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The action of loop quantum gravity includes the Holst term and/or the Nieh–Yan term in addition to the
Ricci scalar. These terms are expected to couple nonminimally to the Higgs. Thus the Holst and Nieh–Yan
terms contribute to the classical equations of motion, and they can have a significant impact on inflation.
We derive inflationary predictions in the parameter space of the nonminimal couplings, including
nonminimally coupled terms up to dimension 4. Successful inflation is possible even with zero or negative
coupling of the Ricci scalar. Notably, inflation supported by the nonminimally coupled Holst term
alone gives almost the same observables as the original metric formulation plateau Higgs inflation.
A nonminimally coupled Nieh–Yan term alone cannot give successful inflation. When all three terms are
considered, the predictions for the spectral index and tensor-to-scalar ratio span almost the whole range
probed by upcoming experiments. This is not true for the running of the spectral index, and many cases are
highly tuned.
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I. INTRODUCTION

Formulations of general relativity and Higgs inflation.
There are several formulations of general relativity, includ-
ing the metric, the Palatini, the teleparallel and the
symmetric teleparallel formulation, among others [1–19].
They are based on different assumptions about spacetime
degrees of freedom, in particular about the relation between
the metric (or the tetrad) and the connection. When gravity
is described by the Einstein–Hilbert action and matter does
not couple directly to the connection, these formulations
are equivalent. However, for more complicated gravita-
tional actions [20–36] or matter couplings [37–55], differ-
ent formulations in general lead to different predictions.
Scalar fields couple directly to the connection via the

Ricci scalar. Even if such a coupling is not included at tree
level, it will be generated by quantum corrections [56].
Even if the coupling is put to zero on some scale, it runs and
will thus be nonzero on other scales (although it can be
negligible if the running is small). Thus, scalar fields break
the equivalence between different formulations of general
relativity. In particular, this is true for the Higgs field of the
Standard Model of particle physics.
Inflation is the most successful scenario for the early

universe, and it is typically driven by a scalar field [57–70].

The nonminimal coupling of the inflaton to gravity can
leave an imprint on inflationary perturbations, so observa-
tions of the cosmic microwave background and large-scale
structure may distinguish between different formulations of
general relativity. If the Standard Model Higgs is the
inflaton [71] (for reviews, see [72–74]; for an earlier
similar model, see [75,76]), it has (in the simplest cases)
a large nonminimal coupling to the Ricci scalar, so different
formulations can lead to large observational differences
[40,43–45,48,49,51,52,77,78]. Conclusions regarding per-
turbative unitarity, a key question on the particle physics
side of Higgs inflation, can also be different [41,77,79–99].
In the metric formulation, the scale of tree-level unitarity
violation is naively below the inflationary scale. In the
Palatini formulation, the scale of tree-level unitarity vio-
lation is shifted up, and it is possible that inflation may take
place below this scale [41,77,98,99].
In addition to the nonminimal coupling of matter, a

gravity sector more complicated than the Einstein–Hilbert
action can lead to differences between formulations. One
example is higher powers of the Ricci scalar, which have to
be included because of loop corrections [36,44,96,97,
100–117]. Extended gravitational actions can also be
motivated by top-down considerations involving more
fundamental theories, such as loop quantum gravity
(LQG).
Loop quantum gravity. LQG is a candidate for a non-

perturbative background-free theory of quantum gravity.
Cosmology in LQG has often been studied in the loop
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quantum cosmology approach, which involves LQG-quan-
tising1 a symmetry-reduced model (such as a Friedmann–
Lemaître–Robertson–Walker spacetime) and studying the
difference to the ordinary “von Neumann representation”-
compatible quantization [118]. We instead consider the
cosmological effects of new terms appearing in the LQG
action to inflation at the classical level. (See also [119,120]
on inflationary gravitational waves in LQG.)
LQG comes in three main flavors: Hamiltonian form

with the Ashtekar SL(2,C)-valued connection; Hamiltonian
form with an SU(2)-valued connection; and covariant (or
spin foam) form [121–124]. In the first case the
Hamiltonian is complex, so reality conditions have to be
imposed to obtain real-valued geometry, in the second case
the variables are real. In the Hamiltonian forms the action
consists of the Einstein–Hilbert action (also called the
Palatini action as the connection is an independent variable)
plus the Holst action. The Holst term is the contraction of
the Riemann tensor with the Levi–Civita tensor, multiplied
by a constant whose inverse is called the Barbero–Immirzi
parameter γ [125]. As the Holst piece is of the same order in
curvature as the Ricci scalar, it is not suppressed by an extra
mass scale.
The choice γ ¼ �i gives the self-dual (or anti–self-dual)

SL(2,C) action for LQG, for which all constraints are first
class and can be solved [126,127]. However, as the action is
complex, reality conditions have to be imposed, and it is
not clear how to handle them when quantising. If γ is real,
we get the LQG action for the real-valued SU(2) con-
nection, for which the Hamiltonian constraint is however
complicated. In this case the spectrum of the area operator
and the volume operator are discrete [128,129], unlike in
the self-dual case when they are continuous [130].
The Holst term is central for black hole entropy. If the

Barbero–Immirzi parameter is real, there are two possibil-
ities depending on whether or not there is a chemical
potential in the statistical treatment of the black hole
entropy. (This depends on the quantization of the dynamics,
which is an open problem.) With no chemical potential, the
entropy is inversely proportional to the Barbero–Immirzi
parameter, and the semiclassical value of Bekenstein and
Hawking [131,132] is reproduced for γ ≈ 0.274 [133].
When a chemical potential is added, the correct semi-
classical value can be obtained independent of the value of
γ [134,135]. Black hole entropy is also independent of

the Barbero–Immirzi parameter in the complex self-dual
case [136].
In the case of pure gravity with the Einstein–Hilbert plus

the Holst term, the Holst term does not contribute to the
equations of motion at the classical level. The theory thus
has a quantization ambiguity as there is a one-parameter
family of quantum theories corresponding to the classical
theory. Another term sometimes considered in LQG is the
topological Nieh–Yan invariant [137–143]. Like the Holst
term, it is dimension 2, and is hence not suppressed by a
mass scale compared to the Ricci term. It is obvious that the
Nieh–Yan term does not contribute at the classical level,
as it is a total derivative. The case of the Holst term is
more subtle. It vanishes when there is no torsion, and for
minimally coupled matter, the equations of motion for the
connection lead to the Levi–Civita connection, for which
the torsion is zero.2

