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The application of holographic principle in very early time is studied. The consideration of the principle
in the late-time evolution will be a good motivation to study its role at the time of inflation. Since the length
scale is expected to be small during inflation, the resulted energy density form the holographic principle is
expected to be large enough to drive inflation. The entropy of the system is the main part of the holographic
principle, in which modifying entropy will lead to a modified energy density. Here, instead of the original
entropy, we are going to apply a modified entropy, known as Tsallis entropy which includes quantum
corrections. The length scale is assumed to be GO length scale. Finding an analytical solution for the
model, the slow-roll parameters, scalar spectral index, and tensor-to-scalar ratio are calculated. Comparing
the result, with Planck r − ns diagram, we could find a parametric space for the constants of the model.
Then, a correspondence between the holographic dark energy and the scalar field is constructed, and the
outcome potentials are investigated. In the final part of the work, we have considered the recently proposed
trans-Planckian censorship conjecture for the model.
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I. INTRODUCTION

The inflationary scenario has received tremendous
observational support during the past couple of decades
and it has become the cornerstone of any cosmological
model. The scenario describes a very short extreme
expansion for the universe at the very early times. Since
the first introduction of inflation [1–5], the scenario has
received huge interest and it has been studied and modified
in many different aspects [6–39]. Inflation is usually
assumed to be driven by a scalar field which is based on
the slow-rolling assumptions [40–47].
The present accelerated expansion of the universe is

associated to dark energy. Although the true nature of
dark energy is not realized yet, there are many different
candidates (refer to [48] for a review on different models of
dark energy). The scalar fields model are one of these
candidates. The holographic dark energy (HDE) is another
candidate of dark energy [49–51]. The HDE is established
based on the holographic principle [52] which is originated
from the thermodynamics of black hole. The principle

was even extended to the string theory by Susskind [53].
The holographic principle states that the entropy of a
system is measured with its area, rather than its volume
[52–55]. The formation of black hole puts out a limit which
provides a connection between ultraviolet cutoff (short
distance cutoff Λ) and the infrared cutoff (long distance
cutoff L) [56].
Huge amount of researches are devoted to the application

of HDE in late-time evolution of the universe and its role as
dark energy [57–60] (for a review on HDE refer to [51]).
Then, it would be a good motivation to construct inflation
based on the same energy density, i.e., HDE. The HDE is
related to the inverse squared of the infrared cutoff. Since,
the length scale is small in the inflationary times, it is
expected to have a large energy density, enough to drive
inflation. The infrared cutoff is related to the casuality. Due
to this, it is taken as a form of horizon such as particle
horizon, future event horizon, or Hubble length. Granda-
Oliveros (GO) is known as another type of cutoff which
was introduced in [61,62] mostly based on dimensional
reasons. This cutoff is a combination of the Hubble
parameter and its time derivative.
The original HDE is based on the standard entropy,

S ¼ A=4. Including the quantum corrections, the area
law could be modified in different types in which the
logarithmic corrections [63–67], arising from loop quan-
tum gravity, and power-law correction [68–71], arising in
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dealing with the entanglement of quantum fields, could be
named as some examples of these quantum corrections.
Another modification comes out from the fact that the
gravitational and cosmological systems, which have diver-
gency in the partition function, could not be described by
Boltzmann-Gibbs theory. Rather, the thermodynamical
entropy of such a system must be modified to the non-
additive entropy, instead of using the additive one [72–75].
Based on this argument, Tsallis and Cirto have shown that
the entropy of black hole should be generalized to S ¼ γAδ

[76], where A is the area of the black hole horizon, δ is
called the Tsallis parameter or nonextensive parameter, and
γ is an unknown parameter. For γ ¼ 1=4 and δ ¼ 1 it
returns to the BG entropy. The power-law function of the
entropy, which has been inspired by Tsallis entropy, is
suggested by quantum gravity investigations [77,78].
The Tsallis entropy inspires a modified energy density.

