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In an environment with high-density neutrinos formed in a core-collapse supernova (CCSN), the
neutrinos exhibit nonlinear and complex oscillation behaviors due to their self-interactions. The onset of
this nonlinear oscillation can be investigated by linearizing the evolution equation for small perturbations
around the flavor eigenstates. While the condition under which the flavor eigenstates are unstable has been
investigated in many studies, how the perturbations evolve in spacetime has yet to be elucidated. In this
paper, we analytically and correctly derive the asymptotic behaviors of the linear perturbations in four-
dimensional spacetime in the linear regime for a two-beam neutrino model using the recently proposed
Lefschetz thimble formulation. The result suggests that the perturbations grow in the directions between the
two neutrino beams. We also briefly discuss the possible effects of neutrino flavor conversion on the
explosion mechanism of a CCSN. In particular, the result implies that the flavor instability in the preshock
region may propagate into the postshock region, contrary to the previous study focusing on the group
velocity in one-dimensional space. How to treat the case of a more realistic continuous spectrum is also
discussed.
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I. INTRODUCTION

Neutrino oscillation is a well-known phenomenon in
which the survival probability of each neutrino flavor
oscillates due to the deviations between the flavor eigen-
states and mass eigenstates of neutrinos. When background
matter is considered, forward scattering on charged leptons
changes the effective mass of the neutrinos and, hence, their
oscillation behaviors. This is called the Mikheyev-
Smirnov-Wolfenstein (MSW) effect [1,2], and its behavior
is well understood. Additionally, neutrino oscillation is
similarly affected by neutrino self-interactions, which,
unlike the MSW effect, transform neutrino oscillation into
a nonlinear phenomenon. This phenomenon is called
collective neutrino oscillation, and its complex behaviors
have been intensively studied by many researchers.
Collective neutrino oscillations are important only in

environments with large amounts of neutrinos, such as
supernovae and the early universe. In particular, flavor
conversion may affect the explosion mechanism of a core-
collapse supernova (CCSN) [3–10]. It is widely believed
that the stagnant shock in a supernova core needs to be

revived through the introduction of additional energy for
the explosion to be successful. Nucleons in the postshock
region can obtain energy by absorbing νe and ν̄e emitted
from neutrinospheres, while the absorption of the other
flavors of neutrinos is almost kinematically prohibited.
Therefore, flavor conversion can change the effective
heating rate of the shock and may play a key role in
determining the success of the explosion.
Although numerical approaches to solving the nonlinear

equations for collective neutrino oscillation suffer from
enormous computational costs, attempts have been made to
address these equations under certain assumptions in many
studies. For example, the time evolution of homogeneous
monochromatic single-angle neutrinos can be understood
as analogous to the motion of a pendulum and a spinning
top and exhibits several interesting phenomena, such as
synchronized and bipolar oscillations [11,12]. Numerical
calculations treating many modes have also been performed
and have revealed some new phenomena, such as spectral
swaps or splitting [13–34]. It should be stressed that in all
of these studies, the nonlinear differential equations have
been solved by imposing certain symmetries to reduce their
dimensionality in spacetime.
Linear stability analysis has also been applied to inves-

tigate the conditions for the onset of flavor conversion
[35–53]. Such analysis involves considering small pertur-
bations around the flavor eigenstates and searching for
growingmodes from the derived dispersion relations (DRs).
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Flavor conversion can occur if there is a mode with a real
wave vector k and a complex angular frequency ω. Many
studies have predicted that flavor conversion occurs when
the angular distribution of the electron lepton number (ELN)
crosses zero, although this has not been proven mathemati-
cally. Moreover, such linear analysis suggests the
importance of multidimensionality. Generally, the flavor
eigenstates are more unstable in higher dimensions, and the
results of flavor oscillation could drastically change in
reduced dimensions. Therefore, it is important to consider
four-dimensional spacetime to understand realistic flavor
conversion behaviors.
Normal mode analysis can reveal the conditions for the

onset of flavor conversion and which plane wave modes
grow or decay. In reality, however, perturbations may take
the form of wave packets, and how they evolve in
spacetime cannot be trivially determined from the DRs.
Recently, it has been suggested that the spatiotemporal
behaviors of perturbations can be investigated via the
method originally proposed by Briggs [54–56]. One can
derive how perturbations grow from the coalescence
features of the analytic continuation of the DR kðωÞ.
Instabilities can be classified as either absolute or con-
vective instabilities on the basis of the behaviors of
perturbations in the form of wave packets.
This analysis, however, assumes that a perturbation is a