When there is a source for torsion, the Holst term
becomes dynamical. One case that has been studied in
LQG is fermions whose kinetic term involves the spin
connection [139,140,144–148]. Substituting the torsion
generated by fermions back into the action leads to a
four-fermion coupling that depends on the Barbero–
Immirzi parameter, breaking the quantization ambiguity.3

Another possibility that has been considered is uplifting
the Barbero–Immirzi parameter to a scalar field [138,
142,149–153], in which case a constant γ is a low-energy
approximation for when the field sits at the minimum. This
Barbero–Immirzi field will source torsion. Substituting the
torsion back into the action generates a free scalar field, and
a potential would need to be added by hand for inflation.
The coefficient of the Nieh–Yan term has likewise been
promoted to a scalar field [138,141,142,154–156].
A third possibility that has been studied is that torsion is

generated by the nonminimal coupling of a scalar field to
the Ricci scalar [157,158]. Such a coupling does not spoil
the usual LQG quantization procedure when γ is real [159].
It has been considered both in loop quantum cosmology
[160–162] and from the perspective of black hole thermo-
dynamics [163,164]. Even if the Holst term is minimally
coupled, the nonminimal coupling of the Ricci tensor will
make it dynamical. If the nonminimally coupled field is the
inflaton, the value of the Barbero–Immirzi parameter will
be imprinted on the spectrum of perturbations produced
during inflation.
We consider nonminimal coupling of a scalar field to the

Ricci scalar, Holst term and Nieh–Yan term during infla-
tion, with particular attention to the Higgs case. Unlike for
fermions, where the observational signature is negligible

1By LQG-quantizing we mean that the background-free
quantization techniques used in the full LQG theory are mim-
icked as closely as possible. For example, the holonomy of
the connection (rather than the connection) is quantized,
the size of plaquettes is not shrunk to zero (as in the usual
Wilson loop quantization) because the minimal area eigenvalue is
nonzero, the kinematical space is inequivalent to the one of
Wheeler–de Witt quantization but mimics that of full LQG,
and so on.

2Assuming that nonmetricity is zero, as usual in LQG.
3Fermions can also be coupled to the Levi–Civita spin con-

nection, so that they donot enter the connection equation ofmotion.
Another possibility is to choose a modified kinetic term such that
the dependence on theBarbero–Immirzi parameter disappears after
solving the equations of motion [140,144,145,147].
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because the four-fermion interaction is suppressed by the
Planck scale, we find that the scalar-generated torsion can
have a significant effect, completely changing the infla-
tionary predictions.
In Sec. II we present the formalism, give the action

where the Ricci scalar, Holst term and Nieh–Yan term are
nonminimally coupled to a scalar field, solve the equation
of motion of the connection and substitute back into the
action. The physics of the nonminimal coupling is thus
shifted to the kinetic term and potential of the scalar
field. In Sec. III we discuss inflationary behavior in the
case of Higgs inflation, including nonminimally coupled
terms up to dimension 4, and in Sec. IV we summarize
our results. We use the metric and the connection as
the gravitational degrees of freedom, as these are more
familiar to cosmologists. In Appendix we present the
calculation with tetrads, more familiar to people working
on LQG.

II. NONMINIMAL COUPLING TO RICCI,
HOLST, AND NIEH–YAN TERMS

A. Curvature, nonmetricity and torsion

We take the metric gαβ and the connection Γγ
αβ to be

independent degrees of freedom. The connection, defined
with the covariant derivative as∇βAα ¼ ∂βAα þ Γα

βγA
γ , can

be decomposed as

Γγ
αβ ¼ Γ

∘ γ
αβ þ Lγ

αβ ¼ Γ
∘ γ
αβ þ Jγαβ þ Kγ

αβ; ð2:1Þ

where Γ
∘ γ
αβ is the Levi–Civita connection defined by the

metric gαβ. As the difference of two connections, Lγ
αβ is a

tensor, known as the distortion. In the second equality we
have decomposed it into the disformation Jαβγ and the
contortion Kαβγ , defined as

Jαβγ ≡ 1

2
ðQαβγ −Qγαβ −QβαγÞ;

Kαβγ ≡ 1

2
ðTαβγ þ Tγαβ þ TβαγÞ; ð2:2Þ

where Qαβγ and Tαβγ are the nonmetricity and the torsion,
respectively, defined as

Qγαβ ≡∇γgαβ; Tγ
αβ ≡ 2Γγ

½αβ�: ð2:3Þ

Note that Qγαβ ¼ QγðαβÞ, ∇γgαβ ¼ −Qαβ
γ , Jαβγ ¼ JαðβγÞ and

Kγ
α
β ¼ K½γ

α
β�.

The two nonmetricity vectors are defined as

Qγ ≡ gαβQγαβ; Q̂β ≡ gαγQαβγ; ð2:4Þ

and the torsion vector and torsion axial vector4 are defined
as, respectively,

Tβ ≡ gαγTαβγ; T̂α ≡ 1

6
ϵαβγδTβγδ; ð2:5Þ

where ϵαβγδ is the Levi–Civita tensor. Note that ∇α
ffiffiffiffiffiffi−gp ¼

1
2

ffiffiffiffiffiffi−gp
Qα.

