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Yuuki Sugiyama®"
Department of Physics, Graduate School of Science, Hiroshima University,
Higashi-Hiroshima 739-8526, Japan
and Department of Physics, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan

Kazuhiro Yamamoto
Department of Physics, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan

Tsutomu Kob.alyashii
Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan

® (Received 7 January 2021; accepted 8 March 2021; published 7 April 2021)

We derive the solutions of gravitational waves in the future (F) expanding and past (P) shrinking Kasner
spacetimes, as well as in the left (L) and right (R) Rindler wedges in the Regge-Wheeler gauge. The
solutions for all metric components are obtained in an analytic form in each region. We identify the master
variables, which are equivalent to massless scalar fields, to describe the gravitational degrees of freedom for
the odd-parity and even-parity modes under the transformation in the two-dimensional plane-symmetric
space. Then, the master variables are quantized, and we develop the quantum field theory of the
gravitational waves in the F, P, L, and R regions. We demonstrate that the mode functions of the quantized
gravitational waves in the left and right Rindler wedges are obtained by an analytic continuation of the left-
moving and right-moving wave modes in Kasner spacetime. On the basis of these analyses, we discuss the
Unruh effect of the quantized gravitational waves for an observer in a uniformly accelerated motion in
Minkowski spacetime in an explicit manner for the first time.
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I. INTRODUCTION

Gravitational waves (GWs), predicted in general rela-
tivity, were directly detected by Advanced LIGO in 2015 for
the first time. The firstevent, GW 150914, is thought to come
from a merger of binary black holes [1]. Gravitational waves
are useful not only for testing general relativity itself, but
also for exploring black hole physics. The detection of
gravitational waves from a coalescence of a neutron star
binary has enhanced their importance as astrophysical tools.
Electromagnetic counterparts of gravitational-wave events
such as neutron star merger events have been explored at
various wavelengths, i.e., optical waves, infrared waves, x
rays, and y rays (see, e.g., Ref. [2]). The role of gravitational
waves in cosmology is also important for exploring the
primordial Universe. Primordial gravitational waves can be
generated in an inflationary era from vacuum fluctuations,
which might be detected in polarization anisotropies in the
cosmic microwave background as a smoking gun of infla-
tion, although they have not been detected [3].
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The standard model of inflation yields a homogeneous
and isotropic Universe satisfying the cosmological princi-
ple. Observations show that the Universe on very large
scales appears to be consistent with the cosmological
principle. However, some authors claim that the cosmic
microwave background radiation shows anomalous fea-
tures on large scales, such as hemispherical power asym-
metry and dipole modulation [4,5].

Models of inflation that may explain the large-scale
anomalies have been proposed. For example, in Refs. [6,7]
the authors proposed anisotropic inflation during which a
U(1) gauge field plays an important role in producing
anisotropic expansion. They also investigated the cosmo-
logical perturbations in the anisotropic inflation models.
Various anisotropic inflation models have been proposed so
far, and cosmological perturbations have been found to be
useful for characterizing the features of each anisotropic
inflation model in terms of, e.g., the matter power spectrum
and non-Gaussian features (see Refs. [8,9]).

Many authors have investigated the behavior of gravi-
tational waves in a universe that breaks spatial homogeneity
or spatial isotropy [10-13]. Cho and Speliotopoulos inves-
tigated the propagation of gravitational waves in a Bianchi
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type-I (B-I) universe [14]. The authors of Refs. [15,16]
investigated the primordial gravitational waves from a
preinflationary era in a B-I universe. Gravitational waves
in a universe that breaks the cosmological principle are not
trivial. For example, scalar, vector, and tensor modes do not
decouple. The evolution of metric perturbations is not easy
to solve in an analytic manner, and therefore numerical
approaches or an approximation of small anisotropy are
often taken.

In order to explore gravitational waves in an anisotropic
universe or noninertial space, we focus on gravitational
waves in the future expanding and past shrinking Kasner
spacetimes as well as those in the left and right Rindler
wedges. Kasner spacetime is a special case of a B-I
universe, which is one of the simplest models of an
anisotropic universe [17]. The Rindler metric is a patch
of Minkowski spacetime described by the coordinates of
uniformly accelerating observers. Minkowski spacetime is
covered by the future (F) expanding and past (P) shrinking
Kasner spacetimes and the left (L) and right (R) Rindler
wedges (see Fig. 1). One of the aims of the present paper is
to investigate the quantum aspects of gravitational waves in
Kasner spacetimes and Rindler wedges including the
Unruh effect.

Hawking radiation is a well-known prediction of quan-
tum field theory in a black hole spacetime [18]. The Unruh
effect predicts that a uniformly accelerating observer in
Minkowski spacetime sees the vacuum state for an inertial
observer as a thermally excited state with temperature
a/2n, where a is the acceleration [19]. The Unruh effect is
an analogy of Hawking radiation through the equivalence

FIG. 1. Four regions of Minkowski spacetime and correspond-
ing coordinates.

principle, which is described on the basis of quantum field
theory in Rindler wedges. The Unruh effect is explained by
the fact that the Minkowski vacuum state is expressed as an
entangled state between the left and right Rindler wedges
when it is constructed on the Rindler vacuum. This is
well known for the case of a scalar field and a Dirac field
[20-22]. In the present paper, we investigate the vacuum
structure of gravitational waves in Minkowski spacetime
by finding the explicit expression of the solution of the
tensor modes in the F, P, R, and L regions, which is a
generalization of the works on a scalar field and a Dirac
field to gravitational waves. Our result presents a formu-
lation of the Unruh effect of gravitational waves in an
explicit manner for the first time, as far as we know. This is
achieved by extensively using the Regge-Wheeler gauge
which is often used in a spherically symmetric spacetime
[23] for a plane-symmetric spacetime.

The present paper is organized as follows. In Sec. II, we
first derive the action for the master variables of the
gravitational waves in the F, P, R, and L regions using the
Regge-Wheeler gauge for the odd modes and even modes,
respectively [23]. The resultant action for the master
variables is found to be equivalent to that of a massless
scalar field, which is quantized in Sec. III. Then, we discuss
the Bogoliubov transformation for two different sets of the
solutions, and we show that the solutions in Kasner space-
times (F and P regions) are analytically continued to the left
and right Rindler wedges (L and R regions). In Sec. IV, we
demonstrate the analytic continuations of the metric com-
ponents of the F and P regions to those of the L. and R
regions. Then, we demonstrate that the Minkowski vacuum
state is described as an entangled state between the two
modes described in the whole region of the Minkowski
spacetime, which leads to a description of the Unruh effect of
the gravitational waves. In Sec. V, we demonstrate the
calculation of the expectation values of the energy density of
the vacuum fluctuations of the gravitational waves associ-
ated with the Rindler vacuum state. Section VIis devoted to
summary and conclusions. In Appendix A, we briefly
review the positive-mode frequency function of the
Minkowski vacuum state in the F region. In Appendix B,
we summarize the results of Sec. IV, i.e., the analytic
continuation property of the metric perturbation of the
gravitational waves in the F, P, R, and L regions in the
Regge-Wheeler gauge. In Appendix C, we present some
details of the calculation in Sec. V. Throughout the present
paper, we use the natural units ¢ = h = kg = 1.