wave packet in only one direction and homogeneous in the
other directions, which is not realistic in supernovae.
Recently, we developed a general and powerful method
to investigate the spatiotemporal evolution of linear per-
turbations by using the Lefschetz thimble formulation [57].
This formulation can be used to treat multidimensional
perturbations for arbitrary DRs. In this paper, we apply this
method to the collective neutrino flavor conversion in a
two-beam neutrino model and reveal the flavor conversion
behaviors in four-dimensional spacetime. This is the first
study to treat the spatiotemporal evolution of collective
neutrino oscillations in four-dimensional spacetime,
although this is done in the linear regime.
The results for the two-beam model show an absence of

absolute instabilities in four-dimensional spacetime,
although they are present when only two-dimensional
perturbations are considered. Moreover, the results suggest
that flavor instabilities grow toward the directions between
two neutrino beams and may imply the impact of flavor
conversion on shock heating mechanisms in CCSNe.
This paper is organized as follows. In Sec. II, we

linearize the kinetic equations that describe neutrino
oscillations to treat perturbations around the flavor eigen-
states. In addition, we introduce the two-beam neutrino
model and reduce the linearized equations. In Sec. III, we
perform a spatiotemporal analysis of the obtained linear-
ized equations for the two-beam model and discuss general
cases other than the two-beammodel. Section IV concludes
the paper.

II. KINETIC EQUATIONS FOR NEUTRINOS

A. Kinetic equations for neutrinos

We begin with the kinetic equation for the neutrino
density matrix f [45,58–61]:

v · ∂fðx;ΓÞ ¼ −i½Hðx;ΓÞ; fðx;ΓÞ� þ C½f�; ð1Þ

which describes the evolution of streaming neutrinos in a
potential generated by matter and neutrinos. ðxμÞ ¼ ðt; xÞ
represents the coordinates in spacetime, and Γ ¼ ðE; vÞ
denotes the energy and flight direction of the neutrinos. We
express antineutrinos by means of a density matrix with
negative energy, as follows: fð−EÞ≡ −f̄ðEÞðE > 0Þ. The
Hamiltonian H is given by

Hðx;ΓÞ ¼ HvacðEÞ þ Hintðx; vÞ; ð2Þ

where Hvac corresponds to vacuum oscillation and Hint to
the potential. The vacuum oscillation term is

HvacðEÞ≡M2

2E
; ð3Þ

where M2 is the neutrino mass-squared matrix. The
potential term is written as

Hintðx; vÞ≡ v · ΛðxÞ; ð4Þ

with

ΛμðxÞ≡ ffiffiffi
2

p
GF

�
diagðfjμαðxÞgαÞ þ

Z
dΓfðx;ΓÞvμ

�
; ð5Þ

where jμα is a lepton number four-current of charged lepton
α and

Z
dΓ≡

Z
∞

−∞

dEE2

2π2

Z
d2v
4π

: ð6Þ

The collision term C½f� thermalizes the density matrix f, or
causes the decoherence of neutrino oscillations in general.
The effects of this term on collective neutrino oscillations
have recently been discussed [34,62,63]. In this study, we
neglect these effects because they are usually much smaller
than the flavor instability induced by neutrino potentials in
supernovae.

B. Linearization

Here, we consider two-flavor neutrinos νe and νx,
because each pair of flavors can be decoupled from the
others even if we consider the number of flavors to be more
than two [53]. Then, the mass-squared matrix can be
expressed as
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M2 ≡ U
�
m2

1 0

0 m2
2

�
U−1; ð7Þ

with the neutrino mixing matrix

U≡
�
cos θ − sin θ

sin θ cos θ

�
; ð8Þ

where θ is the mixing angle. Additionally, the density
matrix f is a 2 × 2Hermitian matrix and can be decomposed
by means of ðτaÞ≡ ðI2=2; σ=2Þ with the Pauli matrices σ as
follows:

fðx;ΓÞ ¼ faðx;ΓÞτa: ð9Þ

The commutator of the Hermitian matrices A ¼ Aaτa and
B ¼ Baτa can be expressed as

½A;B� ¼ AaBb½τa; τb� ð10Þ

¼ iϵabcAaBbτc; ð11Þ

where ϵab
c is the Levi-Civita symbol if a, b, and c are

permutations of (1 2 3) and 0 otherwise. Therefore, Eq. (1)
can be recast as

v · ∂faðx;ΓÞ ¼ ϵbc
aHbðx;ΓÞfcðx;ΓÞ; ð12Þ

where the decomposed Hamiltonian components are

HvacðEÞ ¼
1

2E

0
BBB@

m2
1 þm2

2

Δm2 sin 2θ

0

Δm2 cos 2θ

1
CCCA ð13Þ

and

Hintðx; vÞ

¼
ffiffiffi
2

p
GFvμ

2
6664
0
BBB@

jμeðxÞ þ jμxðxÞ
0

0

jμeðxÞ − jμxðxÞ

1
CCCAþ

Z
dΓ0fðx;Γ0Þv0μ

3
7775;