The Riemann tensor can be decomposed into the Levi–
Civita and the distortion contribution as

Rα
βγδ ¼ R

∘ α
βγδ þ 2∇∘ ½γLα

δ�β þ 2Lα½γjμjLμ
δ�β; ð2:6Þ

where ∘ denotes a quantity defined with the Levi–Civita
connection. The curvature Rα

βγδ, nonmetricity Qαβγ and
torsion Tαβγ are the complete set of tensors that characterize
the geometry of a manifold.
There are exactly two geometrical scalars that are linear

in the Riemann tensor (2.6) and quadratic in the connec-
tion: the Ricci scalar and the Holst term. They are defined
as, respectively,

R≡ δα
γgβδRα

βγδ

¼ R
∘ þQþ T þ∇∘ αðQα − Q̂α þ 2TαÞ − TαðQα − Q̂αÞ
þQαβγTγαβ

R̂≡ 1

2
gαμϵμβγδRα

βγδ

¼ −3∇∘ αT̂
α þ 1

4
ϵαβγδTμαβTμ

γδ þ
1

2
ϵαβγδQαβμTμ

γδ; ð2:7Þ

where we have used (2.2)–(2.6) to separate the contribu-
tions of curvature, nonmetricity and torsion. The non-
metricity scalar and the torsion scalar are defined as
Q≡ 1

4
QαβγQαβγ − 1

2
QαβγQγαβ − 1

4
QαQα þ 1

2
QαQ̂

α and T ≡
1
4
TαβγTαβγ − 1

2
TαβγTγαβ − TαTα, respectively. We also con-

sider the Nieh–Yan term ∇∘ αT̂
α, which is equivalent to the

Holst term plus a term quadratic in the torsion and a term
involving nonmetricity. In LQG nonmetricity is usually
taken to be zero a priori, so this term is absent. Although
we are motivated by LQG, our approach is bottom-up, so
we keep the nonmetricity (although it will turn out it can be
set to zero without loss of generality).

B. The action and the connection

We consider an action with the Ricci scalar, the Holst
term and the Nieh–Yan term coupled to a scalar field h,

4Despite the name, the parity transformation properties of the
torsion vector and axial vector are not necessarily those of a
vector and pseudovector. How they transform depends on the
solution for the torsion tensor.
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which we will later identify with the Standard Model
Higgs,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðhÞRþ 1

2
HðhÞR̂þ 3

2
YðhÞ∇∘ αT̂

α

−
1

2
KðhÞgαβ∂αh∂βh − VðhÞ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðhÞRþ 1

2
HðhÞR̂ −

3

2
T̂α∂αYðhÞ

−
1

2
KðhÞgαβ∂αh∂βh − VðhÞ

�
; ð2:8Þ

where on the second line we have discarded a boundary
term. We neglect fermions. The coefficients have been

chosen such that for Y ¼ H, the ∇∘ αT̂
α parts in the Holst

term and the Nieh–Yan term cancel each other. Note the
similarity of the Nieh–Yan term to the torsion vector
coupling that appears in the teleparallel formulation [52].
The usual LQG case corresponds to F ¼ 1, H ¼ 1=γ,
Y ¼ 0, or alternatively F ¼ 1, H ¼ 0, Y ¼ 1=γ, where γ
is the Barbero–Immirzi parameter. (We choose units such
that the Planck scale is unity.)
Varying (2.8) with respect to the connection Γγ

αβ, we get
the equation of motion

− FQγαβ þ FQ̂βgαγ −Hϵαβ
μνQμνγ þ Fgα½βðQγ� þ 2Tγ�Þ

þ FTαβγ þHϵαβγ
μTμ þ

1

2
Hϵαβ

μνTγμν

¼ −2gα½β∂γ�F − ϵαβγ
μ∂μðH − YÞ: ð2:9Þ

The general solution of (2.9) has the form

Qγαβ ¼ q1ðhÞgαβ∂γhþ 2q2ðhÞgγðα∂βÞh

Tαβγ ¼ 2t1ðhÞgα½β∂γ�hþ t2ðhÞϵαβγμ∂μh: ð2:10Þ

The definitions (2.4) and (2.5) give

Qα ¼ ð4q1 þ 2q2Þ∂αh; Q̂α ¼ ðq1 þ 5q2Þ∂αh

Tα ¼ −3t1∂αh; T̂α ¼ t2∂αh: ð2:11Þ

As nonmetricity and torsion are only sourced by the scalar
field, they can be written in terms of gradients of the scalar
field, and reduce to the four vectors (2.11).
Inserting (2.10) into (2.9), we get

q2 ¼ 0

2t1 − q1 ¼
FF0 þHðH0 − Y 0Þ

F2 þH2

t2 ¼
HF0 − FðH0 − Y 0Þ

F2 þH2
; ð2:12Þ

where prime denotes derivative with respect to h. If F ¼ H,
the action has the extra symmetry of invariance under the
duality transformation Rαβγδ →

1
2
ϵγδ

αβRαβαβ, which maps
R ↔ R̂. Then the Holst term does not contribute to the
equations ofmotion ifY 0 ¼ 0, as is easily seen by a conformal
transformation to the Einstein frame. IfY 0 ≠ 0, theHolst term
with H ¼ F simply effectively shifts Y → Y=2.
The equations of motion do not fix q1 and t1 separately,

only the combination 2t1 − q1. This well-known feature is
due to invariance of the action (2.8) under the projective
transformation Γγ

αβ → Γγ
αβ þ δγβAα, where Aα is an arbi-

trary vector [7]. The Riemann tensor transforms as
Rαβγδ → Rαβγδ þ gαβð2∇½γAδ� þ Tμ

γδAμÞ, so the Ricci sca-
lar is invariant due to the symmetry of its contraction, and
the Holst term is invariant due to the antisymmetry of its
contraction. The Nieh–Yan term is invariant because T̂α is
invariant. If Aα ¼ ∂αA for some scalar A, the nonmetricity
and the torsion transform as q1 → q1 − 2A, t1 → t1 − A,
q2 → q2, t2 → t2.
The projective symmetry can be explicitly broken in the

action [18,49,50,54,55]. Short of that, the projective
invariance is often fixed in the Palatini formulation by
assuming a priori that the connection is symmetric,
Tαβγ ¼ 0. When the Holst term is included, (2.12) shows
that this is not possible unless F0=F ¼ ðH0 − Y 0Þ=H. (Note
the similarity of this condition to the condition for the
torsion vector coupling to vanish in the teleparallel for-
mulation [52].) In the tetrad formulation used in LQG, it is
instead commonly assumed that the covariant derivative of
the tetrad is zero, which goes under the name tetrad
postulate, meaning Qαβγ ¼ 0. The scalar field kinetic term
and potential are trivially invariant under the projective
transformation as they do not depend on the connection.
When deriving the equation of motion for the scalar field,
the requirement that a total covariant derivative of a scalar
field term reduces to a boundary term picks out the Levi–
Civita connection, so the full connection does not appear in
the scalar field equation of motion.
Following the LQG convention, we fix the projective

