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We examine the extent to which primordial black holes (PBHs) can constitute the observed dark matter
while also giving rise to the measured matter-antimatter asymmetry and account for the observed baryon
abundance through asymmetric Hawking radiation generated by a derivative coupling of curvature to the
baryon-lepton current. We consider both broad and monochromatic mass spectra for this purpose. For the
monochromatic spectrum we find that the correct dark matter and baryon energy densities are recovered for
peak masses of the spectrum of Mpk ≥ 1012 kg whereas for the broad case the observed energy densities
can be reproduced regardless of peak mass. Adopting some simplifications for the early-time expansion
history as a first approximation, we also find that the measured baryon asymmetry can be recovered within
an order of magnitude. We argue furthermore that the correct value of the baryon-lepton yield can in
principle be retrieved for scenarios where a significant amount of the radiation is produced by PBH decay
during or after reheating, as is expected when the decaying PBHs also cause reheating, or when an early
matter-dominated phase is considered. We conclude from this first analysis that the model merits further
investigation.

DOI: 10.1103/PhysRevD.103.083504

I. INTRODUCTION

The standard model of cosmology (ΛCDM) stipulates a
homogeneous and isotropic Universe with vanishing spatial
curvature that contains two energy components in addition
to the ordinary baryonic matter: cold dark matter (CDM)
and the cosmological constant (Λ). Despite the observa-
tional success of ΛCDM, there remain significant gaps in
our physical understanding of it. For instance, we have no
explanation for the baryon asymmetry, meaning why there
is more matter than antimatter in the Universe. Even more
obscure is the nature of the dark matter and the cosmo-
logical constant. The first hypotheses of dark matter date
back more than a century, and it has been invoked several
times since and in different contexts [1]. It is only over
the past few decades, however, that we have gathered a
substantial amount of evidence supporting its existence,
ranging from observations on the scales of dwarf galaxies
to the extension of the observable Universe from early to
late times. Examples of this evidence include the rotation

curves and velocity dispersions in galactic-scale bound
systems [2], excessive galaxy cluster masses [3], or the
baryon acoustic oscillations (BAO) [4–6]. Exquisite mea-
surements of the fractional cosmological energy density in
CDM is offered among others by the cosmic microwave
background (CMB) radiation observed with Planck 2018
[7], the Baryonic Oscillation Spectroscopic Survey (BOSS)
galaxy clustering measurements [8–10], weak gravitational
lensing observations with the Kilo Degree Survey (KiDS)
[11], or measurements of cluster abundances [12].
Despite this overwhelming observational evidence,

the fundamental nature of dark matter remains unknown.
Many dark matter candidates have been put forward as an
explanation for it such as weakly interacting massive
particles (WIMPs), axionlike particles, sterile neutrinos,
or even strange quarks [13–16]. But none of these have
succeeded in convincingly making their case so far [17,18].
A hint for the nature of dark matter may perhaps also be
taken from the interesting fact that the baryonic fractional
energy density measured by the CMB and big bang
nucleosynthesis (BBN) [19] happens to lie within the same
order of magnitude as that of CDM. This may suggest some
shared generation process that could ultimately also lead to
a simultaneous explanation for the baryon asymmetry.
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Perhaps the least exotic dark matter candidate, at least for
the physical entity involved, that still remains viable is the
scenario of primordial black holes (PBHs). Several physical
mechanisms have been proposed to generate PBHs. For
example, they may be produced by large primordial density
fluctuations [20–23], cosmic string loops [24], or bubble
collisions [25]. This theoretical motivation has naturally
also led to their consideration as CDM candidates (see
Ref. [26] for a review). The scenario has recently drawn
resurged attention due to the direct detection of gravita-
tional waves from black hole binary systems [26–31].
Much of the current research on the PBH-CDM model
focuses on determining the PBH abundance in a given mass
range, phrased in terms of the mass spectrum. Another
important factor to consider is that not all PBHs could have
survived until today due to evaporation. Because of
Hawking radiation, PBHs with masses lower than about
4 × 1011 kg would have evaporated by today.
The fact that PBHs undergo a decay prompts an

interesting question: Could PBHs be subject to an asym-
metric Hawking radiation that gives rise to the baryon
asymmetry yet allows abundant PBHs to remain to con-
stitute the dark matter? Such a scenario may also naturally
provide a link between the coincident baryon and dark
matter abundances. Hawking radiation of black holes has
indeed been invoked as a generator of baryon number
asymmetry [32]. An asymmetric decay can, for example,
arise from the presence of a nonvanishing chemical
potential, which can for instance be the result of a derivative
coupling of curvature to the baryon-lepton current [33,34]
and lead to the radiation of more particles than antiparticles.
More generally, solving baryogenesis through gravitational
effects is known as gravitational baryogenesis and can be
realized through different mechanisms [35–39]. In this
paper, we will investigate the feasibility of PBHs as CDM
candidates that partially decay to produce the observed
baryon asymmetry. For this purpose, we will adopt the
gravitational baryogenesis model of Ref. [33] and general-
ize it to extended PBH mass spectra. Specifically, we
consider both monochromatic [40] and polychromatic [23]
mass spectra. For those we compare the predicted fractional
cosmological energy density in PBHs with that observed
for CDM. Then, using the asymmetric Hawking radiation
mechanism of Ref. [33] we estimate the number density of
baryons in the Universe and the baryon abundance, which
we compare against observations. Finally, we also estimate
the baryon-lepton yield, which quantifies the amount of
matter-antimatter asymmetry in the Universe and compare
that to observations.
The paper is laid out as follows: in Sec. II we give a very

brief review for the case of PBHs as dark matter and
describe the PBH mass spectra and the model for asym-
metric Hawking radiation we will use. Section III derives
the model predictions: the PBH and baryon fractional
energy densities and the baryon-lepton yield. In Sec. IV

we compare our predictions against observations of the
CMB and the large-scale structure as well as the observed
matter-antimatter asymmetry. We conclude and summarize
in Sec. V. Finally, we provide some additional details and a
discussion of assumptions and extensions of our compu-
tations in the appendix. All quantities in this article are
expressed in natural units unless explicitly stated.

II. BARYOGENESIS FROM THE DECAY
OF PRIMORDIAL BLACK HOLES

AS DARK MATTER

We will first provide a brief review of the theoretical
models we will adopt in our analysis before presenting our
predictions and the comparison to observations in Secs. III
and IV. In particular, we will be considering PBHs as a
CDM candidate with a given mass spectrum (Secs. II A and
II B). These PBHs will then radiate asymmetric Hawking
radiation to produce the observed baryon fraction and
asymmetry (Sec. II C).

A. Primordial black holes as dark matter

The latest measurements of the Planck collaboration
constrain the present day CDM energy density fraction to
ΩCDM;0 ¼ 0.267 [7,41], assuming a flat ΛCDM scenario.
Attempts to address this significant contribution to the
cosmic energy budget with PBHs can be traced back to
the works of Zeldovich and Novikov in 1967 [42] and
Hawking in 1971 [43], who first proposed their existence.
The ability of PBHs to describe the observed CDM
depends on their abundance and mass range.
The mass of PBHs is related to their formation time.

