent of
the expansion rate of the Universe. The results provide a
deeper understanding into reheating occurring in the
kination epoch but also increase our knowledge on the
role that gravitational field has on the decay rates in curved
spacetime.
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