II. CLASSICAL SOLUTIONS OF GWs
IN RINDLER AND KASNER SPACETIME

A. GWs in future expanding Kasner spacetime
(F region)

We start with deriving the solution of GWs in the future
expanding Kasner spacetime (the F region) by using the
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Regge-Wheeler gauge. The line element of the F region is
given by

ds* = e*(—dn* + d¢?) + dy* + dz* = gh,dxdx*, (1)

where —co <7 < 00, —0 < { < 00, and a is a constant.
The Kasner coordinates of the F region are related to the
global coordinates of Minkowski spacetime as

1 1
t =—e%coshal, x = —e%gsinhal, (2)
a a

as shown in Fig. 1. The metric perturbations h/fy are
defined by

Following Ref. [23], we write

hf, = 0,hf + €0y, (4)
hllva = aah{: + €uhab F9 (5)
hgb = hFéah + 8aahh§ + €C<a3;,)8" F, (6)

where a, b, and ¢ stand for 2 or 3, and ¢, is the completely
antisymmetric  tensor: €, = €33 =0, €3 =1= —€3.
Therefore, the metric perturbations are written using the
ten functions (hly, hi,, AL\, bl hE xF Wt BE RE yF).
With respect to the parity transformation in the y-z plane,
these metric perturbations can be classified into the odd
modes described by (yF,y’,yF) and the even modes
described by (h,, kb, bty hE, hE " RY).

Let us consider the gauge transformation generated by
the infinitesimal transformation generator

K, = K5% 4 Koven, (7)
with
0 on
k=1 o |, k=] s | (8)
€ay0"A 0,0x

where K% and K¢ are the generators of the gauge
transformation for the odd and even modes, respectively.
Using this gauge freedom, we take the Regge-Wheeler
gauge in which hfl =hl =hf =y =0. The metric
perturbations are then described by the six functions
(hbo- By hiy h" " ")

ho hoy O ="
WE — hgy hi, ot 0w’ 9)
S R AV N |
-t —owt 0 ht

Let us now derive the quadratic Lagrangians for the
master variables for odd- and even-parity perturbations.
Although we focus on the F region, the derivation can be
extended straightforwardly to the P, R, and L regions.

1. Odd-parity perturbations

Around the future expanding Kasner metric we expand
the Einstein-Hilbert Lagrangian, \/—gR/2, to second order
in metric perturbations. Performing integration by parts, we
obtain

1
82G LM = Ze_za” (009" )* =2(0. 02" )(0.0,w")
1 1
+ (000" )= (01w ) + 7 (02 (10)

By introducing the auxiliary field ¢*, the above Lagrangian
can be written equivalently as

l

4
1 2, F\2 1 2 ., F\2

— (PP + () (11)

8aG LY =—[—e*(D ¢ )* 420, " (0, 0w" =1 0cx™))]

Indeed, from the Euler-Lagrange equation for ¢* one has
¢ = e (O’ —0x"), (12)

using which one can remove ¢ from Eq. (11) to reproduce
the original Lagrangian (10).
Now, the Euler-Lagrange equations for w’ and y*
derived from Eq. (11) read, respectively,
Ry’ =007,  Pp" = 09" (13)
Substituting these constraint equations back into Eq. (11),

we arrive at the quadratic Lagrangian for the dynamical
variable ¢F,

82G Lo — i (0,07) — (B 47 — (9,47 )].  (14)

where we defined (9,¢")* = (0,¢")* + (0,¢")* [and
similarly for (0, h*)? below]. Thus, the odd-parity sector
is found to be governed by the single master variable ¢’
The metric perturbations in the Regge-Wheeler gauge,
w! and yf, are determined in terms of ¢ through the
constraint equations (13).
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2. Even-parity perturbations

We also expand the Einstein-Hilbert Lagrangian to second order in even-parity perturbations to get

1 1 1
8rG L = — 1 (0,h")* + 56_2‘"7/’1{18,%}1[: + ae 2 hf 0.hF — e72Mh 0,0, h" + 1 e21(9 | hl)?

1 1
+ 3 OLhIOLRE + 2 (OchT)? - g ¢=2a1F, 0, hF

1 1 1
+ hio (Z e=23 hf| + 1 o1 h" + 3 e 2MIZh" — ge—2“'78,7h" > ; (15)

where we performed integration by parts and omitted total
derivatives. From the Euler-Lagrange equations for Ak,
hf,, and hf,, we obtain the following constraint equations:

A hly = -2 MR hE + 2a0,h" - 20", (16)
82lh(1):1 = —2(8,7841’117 - aaghF), (17)
0% hly = >3 hF + 2a0,h" - 20207, (18)

These equations can be used to eliminate A%, Al , and hf,
from the Lagrangian. After integration by parts, we end
up with the quadratic Lagrangian for the single master
variable hf,

1

81G LY = —[(9,h")? = (9,h")? = 21(9, hF)?],  (19)

B~

which has essentially the same form as Eq. (14). The other
components of the even-parity metric perturbations are
determined through the constraint equations (16)—(18).

Thus, the quadratic action for the gravitational waves is
obtained from the Einstein-Hilbert action and can be
written in terms of the two decoupled master variables
as S@ = Sg(o) + 55@,

1
Si;(o) = %/dndé'dydz

< [(0y7) = (0" — (0,147 )], (20)

1
Foo_
Sg(e) - 322G dndcdydz

X [(0,h7)? = (Och")? = (L hT)], (21)

F
where Sg( 0)

modes, respectively. Here ¢ itself is not a metric pertur-
bation variable, but rather is related to ' and y* in a
nontrivial way. One may notice that ¢* and A" are subject
to the same action as that of a massless scalar field living in
the Kasner spacetime (1). Once the solutions for ¢/ and A"
are obtained, all of the other variables are determined in
terms of these two master variables through the constraint

and Sg( o) are the actions for the odd and even

equations, as demonstrated below. This is as it should be,
because we have only two dynamical degrees of freedom in
general relativity.

Let us then proceed to solving the equations of motion.
We obtain the following equation of motion for the odd
mode:

(=05 + 0F + 2197 |9" = 0, (22)

where 93 = 07 4 2. The odd-mode metric perturbations,
w! and y¥, are given in terms of ¢’ through the constraint
equations (13). When ¢ is written in the mode-expanded
form

¢F — qaF.o (n)ei(kxg“-&-kal)’ (23)
the coefficient ¢/°(n) obeys
(07 + &2 (m)e"°(n) = 0. (24)

where we defined k(i) = k2 + &>¥x?> with x> = |k |*.
Then, using Eq. (13), we have

B) F.0 )
wF = _%e«kﬁkln), (25)
o F,
){F — %ei(hﬁfﬂﬂﬂu)‘ (26)
K

For the even mode, h", we have the same equation of
motion as Eq. (22). The other even-mode metric perturba-
tions are given in terms of 47 through

% hly = >3 ht + 2a0,h" - 28%hF , (27)
Ot b = —265(6,7}11r —aht), (28)
DL hf) = =21 R + 2a0,h" = 20thF. (29)
Then, we write A7 in the mode-expanded form

hF = qu.e(n)ei(kxé-*-kal)’ (30)
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and @’¢(n) obeys the same equation as Eq. (24),

05 + K2(n)]@"<(n) = 0. (31)

From Egs. (27), (28), and (29), we have

2 2 .
hgo _ <ez‘”7(pF’° _ K? arl(pF.e + > a;l(pF,e) el(k;@rerﬁ,
(32)

2ik,
2

Wy = S35 (0,07 = agheibithn) - (33)

2 2
hll:l — <_ k (277) (pF.e _ k_)choF,e _ 2—?({)"(/)1:’6) ei(kx§+kL'xL).
K K K

(34)

2an . F.e 2a F.e 2 92 Fe
e* Mg’ ¢ —240,0"° + 50,0

7Fe __ *
hy =
*
*

We can thus determine all of the metric components simply
by solving a massless Klein-Gordon equation in the Kasner
spacetime.