Compared with the black holes that are formed from the
collapse of stars, PBHs have a broader mass range. This is
due to the fact that the formation of PBHs does not need to
satisfy the Tolman-Oppenheimer-Volkoff limit. To form,
PBHs need a density fluctuation of δρ ∼ 0.1 [44]. Thus we
usually expect that PBHs were produced between the era of
inflation to just before the end of reheating. Given reheating
must occur before BBN, this implies the possibility of their
formation from 10−34 s to at least 10 s [45] after the big
bang. Consequently, PBHs could form in a mass range
between the Planck mass, Mp ¼ 2.18 × 10−8 kg, to a
maximum mass of Mmax ∼ 1036 kg [40,46].
An upper bound of PBH-CDM masses of 1018 kg was

suggested in Ref. [47] from limitations of cosmic gamma
ray bursts. But based on the study of cosmic entropy and
black hole entropy, Frampton [48] argued that if all CDM is
composed of PBHs, the mass of PBHs can be in the range
of 1022 − 1035 kg. We direct the reader to Ref. [46] for a
review on the observational constraints on PBHs as a CDM
candidate.
One important assumption in these constraints is

that a single population of PBHs of a given mass, or
narrow mass range, makes up all the CDM. These scenarios
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are characterized by a so-called monochromatic mass
spectrum. Such spectra must peak in narrow mass gaps,
e.g., 1013 − 1014 kg [40], for them to account for all of the
CDM fraction. Recently, mass spectra covering a very
broad range of masses have been studied in Refs. [23,
49–51]. Such a polychromatic spectrum may be able to
more easily evade some of the observational constraints
[40]. We shall discuss the mass spectrum of PBHs next.

B. The primordial black hole spectrum

The PBH mass spectrum can be defined as

ψðMÞ≡ 1

ρ̄PBH

dρðMÞ
dM

; ð1Þ

where ρ̄PBH is the total matter density of PBHs and dρ is
their matter density in the mass range ðM;M þ dMÞ. Black
holes that are produced at a given epoch in the early
Universe are associated with density fluctuations with a
delta-function power spectrum [52–56]. This produces a
very sharp mass spectrum. Such monochromatic spectra
can take the form

ψmonoðM; tÞ ¼ Aψ ðtÞM2.85ðtÞ exp
�
−
�

M
Mpk

�
2.85

�
; ð2Þ

whereMpk corresponds to a fraction of the horizon mass at
the collapse epoch, which roughly evolves as [40,46]

MH ∼ 1012
�

t
10−23 s

�
kg; ð3Þ

where t is the time coordinate. AψðtÞ is a normalization
constant that ensures the proper definition of ψ as a
probability density,

Aψ ðtÞ ¼
�Z

Mmax

Mp

M2.85 exp

�
−
�

M
Mpk

�
2.85

�
dM

�
−1
; ð4Þ

and has units of ½kg�−3.85, where we setMmax ¼ 1036 kg. In
practice, for the monochromatic spectrum the maximum
mass just needs to be chosen sufficiently higher than the
peak because of the sharp fall-off. With Eq. (2) PBHs are
being produced at all masses below the horizon mass but
for masses above that, the probability of formation is
negligible.
The horizon mass is of course a function of time, and so

as the Universe expands, we can produce black holes
corresponding to larger and larger masses. One can model
the corresponding mass spectrum by considering Eq. (2) for
the relevant epochs. The resulting superposition of these
functions gives a much broader, polychromatic, mass
spectrum such as that described in Ref. [23],

ψpoly;highðMÞ ¼ 1

fPBH

ffiffiffiffiffiffiffiffiffi
Meq

M3

r
βðMÞ; ð5Þ

where Meq ¼ 2.8 × 1017 M⊙ is the horizon mass at the
time of radiation-matter equality (t ∼ 1012 s), fPBH is the
fraction of CDM that the PBHs constitute and βðMÞ is
the abundance of PBHs of mass M, which is constant in the
high mass regime [23]. We are interested in fPBH ≈ 1. In
practice, to get a function, ψpoly, for the full spectrum of
masses, one can sum Eq. (2) over many masses starting
with the mass corresponding to when the shortest wave-
length mode reenters the horizon, Ms, and ending with the
longest, Ml.
In this work, we approximate the full broad spectrum by

interpolating between Eqs. (2) and (5) by tuning the value
of β. Because of this, we take Mpk to be a free parameter,
corresponding to a choice of Ms. Note that in the full
calculation,Ms will be close toMpk. We then normalize the
distribution so that

Z
Ml

Mp

ψpolyðMi; tÞdMi ¼ 1; ð6Þ

whereMi refers to the initial mass of a PBH at the time it is
created. We have taken Ml ≈Min½MHðtÞ; 1036 kg� [see
Eq. (3)], which assumes that PBHs can form up to
just before BBN [45]. We find that our results are largely
insensitive to the choice of maximum mass, as well as
the specific form of the mass spectrum, and direct the
reader to Appendix B for a short discussion. Figure 1 shows
the monochromatic spectrum given by Eq. (3) with
Mpk ¼ 105 kg, the high-mass end spectrum given in
Eq. (5), and a final spectrum comprised of PBH populations
that form at different collapse epochs.
Finally, each PBH will also decay once created

through the emission of Hawking radiation. The decay
for Schwarzschild black holes is given by [33]

FIG. 1. Polychromatic PBH mass spectrum (purple solid) and a
monochromatic spectrum peaked atMpk ¼ 105 kg (blue dashed).
The polychromatic spectrum is the envelope of many such
monochromatic spectra which are produced at different collapse
times. The green dashed line illustrates the behavior of the
polychromatic spectrum at the high-mass end given by Eq. (5).
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MðtÞ ¼ ðM3
i − 3KM4

ptÞ1=3Θ½tfðMi; tiÞ − t�; ð7Þ

whereK¼g⋆=ð30720πÞwith g⋆¼
P

bosonsgiþ7
8

P
fermionsgi¼

106.75 and gi is the number of degrees of freedom for the
respective particles. These quantities are further discussed
in Appendix A 1. Furthermore, ti denotes the initial time,
Θðtf − tÞ is the Heaviside step function, and tfðMi; tiÞ ¼
ðMi=MpÞ3=ð3KMpÞ þ ti denotes the time when the PBH
has completely decayed. Figure 2 shows that black holes
that are produced with masses less than M ≈ 4 × 1011 kg
will have completely decayed by today [57].

C. Baryogenesis from asymmetric
Hawking radiation

From the measurement of the CMB radiation, we infer
an asymmetry between particles and antiparticles in our
Universe of nB=s ≈ 8.7 × 10−11 [58], where nB is the
number density of baryons and s is the entropy density.
Sakharov [59] proposed three conditions for a process to
produce this asymmetry:
(1) Thebaryonnumber density,nB,must not be conserved.
(2) C- andCP-symmetrymust be violated in order for the

process to produce more baryons than antibaryons.
(3) The process occurs out of thermal equilibrium.
In Ref. [33] a dynamically generated chemical potential

was proposed as an explanation for the baryon asymmetry
that arises from the effect of the expansion of the Universe
on a CP-violating coupling of the form

S ⊃
Z

dx4
ffiffiffiffiffiffi
−g

p
λ
∂μR

M2
p
JμB−L; ð8Þ

where R is the Ricci scalar, λ is a dimensionless coupling
constant, and JμB−L is the baryon-lepton current. Note that it
is not necessary for this to be the baryon current since any
current that leads to a net B-L charge is sufficient. This
action can give rise to asymmetric Hawking radiation that
produces a baryon number. Specifically, it allows for the
production of a nonvanishing baryon-lepton charge that

sources the asymmetry. We will discuss the mechanisms in
more detail in Sec. III B 1.