symmetry by setting q1 ¼ 0, so nonmetricity is zero. In fact,
we could have put Qαβγ ¼ 0 from the beginning, as the
following reasoning shows. We can get rid of the non-
minimal coupling F to R by a conformal transformation. As
a conformal transformation (see (2.15) below) can only
change q2, not q1, F cannot generate a q2 term. And as we
can perform a conformal transformation to cancel the source
term involving the Holst or the Nieh–Yan term, they also
cannot generate q2. And q1 can always be transformed into
t1 by the projective transformation. For a different action,
setting Qαβγ ¼ 0 may involve loss of generality [49].

C. Einstein frame action

The coupled equations of motion for the scalar field,
metric and connection can be simplified by choosing
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suitable coordinates in field space. If we make the con-
formal transformation

gαβ → ΩðhÞ−1gαβ ð2:13Þ

and absorb the changes in the functions of h in the action,
they transform as

F → Ω−1F

H → Ω−1H

∂αY → Ω−1∂αY

K → Ω−1K

V → Ω−2V; ð2:14Þ

and the nonmetricity transforms as

Qγαβ ¼ ∇γgαβ → Ω−1ð∇γgαβ − gαβ∂γ lnΩÞ: ð2:15Þ

We choose field coordinates where the Ricci scalar is
minimally coupled to the scalar field (i.e., the Einstein
frame), which corresponds to Ω ¼ F. The action then reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Rþ 1

2

HðhÞ
FðhÞ R̂ −

3

2
T̂α ∂αYðhÞ

FðhÞ

−
1

2

KðhÞ
FðhÞ g

αβ∂αh∂βh −UðhÞ
�
; ð2:16Þ

where we have denoted U≡ V=F2.
Inserting the connection (2.10) (with F → 1, H → H=F

and Y 0 → Y 0=F) back into the action, decomposing R and R̂
into their Levi–Civita, nonmetricity and torsion parts with
(2.7), setting the nonmetricity to zero and inserting the
torsion (2.12), we get (dropping a boundary term)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R
∘
−
1

2

�
K
F
þ 6t21 −

3

2
t22 − 3t2½ðH=FÞ0 − Y 0=F − 2t1H=F�

�
gαβ∂αh∂βh − U

�
: ð2:17Þ

Inserting t1 and t2 from (2.12), we arrive at the simple expression

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R
∘
−
1

2

�
K
F
þ 3

2

F2 þH2

F2
t22

�
gαβ∂αh∂βh − U

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R
∘
−
1

2

�
K
F
þ 3

2

½ðH=FÞ0 − Y 0=F�2
ðH=FÞ2 þ 1

�
gαβ∂αh∂βh −U

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R
∘
−
1

2

�
K
F
þ 3

2

½HF0 − FðH0 − Y 0Þ�2
F2ðF2 þH2Þ

�
gαβ∂αh∂βh −U

�

≡
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R
∘
−
1

2
K̃ðhÞgαβ∂αh∂βh −UðhÞ

�
: ð2:18Þ

The geometrical contribution of the torsion has been shifted
to the scalar kinetic term and the 1=F2 modification of the
potential, and only the Levi–Civita connection appears.
When we vary this action with respect to gαβ and h, we get
equations of motion that are equivalent to those of the
original action (2.8), which has a nontrivial gravity part
(and hence connection). There is one subtle difference:
varying the Einstein frame Levi–Civita action (2.18) leads
to boundary terms that depend on the derivative of the
variation of the metric. In order to derive the equations of
motion, we need to include the York–Gibbons–Hawking
boundary term [165,166] to cancel this contribution. In the
original action (2.8), there is no such problem, as the
variation of the connection can be taken to vanish on
the boundary independently of the metric. From the Palatini
perspective, having to add a boundary term to the Einstein–
Hilbert action is an artifact of solving part of the equations
of motion and inserting the result back into the action. (We
discarded boundary terms in the derivation.)

D. Recovering the metric and Palatini cases

The action (2.18) reduces to the well-known Palatini case
with a nonminimal coupling only to the Ricci scalar [40]
when Y 0 ¼ FðH=FÞ0. Apart from the trivial case
H ¼ Y ¼ 0, this also happens when Y ¼ 0, H ¼ αF,
where α is an arbitrary constant. If both the Holst and
the Nieh–Yan term are nonzero, the condition means that
their derivative parts cancel in the action, leaving only a
quadratic torsion term.
The results of the metric formulation with a nonminimal

coupling to the Ricci scalar are recovered when

F0 ¼ ðY 0 −H0Þ
�
H=F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH=FÞ2 þ 1

q �
: ð2:19Þ

A particularly simple case isH ¼ 0, Y ¼ �F, when there is
no Holst term and the coupling functions of the Ricci term
and the Nieh–Yan term are identical (possibly up to a sign).
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Another possibility is Y ¼ 0, F ¼ �α−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2αH

p
, where

α is an arbitrary nonzero constant.