ð14Þ

with Δm2 ≡m2
1 −m2

2.
To investigate the onset of flavor conversion, we focus on

the deviation from a flavor eigenstate and express the
density matrix as

fðx;ΓÞ ¼

0
BBB@

f0ðx;ΓÞ
0

0

fcðx;ΓÞ

1
CCCAþ fcðx;ΓÞεðx;ΓÞ; ð15Þ

where f0 ¼ fee þ fxx is the incoherent part, which does
not play a role in flavor mixing, and fc ¼ fee − fxx is the
coherent part. Substitution of this expression into Eq. (12)
yields

v · ∂εðx;ΓÞ ¼ sðx;ΓÞ − cðx;ΓÞεðx;ΓÞ − ωsðEÞT23εðx;ΓÞ
− fωcðEÞ þ v · ΛcðxÞgT12εðx;ΓÞ

þ
ffiffiffi
2

p
GF

Z
dΓ0fcðΓ0Þv · v0T12εðx;Γ0Þ

þOðjεj2Þ; ð16Þ

where

ωsðEÞ≡ Δm2

2E
sin 2θ; ωcðEÞ≡ Δm2

2E
cos 2θ; ð17Þ

Λμ
cðxÞ≡

ffiffiffi
2

p
GF

�
jμeðxÞ − jμxðxÞ þ

Z
dΓfcðΓÞvμ

�
; ð18Þ

cðx;ΓÞ≡ v · ∂ ln fcðx;ΓÞ; ð19Þ

and

T12≡

0
BBB@
0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

1
CCCA; T23≡

0
BBB@
0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA: ð20Þ

s is the term of zero-th order in ε, expressed as

sðx;ΓÞ≡

0
BBBBB@

− v·∂f0ðx;ΓÞ
fcðx;ΓÞ
0

−ωsðEÞ
−cðx;ΓÞ

1
CCCCCA: ð21Þ

This term appears because the flavor eigenstate is not a
fixed point of Eq. (1). In the linear analysis we consider, we
address the time evolution of ε from the flavor eigenstate
εð0; x;ΓÞ ¼ 0. Additionally, the spatial domain can be
taken to be the open space R3, and the boundary condition
for ε is given by Eq. (16) with fc ¼ 0 and Λc ¼ 0 at
jxj → ∞. Under these initial and boundary conditions, the
absence of s yields εðx;ΓÞ ¼ 0 at all times; hence, s is
regarded as the seed perturbation.
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Here, we define

Sðx;ΓÞ≡ ε1ðx;ΓÞ − iε2ðx;ΓÞ; ð22Þ

to recast Eq. (16) as

v · ∂ε0ðx;ΓÞ ¼ −
v · ∂f0ðx;ΓÞ
fcðx;ΓÞ

− cðx;ΓÞ; ð23Þ

½v · fi∂ −ΛcðxÞg−ωcðEÞ þ icðx;ΓÞ�Sðx;ΓÞ

þ
ffiffiffi
2

p
GF

Z
dΓ0fcðx;Γ0Þv · v0Sðx;Γ0Þ þωsðEÞε3ðx;ΓÞ

¼ −ωsðEÞ; ð24Þ

fv ·∂þcðx;ΓÞgε3ðx;ΓÞþωsðEÞImSðx;ΓÞ¼−cðx;ΓÞ; ð25Þ

up to linear order in ε. The right-hand sides (r.h.s.) of
Eqs. (23)–(25) are the source of the linear evolution, and
the DR of this system of linear equations depends only on
the left-hand sides (l.h.s.). We can confirm that ε0 is
included only in Eq. (23) and is decoupled from the other
components of ε. Additionally, Eq. (23) gives the trivial DR
for free-streaming massless particles,

v · k ¼ 0; ð26Þ

which has no instability. Therefore, our main target is the
DR for Eqs. (24) and (25).
If we neglect flavor mixing, then from Eq. (1), we have

c ¼ v · ∂ ln fc ∼ C=fc, which is of the same order of
magnitude as the inverse of the mean free path of the
neutrinos. This quantity is usually much smaller than the
growth rate of neutrino flavor instabilities and can be safely
neglected when computing the DR. The values of ωc=s are
also minimal compared to the growth rate for the typical
energy of supernova neutrinos when we focus on a
sufficiently small radius in a supernova. As the radius
increases and the neutrino density decreases, however, ωc=s

becomes comparable to the growth rate, and a gradual
transition to vacuum oscillation occurs. The flavor insta-
bility when the ωc=s values are negligible is called a fast
instability; when an instability with finite ωc=s vanishes in
the limit of ωc=s → 0, it is called a slow instability [48]. We
note that Eqs. (24) and (25) are coupled with each other via
the terms proportional to ωs. In general, it is not appropriate
to neglect ωs when focusing on slow instabilities, although
Airen et al. [48] did so.
Here, we focus on fast instabilities; we neglect ωc=s as