The effect of the energy density for the late-time evolution
of the universe has been studied for different types of the
infrared cutoffs [78–85].
During the present work, we are going to consider the

resulted energy density of Tsallis entropy as the source of
inflation in which the infrared cutoff is picked out to be
the GO cutoff. Inflation for the standard HDE has been
considered for different cutoffs in [86–88]. Following the
assumption that the quantum correction already has been
applied to the entropy, the correction in the infrared cutoff
is not taken into account. An analytical solution for the
Hubble parameter is obtained which is utilized to compute
the slow-roll parameters, scalar spectral index, and also the
tensor-to-scalar ratio. Applying someMathematica coding,
the results of the model are compared with the Planck
r − ns diagram and parametric space for the free constants
of the model is derived, in which for every point in the
space the model comes to a good agreement with data.
Using the resulted values for the constant, we then establish
a correspondence between the Tsallis HDE and the scalar
field to construct a potential. In the final part, we investigate
the validity of the trans-Planckian censorship conjecture
(TCC) [89–92] for the model. Although the recently
proposed TCC is a theoretical conjecture, there is a rising
expectation for the inflationary model to satisfy the con-
jecture, besides the observational data.

II. TSALLIS HOLOGRAPHIC DARK ENERGY

The derivation of original holographic dark energy
(HDE), which is presented as ρ ¼ 3c2M2

p=L2 (where c
is the speed of light in vacuum andMp is the Planck mass),
is based on the well-known entropy-area relation S ¼ A=4
of black hole where A is the area of the horizon. It is
understandable that any modification to the entropy-area
relation will lead to a modified HDE. Tsallis and Cirto have
shown that by considering the quantum correction the
entropy-area elation is modified as [76]

S ¼ γAδ; ð1Þ

where γ in an unknown constant and δ is the nonadditivity
parameter [76,78–85]. For γ ¼ 1=G and δ ¼ 1, the
Bekenstein entropy is recovered. Scaling the number of
degrees of freedom of a physical system with its bounding
area is known as the holography principle [52]. By
considering an infrared cutoff, Cohen et al. have estab-
lished a relation between the entropy (S), IR cutoff (L), and
the UV cutoff (Λ) as follows

L3Λ3 ≤ S3=4:

Substituting the entropy from Eq. (1), and taking the area as
A ¼ 4πL2, one arrives at

Λ4 ≤ γð4πÞδL2δ−4; ð2Þ

in which Λ4 indicates the vacuum energy density. Based on
the HDE hypothesis, Λ4 is taken as the energy density of
dark energy (ρde). Then, following Eq. (2), the modified
energy density is obtained which is named as the Tsallis
HDE (TDH), given by

ρTHDE ¼ Bc2 L2δ−4; ð3Þ

where the unknown parameter B is defined as B≡
γð4πÞδc2 with dimension M2δ.
Assuming a spatially flat FLRW metric as the geometry

of the spacetime, the Friedmann equations are given by

H2 ¼ Bc2

3M2
p
L2δ−4 þ 1

3M2
p
ρm;

2 _H þ 3H2 ¼ −1
M2

p
pTHDE; ð4Þ

where ρm is the matter density, and pTHDE is the HDE
pressure. Ignoring the interaction between dark energy
and other possible components, we have a conservation
equation for TDHE as

ρTDHE þ 3Hð1þ ωTHDEÞρTHDE ¼ 0; ð5Þ

in which the equation of state parameter ωTHDE is read
as ωTHDE ¼ pTHDE=ρTHDE, which could be read from
Eq. (4) as

ωTHDE ¼ −1 − 2M2
p

_H
ρTHDE

¼ −1 −
2M2

p

Bc2
_H

L2δ−4 : ð6Þ

There are different choices for the IR cutoff L. The simplest
choice is the Hubble length, H−1, and the other choices are
particle horizon and future event horizon. Another candi-
date of the IR cutoff is the GO cutoff, proposed in [61,62]
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with dimensional motivation. The length scale in general is
a combination of the Hubble parameter and its time
derivative

L−2
IR ¼ αH2 þ β _H: ð7Þ

where α and β are two dimensionless constant. As
mentioned in the introduction, the Tsallis entropy has been
raised from some quantum corrections and already encodes
quantum gravitational effects. Then, it is assumed that the
correction have already made in the entropy, and the GO
cutoff are not required to be modified due to the high
energy regime.