III. INFLATION

A. The coupling functions and the potential

Let us now discuss inflation with the Standard Model
Higgs. A field-dependent kinetic term corresponds to a
monotonic field-dependent remapping of the potential.
Including only terms of up to dimension 4 in the action
(2.8) and taking into account that only even powers of the
field appear, we have (note that Y is defined only up to an
additive constant)

K ¼ K0; F ¼ F0ð1þ ξh2Þ;
H ¼ F0ðH0 þH1h2Þ; Y ¼ F0Y1h2; ð3:1Þ

where K0, F0, ξ,H0,H1 and Y1 are constants. In LQG with
the Holst term, H0 ¼ 1=γ. Observational limits on these
couplings are very weak, as they effectively only modify
the Higgs potential for large field values. In the metric
formulation, collider measurements give jF0ξj<2.6×1015

[167]. In the Palatini case, noninflationary constraints on
the nonminimal couplings are likewise expected to be so
high as not to affect our analysis.
The kinetic function defined in (2.18) is

K̃ ¼ K
F
þ 3

2

½HF0 − FðH0 − Y 0Þ�2
F2ðF2 þH2Þ

¼ K0

F0ð1þ ξh2Þ þ 6h2
ðY1 −H1 þH0ξþ Y1ξh2Þ2

ð1þ ξh2Þ2½1þH2
0 þ 2ðH0H1 þ ξÞh2 þ ðH2

1 þ ξ2Þh4� : ð3:2Þ

The kinetic function and thus the physics is invariant under
the simultaneous sign change of H0, H1 and Y1. In the
small field limit h ≪ 1 the second term falls off like h2, and
the canonically normalized field is χ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K0=F0

p
h. In

general, the transformation between h and the canonical
field χ is

dχ
dh

¼ �
ffiffiffiffi
K̃

p
: ð3:3Þ

We consider the Higgs tree-level potential, so

UðχÞ ¼ λ

4F2
0

½hðχÞ2 − v2�2
½1þ ξhðχÞ2�2 ; ð3:4Þ

where λ and v are constants. The constants K0 and F0

effectively rescale the values of λ and v when we consider
the potential in terms of the canonically normalized field
[49], and we henceforth take K0 ¼ F0 ¼ 1. The quartic
coupling λ has the value 0.13 at the electroweak scale, and
without the nonminimal gravitational couplings it runs
down with increasing field value. The running depends on
the electroweak scale values of the Higgs mass, top quark
mass, and QCD coupling constant. For the measured mean
values, λ crosses zero around 1011 GeV ∼ 10−7, in the case
all when nonminimal couplings are zero [168–172]. The
running is highly sensitive to the input electroweak scale
values, and positivity of λ up to the Planck scale is within
the 2σ limits [168–172]. The nonminimal couplings we
consider can also change the renormalization group run-
ning. We do not consider running, and take λ at the
inflationary scale to be a free positive parameter, limited
by λ < 0.1 to avoid strong coupling. If we used λ < 0.01

instead, the upper limit for ξwe find would decrease by one
order of magnitude, which in the case ξ > 0 correspond-
ingly brings the lower limit for r up by one order of
magnitude.
The first slow-roll parameters are

ϵ¼1

2

	
U0

U



2

; η¼U00

U
; σ2¼

U0

U
U000

U
; σ3¼

	
U0

U



2U0000

U
;

ð3:5Þ

where prime denotes derivative with respect to χ.
The amplitude, spectral index, running, running of the

running of the scalar perturbations, and the tensor-to-scalar
ratio are, respectively,

As ¼
1

24π2
U
ϵ
¼ 2.099e�0.01410−9 ð3:6Þ

ns ¼ 1 − 6ϵþ 2η ¼ 0.9625� 0.0048 ð3:7Þ

αs ¼ −24ϵ2 þ 16ϵη − 2σ2 ¼ 0.002� 0.010 ð3:8Þ

βs ¼ −192ϵ3 þ 192ϵ2η − 32ϵη2 − 24ϵσ2 þ 2ησ2 þ 2σ3

¼ 0.010� 0.013 ð3:9Þ

r ¼ 16ϵ < 0.067; ð3:10Þ

where the observational values with 68% C.L. limits are
from Planck and BICEP2/Keck cosmic microwave back-
ground (CMB) data at the pivot scale 0.05 Mpc−1 [173].
The value for r assumes zero running of the running. The
number of e-folds until the end of inflation is
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N ¼
Z

χ

χend

dχffiffiffiffiffi
2ϵ

p ; ð3:11Þ

where χend is the field value at the end of inflation
(approximating that the field is in slow-roll until the end
of inflation). The number of e-folds at the pivot scale is

N ¼ 56 − ΔN −
1

4
ln
0.067
r

; ð3:12Þ

where ΔN accounts for the effect of reheating. Reheating is
sensitive to the shape of the potential. With a nonminimal
coupling only to the Ricci scalar, in the Palatini formulation
with a tree-level potential the reheating is almost instant,
ΔN ≪ 1 [51]. In the metric case it is not clear whether
ΔN ¼ 4 or ΔN ≪ 1 [174–182]. We assume instant
reheating.

B. Plateau inflation

Let us first consider inflation on the asymptotically flat
plateau, which the potential has when ξ > 0. When the
Holst and the Nieh–Yan term are zero, this is the only
inflationary regime. With either or both nonzero, plateau
inflation remains qualitatively the same, and the first slow-
roll observables in terms of the number of e-folds are (see,
e.g., [43] for details)

As ¼
N2

12π2
λ

ξþ 6ξ2Y2
1

H2
1
þξ2

ns ¼ 1 −
2

N
−
3r
16

r ¼ 2

N2

	
1

ξ
þ 6Y2

1

H2
1 þ ξ2



¼ λ

6π2Asξ
2
: ð3:13Þ

The term 3r
16

in the expression for ns has sometimes
been dropped. While it is negligible for small r, for the
maximum value r ¼ 0.067 it gives a correction of −0.012.
For N ¼ 56 [51], we get ns ¼ 0.96 − 3r

16
, in agreement with

observations. In contrast to the cases H ¼ Y ¼ 0, the
amplitude As can be small without a large ξ, if the
Nieh–Yan term coupling Y1 is large instead. However,
the observational upper limit (3.10) on r combined with the
value (3.6) of As anyway requires ξ > 104

ffiffiffi
λ

p
, so unless

λ ≪ 1, we have ξ ≫ 1. The tensor-to-scalar ratio r can be
adjusted up or down from the metric case result 12=N2

by shifting the parameters. The minimum value is
r ¼ 5 × 10−13 (assuming λ < 0.1), corresponding to the
tree-level Palatini case with a nonminimal coupling only to
the Ricci scalar.
If the Holst term is zero, only plateau inflation is

possible. In this case the behavior is identical to the
teleparallel case studied in [52]. However, if H1 ≠ 0, we
can get qualitatively different inflationary behavior. Let us

first look at some interesting subcases. We have verified all
results by numerically scanning the parameter space.