B. GWs in past shrinking Kasner
spacetime (P region)

Let us then derive the solution of GWs in the past
shrinking Kasner spacetime (the P region) in the Regge-
Wheeler gauge. The analysis presented in this and sub-
sequent subsections follows closely (and hence has some
overlap with) the one in the previous subsection. The line
element of the P region is written as

ds? = e (~dip? +dE?) + dy* +dz> = gh,dw*dx*,  (38)

where the coordinates in the P region are related to those in
the global Minkowski coordinates as

| I - | . ~
t=—=e“%coshal, x=—e“sinhal, (39)
a a

as shown in Fig. 1. The coordinates in the P region are
obtained by the analytic continuation of the coordinates in
the F region as { = —C and n = —ij — zi/a (Table I). We
can write the metric perturbations in the P region in the

Regge-Wheeler gauge as gh, = gh, + h,, with

Finally, summarizing the above results, the metric
perturbations in the F region in the Regge-Wheeler gauge
are given by

hE, = (RES + REe)elthdthuxn), (35)
with
0 0 HEgro  Khgro
ik, o lkx 0
oo |+ 0 ~Haern Bown |
* % 0 0
* % * 0
20 (Oye" = aghe) 0 0
K(Zﬂ) (pF,e _ %(pF,e _ i_zzzarlch.e 0 0 (37)
% (pFA,e 0
. « gfe
P h hY) RN
ht, = g . (40)
82)( alw h 0
—O0y i —8yl//P 0 h

The master variable for the odd modes, qu , can be found
in a similar way to those in the F region, giving the action
and equation of motion

1 -
P o ~
Sg(0> = %/ dr]dCdde

X [(03¢7)2 = (0:97)% — e 20D ¢F)2).  (41)
[—05 + 3% + e 2192 |pf = 0. (42)
TABLE I. Analytic continuations and the relations among the

coordinates in the F, P, R, and L regions. A more detailed
discussion is given in Sec. IV.

F—R T={ =5 §=n+a0
F=L T=-C-%h E=n+g

P—->R t=-C—L£i, E=-f-Li
PoL P=l-gi E=-i-£i
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The master variable of the even mode, 4%, has the same
action and hence obeys the same equation of motion as
Egs. (41) and (42). The metric perturbations are given by
solving

Pyl = 00", Pu’ = 09", (43)
and
P2 hby = e 2P WP — 2ad;h" — 202K, (44)

i hl = —20;(03h" + ah"), (45)

R, = —e 2% P —2a0,h" = 20207, (46)

—2aij 4P, 2 P, 2 52 P,
e YT 53 0" + G 050"

7Pe __ *
hy =

*

*

where &2 (77) = (k2 4 k%e=241),
C. GWs in right Rindler wedge (R region)
Next, we derive the solution of GWs in the right Rindler

wedge (the R region). The line element in the R region is
given by

ds? = e*(—dr* + d&*) + dy* + dz* = gf dx'dx”, (51)

where a is a constant which is interpreted as a uniform
acceleration. The coordinates in the R region are related to
the coordinates of Minkowski spacetime as

1 1
t = — % sinh ar, x = —e% cosh ar, (52)
a a

as shown in Fig. 1. The metric perturbations in the R region
can be written as

gﬁu = g/lfy + hﬁw (53)

with

>~

20 2
(2'7) gDP,e _ %(pP,e + i_gaﬁgoP,e 0 0

When ¢” and h” are written in the forms
PP = P (if)eihlhix)  pP = pPe(f)eikdrhixl)  (47)

we have the metric perturbations in the P region in the
Regge-Wheeler gauge,

hy = (e + hfie) et vhoes), (48)
with
0 0 kxf. P.o @ P.o
~ ik, P.o iky P.o
o= | * 0 =30 FO0 (49)
* % 0 0
* % * 0
2ik, Pe Pe
2 (050" + ag") 0 0

. , (50)
* et 0
* % (pP,e
hi 0% 0"
hR — h§1 hﬁ IRV y‘l/R (54)
- xR oyk h® 0
-k —ow® 0 hR

The action for the odd-parity master variable in the R
region is given by

1
R _
Sa(0) = 397G drdédydz

X [(0:¢F)? = (0:0%)* — (0,1 9%)*].  (55)
which leads to the equation of motion

(=07 + 07 + 2“07 |¢" = 0. (56)

The metric perturbations y® and yR are related to ¢R as

Py =045 P k=04  (57)
Writing ¢® in the form
¢R — ¢R.o(§)e—imr+ikl~xL , (58)

one sees that p®° obeys
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02 + K2(£)lg" =0, (59)

with K?(€) = @® — k*e%%. Thus, also in the right Rindler
wedge the problem reduces to analyzing the system of a
massless scalar field.

For the even mode, we obtain the same action as that of
the odd mode,

9 = 322G
X [(0hR)? = (9:h")? — e*5(0 h")?],  (60)

1
SR / drdédydz

and hence the equation of motion is also the same as that of
¢®. Using h®, one can write the other metric functions as

P hE, = 2402 IR + 2a0,hF —20PHR, (61)
O hE = —20,(D:hR — ah®), (62)
2 R, = =502 IR + 2400k — 20%HR. (63)
Writing AR in the form
R = gRe(g)emiortikix., (64)
the coefficient p®¢ obeys

[0 + K2 (§)]o*c = 0, (65)

2
— K gf) (pR,e _ KLZ (w2(pR.e + ZaaégoR.e)

~ *

*

*

D. GWs in left Rindler wedge (L region)

Similarly, we can obtain the action for the L region. The
line element in the L region is given by

ds? — eQaE(_d%Z + dz2) + dy2 +dP? = g}ll‘ydxﬂdxu’ (72)

which is related to the Minkowski coordinates through the
relation
1oz l .z -
t = — % sinh a7, x=——e%“coshaz, (73)
a a
as shown in Fig. 1. In a similar way to the case for the
R region, the metric perturbation is defined by g, =

Gk + hf,, with

where /C was already defined above. The solutions of
Egs. (61), (62), and (63) are obtained as

2
hgo — (62a§(pR,e _ i_;l a}:{pR,e _ 2%¢R,e> e—ia)H—ikl-xL ,
(66)
2i S
h§1 — _ % (aégoR,e _ a(pR,e)e—zwr—O—tkaL’ (67)
2 2 o
h{(’l — <_e2a§(pR,e _ K_Zl 8§(pR,e + F aé%(pR.e> €—1m1+sz~xL .
(68)

We finally have the metric perturbations in the R region in
the Regge-Wheeler gauge,

iy = (Wi + e, (69)
with
00 _%afgoRo %65901{0
_ ok, Ro ok, Ro
pRo= | * 0 —SFe 2?0 |, (70)
* % 0 0
* ok * 0
B (Dt -agh) 0 0
_82af¢R.e _ % <a85¢R’c _ 8§(pR’c) 0 0 (71)
* (pR,e 0
* * (pR,e
[
héo hél Oy L —ay)(L
hL hL 8 L _ ! L
hﬁp _ 01 11 W W (74)
oyt oyt ht 0
_ y)(L _ yWL 0 hL

We obtain the action for the master variable for the odd
modes as

1 ~
L _ =
Sg(0> kD dzdédydz

< [(0:9)? — (95p")> — (0, ")), (75)

which leads to the equation of motion
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(<02 + 0% + 02 " = 0. (76)

