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Luminosity distance estimates from electromagnetic and gravitational wave sources are generally
different in models of dynamical dark energy and gravity beyond the standard cosmological scenario. We
show that this leaves a unique imprint on the angular power-spectrum of fluctuations of the luminosity
distance of gravitational-wave observations which tracks inhomogeneities in the dark energy field.
Exploiting the synergy in supernovae and gravitational wave distance measurements, we build a joint
estimator that directly probes dark energy fluctuations, providing a conclusive evidence for their existence
in case of detection. Moreover, such measurement would also allow to probe the running of the Planck
mass. We discuss experimental requirements to detect these signals.
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I. INTRODUCTION

Over the last decades, a variety of cosmological data
have confirmed ΛCDM as the standard model of cosmol-
ogy [1,2]. Despite its successes, the physical nature of its
main components still eludes us. In particular, understand-
ing whether cosmic acceleration is sourced by a cosmo-
logical constant, Λ, or rather by dynamical dark energy
(DE) or modifications of the laws of gravity (MG) is one of
the main science drivers of upcoming cosmological mis-
sions. In the presence of DE/MG, the dynamical degrees of
freedom of the theory change, generally with the appear-
ance of a new scalar field to which we broadly refer as the
“DE field.” The latter leaves imprints not only on the
dynamics of the Universe, but also on the clustering and
growth of large-scale cosmological structures. Next gen-
eration galaxy surveys [3–6] aim at constraining these
effects and, possibly, indirectly detecting DE/MG.
The detection of gravitational waves (GW) has opened a

new observational window onto our Universe, promising to
offer complementary probes to shed light on cosmic
expansion. GW events at cosmological distances can be
used as standard sirens [7–9] for measuring the expansion
rate of the universe. This recent approach is complementary
to measuring the luminosity distance of standard candles,
like type-Ia supernovae (SN). Multi-messenger observations

can also be used to test theories of modified gravity, as
recently reviewed in [10].
On the homogeneous and isotropic background, lumi-

nosity distances depend only on redshift, leading to the
standard distance-redshift relation. Inhomogeneities in the
Universe induce a dependence of the distances on direction.
Fluctuations in the EM luminosity distance constitute an
important probe for cosmology and have been well studied
[11–15], while the case of GWs has been addressed in
general relativity (GR) in [16–22]. In presence of DE/MG,
the GW luminosity distance generally differs from the one
traced by electromagnetic (EM) signals, both at the
unperturbed, background level [23,24] and in its large-
scale fluctuations [25,26]. Importantly, fluctuations in the
EM luminosity distance are affected by the DE field only
indirectly while, as first shown in [25], linearized fluctua-
tions of the GW luminosity distance contain contributions
directly proportional to the clustering of the DE field.
In this work we combine SN and GW luminosity

distance fluctuations into a novel estimator to directly
detect the signal of DE clustering. This signal cannot be
mimicked by other effects and would provide convincing
evidence for the existence of the DE field. If DE does not
directly couple to known particles through nongravitational
interactions, ours is a promising method to pursue its direct
detection. The approach we propose allows us to probe the
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DE field at cosmological scales, far from sources that can
hide its presence by means of screening mechanisms (see
e.g., [27–29]).

II. THE GW LUMINOSITY DISTANCE POWER-
SPECTRUM IN DE/MG

The luminosity distance, as inferred by an EM or GW
signal propagating through a universe with structures,
depends on the observed redshift, z, and on the direction
of arrival in the sky, θ̂. We decompose the observed
luminosity distance of a source as a sum of its background
and fluctuation components, i.e., dLðθ̂; zÞ ¼ d̄LðzÞþ
ΔdLðθ̂; zÞ. We work in the context of scalar-tensor
theories of gravity, which encompass most of the candi-
date DE/MG models. These theories are characterized by
a nonminimal coupling of the DE field to space-time
curvature. This causes a running of the Planck mass, MP,
which generally depends on the background configura-
tion of the DE field φ, and on its first derivatives,
through X ¼ −∇μφ∇μφ=2. More specifically, we consider
DHOST theories [30–32] (see e.g., [33]), focusing on
scenarios that ensure luminal speed for GWs and avoid
instabilities associated with graviton decay into DE ([34]).
We require that high-frequency scalar fluctuations propa-
gate at the same speed of tensor modes, as discussed in
[25]. The dependence of MP on the DE field gives new
contributions to dGWL with respect to the GR case. At the
background level one finds d̄GWL ¼ ½MPðzÞ=MPð0Þ�d̄L,
where d̄L ¼ ð1þ zÞ R z