C. Y = 0

Let us consider the case when the Nieh–Yan term is zero,
but not the Holst term. We see from (3.13) that the Holst
term plays no role in plateau inflation, unless its coupling is
large. This is because the Holst contribution to the kinetic
function (3.2) decreases like 1=h6 for large h, in contrast to
the 1=h2 suppression of the ξ term. So even though the
Holst term is nonzero because F generates torsion, its
numerical contribution is negligible. In particular, this is the
case if we take H0 ¼ 1=γ ≈ 3.6, where γ ¼ 0.274 is the
value determined from black hole entropy in LQG without
chemical potential [133]. If the Holst term coupling is large,
ns can be shifted down on the plateau.
However, if H0 is much larger than ξ and H1, there is

another inflationary regime in addition to plateau inflation.
The contribution of the Holst term can dominate the kinetic
function (3.2) in an intermediate regime even though it is
subleading in the limit h → ∞. When H0 dominates over
all other terms and jξjh2 ≫ 1, the kinetic term is K̃ ≃ 6=h2.
This agrees with the metric formulation plateau case [71],
giving ns ¼ 1–2=N ¼ 0.96 and r ¼ 12=N2 ¼ 4 × 10−3 for
N ¼ 56. However, now this solution also exists if ξ < 0. If
the other terms also contribute, the results for r remain the
same, but ns can be adjusted downwards. The running
parameters α and β can also take a range of values outside
those of plateau inflation driven by a nonminimal coupling
to the Ricci scalar. In this inflationary regime, h at the pivot
scale can be as small as 2 × 10−3, in contrast to usual
plateau inflation, where h ≈ 0.08 in the metric formulation
and h ≈ 20 in the Palatini formulation. Interestingly, this
case is possible even ifH1 ¼ 0, i.e., if the Holst coupling is
constant. The nonminimal coupling F generates torsion,
making the Holst term dynamical, its effect enhanced by
the large value of H0.
If ξ ¼ 0, there is also a third inflationary regime, which

gives predictions close to the metric case, as we discuss in
the next section.

D. ξ = 0

If the nonminimal coupling to the Ricci scalar is zero, the
potential is not asymptotically flat. Nevertheless, we can
have an intermediate flat regime where inflation can be
successful (meaning the predictions agree with observa-
tions). The kinetic function (3.2) simplifies to

K̃¼ 1þ3

2

ðH0−Y 0Þ2
1þH2

¼ 1þ6h2
ðY1−H1Þ2

1þðH0þH1h2Þ2
: ð3:14Þ

We take H0 > 0. (The case H0 ¼ 0 does not lead to
successful inflation, and negative values of H0 are related
by symmetry to positive values.) For successful inflation,
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the second term has to dominate, in which case the
canonical field is

χ ¼
Z

dh
ffiffiffiffi
K̃

p
≃

ffiffiffi
3

2

r ����H1 − Y1

H1

����arsinhðH0 þH1h2Þ þ χ0;

ð3:15Þ

which gives

h2 ¼ H−1
1 sinh

� ffiffiffi
2

3

r
Δðχ þ χ0Þ

�
−H−1

1 H0; ð3:16Þ

where Δ≡ j H1

H1−Y1
j and χ0 ≡

ffiffi
3
2

q
Δ−1arsinhH0, so that χ ¼ 0

corresponds to h ¼ 0. The potential (3.4) reads

U ¼ λ

4H2
1

�
sinh

� ffiffiffi
2

3

r
Δðχ þ χ0Þ

�
−H0

�2

: ð3:17Þ

In the limit sinh½
ffiffi
2
3

q
Δðχ þ χ0Þ�≳ 1 (which is required for

inflation satisfying the observational constraints (3.6)–(3.10)
and the constraint on the number of e-folds), the amplitude,
spectral index, tensor-to-scalar ratio and the number of
e-folds from (3.6)–(3.11) are (≃ indicates dropping correc-

tions of order 1= sinh½
ffiffi
2
3

q
Δðχ þ χ0Þ�2)

As ≃
λH2

0

128π2Δ2H2
1

x4

ð1þ xÞ2

ns ¼ 1 −
8Δ2

3x
−
r
4

r ≃
64Δ2

3x2

N ≃
3

4Δ2
½x − lnð1þ xÞ�; ð3:18Þ

where we have denoted 1þ x≡H0= sinh½
ffiffi
2
3

q
Δðχ þ χ0Þ�.

The expressions for the running and the running of the
running are also straightforward to write down; they are
within the observational ranges (3.8)–(3.9). In the limit
x ≫ 1 we can drop the logarithmic corrections to get

As ≃
λΔ2H2

0

72π2H2
1

N2

ns ≃ 1 −
2

N
−
r
4

r ≃
12

Δ2N2
≃

λH2
0

6π2AsH2
1

: ð3:19Þ

These equations are almost identical to those in the plateau

inflation case with the replacement Δ−2 → 1
6ξ þ

Y2
1

H2
1
þξ2

,

H2
1

H2
0

→ ξ2. The tensor-to-scalar ratio can be as large as the

observational upper limit and as small as desired. The only
difference is the last term for ns is − r

4
instead of − 3r

16
, but

the difference is 4 × 10−3 even for the maximum obser-
vationally allowed value of r.
In the pure Holst case, Y1 ¼ 0, we have Δ ¼ 1, and the

predictions are identical to the metric plateau case,
as mentioned above. This can be seen from (2.19): if
Y 0 ¼ F0 ¼ 0 and H ≫ F, the action is the same as in the
metric case.
In the pure Nieh–Yan case, ξ ¼ H0 ¼ H1 ¼ 0, there are

no inflationary solutions that agree with observations. (The
case with ξ ¼ H1 ¼ 0 but H0 ≠ 0 is equivalent to this case
with the change Y2

1=ð1þH2
0Þ → Y2

1.) In this case the
kinetic function (3.14) grows like h2 for large h, mapping
the potential 1

4
λh4 to the potential λ

6Y1
χ2 at large field

values. Adjusting Y1 interpolates between the quartic and
the quadratic potential. While the spectral index of the
quadratic potential (unlike the quartic potential) agrees with
the data, the tensor-to-scalar ratio r is too large in both cases
[173]. (A similar situation arises in the teleparallel formu-
lation [52].) The value of r can be decreased by including a
R2 term in the action [36].