III. INFLATION DRIVEN BY THDE

Inflation is known as a period of accelerated expansion
phase of the universe at very early time. This acceleration
phase is supported by a dark energy which for inflation it is
usually taken as a scalar field model. Here, it is assumed
that the expansion phase of the universe is provided by
THDE with energy density (3) and the GO length scale (7)
as IR cutoff. Due to the rapid expansion, the contribution of
other component is ignored, and the Friedmann equation is
given by

H2 ¼ Bc2

3M2
p
ðαH2 þ β _HÞ2−δ: ð8Þ

After some manipulation, one can extract the time deriva-
tive of the Hubble parameter

_H ¼ H2

β

��
3M2

p

Bc2

� 1
ð2−δÞðH2Þδ−12−δ − α

�
: ð9Þ

Change of variable N ¼ lnða=aiÞ from which dN ¼ Hdt
simplifies the oncoming calculation (where ai is an initial
value of the scale factor a). By this change, one has
_H ¼ 1

2
dH2

dN . Taking integration results in a Hubble parameter
in terms of the number of e-folds

ln ½H̃2ðCðH̃2Þδ−12−δÞδ−2δ−1 − α�jH̃e

H̃i
¼ −2αN

β
; ð10Þ

in which the constant C s defined as

C≡
�
3M2

p

Bc2

� 1
ð2−δÞ

M
2ðδ−1Þ
2−δ
p ;

and H̃ is named the dimensionless Hubble parameter given
by H̃ ≡H=Mp. Of course, integration from Eq. (9) with
respect to the time gives H versus time t.
The slow-roll parameters, which are the essential param-

eters of the slow-roll inflation, are derived through the
Eq. (9). Doing straightforward calculation, one obtains

ϵ1 ¼
− _H
H

¼ −1
β

½CðH̃2Þδ−12−δ − α�: ð11Þ

The rest of the slow-roll parameters are defined through the
usual definition as ϵnþ1 ¼ d lnðϵnÞ=dN. Then, for the
second one, we have

ϵ2 ¼
_ϵ1
Hϵ1

¼ 2C
β

�
δ − 1

2 − δ

�
ðH̃2Þδ−12−δ: ð12Þ

These parameters are assumed to be very small at the
beginning of inflation. The main purpose is to obtain the
main perturbation parameters at this time, and compare
the result with observation and consider their consistency.
Inflation ends when ϵ1 ¼ 1. The Hubble parameter at this
time is obtained as

H̃2
e ¼

�
C

α − β

�δ−2
δ−1
: ð13Þ

Then, from Eq. (10), the Hubble parameter is obtained at
earlier time of inflation, including the horizon crossing
time,

H̃2⋆ ¼
�
C
α

�
1þ β

α − β
e2αN=β

��δ−2
δ−1
: ð14Þ

Substituting it in the slow-roll parameter, they will be
calculated for earlier time as well.
Following [86], the usual perturbation procedure for

deriving scalar spectral index, ns − 1, and tensor-to-scalar
ratio, r, is picked out as the approximate approach instead
of dealing with the perturbation analysis of HDE. The usual
perturbation procedure is a good approximation here,
which leads to

ns ¼ 1 − 2ϵ1 − 2ϵ2;

r ¼ 16ϵ1: ð15Þ

The above explained procedure is used to obtain the ns and
r at the time of horizon crossing, which indicates that they
depend on the free constants of the model. Using the Planck
r − ns diagram and applying some Mathematica code, one
could find the range of the model constants in which for
every point in the range, the model perfectly agrees with
observational data. The, parametric space is presented
in Fig. 1.
To test the result, five different ðα; βÞ points are taken