III. MODEL PREDICTIONS

We shall now derive the predictions of the scenario
proposed in Sec. II for three key quantities, namely the
total cosmological fractional energy density in PBHs ΩPBH
(Sec. III A), the total cosmological fractional energy density
in baryonic matter Ωb (Sec. III C), and the baryon-lepton
yield (Sec. III B) YB−L, which are all functions of time.

A. Fractional energy density in primordial
black holes

The first quantity which we wish to calculate is the
PBH fractional energy density ΩPBH given an initial
distribution of black holes characterized by the mass
spectrum ψ . We begin by noting that the initial matter
density is given by

ρPBH;i ¼ n̄PBH;ihMii; ð9Þ

where n̄PBH;i is the total initial number density of PBHs and
the average mass (at any given time) is obtained from

hMðtÞi ¼
Z

Mfin

Mp

MðtÞψðMiÞdMi; ð10Þ

whereMðtÞ is specified by Eq. (7). We integrate fromMp to
Mfin ¼ MðtjMi ¼ 1036 kgÞ for the monochromatic spec-
trum (see Eq. (7). For the polychromatic spectrum we must
be a bit more careful since PBHs are produced from the
end of inflation well into radiation domination. We take
Mfin ¼ Min½MHðtÞ;MðtjMi ¼ 1036 kgÞ� for the polychro-
matic spectrum, taking into account this time dependence.
Note that a full treatment of ψpoly would require the
following definition for the average mass,

hMðtÞi ¼
Z

dMMψðM;MsðtÞ;MlðtÞÞ; ð11Þ

where Ms and Ml evolve with time too, Ms being para-
metrized by Mpk.
For both the monochromatic and polychromatic cases,

we assume that all PBHs are produced before some initial
time after which the shape of the mass spectrum remains
fixed. For the monochromatic spectrum this initial time
shall be specified by an initial scale factor ai. For the
polychromatic case, we should take this to be some time in
the radiation dominated Universe. For simplicity, we
choose ti ¼ 10 s which is just before BBN. We direct
the reader to Appendix B for more discussion on these
assumptions.
The evolution of the matter density is then dictated by the

expansion of the Universe as well as the evolution of the

FIG. 2. Evolution of the PBH mass parametrized by the scale
factor a (normalized to unity today). Different initial masses
evaporate at different points in the evolution of the Universe.
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PBH average mass as they decay. We can assume that the
total number of PBHs is a conserved quantity, N̄i, although
at late times some of them will have a final mass ofMf ¼ 0

due to Hawking radiation. The Heaviside function in
Eq. (7) takes care of giving these evaporated PBHs a null
weighting in the integral. Note that in Appendix B we also
consider the case when we have remnants, Mf ¼ Mp,
instead. With these specifications, we can rewrite Eq. (9) at
a given time as

ρPBHðaÞ ¼
N̄i

VðaÞ hMðaÞi ¼ n̄0
a3

hMðaÞi; ð12Þ

where we have used the scale factor a to parametrize the
evolution and n̄0 ¼ n̄PBH;ia3i denotes the number density of
PBHs today. Note that we normalize the scale factor today,
a0 ¼ 1, and so VðaÞ ¼ V0a3, where V0 is the current
volume of the Universe.
We can now calculate the PBH fraction of the cosmic

energy density as

ΩPBHðtÞ ¼
n̄0

ρcðtÞ
�
1

a

�
3

hMðtÞi; ð13Þ

where ρc ¼ 3H2=ð8πGÞ is the critical density. We have
assumed here that the PBH density decays as the volume of
the Universe as is typical for nonrelativistic matter species.
This means we neglect the small impact of the contribution
of newly formed black holes or the effect of mergers. We
again direct the reader to Appendix B for further details.
One important point here is the choice of background

evolution HðaÞ used in the calculation of the critical
density ρcðaÞ. Observational data does not allow us to
deviate strongly from a ΛCDM background expansion and
so we use HðaÞ with the observed energy density fractions
as measured by the Planck satellite [7,41]. This is discussed
further in Sec. III B 1.

B. The baryon-lepton yield

We shall now predict the baryon-lepton yield defined as

YB−L ≡ n̄B−L
s

; ð14Þ

where nB−L is the baryon-lepton number density and s is
the entropy density of the Universe. This can be related to
the PBH yield and consequently to the total number density
of PBHs and their masses.
In Ref. [33], a single population of PBHs of masses M

was considered, which can be phrased as a delta-function
mass spectrum, ψðM;MpkÞ¼δDðM−MpkÞ with M ¼ Mpk.
When placed in an expanding Universe with a chemical
potential, these black holes generate nB−L from

dYB−L

dt
≡ dðn̄B−L=sÞ

dt
¼ dQ

dt
YPBH ¼ dQ

dt
nPBH
s

; ð15Þ

where nPBH is the number density of PBHs of masses M
and QB−LðM; tÞ is the total charge asymmetry generated
from the decay of a PBH of mass M. Both quantities are
functions of time. As we shall see, the quantity nPBH=s is
approximately constant for large peak masses and so one
can then express the number density of B-L as

nB−LðtÞ ≈QB−LðM; tÞnPBHðtÞ: ð16Þ

We will generalize Eq. (16) from a single-mass pop-
ulation to become applicable for the PBH mass spectra
ψmono and ψpoly described in Sec. II B.

1. Baryon-lepton charge

To generate asymmetric Hawking radiation, there must
be a chemical potential μiðtÞ, which we will take as being
generated dynamically through the effect of cosmic expan-
sion on the coupling in Eq. (8) as in Ref. [33]. Note that the
majority of the black hole radiation will be in the form of
symmetric particle emission, which will largely constitute
radiation emissions through pair annihilation, in addition to
direct photon emissions. The rate of production of baryon-
lepton charge is given by [33]

dQB−LðM; tÞ
dt

¼ 4πr2þ
X
i

qigi
μiðtÞT2

H

24

¼
X
i

qigi
μiðtÞ
96π

; ð17Þ

where rþ is the Schwarzschild radius of the black hole and
we have used the Hawking temperature relation THðMÞ ¼
M2

p=ð8πMÞ in the second equality. Furthermore,
P

i giq
2
i ¼

13 where qi and gi are the B-L charge and degrees of
freedom of the emitted particles, which do not include
antiparticles (see Appendix A). Note that QB−L has no
units. We also note that a typo appearing in Ref. [33]
introduces a “-” sign in Eq. (17).
Integrating Eq. (17) gives the total charge generated from

PBH decay up to some time t�,

QB−LðMi; t�Þ ¼
Z

t�

ti

dt
X
k

qkgk
96π

μkðtÞ; ð18Þ

where we assumed a vanishing charge at initial time.
Furthermore, assuming that the chemical potential is slowly
varying with time with respect to the black hole decay, one
finds

QB−LðMi; t�Þ ¼
X
k

q2kgk
96π

μðtfÞ½tf − ti�; ð19Þ
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were we have re-defined the chemical potential μ≡ μk=qk.
The final time tf implicitly depends on the PBH mass since
if it has decayed by this time, the charge contribution will
be zero at all preceding times. We thus have

tf ¼ Min½t�; tdecðMiÞ�; ð20Þ

where the decay time is given by tdec ¼ M3
i

3KM4
p
[see Eq. (7)].