well as c on the l.h.s. of Eqs. (24) and (25):

v · fi∂ − ΛcðxÞgSðx;ΓÞ þ
ffiffiffi
2

p
GF

Z
dΓ0fcðΓ0Þv · v0Sðx;Γ0Þ

¼ −ωsðEÞ; ð27Þ

v · ∂ε3ðx;ΓÞ ¼ −cðx;ΓÞ: ð28Þ

These equations are no longer coupled with each other,
and the DR for ε3 is also given by Eq. (26). By taking the
average over the energy E, Eq. (27) is rewritten as

v · fi∂ − ΛcðxÞgSðx; vÞ

þ
Z

d2v0

4π
Gðv0Þv · v0Sðx; v0Þ ¼ s̃ðx; vÞ; ð29Þ

where

GðvÞ≡ ffiffiffi
2

p
GF

Z
∞

−∞

dEE2

2π2
fcðΓÞ ð30Þ

is the ELN angular distribution and

Sðx; vÞ≡
Z

∞

−∞

dEE2

2π2
fcðΓÞ
GðvÞ Sðx;ΓÞ: ð31Þ

Here, we omit a concrete expression for the source term s̃
and consider s̃ to depend on the spacetime position x and
the flight direction v, although the r.h.s. of Eq. (27) does
not, for the reason discussed below.
Equation (21) can be separated into two contributions:

(1) the homogeneous part ð0; 0;−ωsðEÞ; 0ÞT and (2) the
inhomogeneous part, which is the remainder. The homo-
geneous part arises from the vacuum oscillation term and
induces only modes with the wave vector k ¼ 0. On the
other hand, the inhomogeneous part depends on the
position and can induce all modes. This study focuses
on the latter, and we consider the spatiotemporal behaviors
of the linear response to this inhomogeneous source term.
We need to be careful when treating a fast instability.

When we omit ωs on the l.h.s. of Eqs. (24) and (25), these
equations are decoupled from each other, and the pertur-
bation S seems to be induced only by the homogeneous
source −ωs, as in Eq. (27). Even a small ωs, however, can
convert the inhomogeneous source −c in Eq. (25) into S,
and it then grows exponentially when a flavor eigenstate is
unstable. In other words, the effective source term propor-
tional to ωsc should also be contained in Eq. (27) in the fast
regime to mimic the contribution from the inhomogeneous
source term, and therefore, s̃ should be considered to have
an ðx; vÞ dependency.

C. Two-beam model

To investigate the instabilities in detail, we adopt a two-
beam neutrino model in which the ELN angular distribu-
tion is expressed as

Gv ¼ G1δðv; v1Þ þ G2δðv; v2Þ; ð32Þ
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where v1 and v2 are the directions of the neutrino beams and
G1 and G2 correspond to their ELN intensities. The delta
function δðv; v0Þ on the unit sphere is defined as

Z
d2v0

4π
δðv; v0Þfðv0Þ ¼

Z
d2v0

4π
fðv0Þδðv0; vÞ ¼ fðvÞ; ð33Þ

for an arbitrary continuous function f on the unit sphere. In
addition, we focus on a sufficiently short time and a
sufficiently small region such that the temporal and spatial
variations inΛcðxÞ can be treated as constant. In this model,
Eq. (29) can be written as

Dði∂ÞS̃ðxÞ ¼ s̃ðxÞ; ð34Þ

where D and S̃ are defined as

Dði∂Þ≡
�

v1 · ði∂Þ v1 · v2G2

v1 · v2G1 v2 · ði∂Þ
�
; ð35Þ

and

S̃ðxÞ≡ eiΛc·x

�
Sðx; v1Þ
Sðx; v2Þ

�
: ð36Þ

We note that Λc is a real four-vector and does not affect the
instability. For instability analysis, the DR given by the
zeros of

ΔðkÞ≡ detDðkÞ ¼ ðv1 · kÞðv2 · kÞ − ϵ ð37Þ

is important, where

ϵ≡ ðv1 · v2Þ2G1G2: ð38Þ

III. SPATIOTEMPORAL
INSTABILITY ANALYSIS

A. General formulation

The spatiotemporal behaviors of the perturbation S̃ are
obtained by solving Eq. (34) for the appropriate initial and
boundary conditions. In our setup, the inhomogeneous
source s̃, which takes the form of a wave packet in realistic
situations, drives the perturbation. To treat such perturba-
tions, we simply focus on the Green’s function G for the
linearized equation defined by

Dði∂ÞGðxÞ ¼ δ4ðxÞI2; ð39Þ

because its asymptotic behavior at t → ∞ is essentially the
same as that of the perturbations [54,55].
Here, we discuss the necessity of this prescription.