The action and equation of motion for the even-mode
master variable h” are the same as Egs. (75) and (76),
respectively. The metric components in the L region are
related to A" by

Ryt =00t Rp =00t (77)

and
O hly = CRRE + 2a0:h" — 202h",  (T8)
0% hly, = —20,(9;h" — ah"), (79)

OF bty = —e2CR hE + 2a0zh" — 202h". (80)

_kzgg)(pL,e_KLz( 2 Le+2a8 (pLe)
=~ *

*

*

where K2(8) = (@? — k2e2%).
III. QUANTIZATION OF THE
GRAVITATIONAL WAVES

Having thus obtained the classical solution for all of the
components of the metric perturbations, let us move to
consider the quantization of the gravitational waves.
As we have shown in the previous section, the master
variables are essentially regarded as two decoupled mass-
less scalar fields. Therefore, we closely follow the quan-
tization procedure of massless scalar fields living on the
Kasner/Rindler metric [21], and the consequences of the
quantization of the master variables are very similar to
those in the case of a massless scalar field. The results of
this section are a review of Ref. [21], but it is necessary to
explain the new results in Sec. IV.

A. Quantization in Kasner spacetimes (F and P regions)

We perform the quantization of the gravitational waves
described by the actions in the previous section. Here
we consider the odd and even modes in the F region
[Egs. (20) and (21)]. For later convemence we introduce
the canomcally normalized variables (p = ¢f /162G

= h¥ /\/167G, so that the correspondmg actions
reduce to

and q)

Similarly, when ¢* and k" are written in the forms

¢L :(pL,o(2::«)e—ia)‘I'—ikaL7 :(pL,e(E)e—iw%—ierl’ (81)

respectively, we have the metric perturbations in the L
region in the Regge-Wheeler gauge,

h/I;v _ (ljlﬁl,/o + ljllel,/e)e—iw%—ikaL’ (82)
with
0 0 ~Edwh Fomh
~ _w_kz L.o % L.,o
ie=|* 0 —F¢ P . (83)
% % 0 0
* %k * 0
Ztu) (a ¢Le _a(p ) 0 0
_2a5,__ _Le _ 92, Le
el 5 (a0zg 3E(p ) 0 0 , (84)
* Pt 0
% x b
[
P 1
Sy(i)zi dnd{dydz
< [(,00,)? = (0l > — (0,7, (85)

where A = 0, e. The canonical momenta are defined as

3y )

58,7(,0@)

1l (n.¢.y.z) = W@y (1.8, y.2). (86)

with which the commutation relations are imposed as

@6y (.63, 2). X0 (0,8, Y )] = i8(¢ = £)o(x L = %)),

others = 0, (87)

where x| = (y, z).
The field operator satisfies the Heisenberg equation of
motion

(0% + 32 + 2R 1l =, (88)

whose solution can be written as
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P((n.0.y.2)
/ dk/ dk | | vkk (né’yz)&,f,’l +H.c], (89)

where k; = (ky.k,), a} (%) is the annihilation
~FA  AFA

[ak kL ,ak,kﬂ = 6(k, —
K.)o6(k, — k') and v,f'fh(n, {,v,7) is a function written

in the form v} ’-/}u = f(n)e*e 1%L with mode functions f

(creation) operators satisfying

satisfying the equation of motion

Oyf(n) +kf(n) + ek |*f(n) =0 (90)

and the normalization condition (0,f)f* — f(0,f*) =

i/(2x)3.
Let us write a solution of the equation of motion (90)
using the Bessel function of the first kind as [20]

kkl(n £, y,2)

—i an\
= : : J_ilk,\/a <K€ ) etk pikixy
2m\/4asinh(z|k,|/a) a

= (pF./IeikXCeierL’ (91)

with x = |k, |. This function behaves as v}’ k n,¢,y,2)

emilkilngik ok %1 in the 5 — —oo limit. In Eq. (91), the
latter equality defines the function ¢+ for use in the next
section. This means that this function is a positive-
frequency mode function near the horizon. Furthermore,
we note that the mode functions vfx’,ﬂq (n,¢,y,z) with
positive k, represent right-moving wave modes in the ¢
direction, whereas the modes with negative k, represent
left-moving wave modes. One can see this from the
behavior of the mode functions near the future horizon [21].

One can choose a different solution of Eq. (90) written in
terms of the Hankel function, with which the solution is
written as

—i an
orlkil/2a g (2) (Ke ) ik, & ik, x
)=—— — |e'™ce .
kkl(né’y ) Ar /_Za ilk,|/a a
(92)
With this choice, the field operator can be expressed as

@y (1.8..2)
= [T [Tkl ey b, el 03

where b’,: (bF ’1') is the annihilation (creation) operators

satisfying [bf,’iL [,I,Z/i” S(k, — k)0 (ki_k/i) The
2 (1.8,5.2)

xi in the n — oo limit, and therefore this is

mode functions u
—lKe”q/uelkaelkL

(;1 {,y,z) behave as uj,
e

the natural choice as the positive-frequency mode at late
times. As we will show in this section as well as in

Appendix A, uf ',’ll (n,¢,y, z) is the mode function associated

with the Minkowski vacuum state.
Similarly, we can write the same quantized field in the P
region (see Fig. 1) in two different ways:

lnCy,

/ dk, / dk [ul (7. 8.y, )b}, +Hel, (94)

0y (@.8.y.2)
/ dk/ dic,[vpy (71.8.y.2)agy, +Hel,  (95)

APA (AP LPA (RPAT g
where @, (a,7') and by (by%!) are the annihilation

(creatlon) operators and the mode functions are

upy (7.8.y.2)

ke~ o

a

ver, (.2.9.2)

_ : J CKM>*5MM
= - ilk,|/a ere
2r+/4asinh(z|k,|/a) a

= ¢P,leikxfeikL<xL. (97)
The modes v (;7 ¢, v, z) with positive k, represent right-
moving wave modes and those with negative k, represent
left-moving wave modes, as discussed in Ref. [21]. In
Eq. (97), the latter equality defines the function @ for
convenience in the next section.

As mentioned above, the mode function i} k. k (;7 v,2)
that is written in terms of the Hankel function in the F(P)
region corresponds to the positive-frequency mode function
for the Minkowski vacuum (see Appendix A). This leads us
to define the Minkowski vacuum with the annihilation

operator Bixh by

AF(K).A

bkfkf ‘O>M =0 (98)
for any (k,,k ) and A. On the other hand, vk k (;7 £,v,2)
is the Kasner mode function, with which we can define the
Kasner vacuum state by
AF(P).4
ay (kj 10)x =0 (99)

for any (k,,k,) and A.
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The Bogoliubov transformation between the two sets

(F.P)A (F.P)A

of the mode functions u; k. and v, g, can be found

straightforwardly as follows. Using some mathematical
formula for the Hankel and Bessel functions, we arrive at

kkL(’lC)’a z)

— =i { 7|k, \/a ik, {H( ) (ﬂ)
47+/4a sinh(x|k,|/a) kdfa " a
i@ (KETNTT ik, x
+ |: ké‘Hl‘k /a<—>:| }ek -

e, (01.8.3.2)

(100)

= i {e"kxgH(.l) <@>
47\/4asinh(z]k,|/a) lla\ " a
—amn *
+e—nk,/a[ zkgH()/a(&)] }eikal‘ (101)
ky a

From these equations we can read off the Bogoliubov
coefficients as

115(1;2’/1('1 £.y.2)
= O, uk(ki (1.8.y.2) + By, [l _k _kl(n ¢oy.2)], (102)
with
1 e—mlki/a
N, = Pk, =— (103)

/1= e2rkd/a’ V1 = e27lkl/a’
It then follows that the annihilation and creation operators
associated with the Minkowski and Kasner modes are
related as

~F(P).A on 12 AF(P)A g AF(P)JF
bk,[(.ki = (1 - e27lkd/a) l/2<akx(.ki e ‘k“/a“-z(g,)-kl)-

(104)

Note that k, is momentum in the direction of ¢ &) in
the F region (P region), which takes both positive and
negative values. The Minkowski vacuum state can be
described using the states associated with the Kasner
vacuum as

Mcxexp[ / dk / dk e~ kl/ag!

where the Kasner vacuum is defined by Eq. (99) for any
(ke k) and 1. The above expression can be rewritten as

/IT F(P)At
a3 10) k.

