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In this paper we introduce the fractional dark energy model, in which the accelerated expansion of the
Universe is driven by a nonrelativistic gas (composed by either fermions or bosons) with a noncanonical
kinetic term. The kinetic energy is inversely proportional to the cube of the absolute value of the momentum
for a fluid with an equation of state parameter equal to minus one, and whose corresponding energy density
mimics the one of the cosmological constant. In the general case, the dark energy equation of state
parameter (times three) is precisely the exponent of the momentum in the kinetic term. We show that this
inverse momentum operator appears in fractional quantum mechanics and it is the inverse of the Riesz
fractional derivative. The observed vacuum energy can be obtained through the integral of the Fermi-Dirac
(or Bose-Einstein) distribution and the lowest allowed energy of the particles. Finally, a possible thermal
production and fate of fractional dark energy is investigated.
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I. INTRODUCTION

A satisfactory theoretical explanation for the current
accelerated expansion of the Universe is an open question
that indicates the necessity of new physics. Discovered in
1998 using type-Ia supernovae [1,2], the acceleration of the
Universe is described by a fluid with negative pressure (dark
energy, hereafter DE), whose simplest candidate is a cos-
mological constant Λ. However, the observed value of the
vacuum energy (10−47 GeV4) is extremely smaller than any
estimate of the zero-point energy of all modes of a field up to
a cutoff scale [3]. The lack of a good explanation for the
origin ofΛ and its smallness leads to the search of alternative
candidates, such as scalar or vector fields [4–23], metastable
DE [24–32], holographic DE [33–49], interacting DE
[50–75], and usage of extra dimensions [76].
DE has the unusual property that its pressure is negative,

and thus given the unsolved theoretical issues related to the
origin of DE, one may wonder if it can be described by a
matter with new properties. In this paper, we extend the
thermodynamic approach presented in [77] and introduce
the fractional dark energy (FDE) model (the name “frac-
tional”will be clear in Sec. IV), in which DE is formed by a
gas of nonrelativistic particles with a noncanonical kinetic
term: an inverse momentum term. The DE equation of state
parameter w is simply the power of the inverse momentum
term, and the resulting energy density ends up mimicking
the one of the cosmological constant. The observed vacuum
energy can be obtained from the integral of the correspond-
ing Fermi-Dirac (or Bose-Einstein) distribution with an

appropriate lower limit of integration, which is related to
the minimum allowed energy of a FDE particle. The energy
spectrum with an inverse momentum term is shown to
come from an inverse momentum operator in fractional
quantum mechanics (FQM). FQM is a generalization of
QM that appears when Lévy-like quantum paths are used in
the Feynman’s path integral approach, rather than the usual
Brownian-like quantum paths [78]. The corresponding
Schrödinger equation and several standard QM problems
were investigated in the light of FQM in Refs. [79–85].
Additionally, FQM and fractional calculus have been
applied to quantum cosmology [86,87] and Newtonian
gravity [88,89].
Starting from a thermodynamic description of fluids with

negative pressure [77,90] (Sec. II), we show in Sec. III that
a nonrelativistic particle with an inverse momentum kinetic
term, whose power is 3 times the DE equation of state
parameter, can give rise to an energy density that mimics
the one of the cosmological constant. The corresponding
Fermi-Dirac (or Bose-Einstein) integral can result in a very
small value, thus helping explain the observed vacuum
energy. The inverse momentum term may arise from an
inverse operator in FQM, as explained in Sec. IV. A
possible thermal production and fate of FDE is investigated
in Sec. V. Section VI is reserved for conclusions.
We will use natural units ℏ ¼ c ¼ 1 throughout the text,

unless explicitly stated.