Izaguirre et al. [45] stated that a complex wave vector k
for a real ω in a DR implies “spatial instability,” and several

studies based on linear analysis for stationary solutions
have actually investigated this kind of “instability.” We
should, however, be careful about what this really means
[49]. The existence of a complex k for a real ω ensures only
the existence of spatially exponentially growing/decaying
modes that oscillate or are constant in time. Therefore, such
a “spatial instability” seems to appear if we consider
stationary solutions of Eq. (1). However, it is not guaran-
teed that stationary solutions, and hence this “spatial
instability,” will be realized after time evolution. To ensure
this, we should at least investigate the time evolution of the
perturbations from the stationary solution and confirm the
damping of the perturbations. Moreover, even spatial
growth is not guaranteed by this “spatial instability.”
For example, if we consider the diffusion equation
ð∂t − ∂2

xÞfðt; xÞ ¼ 0, which has a “spatial instability” from
the DR k ¼ � ffiffiffiffiffi

iω
p

, a constant source imposed at a certain
point decays in space. After all, such a “spatial instability”
is not always relevant in realistic situations. On the other
hand, a complex ω for a real k does imply instability in time
evolution. The explicit form of the DRs ωðkÞ for k ∈ R3

directly shows the time evolution of each plane wave mode.
However, how perturbations in the form of wave packets,
which are superpositions of uncountably infinite numbers
of plane waves, actually behave in spacetime cannot be
trivially determined from the DRs; hence, we should focus
on the behaviors of the Green’s function, which is also a
superposition of all modes.
The asymptotic behavior of G can be evaluated by using

the Lefschetz thimble method [57]. By applying the
Laplace transform for time and the Fourier transform for
space, G is expressed as

Gðt; xþ utÞ ¼
Z
M

d4k
ð2πÞ4 e

−ik·uteik·xDðkÞ−1; ð40Þ

where M≡ L ×R3 is the Laplace-Fourier contour and
ðuμÞ≡ ð1; uÞ with the parameter vector u ∈ R3. The
residue theorem yields

Gðt; xþ utÞ ¼ θðtÞ
ð2πÞdi

Z
C
ddk

e−ik·uteik·x

∂0ΔðkÞ
adjDðkÞ; ð41Þ

where C≡D ∩ ðC ×RdÞ and D≡ fk ∈ Cdþ1jΔðkÞ ¼ 0g.
The contour of integral C can be deformed to a sum of

Lefschetz thimbles fJ σg as follows:

C ≅
X
σ

hC;KσiJ σ; ð42Þ

where hC;Kσi is the intersection number of C and Kσ and
the fKσg are called the dual thimbles. The Lefschetz
thimble J σ and the dual thimble Kσ are associated with
the critical points of the “height function” defined on D as
follows:
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hðkÞ≡ Reð−ik · uÞ ¼ Imk · u; ð43Þ

which corresponds to the real part of the exponent of the
dominant factor e−ik·u. The critical points are given by the
stationary conditions for h constrained on D, which can be
simplified as

�ΔðkσÞ ¼ 0;

ð∂i − ui∂0ÞΔðkσÞ ¼ 0:
ð44Þ

The Lefschetz thimble associated with the critical point kσ
is obtained by solving the upward flow equation

dKαðsÞ
ds

¼ iuβ

�
δβα − δβγ

∂γΔ∂δΔ
k∂Δk2 δδα

�
k¼KðsÞ

; ð45Þ

with the boundary condition lims→∞ KðsÞ ¼ kσ , and the
dual thimble Kσ is found by solving the same differential
equation with the boundary condition lims→−∞ KðsÞ ¼ kσ.
When jkσ · xj ≪ jkσ · utj, the integral over the Lefschetz

thimble J σ is dominated by the contribution around the
critical point kσ, so the integral is evaluated as follows:

Gðxþ utÞ ∼ 1

td=2
e−ikm·utadjDðkmÞ; ð46Þ

where km is the critical point with the maximum height
hðkmÞ among all critical points satisfying hC;Kσi ≠ 0.
Now, we can classify instabilities in terms of the

behavior of G. If G grows for u ¼ 0, this means that
perturbations will grow at every point throughout the whole
space; such an instability is called an absolute instability.
On the other hand, if G decays for u ¼ 0 but grows for
another u, then the perturbations will grow but flow away
from the generated point; such an instability is called a
convective instability. IfG decays for all u, then the system
is stable.