(105)

HHV——T

k,=0k, =—
x Y emmanlan, ke ki) g k. =k )k
n=0
(106)

)k = (n)72(a ) *")"|0) is the nth
excited state from the Kasner vacuum state |0)x charac-
terized by k,, k, and A. This expression shows that the
Minkowski vacuum is expressed as an entangled state
between the positive- and negative-momentum modes.
The expectation value of the number operator con-

structed from &5(1,:)”1 and &5(1,:)’”
xoft L Xt L

where

s Nxos

is given by a thermal
distribution with the temperature T = a/2x,

_ JF(P).A% AF(P).A
Ny :M<0|akx<,ki ak(k) 10) w1

X STUNN

53(0), (107)

= eZﬂ\kx\/u -1
which is responsible for the entanglement of the

Minkowski vacuum state (106), where the divergent factor
53)(0) accounts for an infinite spatial volume.

B. Quantization in Rindler spacetime
(R and L regions)

The quantization of the gravitational waves in the right
and left Rindler wedges described by the actions (55)
and (60) can be done in a similar way. We expand the
canonically normalized master variables as

&, (@.83.2)
/ da)/ dky [vhy (v.€y.2)ant +Hel,  (108)
(,€,5,2)
/ da)/ dk [v (£.&y.2)ab, +Hel,  (109)

where we introduced the creation and annihilation oper-

ators satisfying [Af,,f Lay ] =8(w— )3k, — k) and

the mode functions are given by

[sinh zw/a ke
(uk T é .z 47[ a/ _leKtw/a< ) hx,

R.A —z(ur sz_xJ_ (110)

a¢
1)“ sinh 71'60/61 i g Ke —
w.k iw/a
i 4r*a

LA —tan' —szxl (111)
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Here the latter equality defines the functions ¢®* and ¢’
for use in the next section. The right (left) Rindler vacuum
state is defined by

(112)
for any 4, w, and k| .

IV. ANALYTIC CONTINUATION FOR METRIC
PERTURBATION COMPONENTS

In this section, we demonstrate that the analytic contin-
uations of the modes from the F and P regions to the R and
L regions reproduce the solutions in the latter regions from
those in the former (and vice versa). The analytic contin-
uations yield identities between the mode functions and
the metric perturbations in the different regions. The
Bogoliubov transformation and the description of the
Minkowski vacuum in the F and P regions are generalized
to the entire spacetime including the R and L regions,
leading to the description of the Unruh effect of metric

|

i (1.8.y.2) =

F.A

{
Ve, (1.8, 2) = { Ou

{

{

vpe, (5.8,5.2)

vf’(i_kL (7]’ Ca yv Z) -

where we used the formulas K_,(z) = K,(z), K,(z) =
_(ﬂi/z)e—uﬂi/2H£2>(e—lri/ZZ), and KV(Z) — (ﬂ.i/z)ewti/Z %
H ,El)(e”i/ 2z). See Ref. [21] for a more detailed derivation.
Thus, it can be seen that the left-moving (right-moving)
modes in the F (P) region are equivalent to the Rindler
modes in the R region, whereas the right-moving (left-
moving) modes in the F (P) region are equivalent to the
Rindler modes in the L region.

We can then identify the creation and annihilation
operators in the different regions as

AIA _ AFA  __ APl __ ARA

am,kL = a—u).kl - a(u,kl - am,kL’ (1 17)
LA _ AFA  __ APR AL2
aw.kj_ = aa),—kJ_ - a—w.—kJ_ — Yok, (118)

Ui:a (z.€,y,2) (Rregion)

Uk, (7.6.v.2)  (Rregion)

perturbations. Although it has been shown that the analytic
continuation works in the case of a massless scalar field,
we should emphasize before proceeding that, in the case of
gravitational waves, it is not so evident whether or not all of
the metric components in the different regions can be
connected by means of the analytic continuation.

A. Analytic continuation of mode functions
from Kasner to Rindler

We first consider the analytic continuation of the
master variables [20,21]. The right and left Rindler wedges
are described by the line elements (51) and (72), respec-
tively, and their coordinates are related to those of the
Minkowski spacetime by Egs. (52) and (73) (see Fig. 1).
The coordinates of the four regions, i.e., the F, P, R, and
L regions, are related to each other by the analytic
continuations, as summarized in Table I. By inspecting
the explicit form of the mode functions (100), (101),
(110), and (111), we find that they are analytically
continued as

(for w = —k, > 0), (113)
(Lregion)
(Rregion)
_ (for @ =k, > 0), (114)
(L region)
(for w = k, > 0), (115)
(Rregion)
(R region)
, (for @ = —k, > 0), (116)
(Lregion)

which satisty [a'V*, &' = 5, ,6(w — )5k, —K))

1 o
A2 L)AL DR ALy
and [%,kl Ay |= [awkL oy |=0.

B. Analytic continuation of metric perturbations
from F region to R and L regions

Next, we prove that the metric tensors in the
Rindler wedges are obtained by means of the analytic
continuation. A brief summary of the results of this section
is presented in Appendix B for the convenience of the
readers.

The analytic continuation of the metric tensor consists of
the analytic continuation of the mode functions, demon-
strated in the previous subsection, and the transformation of
the metric tensor under the coordinate transformation. This
latter step is unique to the case of gravitational waves. For
example, under the transformation of the coordinates from
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the F region to the R region, the perturbations of the metric
tensor transform as

OxP 0x°
Ox'M Ox" o).

bl (x') = (119)

where x = {7,&,y,z} and X' = {n,{,y,z}.
The odd-parity metric perturbations in the F region can
be written as

0 0 kik, —kxky
x 0 —ik.0 ik,0
OF (n, ke k) = ST (121
;w(rl X L) % w 0 0 ( )
* ok * 0

and ¢ is defined equivalently by Eq. (91) or Eq. (B2).
Similarly, the even-parity metric perturbations in the F
region can be written as

~ 1 ~ 1
h,f,f’(n,kx,kL) :p05y(n,kx,kl)¢F~°, (120) hif(n, kek,) :PEfy(n, ke k), (122)
where where
K2 —2ad, + 20; —2ik.a + 2ik,0, 0 0
* —(k*(n) + k2) =240, 0 O
Ej(n.ky k) = (5ln) + k) — 240, : (123)
* * 0
* * x K
and @’ is defined equivalently by Eq. (91) or Eq. (B2).
The metric perturbations in the R region may be expressed in a similar way as
i (@0, k 1) = — O (.. kL), (124)
with
0 0 —ik0; ikyO;
0 -k wk
OR (w.Ek,) = z Y 125
ﬂIJ(w é L) % 0 0 ( )
* % * 0
for the odd modes, and
- 1
hﬁl;e(w’ é:v kl) = K_ZE//R;D(wv 55 kL)qu’e’ (126)
with
—(K*(&) + @*) — 2a0; 2iwa — 2iw0; 0 0
* —Kk%e** —2a0; +202 0 0
Ef (0.6 k) = R (127)
* * kv 0
* * * K

R.0 R.e

for the even modes, where ¢"° and ¢"™° are defined by
Eq. (110) or Eq. (BO).