II. THERMODYNAMICS OF A FLUID WITH
NEGATIVE PRESSURE

In this section we review the thermodynamic description
of DE, according to [77,90]. The second law of*ricardo.landim@tum.de
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thermodynamics with a null chemical potential can be
written as [91]

nTdσ ¼ dρ −
ρþ P
n

dn; ð1Þ

where n is the number density, T is the temperature, σ is the
entropy per number of particles, ρ is the energy density, and
P is the pressure. The expression above can be converted in
the following equation after using the continuity equation,
the conservation of the particle number, and the fact that dσ
is an exact differential [90]:

_T
T
¼ ∂P

∂ρ
_n
n
: ð2Þ

Using a constant equation of state parameter w ≠ 0 one can
obtain [77]

n ∝ T
1
w; ð3Þ

and since n ∝ V−1, where V is the volume, we have

T
1
wV ¼ const: ð4Þ

For w ¼ −1 the temperature scales linearly with the
volume. Using the continuity equation the energy density
for DE is written as

ρ ∝ V−ð1þwÞ; ð5Þ
where V ∝ a3 and a is the scale factor. If Eq. (4) is used in
Eq. (5) the following relation is obtained:

ρ ∝ T
1þw
w : ð6Þ

The equation above, in turn, can be obtained from

ρ ¼ C0

Z
∞

0

ε
1
w

eβε þ 1
dε; ð7Þ

where β ¼ ðkBTÞ−1, kB is the Boltzmann constant (set to
one hereafter), and C0 is a constant. Although it was not
addressed in [77], here we consider only fermions because
for bosons the integral can be performed through analytic
continuation; however, the result is negative [92], yielding
therefore a negative energy density.
Finally, the entropy for a DE candidate in this approach

is [77]

S ∝ ð1þ wÞT1=wV; ð8Þ

implying that a phantom DE candidate (w < −1) is not
thermodynamically allowed.1

III. DARK ENERGYAS A NONRELATIVISTIC GAS
WITH A NONCANONICAL KINETIC TERM

As mentioned in the last section, bosons provide a
negative energy density in the equivalent Eq. (7) and this
potential issue was not covered in [77]. Furthermore,
neither relativistic nor nonrelativistic particles obeying a
canonical energy-momentum relation would yield a density
of states DðεÞ ∝ ε1=w−1; thus one may wonder whether
Eq. (7) can be obtained from arguments other than the ones
presented in [77]. In fact, since the density of statesDðεÞ ∝
ε1=w−1 is noncanonical and it is divergent for w < 0 and
ε → 0, it is a fair assumption that the energy-momentum
relation that describes DE is noncanonical as well, with a
possible divergence.
In order to qualitatively investigate the above-mentioned

arguments, we start the discussion considering a gas of
fermions, but as it will be clear below, the same procedure
and results apply to bosons as well.
The integral in Eq. (7) can be evaluated in the following

way. The Fermi-Dirac integral [94]

F aðzÞ ¼
1

Γðaþ 1Þ
Z

∞

0

ta

et−z
dz; a > −1; z ∈ R; ð9Þ

where Γðaþ 1Þ is the Gamma function, can be evaluated
for negative powers a ≤ −1 using the relation [95]

d
dz

F aðzÞ ¼ F a−1ðzÞ: ð10Þ

Therefore, for a ¼ −1 we have [92,95]

F−1ðzÞ ¼
1

1þ e−z
; ð11Þ

which gives 1=2 if z ¼ 0, for example.
As the energy density is ρðεÞ ¼ εDðεÞfðεÞ, where fðεÞ

is the Fermi-Dirac distribution, the density of statesDðεÞ ∝
ε
1
w−1 is obtained if the energy spectrum of a Fermi gas has
an additional noncanonical kinetic term

ε2 ¼ p2 þm2 þ C2

p−6w ; ð12Þ

where p≡ jpj is the three-momentum andC is a “coupling”
constant with dimensions of ½energy�1−3w. Equation (12) can
be approximately expanded for a nonrelativistic gas
(p2 ≪ m2) as

ε ≈mþ p2

2m
þ C
p−3w ; ð13Þ

where a canonical nonrelativistic matter is recovered
when C → 0. This exotic matter with a modified energy-
momentum relation can describe DE only if Cp3w ≫
p2=ð2mÞ (or rather Cp3w ≫ m), yielding

1Although other models may allow phantom cosmology from
a thermodynamic point of view [93].
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ε ≈
C

p−3w : ð14Þ

The momentum scales with a−1, and thus the energy for a
fluid with w ¼ −1 scales with a3, as shown in [77].
Different from canonical nonrelativistic or relativistic

particles, not all values of energy are allowed for the FDE
particle. Before proceeding to the explicit calculation of the
DE energy density and number density, we have to
investigate what are those values of energy that enable
DE to be described by Eq. (14). Whatever the mechanism
that generates FDE in the early Universe, it is expected that
FDE “freezes out” when the particles are already non-
relativistic [according to Eq. (13)]. More than that, the
momentum not only should be much smaller than the rest
mass but also it should be p ≪ ðC=mÞ− 1