B. Two-dimensional perturbation

Now, we can conduct a spatiotemporal instability analy-
sis of the two-beam model considering four-dimensional
perturbations. In this subsection, however, we first perform
a two-dimensional analysis for two reasons: we would like
to reveal the problems with the two-dimensional analysis,
and in the case of the two-beam model, the results of the
two-dimensional analysis are also helpful for the four-
dimensional analysis.
For later use, we introduce some vector notations as

follows:
(i) Normalized vector:

â≡ a
jaj ; ð47Þ

(ii) Vector component parallel to b:

ab ≡ a · b̂; ð48Þ

(iii) Projection of a vector onto the direction parallel to b:

ab ≡ abb̂; ð49Þ

(iv) Projection of a vector onto the plane perpendicular
to b:

a⊥b ≡ a − ab: ð50Þ

In addition, we define

�
V ≡ v1þv2

2
;

v≡ v1−v2
2

;
ð51Þ

which are perpendicular to each other because jv1j¼jv2j¼1.
The two-dimensional Green’s function Gð2Þ

n can be
defined as

Dði∂ÞGð2Þ
n ðt; xnÞ ¼ δðtÞδðxnÞI2; ð52Þ

where the unit vector n gives the direction along which we
consider perturbations and xn ≡ x · n as defined above.
When we take n to be the z-direction, the situation is the
same as in Ref. [56]. The Laplace-Fourier transform for
time and the n-direction yields

Dðω; knÞGð2Þ
n ðω; kÞ ¼ I2; ð53Þ

and Gð2Þ
n can be expressed as

Gð2Þ
n ðt; xþ utÞ ¼

Z
L

dω
2π

Z
∞

−∞

dk
2π

e−iðω−kuÞteikxDðω; knÞ−1:

ð54Þ

Although we should compute the asymptotic behaviors of

Gð2Þ
n ðt; xþ utÞ for all u using the method given above, we

can achieve an equivalent task by considering only u ¼ 0 in
this case. When the variables of integration are transformed
such that

�
w

κ

�
¼

�
1 −u
0 u − Vn

��
ω

k

�
; ð55Þ

Eq. (54) becomes
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Gð2Þ
n ðt; xþ utÞ ¼

Z
L

dw
2π

Z
∞

−∞

dκ
2πju − Vnj

e−iwtei
κ

u−Vn
x

×D

�
wþ uκ

u − Vn
;

κ

u − Vn
n

�
−1
: ð56Þ

This integral can be evaluated by means of the Lefschetz
thimble method with height function hðw; κÞ≡ Imw
and DR

Δ̃ðw; κÞ≡ detD

�
wþ uκ

u − Vn
;

κ

u − Vn
n

�
;

¼ w2 þ 2κwþ ð1 − α2Þκ2 − ϵ; ð57Þ

where

αðu; nÞ≡ vn
u − Vn

: ð58Þ

The critical points for this system are given by

� Δ̃ðw; κÞ ¼ 0;
∂
∂κ Δ̃ðw; κÞ ¼ 0:

ð59Þ

This system of equations can be solved analytically, and we
obtain two critical points ðwþ; κþÞ and ðw−; κ−Þ:

ðw�; κ�Þ ¼
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2 − 1Þϵ

p
jαj ;∓ 1

jαj
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ

α2 − 1

r �
: ð60Þ

The dual thimbles K� can be obtained by solving the
upward flow equation

dKαðsÞ
ds

¼ i

�
δ0α − δ0γ

∂γΔ̃ ∂δΔ̃
k∂Δ̃k2 δδα

�
k¼KðsÞ

ð61Þ

with the boundary condition lims→−∞ KðsÞ ¼ kσ.
Numerically, this is achieved by modifying the boundary
condition as follows: Kð0Þ ¼ k� þ ð0; H�δÞ, where δ ∈ R
is a small quantity and

H� ≡ ∂2
κΔ̃

∂wΔ̃

����
ðw;κÞ¼ðw�;κ�Þ

: ð62Þ

The critical points and dual thimbles are shown in
Figs. 1–4 for several values of ϵ and α. All of these figures
show the projections onto the Imκ − Imω plane, and the
original contour C lies within the profile of Imκ ¼ 0 (cyan
line). What we need to pay attention to is the intersection
numbers of C and K�. For example, in Fig. 1, each of the
dual thimbles K� has a single intersection with C, i.e.,
jhC;K�ij ¼ 1, which means that the Lefschetz thimbles
J � both contribute to the integral. We note that the sign of
the intersection number hC;Kσi can be determined by

giving Kσ, and consequently J σ, an orientation. For our
purposes, however, factors other than the dominant expo-
nential factor are not important, so we do not consider
them. In contrast, the dual thimbles in Fig. 4 seem to
intersect with C twice. In fact, however, they cross C from
opposite sides at each intersection, and the intersection
numbers for the two intersections are þ1 and −1; con-
sequently, the sum is hC;K�i ¼ 0.
The situation is more complicated in Figs. 2 and 3. The

dual thimble K− is absorbed into the higher critical point
ðwþ; κþÞ and cannot be well defined. This situation is
understood to be related to the fact that these parameter sets
lie on Stokes rays [64], and we can avoid it by adding small
perturbations to the imaginary parts of the parameters (see
the bottom panels in the figures). In Fig. 3, it can be