The chemical potential μ≡ μk=qk is given by [see Eq. (8)]
[33]

μ ¼ λ

M2
p

_R

¼ λ

M2
p
3H½4ðH2Þ0 þ ðH2Þ00�

¼ 9λ

M2
p
H3½ð1þ wÞð1 − 3wÞ þ w0�; ð21Þ

where we have used that the Ricci scalar for a spatially
homogeneous and isotropic metric is given by R ¼
6Hð2H þH0Þ with primes indicating derivatives with
respect to ln a and its cosmic time derivative is
_R ¼ HR0. Furthermore, ðH2Þ0 ¼ −3½1þ wðtÞ�H2 such that
R ¼ 3H2½ð1 − 3wðtÞ�, where w denotes the equation of
state. Note that w0 is not present in Eq. (17) of Ref. [33],
where instead it was assumed that there is one dominant
component such that wðtÞ ≈ const. We remind the reader
that λ is a free coupling constant entering in the Lagrangian
of Eq. (8). We also note that our results will depend on the
specific form of this chemical potential and its resulting
evolution. This is discussed further in Appendix B.
We immediately see from Eq. (21) that during inflation,

when the inflaton is dominating the energy density
(w ¼ −1), then no asymmetric Hawking radiation is
possible. By this consideration we need not consider
baryogenesis through black hole decay before the end of
inflation. For the monochromatic case, we will assume that
the asymmetry begins to be produced at tRH, the time of
reheating, specified in terms of the reheating temperature
TRH as

tRH ¼
ffiffiffiffiffiffiffiffiffi
5

π3g⋆

s
Mp

T2
RH

; ð22Þ

where we will take TRH as a free parameter in this work.
This amounts to ti ¼ tRH in Eq. (18). For the polychromatic
case, the PBHs continue to form into radiation domination.
We take ti ¼ 10 s, which is before BBN. For the poly-
chromatic spectrum, this assumes no evaporation of PBHs
before the final massMl is created. We discuss this more in
Appendix B.
Finally, solving Eq. (18) requires the specification of the

Hubble evolution H, which in turn depends on the baryon

fraction evolution that in turn depends on nB−L in this
scenario, where baryogenesis occurs through the asym-
metric Hawking radiation mechanism. The evolution of this
fraction will not exactly scale as ∼a−3 since we have an
additional time dependence from QB−LðMi; tÞ. Since we
aim at a model that closely approximates a ΛCDM back-
ground history from some time before last scattering until
today, given CMB and late-time constraints, we simply
adopt

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0

a3
þ Ωγ;0

a4
þ ΩΛ

r
; ð23Þ

which will be retrospectively satisfied by the choice of
parameters that closely reproduce this ΛCDM cosmology.
For the energy density parameters and Hubble constant H0

we adopt the Planck 2018 best-fit values (see Table I). For
Ωγ;0 we take the total radiation fraction including massless
neutrinos, and so we get Ωγ;0 ≈ 9 × 10−5. Then, the full
evolution of wðaÞ is obtained from

wðaÞ ¼ −
2H0

3H
− 1: ð24Þ

Substituting Eqs. (23) and (24) into Eq. (21) and then
integrating Eq. (18), we find the following time dependence
for QðMi; aÞ expressed in terms of the scale factor,

Qða�Þ ∝
a3f − a3i
a3fa

3
i

; ð25Þ

which is approximately 1=a3i for times much later than the
initial time (af ≫ ai). For this limit we also require large
enough peak masses so that tf ¼ t� in Eq. (20) on average.
For the monochromatic case, we have ai ¼ aRH, which
leads to a reheating temperature dependence of the B-L
number density to be discussed next. The polychromatic
spectrum takes aiðti ¼ 10 sÞ.

2. Baryon-lepton number density

Consider the infinitesimal contribution to the baryon-
lepton number density asymmetry at some time t� given by

TABLE I. Observational constraints considered in our analysis.

Parameter Data set Mean value Assumption

H0 Planck 2018 67.32 ΛCDM
ΩCDM;0 Planck 2018 0.265 ΛCDM
Ωb;0 Planck 2018 0.049 ΛCDM
Ωγ;0 Planck 2018 9 × 10−5 ΛCDM
ΩCDM;0 BOSS DR12 0.243 Planck and BBN priors
Ωb;0 BOSS DR12 0.052 Planck and BBN priors
YB−L BBN and SM ≥5.8×10−10 see App. A 2
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dnB−LðMi; t�Þ ¼ QB−LðMi; t�ÞdnPBH; ð26Þ

where dnPBH is the infinitesimal number density contribu-
tion of black holes at t�. To see this consider a bin of PBH
masses between Mk − ΔM and Mk. The total number of
PBHs in all mass bins from M0 ¼ 0 to Mk is NðMkÞ ¼Pj¼k

j¼0ΔNj, where ΔNj ¼ NðMjÞ − NðMj − ΔMÞ is the
number of PBHs in the bin j. The total B-L charge
from all mass bins from M0 ¼ 0 to Mk is Q̂B−LðMkÞ ¼Pj¼k

j¼0QB−LðMjÞΔNj. We can also define Q̂B−LðMkÞ ¼Pj¼k
j¼0ΔQ̂B−L;j. Hence, ΔQ̂B−L;j ¼ QB−LðMjÞΔNj.

Dividing by ΔM, and taking the limit of ΔM → 0 gives
dQ̂B−L
dM ðMjÞ ¼ QB−LðMjÞ dN

dM ðMjÞ. Dividing by volume and
rewriting dQ̂B−L gives Eq. (26).
Integrating Eq. (26) yields

n̄B−Lða�Þ≡
Z

dnB−Lða�Þ

¼
Z
R
QB−LðMi; a�Þ

dN
Vi

Vi

V�

¼ Vi

V�

Z
R
QB−LðMi; a�Þ

dni
dMi

dMi

¼ ρ̄PBH;i

�
ai
a�

�
3
Z
R
QB−LðMi; a�Þ

ψðMiÞ
Mi

dMi

¼ n̄0hMii
a3�

Z
R
QB−LðMi; a�Þ

ψðMiÞ
Mi

dMi; ð27Þ

where V� is the volume of the Universe at a scale factor a�
and Vi is the volume at the time of PBH formation. Note
that if ϕðMiÞ ¼ δDðM −MiÞ, we have n̄B−Lðt�Þ ¼ nB−L as
given by Eq. (16), which reduces to the result of Ref. [33]
(see Eq. (31) of this reference).
Furthermore, note that in Eq. (27) we integrate between

Mp and Mfin, where Mfin was defined in Sec. III A.
Moreover, the initial average mass hMii is defined at the
end of reheating for the monochromatic spectrum but at
t ¼ 10 s for the polychromatic spectrum.

3. Entropy density and reheating temperature

Using Eqs. (27) and (14) we can now proceed to
determine the yield. The entropy density is given by [33]

sðt�Þ ¼
2π2

45
g⋆½Tðt�Þ�Tðt�Þ3; ð28Þ

where g⋆ is the total particle degrees of freedom, which is a
function of temperature. However in this work we take g⋆
to be constant and the initial time to be tRH, thus g⋆ ¼
106.75 (see Appendix A 1). The evolution of the entropy
density is then specified by

sðaÞ ¼ 2π2

45
g⋆TðtRHÞ3 ×

�
aRH
a

�
3

; ð29Þ

where aRH is the scale factor at the time of reheating tRH.
We can use Eq. (18) in Eq. (27) in combination with
Eq. (29) to compute the yield in Eq. (14).