from the above parametric space, and r − ns curve of the
model for the selected points have been plotted in Fig. 2,
which indicates that the curves cross the 68% regime.
The constant C has no role in the slow-roll parameters at

the time of horizon crossing. Therefore the scalar spectral
index and the tensor-to-scalar ratio do not depend on C at
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horizon crossing time. The constant is determined
through the amplitude of the scalar perturbation,
Ps ¼ H2=8π2ϵM2

p. The Planck data indicates that the
amplitude of the observational data is of the order of
Ps ∝ 10−9. The constant C then is obtained as

C ¼ α

ð1þ β
α−β e

2αN=βÞ ð8π
2ϵPsÞδ−1δ−2: ð16Þ

Using the constants α and β from the parametric space
Fig. 1, the constant C is calculated. Table I presents the
value of the constant for different values of α and β.

IV. CORRESPONDENCE BETWEEN THDE
AND SCALAR FIELD

In this section, we show that it is possible to describe the
behavior of inflation provided by the THDE approach into
the dynamics of a scalar field in two different models.

A. Canonical scalar field

First we consider the correspondence between THDE and
canonical self-interacting scalar field. The energy density
and pressure of the scalar field is given by [48,93–95]

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ;

pϕ ¼ 1

2
_ϕ2 − VðϕÞ: ð17Þ

Establishing a correspondence between the THDE and the
canonical scalar field, the potential is read as

VðϕÞ ¼ ρTHDE −
1

2
_ϕ2 ¼

�
1 − ωTHDE

2

�
ρTHDE; ð18Þ

where we have used

_ϕ2 ¼ ρTHDE þ pTHDE ¼ ð1þ ωTHDEÞρTHDE: ð19Þ

Substituting the ωTHDE from Eq. (6) in (18), one arrives at

VðϕÞ ¼ ρTHDE þM2
p
_H

¼ Bc2ðαH2 þ β _HÞ2−δ þM2
p
_H: ð20Þ

Inserting _H from Eq. (9), the potential is obtained in terms of
the Hubble parameter. The _ϕ follows the known equation
_ϕ2 ¼ −2M2

p
_H (which follows from the Friedmann equa-

tions). The time derivative of the scalar field could be
rewritten as _ϕ ¼ Hϕ0 in which the prime denotes derivative
with respect to the number of e-folds, i.e., ϕ0 ¼ dϕ=dN.
Then, there is ϕ02 ¼ −2M2

p
_H=H2, and by using the defi-

nition of the first slow-roll parameter, the scalar field is
obtained by taking the following integration

FIG. 2. The r − ns curve of the model for five different (α, β)
points, taken from Fig. 1, have been plotted. The α and β points
are picked put from the parametric space of Fig. 1.

FIG. 1. The parametric space of (α, β) in which for every point
in the range, the model comes to an agreement with data. To
constrain the constants α and β, we have used the r − ns diagram
of Planck-2018.

TABLE I. Estimating the values of the constant C from the
amplitude of the scalar perturbation, using the result of the
parametric space of Fig. 1.

α β C

1.0 −78 4.76 × 10−5

1.5 −120 7.30 × 10−5

2.0 −160 9.73 × 10−5

2.5 −200 1.21 × 10−4

3.0 −240 1.46 × 10−4
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ΔϕðNÞ ¼
ffiffiffi
2

p
Mp

Z
N

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1
β

½CðH̃2Þδ−12−δ − α�
s

dN; ð21Þ

where N ¼ 0 corresponds to the horizon crossing of
perturbations. When solving the integral analytically one
is faced with some difficulties mostly due to the presence of
the incomplete gamma function. However, it could be solved
numerically, and using the result in Eq. (20), one could
illustrate the potential versus the scalar field as presented in
Fig. 3. It is realized that the scalar field rolls down from
the top toward the minimum of the potential. To plot the
potential, the Planck massMp is taken as unity. The potential
indicates that inflation occurs at the energy scale about
10−9M4

p GeV4, and the potential could be categorized as a
large-field potential where the scalar field is bigger than the
Planck mass.