3w, in order for the
approximation in Eq. (14) to be valid. Therefore, the
maximum momentum pmax ≲ ðC=mÞ− 1

3w is equivalent to
a minimum energy εmin for FDE.
On the other hand, in order to avoid a divergence in the

energy when momentum approaches zero, one might
expect that there is a minimum momentum, and therefore
a maximum energy. This maximum energy will be
described later.
Now we can return to the calculation of the density of

states, which is done similarly to the case of an ideal Fermi
gas. The total number of particles is found integrating the
particle distribution for the absolute magnitude of the
momentum, written in spherical coordinates [96]

Np ¼ gV
2π2

Z
pmax

pmin

p2

eβε þ 1
dp; ð15Þ

where V is the volume of the gas and g ¼ 2sþ 1 is the spin
multiplicity. The limits of integration are therefore not zero
and infinity as it was in Eq. (7). Using Eq. (14) we can write
the integral above in terms of the energy ε,

Nε ¼ −
C−1

wgV
6π2w

Z
εmax

εmin

ε
1
w−1

eβε þ 1
dε: ð16Þ

Therefore, the number density is

n ¼ −
C−1

wg
6π2w

Z
εmax

εmin

ε
1
w−1

eβε þ 1
dε ð17Þ

¼ −
C−1

wg
6π2w

β−
1
wF umax

umin;
1
w−1

; ð18Þ

and F umax

umin;
1
w−1

is the result of the Fermi-Dirac integral with

the appropriate limits of integration

F umax
umin;a ≡

Z
umax

umin

u
1
a

eu þ 1
du; ð19Þ

where u≡ βε. The negative sign in the number density is
not a problem because for DE w < −1=3.
The energy density is then given by

ρ ¼ −
C−1

wg
6π2w

Z
εmax

εmin

ε
1
w

eβε þ 1
dε ð20Þ

¼ −
C−1

wg
6π2w

β−
1þw
w F umax

umin;
1
w
; ð21Þ

in agreement with Eq. (6). The FDE energy density is
constant for w ¼ −1, and it can be written in terms of the
number density as

ρ ¼ β−1
F umax

umin;
1
w

F umax
umin ;

1
w

n: ð22Þ

The Landau potential Ω for FDE is

Ω
V
¼ C−1

wgβ−1

6π2w

Z
εmax

εmin

ε
1
w−1 lnðe−βε þ 1Þdε

¼ wC−1
wgβ−1

6π2w

�
lnðe−βε þ 1Þε1

w

���εmax

εmin

þ
Z

εmax

εmin

βε
1
w

eβε þ 1
dε

�

¼ wC−1
wg

6π2w

Z
εmax

εmin

βε
1
w

eβε þ 1
dε

¼ −wρ; ð23Þ

where in the second line we integrated by parts and the first

term vanishes because εmax ≫ εmin, thus ε
1
w
max ≈ 0, and

βεmin ≳m=T ≫ 1, thus lnðe−βεmin þ 1Þ ≈ 0. The lower limit
of integration cannot be zero because it would cause a
divergence in the integral, therefore showing that the
original treatment presented in [77] would suffer from this
issue. Since Ω ¼ −PV, where P is the fluid pressure, we
get the DE equation of state P ¼ wρ, as it should be.
From Eq. (21) it is possible to obtain the DE energy

density for spin-1=2 particles and w ¼ −1, for instance.
The valueF umax

umin;−1 can be found numerically, and it depends
on both minimum and maximum energy. Given that umin in
Eq. (22) is m=T ≫ 1, we can expect that the minimum
value of u is 10 or 100, for example. On the other hand, the
maximum energy can in principle be arbitrary. It is possible
then to obtain the result of the integral considering different
limits of integration. For umin ¼ 10 and any arbitrary