C. Fractional energy density in baryons

Finally, to determine the baryonic energy density ρbaryons
in the Universe produced through the asymmetric Hawking
radiation we use Eq. (27). Since the relative amount of
antimatter in the Universe is almost zero, we can take nB−L
to represent the total number density of baryonic matter.
Then, using the constraints discussed in Appendix A 2, we
can assume that there is almost the same number of baryons
and leptons so that B ≈ −L. Making the rough assumption
that the baryons are all protons and the leptons are all
electrons and since the electron mass is negligible com-
pared to that of the proton, the total energy density for
baryonic matter is approximately

ρbaryonsðtÞ ¼
nB−LðtÞ

2
ðMproton þMelectronÞ

≈
nB−LðtÞ

2
Mproton; ð30Þ

where Melectron ¼ 511 keV and Mproton ¼ 938 MeV. Note
that we neglected the number of neutrinos that are
generated by PBH evaporation, which may actually be
significant, but this is consistent with the primary YB−L
constraint that we consider here. Importantly, adding a non-
negligible number of neutrinos would only have the
consequence of increasing the value of λ. The baryon
density fraction is then simply

Ωb ¼
ρbaryons
ρc

: ð31Þ

IV. CONFRONTATION WITH OBSERVATIONS

We shall now compare our predictions described in
Sec. III with the cosmological measurements. In particular
we will constrain the model parameters required to match
ΩPBH [Eq. (13)] to the observed fractional energy density in
CDM at early and late times as well as to reproduce the
observed values forΩb [Eq. (31)] and YB−L [Eq. (14)] using
various datasets. The free parameters we have available to
predict these observables are the peak massMpk of the mass
spectrum, the number density of PBHs today n̄0, the B-L
current coupling λ, and finally the reheating temperature
TRH. No sophisticated parameter inference analysis will be
performed here as we simply wish to conduct a proof of
concept and see if the predictions we derive may consis-
tently capture the observations in principle. We begin with
a brief discussion of the observational constraints.
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A. Observational constraints and parameter priors

For our analysis we will consider three observational
data sets, which we aim to match with our predictions.
These are summarized in Table I.
The first data set are the CMB observations by the Planck

mission [7,41], which provides a measurement of the
composition of the Universe at early times. From this we
take the constraints inferred on the CDM and baryon density
fractions, ΩCDM and Ωb, from the imprints of the acoustic
oscillations in the CMB. The second will be the late-time
measurement of the galaxy distribution from the BOSS
survey [10]. These constraints on thematter fractions assume
Planck 2018 and BBN priors and so are not completely
independent, but the results are consistent with other late-
time data sets such as from the Dark Energy Survey (DES)
weakgravitational lensing and photometric galaxy clustering
[60]. Finally, we consider an observational bound on the
baryon-lepton yield, YB−L. This is slightlymore complicated
than the matter density fractions and so we have dedicated
Appendix A 2 to its discussion. We note here, however, that
our observational constraint relies on both BBN physics and
the Standard Model (SM) of particle physics.
There are many mechanisms for PBH formation, for

example, bubble collisions [22,25,61,62] or collapse of
scalar fields [63,64]. It is usually assumed that the
formation of PBHs happened from some time during
inflation to the radiation-dominated epoch [65,66]. In
accordance with Eq. (3), we can estimate that the PBHs
formed during inflation have masses of roughly Mp
whereas those formed at the end of radiation domination
are roughly of order 1046 kg. However, many studies
[67,68] suggest that the mass of PBHs as dark matter
candidates would be bounded by a range of observational
constraints, leaving only a few narrow mass windows: the
asteroid-mass range (1013 − 1014 kg), the sublunar-mass
range (1017 − 1023 kg), and the intermediate-mass range
(1030 − 1033 kg). To explore our model, we adopt a broad
mass range of Mp ≤ M ≤ 1036 kg, which is the prior we
place on the peak mass Mpk and also the range over which
we perform the integrals in Eqs. (10) and (27).
Besides the prior on Mpk, we also consider priors on the

other free parameters of our framework. We have no strong
constraints on the number density of PBHs, except that we
want it to be much larger than the number density of black
holes formed from stellar collapse, which could not account
for all CDM and in which case also the approximation of a
fixed number of black holes we made would break down
(see Appendix B). Furthermore, at the time of recombina-
tion we do not want the number density to be anywhere
close to the maximal packing limit, represented by a
volume fraction of ≈0.74, a result of Carl F. Gauss in
1831. This should not be of concern, however, as otherwise
any dark matter model would fail. Nevertheless, we shall
briefly inspect this constraint,

�
VPBH

V tot

�
CMB

¼ n̄CMB
4

3
πr3þ

¼ n̄CMB
32

3
πhMðaCMBÞi3

≪ 0.74; ð32Þ

where CMB denotes the time of last scattering. This
translates to n̄CMB≪5×1043m−3 assuming Schwarzschild
black holes with masses equal to the average mass
hMðtCMBÞi and a monochromatic mass spectrum with peak
mass of Mpk ¼ 1012 kg.
Finally, the reheating temperature is constrained to

10−4 GeV ≤ TRH ≤ 1012 GeV, considering that reheating
needs to occur after the end of inflation, defining the
maximum temperature, and before the BBN, defining the
minimum temperature [see Eq. (22)] [69,70].
Note that we take no prior on the coupling λ. In principle

this can take any value. One can also consider large values
of λ as an instability of the model in the context of
cosmology, as discussed in Refs. [71,72]. One can generate
a chemical potential through other means [34], but more
fundamentally, instabilities may simply signal the need for
a full quantum gravity theory. We refer the reader to
Ref. [33] for a discussion of why λ may particularly
assume arbitrarily large values. It is also interesting to
notice that λ is degenerate withH3 as it appears in Eq. (21).
So if asymmetry is created early enough λ can be small
since H3 will be large. Additionally, λ is in fact relevant
only before BBN and we can suppress this large coupling
either by considering that λ is time-dependent or that
unknown quantum gravity related Lagrangian terms may
appear and become important at late times.

B. Results

We can now turn to investigate the capacity of our setup
to reproduce the desired ΛCDM density fractions at the
last-scattering surface and today. To do this, we begin by
selecting a peak mass for the mass spectrum [see Eq. (2)].
Once chosen, we then tune the number density of PBHs in
Eq. (13) to match the Planck 2018 measurement ofΩCDM at
the time of recombination. In the top panel of Fig. 3 we
show ΩPBH as a function of the scale factor for the
monochromatic spectrum. We find that although we can
always match ΩCDM at the time of recombination, ΩPBH

will vanish by today unlessMpeak ≥ 1012 kg. This is due to
the evaporation of the PBHs and the consequent vanishing
average mass. In contrast, for the polychromatic case, we
can recover the correct evolution for all choices of peak
masses. Here, the evolution of the average mass with time is
negligible after some very early epoch, and the correct a−3

evolution is produced post recombination.
Furthermore, we find that for a peak mass of 1012 kg, the

monochromatic spectrum requires a current number density
of n̄0 ∼ 10−39 m−3 whereas the polychromatic spectrum,
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which has a naturally larger average mass, requires
n̄0 ∼ ×10−51 m−3. We show the number density required
to match ΩCDM;CMB as a function of peak mass for the
monochromatic spectrum in the top panel of Fig. 4. We see
for Mpk ≤ 1034 kg that we are well below the prior bounds
on the number density at time of recombination discussed
in Sec. IVA. The density fraction today, ΩPBH;0 as a
function of peak mass, fixing n̄0 to match ΩCDMðaCMBÞ,
is shown in the bottom panel of Fig. 4. This also shows that
for all Mpk > 1012 kg we can recover the correct CDM
density today. Note that for the approximation we use in
Eq. (23) to be valid, we require peak masses to be around
this bound or larger so that the expansion history is
correctly represented by ΛCDM, but also so that the
entropy density s and the PBH number density nPBH have
the same time evolution, needed in Eq. (16).
Once we have fixed Mpk and n̄0, the next parameter to