0 dz̃½ð1þ z̃ÞH�−1 is the luminosity
distance associated to electromagnetic sources, with H ¼
a0=a the Hubble parameter. The multiplicative factor
MPðzÞ=MPð0Þ accounts for the extra friction acting on
the GWs during their propagation induced by the running
of MP.
At the linear level in fluctuations, generalizing to

DHOST the procedure of [25] as shown in Appendix A,
we find:

ΔdGWL
d̄GWL

¼ −κ − ðϕþ ψÞ þ 1

χ
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0
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�
1
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−
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�
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�
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1
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�Z
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dχ̃ðϕ0 þ ψ 0Þ

þMP;φ

MP
δφþMP;X

MP
δX; ð1Þ

where a prime indicates differentiation with respect to
conformal time, κ denotes the weak lensing convergence, χ
the comoving distance to the source, ϕ the Newtonian
potential, ψ the intrinsic spatial curvature potential, and vk
the component along the line of sight of the peculiar

velocity of the source: all in Poisson gauge and following
the conventions of [25]. MP;φ and MP;X stand for the
derivative of MPðφ; XÞ with respect to its arguments.
The physical effects contributing to ΔdGWL are: lensing

convergence, volume dilation, and time delay in the first
line of Eq. (1), that are only indirectly influenced by DE/
MG; Sachs-Wolfe (SW), Doppler shifts, and integrated
Sachs-Wolfe (ISW) effects in the second and third lines,
which show an additional explicit decay that depends on
the evolution of MP; damping due to DE field inhomoge-
neities in the fourth line of Eq. (1). These last effects are the
main interest of this work as they are unique to the GW
luminosity distance fluctuations.
We use Eq. (1) to build the angular power-spectrum of

GW luminosity distance fluctuations averaged over a given
redshift distribution of the sources

CGW
l ¼ 4π

Z
d ln k

�
ΔdGWL
d̄GWL

�
W

kl

�
ΔdGWL
d̄GWL

�
W

kl

; ð2Þ

where we work in Fourier space for the perturbations, with
k being the momentum, and

�
ΔdGWL
d̄GWL

�
W

kl

¼
Z

∞

0

dz jlðkχÞWðzÞ
�
ΔdGWL
d̄GWL

�
; ð3Þ

and jlðxÞ is the spherical Bessel function and WðzÞ is the
source window function, normalized to 1. The effect of
each term in Eq. (1) on the angular power-spectrum can be
studied independently. We report their explicit forms in
Appendix C. We use the notation d̄LðzÞ for the background
luminosity distance, to indicate its angular average,
weighted by the given redshift distribution.
We have implemented the calculation of CGW

l in
EFTCAMB [35], allowing us to study this quantity for a
broad host of DE/MG models. In order to explore in detail
the impact of MG on CGW

l we focus for a moment on two
representative models. First, a designer fðRÞ model on a
ΛCDM background [36], with the only model parameter
set to B0 ¼ 10−4 which is compatible with current con-
straints [37]. Second, an agnostic parametrization of MP,
such that the ratio ðM0

P=MPÞ is a linear function of the
scale-factor, aðzÞ, M0

P=MP ≡ ðM0
P=MPÞjoa, where

ðM0
P=MPÞjo is the value of the ratio today, which we set

to 0.05. This minimal parametrization, implemented on a
ΛCDM background, is representative of the Generalized
Brans-Dicke (GBD) [38–40] family. In both these models,
the Planck massMP depends on the scalar field value alone.
We defer to future works the investigation of cases where
MP depends also on X.
Figure 1 shows the angular power-spectrum, CGW

l , for
the two scenarios described above. To highlight redshift
dependencies, we choose a Gaussian distribution for the
GW sources centred in various redshifts zi, with width
Δz ¼ 0.01, i.e., WðzÞ ¼ N exp½−ðz − ziÞ2=ð2Δz2Þ� where
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N is the normalization constant. The total signal signifi-
cantly changes shape with increasing redshift. At low
redshifts and large scales, the signal is dominated by the
Doppler effect, due to the bulk-flow of the environment
in which the GW sources are embedded. The Doppler
contribution then decays for growing l, and the angular
power-spectrum at small scales is dominated by lensing
convergence; the Doppler term also decays in redshift,
while lensing grows and eventually dominates the high-
redshift part of the signal. For both models considered, the
relative behavior between Doppler and lensing conver-
gence is qualitatively unaltered with respect to GR [41].
Figure 1 also shows the direct contribution of δφ to the total
signal, i.e., the last line in Eq. (1). This is of the same order
of magnitude in both scenarios, and results largely sub-
dominant compared to the total signal. For the fðRÞ model
the scalar field contribution has a noticeable scale-depen-
dent feature that evolves in time as the Compton wave-
length of the model. At higher redshift, the Compton scale
of the scalar field is smaller and, correspondingly, the
feature in the power-spectrum moves to smaller scales. In
the GBD case, on the other hand, any feature in the shape of
the power-spectrum is less pronounced, as it only leads to
the decay of DE fluctuations below the horizon.