= 1

= 2

–4 –2 0 2 4

–4

–2

0

2

4

Im

Im
w

= 1

= 2. + 0.5

–4 –2 0 2 4

–4

–2

0

2

4

Im
w

Im

FIG. 1. The critical points (a black point for kþ and a gray point
for k−) and dual thimbles (a red dashed line for Kþ and a pink
solid line for K−) for the DR Δ̃ðw; κÞ ¼ 0 with ϵ ¼ 1 and α ¼ 2.
The cyan line represents Imκ ¼ 0, part of which corresponds to C.
The bottom panel shows the same figure with a small imaginary
part added to α for readability.
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confirmed in the bottom figure that both of the dual
thimbles have intersections with C, i.e., jhC;K�ij ¼ 1. In
Fig. 2, the dual thimble Kþ apparently does not intersect
with C, and K− also does not, in the same manner as in
Fig. 4; thus, neither of the Lefschetz thimbles influences the
integral. It should be noted that the signs of hC;K−i can be
either positive or negative, depending on the perturbations
added. However, this is not important for the asymptotic
behavior of the Green’s functions because they are not the
highest critical points to which the associated Lefschetz
thimble contributes to the integral.
Although we show figures only for these 4 parameter

sets, we can confirm that the intersection numbers depend
only on the signs of ϵ and jαj − 1. Therefore, for jαj < 1,

the Green’s function Gð2Þ
n ðt; utÞ is exactly 0 for all t. For

jαj > 1 and ϵ > 0, both of the Lefschetz thimbles J �
contribute to the integral, but the growth rate Imw� ¼ 0

means that the Green’s function is damped as ∼1=
ffiffi
t

p
.

For jαj > 1 and ϵ < 0, the growth rate is Imwþ ¼ σð2Þ,
where

σð2Þðu; nÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

�
1 −

1

αðu; nÞ2
�s
: ð63Þ

As a result, the asymptotic behavior of Gð2Þ
n can be

summarized as

Gð2Þ
n ðt; xþ utÞ

∼
� 1ffiffi

t
p eσ

ð2ÞtMð2Þ ðϵ < 0; ju − Vnj < jvnjÞ;
0 ðotherwiseÞ;

ð64Þ

where Mð2Þ, whose concrete expression is omitted, is a
constant matrix independent of t.

FIG. 2. The same figure as Fig. 1 for ϵ ¼ 1 and α ¼ 0.5. The
bottom panel shows the same figure with a small imaginary part
added to ϵ.

FIG. 3. The same figure as Fig. 1 for ϵ ¼ −1 and α ¼ 2. The
bottom panel shows the same figure with a small imaginary part
added to ϵ.
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Based on these results, we can classify the instability for
each parameter set as shown in Table I. For ϵ ≥ 0, the
Green’s function decays in time, meaning that the flavor
eigenstate is stable. If ϵ < 0 and jVnj < jvnj are satisfied,
the Green’s function grows in the rest frame with u ¼ 0,
corresponding to an absolute instability. Finally, if ϵ < 0 is
satisfied and jVnj < jvnj is not, then the Green’s function
decays for u ¼ 0 but grows for u ∈ ðVn − jvnj; Vn þ jvnjÞ,
corresponding to a convective instability.

The results are the same as those in Ref. [56] if we
choose the z-direction as n. We stress, however, that in a
two-dimensional treatment, not only is the space of the
perturbations restricted, but the interpretation of the results
in four-dimensional spacetime is also ambiguous. The
results depend on the direction n, and in fact, it can happen
that the system is convectively unstable for one n but
absolutely unstable for another n. Needless to say, the
nature of the true instability should not depend on which
direction we choose as n. What we have done here is to
consider a perturbation that takes the form of a wave packet
in the direction parallel to n but is homogeneous in the
directions perpendicular to n and investigate the corre-
sponding spatiotemporal evolution. Therefore, even if we
were to investigate all possible directions n, perturbations
with the form of wave packets in four-dimensional space-
time would not be taken into account. How perturbations
truly behave in four-dimensional spacetime cannot be
captured by a two-dimensional analysis. Nevertheless, a
two-dimensional analysis may be justified for systems that
are open in the n direction but bounded in the directions
perpendicular to n. Even in such a case, however, we need
to conduct the analysis for all plane wave modes
perpendicular to n with wave numbers K⊥n, and the DR
will be modified to

Δðω; kÞ ¼ detDðω; knþ K⊥nÞ ¼ 0 ð65Þ

in general, although we treat only K⊥n ¼ 0 in the dis-
cussion above.