inspect is the reheating temperature TRH. This parameter
dictates when we begin integrating the charge in Eq. (18)
for the monochromatic case. A higher reheating temper-
ature implies an earlier time and so we have more time to
generate the required amount of baryonic matter before
recombination. Here we set TRH ¼ 108 GeV which is well

above the BBN temperature of 4 MeV and below the
temperature at the end of inflation of ∼1012 GeV. However,
irrespective of what value this takes, there is a direct
degeneracy with λ (see Eqs. (25) and (21) where ai ¼ aRH).
Once we have fixed the reheating temperature, the value of
λ is uniquely determined if we wish to match the mean
value of Planck 2018 for Ωb;CMB. We show the evolution of
Ωb for various choices of peak masses in the bottom panel
of Fig. 3 for the monochromatic case.
Let us make a few remarks here. Firstly, note that λ must

assume exceedingly high values to match the observed
baryon density. It increases with Mpk since for larger peak
masses we have a lower number of PBHs and hence less
total evaporation. We show its dependence with peak mass
in the upper panel of Fig. 5 for the monochromatic
spectrum. It also naturally decreases with increasing TRH
since a larger reheating temperature gives more time to
produce baryons and so the coupling does not need to be as
strong. Finally, we find that the evolution ofΩb goes almost
exactly as a−3 independently of peak mass or reheating
temperature. This can be seen from Eq. (27). Apart from the
scaling with a−3 we have a time dependence in the charge

FIG. 3. Fractional energy densities for PBHs [top panel,
Eq. (13)] and for baryons [bottom panel, Eq. (31)] for ψmono
with various choices of peak masses. We tune n̄0 and λ to match
the Planck 2018 ΛCDM mean values for ΩCDM and Ωb at the
time of recombination, aCMB ¼ 9 × 10−4, marked as a vertical
dotted line. The ΛCDM predictions for ΩCDM and Ωb are
given by dashed black lines. The horizontal gray dotted lines
indicate the observed proportions of total matter in the CDM and
baryon fractions. The reheating temperature is taken to be
TRH ¼ 108 GeV.

FIG. 4. The top panel shows the number density of PBHs at the
time of recombination nPBH;acmb as a function of peak mass Mpk.
The dotted line represents the geometrically maximally allowed
number density for the mass spectrum at the time of recombi-
nation. The bottom panel shows the fractional energy density
predicted for PBHs with ψmono at present day, ΩPBH;0, using
Eq. (13), as a function of peak massMpk. We tune n̄PBH;0 to match
theΛCDM prediction forΩCDM at the time of recombination as in
Fig. 3. The dashed line represents the fractional energy density of
CDM at present day according to Planck 2018.
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QðMi; a�Þ given by Eq. (25). However, this is just a
constant for times sufficiently past the end of reheating.
In contrast, for the polychromatic case, we have no

dependence on the reheating temperature in Ωb since the
PBHs are produced in the radiation-dominated epoch. In
this case, we require much higher values of λ to match the
observations despite having a larger average mass for
the same peak mass. This is because we begin producing
the asymmetry at later times than in the monochromatic
case. For reference, for a peak mass ofMpeak ¼ 1012 kg we
need λ ∼ 1099 and λ ∼ 10134 for the monochromatic and
polychromatic cases respectively.
Having fixed all free parameters we are left with a unique

determination of the yield. This is found to be YB−L ¼
5.6 × 10−11 at the time of BBN and for later times, both for
the monochromatic and polychromatic spectra. This is an
order of magnitude less than the lower bound we derive in
Appendix A 2, YB−L ≥ 5.8 × 10−10. We show the evolution
of the yield YB−L in the bottom panel of Fig. 5 for the
monochromatic case. The yield is dependent on nB−L
and the entropy density s. The a−3 dependence of each
of these quantities cancel and we get a quantity that goes as

ðTRH × aRHÞ−3 and has an evolution specified by Eq. (25),
making it constant for times following reheating.
Let us make a few further remarks here. To change the

prediction for YB−L we must change the entropy density
since nB−L is fixed to obtain the correct Ωb given by
CMB observations. To do this, the background evolution
becomes important. Changing the background at early
times can be achieved by considering, for example, an
early matter-dominated phase or a scenario where reheating
is caused by the PBHs. On the other hand, if we consider
loop corrections to the running of gauge coupling con-
stants, changing w in radiation domination, will give us a
non-vanishing chemical potential even during radiation
domination [73], but will not significantly help increase
the yield.
Expanding on this, the quantity TRH × aRH in the

entropy density s [see Eq. (29)] turns out to be a constant
since at early enough times we are radiation dominated and
so t ∝ a2. Then by Eq. (22) we get TRH ∝ a−1RH. This makes
the yield sensitive to the radiation density. A different
density fraction of radiation at early times from that naïvely
extrapolated from the recombination backwards with a−4 in
our approximation will change the scale factor of reheating
aRH in Eq. (29) and hence the yield. Note that it is clear that
the a−4 dependence ceases to hold when nonrelativistic
particles become relativistic at high temperatures. To
investigate this dependency we vary the fractional energy
density of radiation Ωγ;0 in Eq. (23) as an effective
parameter Ωγ;eff. This variation will mainly affect the total
energy density in the radiation epoch. Tuning Ωγ;eff then
implies an effective correction to the a−4 extrapolation. We
only wish to see the effects on the entropy density shortly
after reheating (see bottom panel of Fig. 5). We show this
dependency in Fig. 6. For an excess radiation density, and
so more radiation in the early Universe than naïvely
extrapolated from recombination we obtain a decrease of
the predicted yield. If on the other hand we have less
radiation in the early Universe than extrapolated from
recombination we find an increase in the predicted yield.
This effect could potentially reconcile the model with the
observed yield. In particular, wewould require∼95% of the
observed radiation density to be produced at some point
during or after reheating. One possible scenario is that the
decaying PBHs themselves produce this radiation, which is
also what one would expect if PBHs were to be responsible
for reheating [33].
More generally, a ΛCDM expansion will not be valid

at very early times, where matter couplings and even
the inflaton become relevant. We refer the reader to
Appendix B for a discussion on the various assumptions
we have made and their impact on the results. An in-depth
analysis of these effects on the prediction of the yield is,
however, beyond the scope of this initial proof-of-
concept paper.

FIG. 5. The top panel shows the coupling constant λ required to
match predictions for Ωb to the observed fractional energy
density of baryonic matter at the time of recombination as a
function of the peak massMpk of ψmono. The bottom panel shows
the baryon-lepton yield YB−L as a function of the scale factor a for
a reheating temperature in accordance with Eq. (14). The dotted
vertical line corresponds to the scale factor at reheating time aRH
and the dashed horizontal line corresponds to the predicted yield
at present day. The reheating temperature is taken to be
TRH ¼ 108 GeV.
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V. CONCLUSIONS