III. THE JOINT SN/GW ESTIMATOR

The direct contributions of DE fluctuations to CGW
l is

very small compared to other effects, making it impossible
to detect their presence in the angular correlations using
GW data only. Interestingly, since photons are not affected
directly by DE or MG,ΔdSNL is structurally unchanged with
respect to GR, hence is obtained by neglecting all the
explicit DE/MG terms present in Eq. (1) as shown in
Appendix B. We can then single out the distinctive DE field
contributions, by combining standard sirens and standard

candles; assuming that we have measurements of both SN
and GWat the same redshifts and positions and subtract the
two as:

Δφðθ̂; zÞ≡ ΔdSNL ðθ̂; zÞ
d̄SNL

−
ΔdGWL ðθ̂; zÞ

d̄GWL
: ð4Þ

For the theories considered here, Eq. (4) takes the form

Δφðθ̂; zÞ ¼
M0

P

HMP

�
ϕ − vk þ

Z
χ

0

dχ̃ðϕ0 þ ψ 0Þ
�

−
MP;φ

MP
δφ −

MP;X

MP
δX; ð5Þ

where only the explicit DE/MG-dependent effects are
present. In addition to the purely DE contributions in the
second line, only three effects contribute to Δφ: the residual
Doppler, SW and ISW effects. Most importantly lensing
convergence, which is the dominant contribution to GW-
and SN-radiation anisotropies, cancels out. For particular
classes of events, Eq. (4) could be directly evaluated for
pairs of sources at the same position and redshift. In our
analysis we require this to hold only statistically, by
integrating Eq. (4) over a joint redshift distribution and
computing its angular power-spectrum:

C
Δφ

l ¼ CSN
l þ CGW

l − 2CSN−GW
l ; ð6Þ

where CSN
l (CGW

l ) are the SN (GW) luminosity distance
angular power-spectra, and CSN−GW

l the cross-spectrum
between the two. In this form we need the redshift and
position of GW/SN sources to be the same only on average,
i.e., same redshift distributions and overlapping regions in
the sky.

FIG. 1. Angular power-spectrum of gravitational-wave luminosity distance fluctuations. Solid lines show the total power-spectrum,
dashed lines the scalar field clustering component.
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In Fig. 2 we showC
Δφ

l as a function of the source redshift
for the two representative DE models. We consider the case
of localized SN/GWs sources to study the redshift depend-

ence of C
Δφ

l . In fðRÞ, the DE clustering component is
dominating the total angular power-spectrum, making its
features manifest. In the GBD model, instead, the total
signal is dominated by the Doppler effect. Nevertheless, a
detection of this signal still constitutes a direct proof of the
DE field’s presence.

IV. OBSERVATIONAL PROSPECTS

We next investigate the detection prospects for the
fluctuations of the GW luminosity distance via CGW

l ,

and DE clustering via C
Δφ

l . We consider the noise
power-spectrum for both SN and GW, as given by only
a shot-noise contribution [42,43]:

Ni
l ¼ 4πfsky

Ni

�
σidL
diL

�2

≡ 4πfsky
Neff

i
; ð7Þ

where i ¼ fSN;GWg and fsky is the sky fraction covered
by observations, which we assume to be fsky ¼ 1 for
simplicity. We also define the effective number of sources,
Neff

i , as the product of the number of events, Ni, in a given
redshift bin and the ratio σidL=d

i
L related to the relative

uncertainty on the luminosity distance which is propor-
tional to the magnitude uncertainty. In this way Neff

i , which
sets the overall noise levels, takes into account the number
of events detected and the precision of each measurement.
As the signal decays in scale faster than ∝ l−2, we expect
to have the best chance of measuring it from large-scale
observations. For this reason we assume that future
localization uncertainties can be neglected [44].