Now, let us show that Of, and Ef, are related,

respectively, to Of, and EX, in the way inferred from a
coordinate transformation. The coordinate transformation

|
we consider here is given by the analytic continuation from
the F region to the R region (Table 1),

T:C_Z’ — e
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One can directly check that

P 0x°
051/( —w, kJ_) /”6 v ;I)eo(a)’ g’kJ_)’
ax ox°
EF ( —w, ki) = /ﬂa W /Ifa(a)’ ¢, ki) (128)

Using this and Eq. (113), we see, for positive o, that

This result shows that, by the analytic continuation and the
transformation law of the metric under the coordinate
transformation, all of the metric components in the F
region can be reproduced from the R region, and vice
versa.

In a similar way, we obtain the metric tensor in the L
region by using analytic continuation from the F region. To
this end, we write the odd-parity metric perturbations in the
L region as

]715110(’7, —a),kl)e_iwéeJrieri B ~ 1 B
1. hﬁ,;"(w, Sk )= joﬁu(w, f»ki)fﬂL’oa (131)
— zoﬂu( —, kJ_) _ka
where we defined
1 Ox Ox° OF & R
= 2 o o Qe @ S KLk, 0 0 —ikd; ikd;
OxP Ox° ~p o e ik - - * 0 —wk, ok
= i g e (@ Gk emrerthen, - (129) Ohwihk=| T "l 03
R~k Jeoe etk fxx 0
1 F Fe and ¢*° is defined by Eq. (111) or Eq. (B8). Similarly, we
2 Eu(n,—o.ky)v Voke, write the even-parity metric perturbations in the L region as
1 ox? Ox°
k - ~ 1
e el £ R Wit k,) = G EL (0. Ek gt (133)
ox? Ox° .
k —iwt +1kaL' 130
= O Ox” s (. 8.k )e™ e (130) where we defined
|
—(K*(&) + @) — 2a0; 2iwa — 2iwd; 0 0
- * —x2e2% — 2a0x + 282 0 0
IDACEN , (134)
* * K 0
* ES * K'2
and ¢’ is defined by Eq. (111) or Eq. (B8). The analytic Rt L0, o, =k )e e kixs
continuation from the F region to the L region reads (see
Table 1) —OF Lo, =k )vg S
1 OxP Ox°
7= —i—ﬂ &= +£ T K2 Ox Ox ’”’( & kl) “’ki
2(1’ ! 261’ OxP Ox° ~Lo —iwt ,—ik | x
= S D" gy (w, ij Je WTeT XL (136)
using which we can show that the following relations hold: ilff(’% w,—k ) oi®C p=ik x|
1
_EF (n, o, ki)
OxP Ox° - poATE g
0"1; (l’[, , —kJ_) = O W Oﬁo‘(w’ 57 kJ_)’ 1 Ox? Ox° ~ L
_ L e
F 8)6 8x ~ - 2 8xl/4 8 v Epd(a)’ 57 kl)vwkl
E (’770) kJ_) l,la v pﬁ(a)’ gvkl)' (135) axp ax - - .
Le( dfk ) —zw‘re—sz_-xJ_7 (137)

Therefore, by combining the above result and the relation
between the mode functions (114) we obtain, for positive m,

= O o e

showing that all of the metric components in the L region
can be reproduced from the F region by the analytic
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continuation and the transformation law of the metric under
the coordinate transformation.

C. Analytic continuation of metric perturbations
from P region to R region and L region

Next let us consider the analytic continuation from the P
region to the R region and the L region. In the P region, we
introduce the following decomposition:

1
hPO(”l’kkaJ_) K' 0 (n’kka_) ’ (138)

with
|

KZe~2am 4 251(9;7 + 28,%

E/I;I/(i;]’ kkal) =

and ¢ defined by Eq. (97) or Eq. (B4) for the even
modes. In a similar way to the case of the F region,
using the analytic continuation from the P region to the R
region,

we obtain the following relations:

0Ll 0.k 1) = 5 5 Of (£ ),
ELGhok) = So S B @ Gk (142)
From this and Eq. (115), we obtain, for positive w,
B0 (ke eiwEehins
= K12 0/41/(77’ w, ki) wk
s e Ol RO
88))::4 gj’v ~§ao( E k) emioretikixs (143)
s o kel ek
= 1E (71, o, kJ_) (uk
12 gj:; gxw Efo(, ¢, ky)vh ka
O Ox° TR (@, E k| e ioretikux. (144)

= O ox” s

0 0 kik, —kck,

0 —ik,0; ik,0;
or (k. k)= cn 139
;u/(n J_) % % 0 0 ( )
* % * 0

and @”° defined by Eq. (97) or (B4) for the odd modes, and

- B 1 5 .
hﬁf(n,kx,kj_) = FEﬁL(r],kx,kL)goF’ , (140)
with
2ik.a + 21'kx§,~7 0 O
—(RG@) + k) +2ad; 0 0
(R () + k) + 240 (141)
* 2 0
* x K2

In a similar way, we see that the following relations hold
with the help of the analytic continuation from the P region
to the L region:

oxP Ox°

05[/(;]7 w, _kJ_) Ix o Ox Qv ( 5 kJ.)
B OxP Hx
Eﬁv(']? —w, _kJ_) Ix /;4 Ox v ((1) é kJ_) (145)

where the analytic continuation here is given by

- _z_iz Eo_p_ 7
T= g 261 ’ 5 ’7 .
Then, from the above result and Eq. (116) we obtain, for

positive @,

Rl (i1, —w. =k | ) et e=kix:
= Kiz O} (i1, —, —kl)vf‘(g_h
12 gj:; S;C/D o0, & kL), wkl
aaj/i gjw o (w0, & ke e @Tekix  (146)
By (i —, —k e e huxs
= le/I;v(’?’ L=k vt -w-kL
O (w0 Bk
OxP Ox° FL (0, & k| Y@k (147)

ax/ﬂ(:) v PO
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Thus, we have shown that the mode functions of the
metric perturbations in the R region and the L region are
given by the analytic continuations from the F (P) region.
The results are summarized as follows:

7151)%('7 —w, kL) —iwCe+ikL-xL

ox? 0x°
ax/ﬂall/ P0<a)§k )

= i (7. o,k et etk

—iwt +sz X

(148)

hf(n, o

oxP Ox° hL’l(a),E,kL)e

axlﬂa v PO

= R @~ ke R,

’_kj_)eﬁ-iwije—ikl-xl

—im?e—iklxl
(149)

These results clearly demonstrate the relation between the
modes of gravitational waves in each region: the left-
moving (right-moving) wave modes in the F (P) region are
equivalent to the Rindler modes in the R region, whereas
the right-moving (left-moving) wave modes in the F (P)
region are equivalent to the Rindler modes in the L region.