We have investigated the potential of primordial black
holes (PBHs) of distributed masses to match the observed
cold dark matter (CDM) abundance at early and late times,
while also explaining the observed baryon-antibaryon
asymmetry and baryon abundance through an asymmetric
Hawking radiation mechanism.
We find that our predictions for the PBH and baryon

density fractions can be made consistent with the CDM and
baryon fractions inferred from Planck 2018 measurements
of the CMB and from late-time measurements of the large-
scale structure with BOSS. Furthermore, we find that a
simplified prediction for the amount of matter-antimatter
asymmetry, characterized by the effective baryon-lepton
yield, can also be made consistent with observations
coming from big bang nucleosynthesis to within one order
of magnitude. These results hold for both narrow (mono-
chromatic) and broad (polychromatic) mass distributions of
PBH. We argued furthermore that the exact observed value
of the baryon-lepton yield can in principle be recovered in a
scenario where a significant amount of the radiation at early
times is produced by the PBH decay during or after
reheating, which would be what is expected if the decaying
PBHs were also to be responsible for reheating.
Matching the ΛCDM evolution requires large peak

masses (Mpk ≥ 1012 kg) for the monochromatic mass
spectrum, which then implies very large coupling constants
to generate the required baryon density fractions. This is
because massive PBHs generate less Hawking radiation.
The mechanism producing the nonvanishing baryon num-
ber is subject to quantum gravity corrections and so it is
difficult to make any comments on the physicality of the

magnitude of the coupling. For the polychromatic spec-
trum, we can recover a ΛCDM evolution for all peak
masses since there is always a population of PBHs that
has not evaporated. By tuning the coupling constant
and number density of PBHs, we can recover the correct
observed values for the fractional matter densities.
Polychromatic spectra that satisfy current observational
bounds on the PBH mass range, and can produce the total
fraction of dark matter, can be generated through a number
of mechanisms [49–51]. We expect our results to be
insensitive to the exact form of the mass spectrum, although
different choices will generate different values of λ.
Finally, we also find that the required coupling to the

B-L current, λ, needs to be OðλÞ ∼ 10100. This means the
effective scale in Eq. (8) is OðM�Þ ∼ 10−50=Mp which
would require a coupling of extra degrees of freedom to
gravity in the early universe to allow standard model
particles to be in equilibrium. This would require not only
new degrees of freedom but also a high degree of tuning.
This issue can be potentially avoided if we consider the
asymmetry to be generated early enough, whenH becomes
very large, or, if there is a running of the coupling. Such fine
tuning problems are also not new to cosmology, with the
biggest fine tuning problem in physics being the cosmo-
logical constant. We leave this issue to future investigation.
In future work, we aim to extend our framework to

include a more accurate modeling of the background
expansion deeper into the early Universe. This will provide
a more accurate computation of the yield and also allow us
to explore the effects of an early matter-dominated phase
following inflation on this computation. Furthermore, we
will also examine the ability of PBHs to fuel reheating
which was already considered in Ref. [33], albeit for a
single PBH mass population.
All calculations included in this work were made using

the c++ code made publicly available at https://github.com/
nebblu/PBH.
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APPENDIX A: FURTHER DETAILS

For completeness we shall now provide further details of
our computations in Secs. II–IV, specifically the effective

FIG. 6. Baryon-lepton yield YB−L as a function of the ratio
between the effective fractional radiation energy density extrapo-
lated from early to present timesΩγ;eff and the observed fractional
radiation energy density today Ωγ;0. If a significant amount of the
radiation is produced by the decay of PBHs, Ωγ;eff ≪ Ωγ;0, as
would for instance be expected if the decaying PBHs were to
cause reheating, the model can reproduce the observed yield. The
dotted and dashed lines are observational bounds for different
assumptions (Appendix A 2). The reheating temperature is taken
to be TRH ¼ 108 GeV.
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degrees freedom used (Sec. A 1) and the observational
constraints considered on the yield (Sec. A 2).

1. Effective degrees of freedom

We have made use of the total number of relativistic
degrees of freedom in our Universe in our computations of
Secs. II–IV such as for the decay of black holes, the baryon-
lepton charge, or the entropy density. We provide a brief
inspection of this quantity here. We shall first take into
account the particle degeneracies only, in which case one
findsX
i

giq2i ¼
X

B−L charged particles

giq2i

¼
�X

quarks

þ
X

charged leptons

þ
X

neutrinos

�
giq2i

¼ 36 ×

�
1

3

�
2

þ 6 × 12 þ 3 × 12

¼ 4þ 6þ 3

¼ 13: ðA1Þ

Taking into account both particle and antiparticle degen-
eracies (see Table II), one finds

g⋆ ¼ 7

8

X
fermions

gi þ
X
bosons

gi

¼ 7

8
ð72þ 12þ 6Þ þ ð16þ 2þ 9þ 1Þ

¼ 106.75: ðA2Þ

These two quantities change over time, but only the second
one, the effective SM number, has an impact on our
computation of the yield YB−L because of the dependence
of the entropy on it. The number varies significantly
between the early Universe and the present. To effectively
model the impact of this change, we have introduced the
parameter Ωγ;eff in Sec. IV. However, we have left a more
accurate computation of this effect to future work as it is
complexly intertwined with the amount of relativistic
radiation emitted by the decay of the PBHs, which requires
a more sophisticated computation and lies beyond the
scope of our current work.

2. Observational constraints on the yield

In Fig. 6 we have compared our predicted yield against
cosmological constraints. In the following we shall briefly
specify the origin of these constraints. First, BBN bounds
and CMB observations imply that the baryon number
asymmetry should lie in the range of 5.8 × 10−10 ≤ B ≤
6.5 × 10−10 (95% C.L.) [58,75,76]. The SM assumes a
lepton number asymmetry of the same order as the baryon

number asymmetry, and we will limit ourselves to this case
here, thus L ≈ −B. The baryon-lepton yield is then con-
strained to lie in the range of

1.0 × 10−9 ≤ YB−L ¼ B − L ≤ 1.5 × 10−9; ðA3Þ

admitting a possible small difference between the value of
L and the value of B.
However it is important to keep in mind that the SM has

gaps and that it is not impossible, especially with future
advances in neutrino physics, that other scenarios which
produce a different asymmetry will become predominant
[77–79]. Depending on the model, YL will either be smaller
than YB, even negligible some times, or higher than YB. The
only model independent bound is

YB−L ≥ 5.8 × 10−10: ðA4Þ

In Fig. 6, we have considered Eq. (A3) as our main
constraint on YB−L and Eq. (A4) as a secondary bound.
Interesting scenarios therefore are ones that respect at least
one of the two constraints.
A further restriction one may impose is that the majority

of the asymmetry allocated to the baryons must be present
before the BBN process occurs if we want our predictions
to be consistent with the abundances observed today. The
yield should therefore not change significantly between
BBN and recombination and even less between recombi-
nation and the present day [76,80]. But it is important to
note that this constraint supposes that all the baryonic
matter is already present at BBN, which is not necessarily
the case for the models studied here. Taking into account
the possible changes in BBN is a complex task and for a
first proof-of-concept study we only took into account
CMB constraints, deferring BBN bounds to a later analysis.

APPENDIX B: ASSUMPTIONS
AND EXTENSIONS

Finally, in the following, we shall provide a summary of
the various assumptions we have made and their expected
impact on the final calculations presented in Sec. III.

TABLE II. Summary of Standard Model particle degeneracies
with antiparticles at high temperatures T ≥ 100 GeV at early
times. For more details, we refer to Table 1 of Ref. [74].

Particles Total degeneracies

Quarks 72
Charged leptons 12
Neutrinos 6
Gluons 16
Photons 2
Massive gauge bosons 9
Higgs bosons 1
All elementary particles 118
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We will also discuss extensions of our framework to be
considered for future work.