umax ≳ 10umin we obtain F≳102
10;−1 ≈ 4 × 10−6, while if

umin ¼ 102, F≳103
102;−1 ≈ 3 × 10−46. A larger umin gives a

much smaller result, F≳104
103;−1 ≈ 5 × 10−438. These results

show that in order to obtain the DE energy density
10−47 GeV4, the constant C can be of order Oð1Þ GeV4,
if the minimum energy per temperature is 100. The
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observed value of the cosmological constant is then
translated to the minimum allowed value of βε.
Although we have done the procedure described here for

fermions, the idea can be applied to bosons as well because
the minimum (and maximum) energy per temperature is
larger than one; thus eβε ≫ 1 and the distribution describes
a classical gas. Since the quantum statistics is suppressed,
the results for bosons and fermions are virtually the same.
In order to investigate the maximum momentum that

allows Eq. (14) to be true, we use C=p3

m ¼ 10, thus
pmax ¼ ½C=ð10mÞ�1=3, and we investigate two cases: C ¼
10−40 GeV4 (for umin ¼ 10) and C ¼ 1 GeV4 (for
umin ¼ 100). The results are presented in Fig. 1, where
we also show the limit where the particles are nonrelativ-

istic (pmax ≪ m). A slightly larger ratio C=p3

m ¼ 30 gives
very similar results.

IV. FRACTIONAL QUANTUM MECHANICS

One may wonder if there is a quantum mechanical
operator that could give the energy relation (14) with the
noncanonical kinetic term. The term jpj3w should arise
from an inverse Laplace operator Δ3w=2 (since w is
negative), where Δ≡∇2 is the three-dimensional (3D)
Laplacian. A fractional Laplacian is defined in fractional
calculus (see, for example, [97,98]) and in the so-called
FQM [78–80,99]. In this section we will use explicitly the
reduced Planck constant ℏ and the absolute value of the 3D
momentum jpj.
A fractional derivative can be defined as the Riemann-

Liouville derivative aD
α
b of order α [98],

aD
α
bfðxÞ¼

1

Γðnþ1−αÞ
dnþ1

dxnþ1

Z
x

a
ðx−yÞn−αfðyÞdy; ð24Þ

for n ≤ α < nþ 1, where Γðnþ 1 − αÞ is the Gamma
function. The Riemann-Liouville derivative operator is a

left inverse of the Riemann-Liouville fractional integration
operator of the same order α, that is, aD

α
bðaD−α

b fðxÞÞ ¼
fðxÞ. The inverse of the fractional derivative can be defined
as [98]

aD
−α
b fðxÞ ¼ 1

ΓðαÞ
Z

x

a
ðx − yÞα−1fðyÞdy; α > 0: ð25Þ

The fractional derivatives and integrals have the impor-
tant property aD

�α
b ðaD�β

b fðxÞÞ ¼ aD
α�β
b fðxÞ.

FQM was initially developed using Lévy trajectories in
the path integral [78] and resulted in the fractional
Schrödinger equation in 3D (see [99] for a recent review)
[78,80,100]

iℏ
∂ψðr; tÞ

∂t ¼ Aαð−ℏ2ΔÞα=2ψðr; tÞ þ VðrÞψðr; tÞ; ð26Þ

where Aα is a scale coefficient with units of
½Aα� ¼ erg1−α cmα s−α, the momentum operator has the
usual form p ¼ −iℏ∇, and the Riesz fractional derivative
[101] is given by [78,79]

ð−ℏ2ΔÞα=2ψðr; tÞ ¼ 1

ð2πℏÞ3
Z

d3pei
p·r
ℏ jpjαφðp; tÞ; ð27Þ

with the Lévy index α lying between 1 < α ≤ 2.
Similar to how the Riesz fractional derivative in FQM is

defined [99], we may define the inverse Riesz fractional
derivative (or Riesz fractional integral) in 1D, as

�
−iℏ

∂
∂x

�
−α ≡ 1

2
ð−∞D−α

x þx D−α
∞ Þ; ð28Þ

which gives the result in 3D

FIG. 1. Maximum momentum (blue line) as a function of the particle mass m, for umin ¼ 10 (left) and umin ¼ 100 (right). The light
blue region shows when Eq. (14) is valid, and the region to the right of the red line presents the regime when the particles are
nonrelativistic.
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ð−ℏ2ΔÞ−α=2ψðr; tÞ ¼ 1