The noise for the joint estimator of Eq. (6) is given by the
sum of the two noise power-spectra for GW and SN, since
we assume that any stochastic contribution is uncorrelated.
Consequently, the number of effective events needed for a
detection of C

Δφ

l is given by the harmonic mean of the two
single onesNeff

Δφ
¼ ððNeff

SNÞ−1 þ ðNeff
GWÞ−1Þ−1. The error on a

power-spectrum measurement is given by σðClÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2lþ 1Þfsky

p ½Cl þ Nl�, and the corresponding signal-
to-noise ratio is ðS=NÞ2 ¼ P

lðCl=σðClÞÞ2. In the case
of CGW

l this applies directly, while for CΔφ
l one needs to

do full error propagation on Eq. (6): the final result is the
same, provided one uses for Neff

Δφ
the harmonic mean

given above.
The noise power-spectrum in Eq. (7) is scale-indepen-

dent so we can solve the inverse problem of determining the
number of effective events needed to measure the power-
spectra with a desired statistical significance. In practice,
we fix a target S=N ¼ 5, and solve the equation of S=N for
Neff both in the case of GW sources alone and Δφ.
Finally, we investigate the scenario where the GW source

redshift is unknown. In this case we assume the shape of the
GW redshift distribution as given in [19], while the SN one
as in [45]. Since the SN and GW redshift distributions need
to match, we take the product of the two and build the joint
probability of measuring both SN and GW at the same
redshift.
Intermediate cases in which the EM counterpart is not

available, but estimates of the redshift distributions are
obtained via statistical methods [46,47], would fall in
between the two extreme cases examined here.
Table I summarizes the results reporting the number of

effective sources for a 5σ detection of the angular power-

spectra CGW
l and C

Δφ

l , both in the case of GW events with
known as well as unknown redshifts (the latter designated
as “w=o z”). We also indicate the value of Neff

GW in GR, for

FIG. 2. The angular power-spectrum of the difference between GWand SN luminosity distance fluctuations. Solid lines show the total
power-spectrum, dashed lines the scalar field clustering component.
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comparison. The detection threshold for GW luminosity
distance fluctuations, Neff

GW, does not change appreciably
for the different scenarios, since we selected representative
models sufficiently close to ΛCDM to satisfy current
constraints. In fact, as shown in Fig. 1, CGW

l is dominated
by lensing convergence at high redshifts and by Doppler
shift at low redshifts. The former is indirectly modified by
DE/MG, while the latter is also sensitive to the background
configuration of the DE field: both these effects are small in
the considered models. Since lensing convergence and
Doppler effect dominate the angular correlations of GW
sources, it is not possible to distinguish the DE clustering
contribution in CGW

l within the total signal.
As far as Neff

Δφ
is concerned, the results show that it is

possible to detect the signal of the joint estimator in both
cases of known and unknown redshifts. In fðRÞ, this signal
is dominated by the DE field fluctuations, as shown in
Fig. 2, hence allowing for its direct detection. In the GBD
model, the signal of the joint estimator is dominated by
Doppler shift, easier to detect, explaining the lower number
of effective events compared to fðRÞ. In this case, one
would not be able to distinguish directly the DE field
inhomogeneities but its detection is still a proof of a time-
dependent Planck mass. Comparing the two scenarios of
known and unknown GW source’s redshift, we see that the
number of effective events is larger in the latter case
because a broader redshift range weakens the signal.
However, in this situation the events are not restricted to
a redshift bin, hence one can use the whole population of
SN/GW sources provided that they are both present.
Nonetheless, the number of effective events required is
very high, suggesting that the detection precision per
source has to improve to eventually measure such signal.
In fact, we remark that Neff

i is the effective number of
sources, the real number of events can be lowered by
having smaller statistical errors on the single detection. As
an example, in order to measure the DE signal, the
detection of a population of about 106 GW sources and
about the same number of SN events in a redshift bin at
z > 1, would require a precision, per event, of about
σdL=dL ∼ 10−6 in the case of fðRÞ, and ∼10−3 for the
GBD model. Since the required effective number of events

scales quadratically with per-event precision, σdL=dL, but
only linearly with number of events, increasing precision is
likely a better strategy.