D. Description of the Minkowski vacuum state
and the Unruh effect

As a result of the analytic continuations from the F (P)
region to the R and L regions [Eqgs. (148) and (149)], and
the equivalence of the operators [Eqgs. (117) and (118)], the
Minkowski vacuum is described as an entanglement state
between the states defined in the left and right Rindler
wedges and the F and P regions in a unified way,

M — H H V1 —Zﬂw/az —ﬂ:am/aln A, @ kJ_>

w=0k,=—c0

® |n7/1’ kaJ_>H’ (150)
where we defined [, 2,0,k 1 ypy = (n1) /(@ )" |0}y,
and the Rindler vacuum state is defined in each region by

i 10)gy = 0 (151)

for any (w,k;). The expectation value of the number
operator in the Rindler wedges reads

_ A1 5 1
Ny =M<0|aka ka |O> m

53)(0), (152)
which shows the thermal distribution with the temperature
determined by the acceleration, T = a/2x. This can be
understood as the Unruh effect of the gravitational waves.

V. ENERGY-MOMENTUM TENSOR IN R REGION

In this section, we evaluate the energy density of
gravitational waves to discuss the difference between the
Minkowski vacuum and the Rindler vacuum. We calculate
the following effective energy-momentum tensor:

T (x) = —%GQ)GW)’ (153)

where (?G,,) is the second-order part of the Einstein
tensor and (- - -) stands for the temporal and spatial average.
Using Eq. (108) in the Rindler wedge, we obtain

WO 0 = [Tao
” 472 o e2ﬂa)/a -1
—2a¢ <]
L(017SV(0) . 642/ dwa’. (155)
7= Jo

The details of the calculation are presented in Appendix C.
Equation (154) shows that the energy density associated
with the Minkowski vacuum state obeys the Planck dis-
tribution with the temperature 7' = a/2x. The regularized
energy-momentum tensor is obtained by subtracting the
expectation values associated with the Minkowski vacuum.
Then, (0,,|75%|0,,) reduces to zero after regularization,
while (0 |TS’,W|O> reads

R(O[TEV[0) e = L (0|TEV(0) 5 — ,(0|TSV[0),,

=2 (oo 3
=——= do——
27% Jo emela — |

o208 g
=T 20 (156)

In the Schwarzschild spacetime with a mass M, whose
metric is given by
dr?
(1-2GM/r)
r?(d6* + sin” d¢?),

ds* = —(1 —=2GM/r)dt* +
(157)
the expectation value of the energy-momentum tensor for a

massless scalar field with respect to the Boulware vacuum
state |B) is given in the r — 2GM limit by [24]

1 o »’
B|T*|B da———
< | | >ren 2 2(1 —2GM/F)2A wexp(27l'a)/l<) -1

111
Xdiag(—l,§,§,§>,

where k¥ = 1/4GM. This yields an expression for the
energy density similar to Eq. (156),

(158)
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<B|TOO‘B>ren ~ =

1 K4

T T 222(1-2GM/r)240° (159)

One can see a pathological behavior that the renormalized
expectation value of the energy density diverges at the
Schwarzschild horizon when the Boulware vacuum state is
adopted outside the horizon of the Schwarzschild space-
time. This is quite similar to the result of Eq. (156) that the
energy density diverges at the Rindler horizon when the
Rindler vacuum state is adopted in the Rindler wedge.
Thus, the structure of the Rindler vacuum state and the
Minkowski vacuum state on the Minkowski spacetime is
analogous to that of the Boulware vacuum state and the
Hartle-Hawking state on the Schwarzschild spacetime [24].
The expectation values of the other components of the
energy-momentum tensor are obtained in a similar way,

45 regularized 5 £
R<O|T?§W|0>Rg - R<O|T?§W|0>R - M<O|T§§W|O>M

e 2 [oo @ + dwa?
=—— do————
67> Jo e2mw/a _ |
—2aé 41 4
=L = (160)
67 240

» <()|7\"§};V|O>;§gularized =, <O|T2W|O>§§gularized

- R<O|?)Q)W|O>R - M<O|TyGyW|O>M

et / © @+ wa’
=—— | do—
67> Jo e2mwfa _ |
—4a& 11 4
=L 4 (161)
6% 240

The result does not satisfy the trace-free property,
(T*,) = 0, which would be expected by the equation of
motion averaged within a certain region of spacetime. This
violation of the trace-free property of the energy-momen-
tum tensor could be related to the fact that the gravitational
waves violate conformal invariance and that the gravita-
tional waves become ambiguous for the modes with
wavelengths longer than the characteristic scale of the
spacetime. The characteristic scale of the Rindler space is
1/a, and the modes of the gravitational waves with
wavelengths longer than the scale 1/a contribute to the
property (T*,) # 0. If we take the range of integration with
respect to w in Egs. (160) and (161) to be much larger than
a, then the trace-free property is obtained.

VI. CONCLUSION

In the present paper, we have derived the solutions of
gravitational waves in the future expanding Kasner space-
time (the F region) and the past shrinking Kasner spacetime

1 o 3
. / do—"
27%(1=2GM/r) Jo exp (2rw/x) — 1

(the P region) as well as the left (L) and right (R) Rindler
wedges in an analytic form. In the derivation, we have
performed the metric tensor decomposition in spacetime
endowed with two-dimensional plane symmetry and used
(an analog of) the Regge-Wheeler gauge. In this formu-
lation, the odd-parity and even-parity modes defined with
respect to the parity transformation in the two-dimensional
plane are decoupled. We have introduced the two master
variables associated with the gravitational-wave degrees of
freedom and derived the quadratic actions for them, each of
which is equivalent to the action of a massless scalar field in
the corresponding background. The master variables were
quantized in each region. The mode functions correspond-
ing to the Minkowski vacuum state in the F (P) region were
identified and the Bogoliubov transformation between the
mode functions of the Minkowski vacuum state and those
of the Kasner vacuum state were presented. From the
relation it can be seen that the Minkowski vacuum state for
the quantized gravitational waves is described as an
entangled state constructed on the basis of left-moving
and right-moving wave modes associated with the Kasner
vacuum state. We have also demonstrated that the metric
components of the quantized gravitational waves associ-
ated with the Kasner vacuum state in the F and P regions are
analytically continued to those in the left and right Rindler
wedges. This analytic continuation from the F (P) region to
the R (L) region allowed us to see that the Minkowski
vacuum state is described as an entangled state between the
left and right Rindler states. Our result gives a description
of the Unruh effect for gravitational waves in the Rindler
wedges. We stress that such an explicit formulation has
been done for the first time, and was achieved by
extensively using the Regge-Wheeler gauge for a plane-
symmetric spacetime.