B. Tachyon field

The energy density and the pressure of the tachyon field
is given by [96]

ρϕ ¼ VðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q ; ð22Þ

pϕ ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q
; ð23Þ

and the equation of state of the field is read as
ωϕ ¼ pϕ=ρϕ ¼ 1 − _ϕ2.
By associating the energy density and pressure to the

energy density and pressure of the THDE, the potential is
obtained as

VðϕÞ ¼ ρTHDE

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q
: ð24Þ

Using the relation ωϕ ¼ ωTHDE, the time derivative of the

scalar field is found as _ϕ2 ¼ 1þ ωTHDE. Using Eq. (6)and
the definition of the first slow-roll parameter, one arrives at

ϕ02 ¼ 2

3M2
p

ϵ1
H̃2

; ð25Þ

which by taking integration, the change of the scalar field
during inflation is obtained as

Δϕ ¼
ffiffiffiffiffiffiffiffiffiffi
2

3M2
p

s Z
N

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1
βH̃2

½CðH̃2Þδ−12−δ − α�
s

dN: ð26Þ

By numerically solving the integral and applying the result
in Eq. (24), the potential is obtained as a function of the
scalar field. Figure 4 depicts the potential during inflation
where it is shown that the scalar field rolls down from top
toward the minimum.

V. TRANS-PLANCKIAN CENSORSHIP
CONJECTURE

The origin of the universe structure is the fluctuations in
matter and energy. The casual mechanism for generating
these fluctuations is provided by the inflationary scenario.
The fluctuations produced during inflation are stretched
out, cross the (Hubble) horizon, freeze and then come back
to the horizon after inflation. The key point is that the
produced fluctuations have a quantum origin, and as they
cross the horizon, they behave classically. In late time, they
enter the horizon and are probed in current cosmological
observations. The crucial point is that if inflation lasted
more than enough, it is possible to observe the length scale
which would be originated on the scale smaller than the
Planck length. This is known as the “trans-Planckian
problem,” see [90] for more information. How should
we here treat the trans-Planckian mode? This is the
question that does not arise in a consistent theory of

FIG. 3. The constructed potential from the THDE for the
canonical scalar field. The potential is plotted versus the scalar
field. The constants are taken as α ¼ 1, β ¼ −78, and δ ¼ 0.1.

FIG. 4. The constructed potential from THDE for the tachyon
field is plotted versus the scalar field during inflation. The
constants are taken as α ¼ 1, β ¼ −78, and δ ¼ 0.1.
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quantum gravity. It is addressed as the “trans-Planckian
censorship conjecture” (TCC).
The TCC states that a length scale that crosses the

horizon must not ever have had a length smaller than the
Planck length [27,89–92]. The length scales never cross
the horizon in the standard big bang cosmology, but in the
inflationary scenario the story is different. The TCC is
formulated as follow

lp
ai

<
H−1

f

af
; ð27Þ

where ai and af are respectively the universe scale factor
at the beginning and end of inflation, Hf is the Hubble
parameter at the final time of inflation, and lp ¼ m−1

p is the
Planck length.
Comparing the model with observational data, we could

determine the constants of the model. Also, the Hubble
parameter at the end and during inflation was specified.
Using this result, one easily could examine the validity
of the TCC, Eq. (27). Using Eq. (13), and after some
manipulation, the condition could be rewritten as�

C
α − β

�δ−2
δ−1

< ð8π eNÞ2 ð28Þ

The condition has been examined for different values of
α and β from the parametric space, Fig. 1. The result
indicates that the left-hand side (lhs) is of the order of 10−14

and the right-hand side (rhs) is of the order of 10−54. It
implies that the model does not satisfy the TCC.
Is there a trans-Planckian problem in inflation? The

question has been discussed in detail in [97]. The TCC is all
about tracking a perturbation back in time. The fluctuations
are born in the inflationary time and cross the Hubble patch
when they have a wavelength of the order of L ∼H−1, due
to the expansion of the universe. Then, by scaling back in
time, one finds a wavelength shorter than the Planck length
for enough inflation. However, is this a physically mean-
ingful reasoning? The question has been answered in [97].
They argue that, in brief, to a certain initial time the
fluctuations do not even exist. The great part of the de Sitter
fluctuations are produced with wavelength L ∼H−1, and
only the fluctuations with wavelength L ≪ H−1 are expo-
nentially suppressed, with factor e−1=LH. Therefore, taking
a wavelength back in time is a misleading point. Also, as
the mode shrinks to scale beyond the Hubble patch, the
probability of materializing the de Sitter perturbation with
trans-Planckian energy scale should be taken into account.
The probability is suppressed by the factor e−1=LH as the
mode shrinks to the Planck length. Taking into account this
suppression indicates that the inflationary scenario might
be free of the trans-Planckian problem.
Another point regarding the trans-Planckian regime,

which is addressed in [97], is the fuzziness that the definition
carries on. It is stated that with the ordinary renormalizable

theories with Wilsonian UV-completion one could probe an
arbitrary short distance. However, in Einstein theory of
gravity the tracking only goes on until one reaches the
Planck length scale [98]. It is shown that the minimal
localization radius is described by a classical gravitational
radius which turns out to be larger than the Compton
wavelength, thus indicating that the described object is
classical. It is an intrinsic feature of the Einstein gravity
that by further tracking beyond the Planck scale, the theory
classicalizes and presents a black hole [98]. Therefore, by
tracking perturbations to the trans-Planckian time, we are
actually scaling them back to their classicalization.
Based on the above two points, the authors in [97] states

that there is no trans-Planckian problem in inflationary
scenario.

VI. CONCLUSION

Even though there is an extensive amount of research on
the role of the holographic principle in explaining the late-
time evolution of the universe, its application for the very
early universe has recently been raised. In the presented
work, the holographic principle was investigated for
describing the inflationary scenario. The principle states
that the energy density depends on the inverse of the length
squared. Since the length scale is usually taken as the
horizon, and it is believed that the horizon is decreasing
during inflation, it is expected to have a large amount of
energy to support inflation.
The HDE is originated from the entropy, which in the

standard form linearly depends on the area, based on the
holographic principle. However, the entropy could be
modified by taking into account the quantum corrections.
One of the modified entropies is known as Tsallis entropy
which the corresponding energy density is assumed to be
responsible for inflation. The length scale of the energy
density is taken as the GO cutoff which is a combination of
the Hubble parameter and its time derivative.
The equation was solved analytically and we found an

exact solution for the Hubble parameter versus both time
and number of e-folds. Applying the solution, the Hubble
slow-roll parameters were derived. Then, the scalar spectral
index and the tensor-to-scalar ratio are derived in terms of
the model’s constants. Comparing the model prediction
about ns and r with the r − ns diagram of Planck-2018, and
using Mathematica coding, we found a parametric space
for α and β so that for every point in the space, the model
has a perfect consistency with observational data. The
results imply the ability of the Tsallis inflation for explain-
ing the early universe.
Next, we constructed a correspondence between THDE

and two scalar field models as canonical and tachyon scalar
fields. Using the α and β, obtained in the first part of the
investigation, we could find the corresponding potential for
each case.
The TCC was considered in the last part of the manu-

script. It seems that there is a rising expectation for any

MOHAMMADI, GOLANBARI, BAMBA, and LOBO PHYS. REV. D 103, 083505 (2021)

083505-6



inflationary model to satisfy this conjecture which imposes
strong constraints on inflationary models. Using the
obtained results for the free constant of the model, which
were extracted by comparing with data, indicates that the
model is far away from satisfying the conjecture. Then,
although the model could be consistent with data, it is
unable to satisfy the TCC.
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