V. DISCUSSION AND OUTLOOK

Fluctuations in the DE field can distinctively alter the
propagation of GWs with respect to light. In this work, we
derived the expression for such effects in a class of DHOST
theories, generalizing the results of [25]. And, by combin-
ing luminosity distance measurements from GW and SN
sources, we built an estimator for the direct detection of the
imprint of the DE fluctuations, that does not rely on non-
gravitational interactions between DE and known particles.
This signal cannot be mimicked by other effects and, as
such, it provides a distinctive evidence for DE/MG.
Even if the DE clustering signal is below cosmic

variance, any detection of our joint estimator would be a
convincing proof of a running Planck mass, as we showed
for two specific models. Reversely, it can be used to place
complementary bounds on theories of dynamical dark
energy nonminimally coupled to gravity, along similar
lines of recent forecasts as in [48,49] for the case of
standard sirens. Since we exploit angular correlations at
large scales, we expect our method not to be affected by
screening mechanisms nearby sources.
On the other hand, one should leverage as much as

possible on the precision of the measurement; for instance,
given the number of SN/GWevents (of order 106, at least in
the higher redshift bins) that can be observed with future
SN surveys [6,50] and space-based interferometers [51,52],
a detection would be possible, if one decreases the
statistical error on each measure according to Table I.
Notice also that for our estimates we considered an ideal
case: the number of events needed for a detection might be
higher to deal with possible systematic effects. This
suggests that future facilities might have to develop new
technologies and observational strategies to meet these
detection goals. We leave it to future work to determine
whether a detection of the signal we propose can be aided
by studying additional MG models, synergies with large
scale structure surveys or considering different sources of
GW/EM signals. For example, future experiments will
detect large numbers of binary white dwarfs (BWD) [53]
on galactic scales and much beyond [54,55]. BWD are
supposed to be progenitors of Type-Ia SN in the so-called
double degenerate scenario [56], offering a common source
for GWand SN signals (see e.g., [57]). In this case, Eq. (4)
holds locally and Δφ could be directly reconstructed in
configuration space, provided that nonlinearities and MG
screening effects can be properly taken into account. It will
also be interesting to use our general formula, Eq. (1), to
investigate whether other DE cosmological models based
on DHOST (see e.g., [48,58,59]) lead to signals easier to
detected with fewer sources.

TABLE I. Effective number of events for a 5-σ detection of

CGW
l and C

Δφ

l .

GR fðRÞ GBD

Neff
GW Neff

GW Neff
Δφ

Neff
GW Neff

Δφ

z ¼ 0.1 107 107 1014 107 1012

z ¼ 0.3 108 108 1015 108 1011

z ¼ 0.7 108 108 1016 108 1012

z ¼ 1.5 107 107 1017 107 1012

w=o z 107 107 1019 107 1014
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APPENDIX A: DERIVATION OF EQ. (1)

The DHOST action we consider is [34]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
K þG□φþ FRþ 3F2

;X

2F
φ;μφ

;μσφ;σνφ
;ν

�
;

ðA1Þ

where K, G, F are functions of φ and X ¼ −φ;μφ
;μ=2 and

; μ indicates a covariant derivative along coordinate xμ.
We split the metric and the scalar field as a slowly

varying plus a high-frequency small fluctuations:

gμν ¼ ḡμν þ hμν with jhμνj ≪ jḡμνj; ðA2Þ

φ ¼ φ̄þ φr with jφrj ≪ jφ̄j: ðA3Þ

If L is the typical lengthscale over which the background
varies, i.e., j∂ḡ; ∂φ̄j ∼ 1=L, and λ the one of the high-
frequency modes, i.e., j∂h; ∂φrj ∼ 1=λ, then L ≫ λ. We
introduce the small parameter ϵ≡ λ=L ≪ 1 controlling the
expansion in derivatives of the high-frequency perturba-
tions (see e.g., [60,61]).
The perturbations fhμν;φrg transform under diffeomor-

phism in the standard way. We assume the hierarchy jφrj ∼
ϵjhμνj between the high-frequency scalar and metric fluc-
tuations. Since a gauge transformation mixes φr and hμν,
the latter assumption guarantees that Eq. (A2) holds after
the gauge transformation. We use the gauge freedom to
choose

∇̄μĥμν ¼ 0 and φr ¼ 0; ðA4Þ

where ĥμν ¼ hμν − 1
2
ḡμνðḡαβhαβÞ. As shown in [25], the two

conditions in Eq. (A4) are compatible only when φr
propagates at the same speed of the tensor modes. This
condition can be imposed by choosing suitable relations

between the functions F, K and G evaluated on the slowly
varying background fḡμν; φ̄g.
The system of linearized equations of motion is organ-

ized in powers of ϵ: second derivatives acting on hμν are the
leading order contributions since j∂∂hj ∼ h=ϵ2, while those
with first derivatives constitute the next-to-leading order
since j∂hj ∼ h=ϵ and ϵ ≪ 1. Terms not containing deriv-
atives of high-frequency modes can be consistently
discarded.
We use the geometric optics ansatz,