1. Stellar collapse, mergers, and accretion

We have assumed that the total number of black holes
formed remains constant since the early Universe and that
new black holes formed at late times do not provide a
significant contribution. We expect this to be a very good
approximation as the abundance of PBHs considered is
such that it constitutes all of the dark matter. The relative
contribution of conventionally formed black holes at late
times is therefore of the same magnitude as for usual dark
matter models and can thus safely be neglected. More
specifically, taking a constant number of PBHs allows us to
fix the distribution of initial masses given by Eq. (1). This is
in principle not exact as black holes will have formed due to
stellar collapse, mergers, and matter accretion producing a
larger number of black holes and extending the mass range
considered here (Mp ≤ M ≤ 1036 kg). Note that stellar-
mass black holes are unable to account for a significant
amount of CDM due to the low number density and mass
ranges and so can be neglected. The effect of accretion will
work to boost the average mass at late times by broadening
the mass spectrum [81]. This may allow us to assume
smaller peak masses (depending on the specifics of the
accretion), and so act to boost baryogenesis at early times.
We aim to consider this in a future work. Mergers on the
other hand will sharpen the spectrum and move the peak
toward higher masses. The number of mergers is expected
to be negligible due to the low number density at recombi-
nation [82].

2. Effect of PBH remnants

We have assumed that black holes completely decay
through Hawking radiation, leaving no stable remnants
behind. We have checked that the impact of stopping decay
once the PBHs reach the Planck mass and find that this only
slightly affects the values of n̄0 for both the monochromatic
and polychromatic mass spectrum.

3. Background expansion

In Ref. [33] the authors take the evolution of the
Universe as being divided into fully separated epochs, in
which a single energy density component dominates, and
so w ≈ constant. This is a rough approximation, which we
only partially improve by our adoption of the ΛCDM
background expansion. A more accurate treatment would
require solving the set of coupled differential equations

Q0
B−L ¼ −λ̄H2½ð1þ wÞð1 − 3wÞ þ w0�; ðB1Þ

H0 ¼ H0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩPBHðaÞ þ ΩbðaÞ þ

Ωγ;0

a4
þΩϕ

r �0
; ðB2Þ

where Ωϕ is the inflaton fractional energy density and the
dark energy contribution toH can be ignored at early times.
We have defined here λ̄≡ 9λ

P
i q

2
i gi=ð96πM2

pÞ. The PBH
energy density evolution is specified by Eq. (13) while the
baryon energy density is given by Eq. (30). The first set of
initial conditions can be taken as Hi ¼ Hinf ¼ 1014 GeV
[83], QB−L;i ¼ 0 (due to inflaton domination). The initial
derivatives can be derived assuming that after inflation we
are dominated by the inflaton (ϕ), PBHs, and radiation.
This then depends on the free parameter n̄0 through
Eq. (13). We write the explicit set of initial conditions as
fHi;QB−L;ig ¼ f1014; 0g and

Q0
B−L;i ¼ −λ̄H2

i ½ð1þ wiÞð1 − 3wiÞ þ w0jHi
�; ðB3Þ

H0
i ¼ H0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩPBHðn̄0Þ þ Ωϕ þΩγ

q �0
: ðB4Þ

The initial time is just given by ti ¼ 2
3
Hi. Note that we do

not expect this approach to change our results significantly
since we require large peak masses to match observations,
and so the evolution of PBHs is very close to that of CDM.
Importantly, this computation still neglects the change in
the radiation density at early times when matter species
become relativistic. Increasing the radiation density will
increase the scale factor at which reheating ends for the
same temperature [see Eq. (22)] and at which we begin
producing baryons. Thus, more radiation reduces the yield
whereas less radiation will increase it. On the other hand, an
increase in the Hubble constant,H0, will act to increase the
yield, albeit marginally within the uncertainty given by
Planck 2018.
Another interesting point is that if we wish to extend the

mechanism back to before reheating, one should also
consider contributions from other fields and their associ-
ated couplings in the Hubble rate. A ΛCDM expansion
clearly breaks down for early times. One consequence may
be the lowering of the value of the coupling λ since it is
directly degenerate with H3 [see Eq. (21)].

4. Chemical potential

We note that the form of the chemical potential in
Eq. (21) and its evolution will also affect when and how
much asymmetry and baryons are produced as well as their
time dependence [see Eq. (25)]. For example, in Ref. [34],
the authors consider a chemical potential generated from
the PBH evolution rather than from the expansion of the
Universe, which has a significantly different form and time
dependence. An interesting generalization of our work
would be to use a parametrization of the chemical potential
that can represent a broader range of generation processes.
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5. Initial matter domination phase

Another important consideration is the presence of a
pre-BBN matter dominated epoch, a situation common to
low-energy limits of supergravity or M-theory compacti-
fications (see for example Ref. [84]). Such an era would
trigger asymmetric radiation (see Eq. (21) with w ¼ 0) and
boost the value for the B-L yield we obtain in Sec. III. This
would involve a transition to a more complicated back-
ground expansion at early times with couplings between
massive scalar particles, SM particles, and the inflaton [85].
These complications are beyond the scope of this prelimi-
nary study and hence we leave such an analysis to future
work. Considering this additional matter domination phase
allows to add a dependence on the reheating temperature in
the entropy definition. Indeed, s1=3 ∝ TRH × aRH at a given
time and using a ΛCDM background we obtain that s1=3 ∝
constant as discussed in Sec. III. With the matter domina-
tion phase before reheating we can expect the reheating to
occur during the corresponding matter-radiation equality
which will change the Hubble parameter at reheating time
and allow s1=3 ≠ constant.

6. Reheating from PBHs

One can also consider the decay of PBHs as the source of
reheating [33]. In this case, one would want to have

n̄ihMðtRHÞi ¼
π2

30
g⋆T4

RH; ðB5Þ

where tRH ¼
ffiffiffiffiffiffiffi
5

π3g⋆

q
Mp

T2
RH

and MðtÞ represents the mass lost

by a PBH since ti. We can solve this for TRH, or tRH, and
make sure that reheating happens well before recombina-
tion. We aim to investigate this in a future work. As
discussed in Sec. IV such a process may furthermore
increase the baryon-lepton yield to an observationally
compatible level.

7. Dependence on the maximum mass

Finally, in this work we have fixed a maximum mass of
Mmax ¼ 1036 kg, or correspondingly the longest wave
mode to reenter the horizon, in calculating various quan-
tities in Secs. II–IV (e.g., Eq. (10) for the average PBH
mass), which assumes that PBHs can be created up to the
end of reheating. Reheating can at most last until just before
BBN [45]. This is particularly relevant for the polychro-
matic spectrum [23] for which we can continue to produce
black holes into the radiation dominated epoch (t > 10 s).
For the monochromatic spectrum we assume that the
spectrum is fixed at the end of inflation, which is incon-
sistent with the further formation of PBHs. In effect, this
results in a different maximum mass when integrating
Eq. (10). Despite this, our results are currently insensitive to
this choice of Mmax as long as it is not close to the peak
mass which is the case in this work. The choice of Mmax is
also perfectly degenerate with n̄0 for ΩPBH for which we
have no lower bound, and similaly with λ for Ωb, upon
which we place no priors. In future work, the choice of
reheating temperature should be related to this maximum
mass since it roughly governs the latest time at which PBHs
can form.

8. Dependence on exact form of mass spectrum

We have adopted a specific form for the polychromatic
spectrum used in this work but find that our observable
predictions depend solely on the average mass and the
coupling constant λ. These two turn out to have a strong
degeneracy. Because of this, our results are expected to be
insensitive to the exact form of the mass spectrum as long
as the average mass approaches a constant at late times. For
very broad spectra this is generally true. This allows the
consideration of attractive spectra that can thus far avoid
observational constraints on the fraction of dark matter
that PBHs can constitute, for example those described in
Refs. [49–51].
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