E. ξ < 0

Including all three coupling terms (to the Ricci scalar, the
Holst term and the Nieh–Yan term) makes it possible to
have inflationary behavior beyond the plateau and the
above subcases. Let us first discuss the case ξ < 0.
Given that we can have successful inflation when ξ ¼ 0,

by continuity we expect this to be possible also for small
negative values of ξ. However, there are also successful
inflationary models for large negative values of ξ. If ξ < 0,
the nonminimal coupling F goes to zero at h ¼ 1=

ffiffiffiffiffijξjp
.

The kinetic function (3.2) correspondingly diverges, so we
have an α-attractor [183], found for Higgs inflation for
another action in [49]. (Plateau Higgs inflation can also be
viewed in terms of an α-attractor [74,184,185].) However,
the α-attractor behavior in the limit F → 0 does not give
successful inflation, as ns and/or r are wrong. Nevertheless,
there are other kinds of successful inflationary models
with ξ < 0.
In the case H0 ¼ 0 there are no viable inflationary

models. In the case Y ¼ 0 there are no viable models if
also H1 ¼ 0. If Y ¼ 0 and H1 ≠ 0, the only viable case is
the one discussed in Sec. III C. If we allow bothH0 ≠ 0 and
Y ≠ 0, the range of predictions widens.
One particular new case is inflection point inflation. At

an inflection point η ¼ 0, so the spectral index there is
ns ¼ 1–3r=8. The observational limit r < 0.067 in (3.10)
then gives ns > 0.97, which is at the upper end of the
observational range (3.7). So if there is an inflection point
close to the pivot scale, the amplitude of inflationary
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gravitational waves is close to the observational upper
limit. This is the reason an inflection point due to quantum
corrections [43,48,102,186–195] was highlighted after the
claimed detection of gravitational waves by the BICEP2
instrument (which turned out to be incorrect). We find
models with an inflection point exactly at the pivot scale
that agree with observations, apart from this tension.
Inflection point in Higgs inflation from classical contribu-
tions to the action that can generate torsion has been earlier
discussed in [49].
We scanned numerically over the five-dimensional

parameter space (h, ξ, H0, H1, Y1) with an adaptive
Monte Carlo method. We take the range ½−1010; 0� for ξ,
½−1010; 1010� forH0 andH1, and ½0; 1010� for h and Y1. (We
can fix one sign amongH0,H1 and Y1 without affecting the
physics.) We check that observables at the pivot scale agree
with the observational constraints (3.6)–(3.10), except that
ns can have the somewhat wider range [0.95, 0.98], and the
number of e-folds until the end of inflation agrees with
(3.12) to within �1. We restrict the Higgs quartic coupling
to the range ½10−5; 10−1�. Due to loop corrections, λ runs to
smaller values with increasing scale and can even cross
zero. Therefore, it can be arbitrarily small at the pivot scale,
but very small values require tuning, and the running can
spoil the flatness of the potential. (This happens in the
minimally coupled case [196–198].)
In Fig. 1 (left) we show the results on the ðns; rÞ plane.

The color indicates the smallest value of jξj (it is not single-
valued on this plane). The solid line is the analytical result
(3.13) for plateau inflation, and the dashed line is the result
(3.18) for ξ ¼ 0. (It lies in the middle of the blue region
corresponding to the limit ξ → 0 because in the numerical
scan we allow a variation �1 in N.) The star marks the
metric case.
The tensor-to-scalar ratio extends from the maximum

observationally allowed value down to around 10−6, and ns

covers the entire current observational range. The running
is in the small range −1 × 10−3 ≲ α≲ −5 × 10−4. The
running of the running also has a small range,
−6 × 10−5 ≲ β ≲ −2 × 10−5. The nonminimal couplings
have the ranges jξj<106, jH0j<108 and jY1j > 3 × 103;
H1 can take any value in the range we scan.
Smooth, well-defined edges in the figures correspond to

true observational constraints for the cosmological observ-
ables, while rough edges with individual points scattered
about correspond to regions of parameter space that the
scan has not fully resolved. In such regions the parameter
values for points that satisfy the observational constraints
are highly tuned, requiring the precise cancellation of two
or more large numbers.

F. ξ > 0

Finally, let us discuss the case when we include all three
coupling functions and ξ > 0. As in the case ξ < 0,
inflection point inflation is possible. Successful inflation
is now possible also when H0 ¼ 0. We perform the same
kind of numerical scan as in the case ξ < 0, except the
range of ξ is now ½0; 1010�. In Fig. 1 we show the results on
the ðns; rÞ plane.
The range of the predictions extends to much lower

values of r than in the case ξ < 0. All of the edges of the
allowed region are now well resolved. The nonminimal
coupling of the Ricci scalar takes values ξ < 1 × 109; H0,
H1 and Y1 can take any value in the range we scan. In
contrast to the case when one of the three couplings ξ, H
and Y is zero, the predictions for ns and r cover almost all
of the range expected to be tested by next generation CMB
experiments such the Simons Observatory [199], LiteBIRD
[200] and CMB-S4 [201]. However, there are regions
on the ðns; αÞ and ðns; βÞ planes with both positive and
negative running within reach of upcoming experiments
that the model cannot reproduce.