ĥμν ¼ Aμνeiθ=ϵ ¼ Aeμνeiθ=ϵ; ðA5Þ

where A is the amplitude, eμν the polarization tensor and θ
the phase of the gravitational wave (GW). Note that the
gauge choice made ensures that the waves are transverse
but not traceless. Hence, we decompose Aμν as

Aμν ¼ AGW
μν þAS

μν ¼ AGWðeþμν þ e×μνÞ þASeSμν; ðA6Þ

where we assumed that the þ and × polarizations have the
same amplitude. The wave vector is defined as kρ ≡ −∇̄ρθ
and, for theories such as (A1), high-frequency perturbations
propagate at the speed of light thus kμkμ ¼ 0 and
kμ∇̄μkν ¼ 0. The polarization tensors are such that kμeþμν ¼
kμe×μν ¼ kμeSμν ¼ 0 and ḡμνeþμν ¼ ḡμνeþμν ¼ 0. Following the
procedure of in [25], the evolution equation of the ampli-
tude of the tensor modes is

∇̄ρðkρðAGWÞ2Þ ¼ −kρ∇̄ρ ln F̄ðAGWÞ2; ðA7Þ

where F̄ ¼ Fjφ̄.
In order to derive Eq. (1) we use the Cosmic Rulers

formalism (see e.g., [41,62]) which allows us to compute
the effects of large scale structures (LSS) on the propa-
gating GW. In particular, the observer-frame is used as
reference system to compute the relevant physical quan-
tities related to GWs. The latter frame is different from the
real-frame because, when observing, we use coordinates
that flatten the past light-cone of the GW.
In order to study the propagation of GW through cosmic

inhomogeneities we choose for fḡμν; φ̄g

ds̄2 ¼ a2ðηÞ½−ð1þ 2ϕðxÞÞdη2 þ ð1 − 2ψðxÞÞdx̄2�; ðA8Þ

φ̄ ¼ φ0ðηÞ þ δφðxÞ; ðA9Þ

where ϕ;ψ are the two gravitational potentials in Poisson’s
gauge and δφ is the DE field fluctuation.
Equation (A7) is similar to the one in [25] but in this case

of F̄ ¼ F̄½φ̄; X̄� instead of F̄ ¼ F̄½φ̄�. Hence we outline the
steps of the procedure and report the explicit computation
only of the new contribution. The full derivation can be
found in [25].
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First, we perform a conformal transformation and define
ĝμν ≡ ḡμν=a2 and k̂μ ≡ kμa2 and, using d=dχ ≡ k̂μ∇̂μ, the
evolution equation becomes

d
dχ

lnðAGWaÞ ¼ −
1

2

�
∇̂ρk̂

ρ þ d
dχ

ln F̄

�
; ðA10Þ

where ∇̂μ is the covariant derivative with respect to ĝμν.
After the conformal transformation, ĝμν ¼ ημν þ δĝμν,

and observer-frame and real-frame would coincide if
δĝμν ¼ 0. However, in the linear regime, δĝμν is small,
thus observed and real quantities will differ by a small
amount. This fact can be exploited to build a map between
the two frames valid at linear order in δĝμν, where observed-
quantities are identified as the 0th order terms of the
expansion and real-quantities will be given by the sum
of the relative observed-quantity plus a small correction.
Considering, as an example, the amplitude of the GW,
AGW, this will be expanded as AGW ¼ AGW

o þ ΔAGW,
whereAGW

o is the observed amplitude of the incoming GW
which satisfies Eq. (A10) with δĝμν ¼ 0. Hence, AGW

o is
given by

d
dχ̄

lnðAGW
0 ā χ̄

ffiffiffiffiffiffi
F0

p
Þ ¼ 0; ðA11Þ

where F0 ¼ F̄jφ0
and whose solution is

AGW
0 ðx̄0; χ̄Þ ¼ QGW

āðx̄0Þχ̄ ffiffiffiffiffiffi
F0

p ¼ QGWð1þ zÞ2
d̄L

ffiffiffiffiffiffi
F0

p : ðA12Þ

In the latter equationQGW is the integration constant which
depends on the production mechanism of the GW, χ̄ is the
observed comoving distance, ā ¼ ð1þ zÞ−1 is the observed
scale factor and d̄L ¼ ð1þ zÞχ̄ is the observed average
luminosity distance taken over all the sources with the same
observed redshift. From Eq. (A12) one can define the GW
luminosity distance as d̄GWL ¼ d̄L

ffiffiffiffiffiffi
F0

p
.