The description will be useful for investigating the
Unruh effect on the vacuum fluctuations of gravitational
waves in a frame of uniform acceleration or equivalently in
a frame of uniform gravitation by the equivalence principle.
A thorough investigation is left for a future study.
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APPENDIX A: POSITIVE-FREQUENCY MODE
FUNCTION IN THE F REGION

Here we briefly review the positive-frequency mode
function associated with the Minkowski vacuum state in the
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F region [25]. The relation between the coordinates in the
future expanding Kasner spacetime (7', y) and Minkowski
spacetime (¢, x) is given by

t = T coshy, x = Tsinhy. (A1)
Here, T and y are related to the coordinates used in the main
text, (n,{), as T = e“/a and y = a(. The integral repre-
sentation for the Hankel function is given by

—ircosh C+is sinh K

1 _ r+s\w/? 2
2_l dp iKp (r_s) eﬂp/Z[_[Ep)((rZ

s2)1/2),
(A2)

where Im(r 4+ s) < 0. By transforming the variables as
s = kx, r = kt, K = sinh~!(g/«x), we obtain

e—i{ukt+iqx
1 J_ - X
(A3)
|

ht,(n.¢,y.2)

where @, = kcoshK = \/¢*> + 2. In terms of the coor-
dinates (7, y), the right-hand side is written as

iwrige — L [ ikp ipgn 2
e —Z/_mdpe Kpeirre p/2H5p>(KT). (A4)

This equation shows that H gf,)(KT) is indeed the positive-
frequency mode function associated with the Minkowski
vacuum state. It is easy to see that the complex conjugate
gives the negative-frequency mode function via the relation

[en'p/ZHgi) (K'T)]* _ e—ﬂP/ZHS?) (K‘T) (AS)

APPENDIX B: QUANTIZED GWs:
SUMMARY OF RESULTS

We present a summary of the results of the quantized
gravitational waves in the F, P, R, and L regions. The
quantized metric perturbation in the F region can be written
by introducing @ = |k,| as

= 167G / dk, / d2kL hF/I ’77 kx,kl)eik’“@riki'xlag;iL + HC}

= 1671'GZ/ da)/ Pk (WA (n, —w. k) e ’“’§+iki‘xi&£;f1h + hyt(n, @, —kj_)ei“’g_"ki"‘iA",;1 +H.c], (BI)

A=o0.e

where the Fourier components 715,;0 and fzfj,;e are given by Egs. (36) and (37) with

Fa !

We have a similar expression in the P region,

b (7.8,.2)

= \/16er / dk, / Pk [RE (7, kK )e ik«tfﬂ'kmczijh +H.c]

A=o0.e

Here the metric perturbations 715,;0 and

J (ﬂ) (B2)
VT aaash(lkja) e\ Ta )
= 162G Tdw |7 @k, WP G,k )Tt koriglh L RPAGE g k| Jemiot-kixiglld | H ] (B3
H wk | H wk |
fzﬁ’f are given by Egs. (49) and (50), respectively, with
P i J (—Ke_aﬁ> (B4)
Y T anJrasmh(alkja) "\ )
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The quantized tensor mode in the right Rindler wedge is obtained as

hE(z,&,y.2) = V162G / dw / &k y (W (0, 8.k )eorkixgll 4 Hel, (B5)
A=o0.e
where the metric perturbations hR ° and hR ¢ are given by Egs. (70) and (71), respectively, with

[sinhzw/a _, ke
(pR’l = 4rta e leKia)/a (7) . (B6)

The quantized tensor mode in the left Rindler wedge is obtained as

L, (7.E,y.2) = \/167rGZ / dw/ &k (Rl (@, E Ky ekl Heel, (B7)

where the metric perturbations hL ° and hL ¢ are given by
Egs. (83) and (84), respectively, w1th

Li_ sinhzw/a _; - K ke’ BS where the total derivative will be omitted upon averaging.
R I P iwla\ " ) (B8) We obtain similar results for other components. Thus, it can
be seen that the energy density can be expressed simply in

terms of the master variable. It then follows immediately

1
@G, = -3 (0,¢%)? + (total derivative), ~ (C2)

APPENDIX C: ENERGY DENSITY OF GWs that
In this appendix, we derive the vacuum expectation value
of the energy density of GWs [Egs. (154) and (155)]. The GW _ 1 (D.R)2) = (.08 )?) (C3)
energy-momentum tensor of GWs is given by the second- T T 16nG T Plo)) >

order part of the Einstein tensor as

| where one should recall that ¢f = /162G go

TE)’V == 872G <(2 Gm/>7 (C1) Let us move to the calculation of the vacuum expectation
value of the energy density with respect to the Minkowski
where (- --) denotes the spatial and temporal average. For ~ vacuum,
example, the time-time component of this energy-momen-
tum tensor gives the energy density of GWs. Let us now ~AGW
focus on the odd modes in the R region. From a direct wlOITE 1001 = 1 (01D ) [02ar- (C4)
computation using the linear equation of motion (56), we
find Substituting Eq. (108) into Eq. (C4), we obtain
|

w{017E¥10),, = lim / do / dk, [8 ol (0t (x/)+afvf’i’ii<x)af’”§’1’oﬂ(x,)]

— p2nw/a enwla _ |
(x) R, o*( ) UR'Z* (X) UR,i (x/)
—1lim [ d dk | ok, ook Tl ek T 7] Cs
X-=x Jo @ / |: 1 - e—27zw/a ez’""/” -1 :| ( )
where we used the following formulas:
ARO A~ Oa 1
w(0lagy ay w0, O0m W(S(w —o)o(k — k), (C6)
~R.0T AR.0 e—Zer/a / /
M{0lay, %, &% 10)um mfs(a’ —a')o(k —K). (C7)
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Note here that for a technical reason we first consider two separate spacetime points and then take the coincident limit. The
k| integration can be done following Ref. [21]. First, we have

sinh(zw/a)

/ e 078 (2R () = einle=7) / kK () K soya (B) o (1), (C8)

273a

where a = e%/a,p = ¢* /a,y = |x, — x|, and we used K_,(z) = K, (z) and [" dpe™ % = 2zJ(xy). The integral on
the right-hand side can be performed by using the formula [25,26]

A * a1 K ()KL (BR)J, (1) = % \/’;Wyi;ﬂr(u F e+ DN =g+ 1)@ — 1)V 1A4B412(0),  (C9)

where © = (a? + f* + ) /2ap and B;”l/lz/z( ¢) [Re(u £ v) > —1, Re(v) > —1] is the associated Legendre function,

Bila Q) = \/lz—ﬂiwl/a @ _11)1/4 [(C+ V- 1)“"“’ - (C+ V- 1)"""/“]. (C10)

Explicitly, in our case we have @ = (e¢~) 4 ¢=al=¢) 4 g2e=(E+¢)|x | — ¥/ |?)/2 and

ket ke
dxkkK — | K; —\J
A KK 1w/a( a ) 1w/a< a ) 0(7’()

ﬂaZe_“(‘H‘f/) iw/a —iw/a
®+/e - ) (@) Ve - 1) ] Cl1
T4 sinh(zw/a) \/@2 1 [( + + (C11)
In the coincidence limit, X’ — x (® — 1), this reduces to
ke ke rawe %
li d K — | K; —\J = Cl12
o 0 K 'w/a( a ) 'w/“< a ) o(r) 2sinh(zw/a) (C12)

where we used

gg}\/@z—[(@“/@z )""/“ (®+\/®2—1)"'“’/“}:21%. (C13)

Therefore, we finally obtain the following result:

R0 R,0% R, 0% / —2aé 3 3
©o v X)v X 0
lim dwwz/dkl[ wit, ()i, () | Vg, ()0 ka( )] ¢ / da){ @ 2 1]
0 0

X —x 1 = ¢~2mw/a erw/a _ 472 1 — e2n0/a * plrwfa _

e—2a§ 00 0)3
= 47[2 /_oo dw |:62ﬂw/7a_1:| R (C14)

where in evaluating the first term we changed the integration variable as w — —w.

In the case of the Rindler vacuum state, it is easy to see that the vacuum expectation value is given by

—2aé
20TV )0, —hm/ da)/dklé‘vg,‘; X)O v (&) = ‘347[2/) dwo?’. (C15)

Then, we obtain the regularized energy density (156). Repeating similar computations, we obtain Egs. (160) and (161),
where we use the following results:
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2% (4a® + w?)
4 3
e (a® + »?)
T4k 3
e (@ + 0?)

3

(for u #v). (C16)
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