FIG. 1. Spectral index ns and tensor-to-scalar ratio r for ξ < 0 (left) and ξ > 0 (right). The color corresponds to the smallest absolute
value of the nonminimal coupling jξj to the Ricci scalar. The points satisfy all observational CMB constraints, except that the range of ns
is wider. The solid line traces the prediction of plateau inflation, and the dashed line is the case ξ ¼ 0. The star marks the metric case.
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IV. CONCLUSIONS

New perspective on inflation in LQG. We have studied
the effect of nonminimal coupling of a scalar field to the
Holst and Nieh–Yan terms on inflation, in addition to the
nonminimal coupling to the Ricci scalar. These terms play a
key role in LQG, and are expected to appear in theories
where torsion is nonzero. Since the Higgs exists, it will in
general couple to these terms, and the couplings have to be
taken into account. Motivated by Higgs inflation, we have
included terms up to dimension 4 and even in the field.
Nonminimal coupling to the Holst term alone gives

inflation with predictions close to those of the metric
formulation plateau Higgs inflation for the same amount
of e-folds, although reheating and hence the number of
e-folds may be different due to the different shape of the
effective potential [51,174–181]. This means that obser-
vational verification of the predictions of this simplest
metric formulation Higgs inflation [71] would not rule out
the Palatini formulation of Higgs inflation. That prediction
has been earlier reproduced in the Palatini case with tuned
nonmetricity terms [49], but the present case shows it can
be achieved with a simple Higgs-LQG action with no
tuning. Adding a nonminimal coupling ξ to the Ricci scalar
recovers the results of Higgs plateau inflation in the Palatini
formulation [40] unless the Holst coupling H0 is much
larger than jξj. If the Holst term coupling dominates but jξj
also contributes, the spectral index ns and its running can be
adjusted from the metric case. Notably, this form of
inflation is possible even when ξ is negative.
A nonminimal coupling to the Nieh–Yan term alone does

not give successful inflation. If we also have ξ ≠ 0, plateau
inflation can be modified so that it interpolates between the
results we get in the Palatini and the metric formulation
when only ξ is nonzero, and the tensor-to-scalar ratio r can
be even larger than in the metric case. This case is identical
to Higgs inflation in the teleparallel formulation [52].
If we include nonminimal coupling to all three terms

(Ricci scalar, Holst term and Nieh–Yan term), the range of
predictions for ns and r widens considerably to cover
almost all of the values expected to be covered by near-
future experiments. However, when we add running or
running of the running, not all values to be probed can be
reproduced. Also, many of the values correspond to tuned
couplings. For example, we can a produce an inflection
point, but this requires carefully adjusting the nonminimal
couplings, as has been done with quantum corrections
[43,48,102,186–195] and classical nonmetricity terms [49].
It is interesting that the Higgs field makes the Holst and

Nieh–Yan terms dynamical at the classical level, as
fermions have been found to do [139,140,144–148]. The
Higgs generates torsion, which makes the Holst term
nonzero. The Holst term can have a large impact on
inflation even if it is minimally coupled as long as either
the Ricci scalar or the Nieh–Yan term have nonminimal
coupling. However, the value for the minimal Holst term

coupling (i.e., the Barbero—Immirzi parameter) 1=γ ≈ 3.6
determined from black hole entropy in the case with no
chemical potential [133], is too small to be discernible from
the CMB.
The nonminimal couplings to the Higgs provide a new

point of view on LQG cosmology. Just as a large ξ brings
the gravity scale down, so that (in the Jordan frame)
gravitons violate perturbative unitarity below the Planck
scale [41,41,77,79–99], large values of the nonminimal
couplings of the Holst and Nieh–Yan terms can bring
aspects of LQG down to the scales probed during inflation.
They could also help address the issue of apparent violation
of unitarity, whose scale is known to be sensitive to the
form of the kinetic term [41,77,98,99], which is affected by
the Holst and Nieh–Yan terms.
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APPENDIX: SOLVING FOR TORSION IN THE
TETRAD FORMALISM

As the tetrad formalism is more familiar to the LQG
community, we cover briefly how the results (2.10)–(2.12)
for torsion can be elegantly obtained using tetrads. A set of
tetrads feAαg is a linear map from tangent space to
spacetime, providing a basis for the tangent space at each
point in spacetime; capital Latin indices are associated to
the tangent space. We take the basis to be orthonormal with
respect to the metric gαβ,

gαβ ¼ ηABeAαeBβ; ðA1Þ

where ηAB ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric. We
also have gαβeAαeBβ ¼ ηAB. The inverse tetrad eAα is
defined so that eAαeAβ ¼ δαβ and eAαeBα ¼ δBA. We
assume from the beginning that the full covariant derivative
of the tetrad, acting on spacetime and tangent space indices,
vanishes i.e., that the tetrad postulate holds.
In terms of tetrads and the tangent space connection

ωα
AB (called the Lorentz connection), the action (2.8) reads

S¼
Z

d4xe

�
1

2
FðhÞeAαeBβFαβ

AB

þ1

4
HðhÞϵABCDeCαeDβFαβ

AB−
1

4
YðhÞϵαβγδηABTA

αβTB
γδ

−
1

2
KðhÞηABeAαeBβ∂αh∂βh−VðhÞ

�
; ðA2Þ

where e¼detðeAαÞ, Fαβ
AB¼2∂ ½αωβ�ABþ2ω½αACωβ�DBηCD

is the curvature of the Lorentz connection, related to
the Riemann tensor via eμAeνBFαβ

AB ¼ Rμν
αβ. Torsion is
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defined as TA
αβ ¼ D½αeAβ�, where the covariant derivative

D acts only on tangent space indices.
The Einstein–Hilbert term plus the Holst term, together

known as the Holst action, can be written compactly as

SHolst ¼
Z

d4xe
1

2
eAαeBβPAB

CDFαβ
CD; ðA3Þ

where the projection operator is defined as

PAB
CD ¼ Fδ½ACδB�D þ 1

2
HϵABCD: ðA4Þ

The inverse of the projection operator is

ðP−1ÞABCD ¼ 1

F2 þH2

	
Fδ½ACδB�D −

1

2
HϵABCD



: ðA5Þ

Varying the action (A2) with respect to the Lorentz
connection and dropping a boundary term gives the
equation of motion

1

4
DαðPAB

CDϵABEFϵ
αβγδeEγeFδÞþ

1

2
ϵCDEFeE½αejFjβ�∂αY¼ 0:

ðA6Þ

The solution to (A6) is obtained straightforwardly, using
the definition of torsion and operating with (A5):

TA
αβ ¼

1

F2 þH2
feA½α½ðF∂β�F þHð∂β�H − ∂β�YÞ�

þ eAγϵγαβδ½H∂δF − Fð∂δH − ∂δYÞ�g: ðA7Þ

This agrees with the solution for torsion in (2.10)–(2.12).
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