The perturbation ΔAGW is the solution of the first order
(in δĝμν) amplitude’s evolution equation, namely

�
d
dχ

lnðAGWaÞ
�ð1Þ

¼−
1

2
½∇̂ρk̂

ρ�ð1Þ−1

2

�
d
dχ

ln F̄

�ð1Þ
: ðA13Þ

The computation of the three terms not explicitly dependent
on the DE field is present in literature (see e.g., [41]). We
illustrate the computation of the novel contribution, as in
this work F̄ ¼ F½φ̄; X̄�, while in [25] it was F̄ ¼ F½φ̄�. In
particular, this is

�
d
dχ

ln F̄ðxðχÞÞ
�ð1Þ

¼
�
1 −

dδχ
dχ̄

�
d
dχ̄

ln

�
F0ðx̄ðχ̄ÞÞ

�
1þ ΔFðx̄ðχ̄ÞÞ

F0ðx̄ðχ̄ÞÞ
��

¼ δχ
d2 lnF0ðx̄ðχ̄ÞÞ

dχ̄2
þ dðδxμ∂̄μ lnF0ðx̄ðχ̄ÞÞÞ

dχ̄
þ d
dχ̄

�
δFðx̄ðχ̄ÞÞ
F0ðx̄ðχ̄ÞÞ

�
; ðA14Þ

where we have used: the relation between real, χ, and observed, χ̄, affine parameters: χ ¼ χ̄ þ δχ; the relation between real,
xμðχÞ, and observed, x̄μðχ̄Þ, GW geodesics: xμðχÞ ¼ x̄μðχ̄Þ þ δxμðχ̄Þ þ k̄μδχ; and the expansion at linear order F̄ðxðχÞÞ ¼
F0ðx̄ðχ̄ÞÞ þ ½δFðx̄ðχ̄ÞÞ þ ðδxðχ̄Þ þ k̄μδχÞ∂̄μF0ðx̄ðχ̄ÞÞ� where ∂̄μ ¼ ∂=∂x̄μ. Combining all of the four contributions together
we find

Δ lnAGW ¼ κ þ ðϕþ ψÞ − 1

χ̄

Z
χ̄

0

dχ̃ðϕþ ψÞ − ϕ

�
1

χ̄H
−

F0
Þ

2HF0

�
− vk

�
1 −

1

χ̄H
þ F0

0

2HF0

�

þ
�
1 −

1

χ̄H
þ F0

0

2HF0

�Z
χ̄

0

dχ̃ðϕ0 þ ψ 0Þ − δF
2F0

; ðA15Þ

where H≡ ā0=ā, primes are derivative with respect
to conformal time, vk is the component of the
peculiar velocity field along the line of sight and
κ is the standard weak lensing convergence factor.
In the main text MP ≡ ffiffiffiffi

F
p

, so F0
0=2F0 ¼ ðM0

P=MPÞjφ0

and

δF
2F0

¼ MP;φ

MP
δφþMP;X

MP
δX; ðA16Þ

where MP;φ and MP;X are the derivatives of MP with
respect to its arguments. The amplitude in the real-frame is
given by
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AGWðχÞ ¼ AGW
0 ð1þ Δ lnAGWÞ ¼ QGWð1þ zÞ2

d̄GWL ð1 − Δ lnAGWÞ ;

ðA17Þ

so that the luminosity distance fluctuation, Eq. (1) of the
main text, is

ΔdGWL
d̄GWL

¼ dGWL − d̄GWL
d̄GWL

¼ −Δ lnAGWðχ̄Þ; ðA18Þ

where Δ lnAGWðχ̄Þ is given in Eq. (A15).

APPENDIX B: DERIVATION OF EQ. (5)

In scalar-tensor theories of gravity, such as Eq. (A1),
photons do not directly couple to the extra scalar field.
Hence the amplitude of the EM radiation, named ASN,
satisfies

∇̄ρðkρðASNÞ2Þ ¼ 0; ðB1Þ

where the covariant derivative is associated with ḡμν.
Equation (B1) is formally equal to the evolution equation
of the amplitude of GW in general relativity hence the
cosmic rulers formalism gives the same results as in [41]:

ΔdSNL
d̄SNL

¼ −κ þ ðϕþ ψÞ þ 1

χ̄

Z
χ̄

0

dχ̃ðϕþ ψÞ þ ϕ

χ̄H

− vk

�
1 −

1

χ̄H

�
−
�
1 −

1

χ̄H

�Z
χ̄

0

dχ̃ðϕ0 þ ψ 0Þ:

ðB2Þ

Combining Eq. (B2) and Eq. (A18) one gets Eq. (4).