ð2πℏÞ3
Z

d3peip·r=ℏjpj−αφðp; tÞ:

ð29Þ
It is clear that the Riesz fractional integral is the inverse
operator of the Riesz fractional derivative, as it should be,
and eip·r=ℏ is the eigenfunction of the Riesz fractional
integral operator, with eigenvalue jpj−α.
Therefore, Eq. (14) determines the Hamiltonian operator

for FDE, where in our case α ¼ 3w and the corresponding
Schrödinger equation is given by

iℏ
∂ψðr; tÞ

∂t ¼ Cð−ℏ2ΔÞ3w=2ψðr; tÞ; ð30Þ

whereC has units of ½C� ¼ erg1−3w cm3w s−3w (as presented
before in natural units) and the inverse operator ð−ℏ2ΔÞ3w=2
is obtained applying twice the operator defined in Eq. (29),
because the FQM is defined for 1 < α ≤ 2. The result,
ð−ℏ2ΔÞ3w=2 ¼ ð−ℏ2ΔÞ3w=4ð−ℏ2ΔÞ3w=4, is trivial because
the eigenvalue of the operator Δ−ðαþβÞ=2 is jpj−ðαþβÞ.
Similar to the Riesz fractional derivative, the Riesz frac-
tional integral operator is Hermitian [80] and the proba-
bility continuity equation does not have a source term
[102], avoiding particle teleportation, since here we have a
free particle with defined kinetic energy (excluding the
region jpj → 0, as discussed before and as will be next).

V. ORIGIN AND FATE OF FDE

While the understanding of the origin and fate of FDE
from first principles is still open, we can investigate these
phases of the particle’s life in a first approximation,
assuming w ¼ −1 for simplicity.
A canonical nonrelativistic particle has the classical

energy ε ¼ mþ p2=ð2mÞ when m ≫ C=p3, while DE is
dominant when m ≪ C=p3; thus we may expect that the
abundance in both regimes (nonrelativistic versus DE) are
similar when m ≃ C=p3. We can consider that in the usual
nonrelativistic regime, FDE is described by a nonrelativ-
istic fluid that froze out similarly to dark matter. It is then
expected that the abundance of FDE Y ≡ n=s, where s in
this section is the entropy density, is roughly the same
when ε ∼m ∼ C=p3.
As itwas seen inSec. III, the allowedminimumenergy that

gives the correct DE energy density today with C of order of
unity is εmin ¼ 100T ¼ ð10 − 30Þm. Since canonical non-
relativistic particles at the freeze-out have x≡m=T ≳ 3, the
minimum energy per temperature εmin=T is roughly 10–30
times larger than x at the freeze-out. Therefore, the non-
relativistic regime for FDE is around the corresponding value
of m=T ∼ 3–10 at the freeze-out.
In order to have a rough estimate of Y, we should

calculate it in the two regimes and see if they match. The
abundance of a canonical nonrelativistic particle at equi-
librium, dark matter for instance, is [103]

YEQðxÞ ¼
45

2π4

�
π

8

�
1=2 g

g⋆ x
3=2e−x; ð31Þ

where g⋆ is the effective number of relativistic species.
Using Eq. (18), the abundance of a particle with the
noncanonical kinetic term C=p3 is

YðxÞ ¼ 45

12π4
g
g�

�
C
m4

�
x4F 100

3;−2; ð32Þ

where the limits in the integral F 100
3;−2 were chosen to

describe the nonrelativistic regime 3≲ ε=T ¼ m=T ≲ 100.
Equating Eqs. (31) and (32) with C ¼ 1 GeV4 and

F 100
3;−2 ¼ 3 × 10−3, we obtain an estimate of the FDE mass

and m=T at the “freeze-out,” shown in Fig. 2. When FDE
becomes out-of-equilibrium (3≲ xf ≲ 10) it does not
freeze out in the usual sense (contrary to what happens
to dark matter), but its behavior changes from nonrelativ-
istic to the one dominated by the noncanonical kinetic term
where it “freezes” out at ε=T ¼ 100. The range of masses
that gives 3≲ xf ≲ 10 is around 1 GeV≲m≲ 6 GeV.
Since the temperature of FDE increases with the volume

andp → 0 is in principle problematic, onemayexpect that its
behavior will not last forever, but will be converted somehow
back to the nonrelativistic case, for example.We can consider
that FDE is long-lived but will decay into another non-
relativistic particle ϕ in the future. The conservation of the
energy-momentum tensor implies that the continuity equa-
tions are

5 10 15 20
1

2

5

10

20

50

100

m T

m
[G
eV
]

FIG. 2. Parameter space in which the abundance of FDE in the
nonrelativistic regime (ε ∼m) is equal to the one in the inverse
momentum phase (ε ∼ C=p3). The particle is nonrelativistic for
m≳ 1 GeV.
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_ρde ¼ −Qρde; ð33Þ

_ρϕ þ 3Hρϕ ¼ Qρde; ð34Þ

whereH is theHubble rate andQ is the decay rate. In order to
parametrize this decay rate, we can use a phenomenological
sigmoid function

Q ¼ q

1þ e−A
ðV−VcÞ

Vc

; ð35Þ

where q is a constant with dimension of ½time�−1, A > 1 is a
dimensionless constant,V is the volume of theUniverse, and
Vc is a critical volume.WhenV ≪ Vc, the decay rate is zero;
and when V ≫ Vc, the sigmoid function is 1. We can get an
estimate on A and Vc, by requiring that the decay rate is
within the errors in the measurement of the DE equation of
state parameter. Ifq ¼ 3H0 and thevolumeof theUniverse is
scaled to be 1 today, we can obtain the possible values of A
and Vc that give Q=ð3H0Þ ∼ 10−2, which is the error in the
measurement of w from Planck [104]. The result is shown
in Fig. 3.
The phenomenological decay (35) assumes a depend-

ence on the volume of the Universe, which means that after
the critical volume the energy ε ¼ C=p3 reaches a maxi-
mum and stops increasing, thus decaying to another non-
relativistic particle. Since V ∼ T for w ¼ −1, Eq. (35) can
be written in terms of the DE temperature, rather than the

volume of the Universe. Then, when the FDE temperature
reaches a critical value Tc, the decay is turned on. A more
detailed explanation of this phenomenon is expected to
come from first principles, and it is a subject of study in
future work.

VI. CONCLUSIONS

In this work we have extended the thermodynamic
approach of [77] and introduced the FDE model. The
accelerated expansion of the Universe is caused by a
nonrelativistic gas with energy inversely proportional to
the momentum to some power. The DE equation of state
parameter is precisely the exponent of the noncanonical
kinetic term. When w ¼ −1 the corresponding energy
density of the gas mimics the one of the cosmological
constant. The integration of the quantum distribution
functions can result in a small enough value, such that
the “coupling” constant C of the modified Einstein energy-
momentum relation can be of orderOð1Þ GeV4, giving rise
to the observed value of the vacuum energy.
This noncanonical kinetic term is the eigenvalue of the

inverse momentum operator, in the FQM framework. In
this case, the operator is the inverse of the Riesz derivative,
which in turn appears in the generalized Schrödinger
equation.
Because of the possible divergence when the momentum

goes to zero and since the inverse momentum should be
much larger than the particle rest mass, there are corre-
sponding maximum and minimum allowed energies for the
FDE gas, respectively. If FDE particles are thermally
generated in a similar fashion of the dark matter freeze-
out, then the parameter space can be constrained. Of course,
if FDE is generated through a different phenomenon in the
early Universe, then the estimates made in Sec. V do
not hold.
The same happens to the particle’s maximum allowed

energy. We investigated a phenomenological decay of the
FDE particles into a new constituent of the dark sector, and
this decay will start after a critical volume (or critical DE
temperature). However, DE’s fate can be different if other
mechanisms are evoked to avoid an infinite energy. Finally,
it remains open as a quantum field theory formulation of
FDE, which, along with the aforementioned points and
potential signatures of FDE, will be further explored in a
future work.
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FIG. 3. Parameters A and Vc from the phenomenological decay
rate (35) that satisfies the requirement of being within the errors
of the DE equation of state parameter, such that FDE has not
decayed yet (V ¼ 1), Q=ð3H0Þ ∼ 10−2.
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