APPENDIX C: CODE IMPLEMENTATION

We rewrite the ðk;lÞ multipoles of ΔdGWL =d̄GWL , Eq. (3)
of the main text, in a notation which is more suitable for
direct implementation in EFTCAMB [35]. The resulting
expression can be written in terms of the different sources,
highlighting each relativistic or modified gravity effect,

�
ΔdGWL
d̄GWL

�
W

kl

¼
Z

ηA

0

dηjlðkχÞfSGWκ þ SGWvol þ SGWSh

þ SGWSW þ SGWDop þ SGWISW þ SGWδφ g; ðC1Þ

with ηA is the conformal time corresponding to z ¼ þ∞
and

SGWκ ðηÞ ¼ ðϕk þ ψkÞ
Z

η

0

dη̃
lðlþ 1Þ

2

ðχ̃ − χÞ
χ̃χ

Wðη̃Þ

SGWvol ðηÞ ¼ −WðηÞðϕk þ ψkÞ;

SGWSh ðηÞ ¼ ðϕk þ ψkÞ
Z

η

0

dη̃
Wðη̃Þ
χ̃

SGWSW ðηÞ ¼ WðηÞ
�

1

χH
−

M0
P

HMP

�
ψk;

SGWDopðηÞ ¼ −∂η

�
WðηÞ

�
1 −

1

Hχ
þ M0

P

HMP

�
v

�

SGWISWðηÞ ¼ ðϕ0
k þ ψ 0

kÞ
Z

η

0

dη̃Wðη̃Þ
�
1þ M0

P

HMP
−

1

χH

�
;

SGWδφ ðηÞ ¼ WðηÞ
�
MP;φ

MP
δφþMP;X

MP
δX

�
; ðC2Þ

where WðηÞ ¼ ð1þ zÞHWðzÞ. In (C2) we assumed
viðk̄; ηÞ ¼ ikivðηÞ, namely that the peculiar velocity field
is irrotational. Similarly, for the joint estimator Δφ we find

S
Δφ

SWðηÞ ¼ WðηÞ M0
P

HMP
ψ

S
Δφ

DopðηÞ ¼ ∂η

�
WðηÞ M0

P

HMP
v

�

S
Δφ

ISWðηÞ ¼ −ðϕ0
k þ ψ 0

kÞ
Z

η

0

dη̃Wðη̃Þ
�

M0
P

HMP

�
;

S
Δφ

δφ ðηÞ ¼ −WðηÞ
�
MP;φ

MP
δφþMP;X

MP
δX

�
: ðC3Þ

APPENDIX D: COMPARISON WITH OTHER
WORKS IN LITERATURE

In this section we make a comparison between our
results and those of the two works [26,63]. The main
difference between the two approaches is the gauge choice
imposed on the high-frequency modes after the split
of the metric and scalar field as in (A2) and (A3). The
two fields rapid perturbations transform under a gauge
transformation as

h0μν ¼ hμν − ∇̄μξν − ∇̄νξμ; ðD1Þ

φ0
r ¼ φr − ξμ∇̄μφ̄; ðD2Þ

hence a gauge transformation mixes hμν and φr, and it
might invalidate the split between background and per-
turbed metric, namely Eq. (A2). For this reason, in [25] it is
assumed that jφrj ∼ ϵjhμνj, so that Eq. (A2) holds even after
a gauge transformation. Reference [25] opts for the gauge
conditions φr ¼ 0 and ∇̄νĥμν ¼ 0, where ĥμν is the trace-
reversed metric perturbation. These two gauge choices are
compatible under the assumption that the high-frequency
scalar and tensor modes propagate at the same speed,
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namely the one of light. This assumption is at the basis of
[25], alternative to the gauge choice of the recent [63]
(while in [26] the high frequency scalar excitation, φr, is
not considered). In our approach, we ensure that φr
propagates at the same speed of hμν imposing a suitable
condition on the functions F, K and G, evaluated on the
slowly varying background, while [63] opts for choosing
KXX ¼ 0 and GX ¼ 0. Despite these differences in the

approach, we find the same evolution equation for the
amplitude of the tensor modes AGW, namely Eq. (4.14) in
[25], Eq. (54) in [26] and Eq. (95) in [63]. This is the
quantity we are interested in and focus on in the present
work. The dynamics of AGW in the three works is the same
since, in theories in which fhμν;φrg both propagate at the
same speed, the evolution equation ofAGW decouples form
the one of AS.
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