C. Four-dimensional perturbation

The general methodology for considering a four-dimen-
sional perturbation has already been presented in Sec. III A.
In the two-beam model, the integral in the calculation of the
Green’s function can be performed partially analytically,
and the analysis reduces to the one in two-dimensional
spacetime.
Initially, D satisfies

DðkÞ ¼
�
ω − jvjkv − V · k⊥v v1 · v2G2

v1 · v2G1 ωþ jvjkv − V · k⊥v

�
;

¼ Dðω − V · k⊥v; kvÞ; ð66Þ

and the inverse matrix is expressed as

DðkÞ−1 ¼ 1

ΔðkÞ
�

v2 · k −v1 · v2G2

−v1 · v2G1 v1 · k

�
: ð67Þ

The integral expression for G is given by Eq. (40). When
we decompose the variables of the integral k into the
components parallel and perpendicular to v and use
Eq. (66), G is written as

FIG. 4. The same figure as Fig. 1 for ϵ ¼ −1 and α ¼ 0.5. The
bottom panel shows the same figure with a small imaginary part
added to α.

TABLE I. Associations between instabilities and model param-
eters for two-dimensional perturbations.

Classification Condition

Stable ϵ ≥ 0
Convectively unstable ϵ < 0; jVnj ≥ jvnj
Absolutely unstable ϵ < 0; jVnj < jvnj
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Gðt; xþ utÞ ¼
Z
L

dω
2π

Z
∞

−∞

dkv
2π

Z
R2

d2k⊥v

2π

× e−iðω−kvuvÞteikvxveik⊥v·ðu⊥vtþx⊥vÞ

×Dðω − V · k⊥v; kvÞ−1: ð68Þ

The variable transformation ω0 ≡ ω − V · k⊥v yields

Gðt; xþ utÞ ¼
Z
R2

d2k⊥v

2π
eik⊥v·½ðu⊥v−VÞtþx⊥v�

×
Z
L

dω0

2π

Z
∞

−∞

dkv
2π

e−iω
0teikvðxvþuvtÞ

×Dðω0; kvÞ−1: ð69Þ

Now, we note that the integral over k⊥v can be performed,
and those over ω0 and kv can be replaced by the two-

dimensional Green’s function Gð2Þ
v̂ :

Gðt;xþutÞ¼ δ2ð½x− ðV−uÞt�⊥vÞGð2Þ
v̂ ðt;ðxþutÞvÞ: ð70Þ

Therefore, the DR to be considered is again the one
expressed in Eq. (57), but α is now given by

αðuv; v̂Þ ¼
jvj
uv

: ð71Þ

We can obtain the asymptotic behavior of Gð2Þ
v̂ by sub-

stituting v̂ into n in Eq. (64), and the final result is

Gðt; xþ utÞ

∼
�
δ2ð½x − ðV − uÞt�⊥vÞ 1ffiffi

t
p eσtM ðϵ < 0; juvj < jvjÞ;

0 ðotherwiseÞ;
ð72Þ

where

σðuvÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ϵ

�
1 −

�
uv
jvj
�

2
	s

ð73Þ

and M is a constant matrix, whose concrete expression is
omitted.
A schematic picture of the growth rate for each frame

with velocity u is shown in Fig. 5. In the four-dimensional
case, a negative value of ϵ, which corresponds to the case in
which crossings exist in the ELN angular distribution, is
necessary for instability, as in the two-dimensional case.
The most important feature is that for ϵ < 0, the delta
function in Eq. (72) constrains the velocity of the frame in
which the system is absolutely unstable on u − Vkv. Thus,
an absolute instability appears only for V ¼ 0, and the
instability is convective otherwise (see Table II). These
results suggest that the instabilities grow toward the

direction between the two neutrino beams. It may be
interpreted intuitively as follows: a perturbation generated
at ðt; xÞ ¼ ð0; 0Þ can travel with the velocity v1 and v2 at
each point; therefore, at time t, all the points the perturba-
tion can reach are x ¼ ðsv1 þ ð1 − sÞv2Þt with s ∈ ½0; 1�,
which is consistent with the support of Eq. (72).
For CCSNe, it has been pointed out that ELN crossings

may occur in decoupling regions [62]. Usually, νe over-
whelms ν̄e in almost all directions, and ν̄e dominates only
for almost radial directions in this region. This situation
may be approximated by the two-beam model with a radial
antineutrino beam with G1 < 0 and v1 ¼ er and a neutrino
beam in another direction with G2 > 0 and v2 ≠ er, where
er is the unit vector parallel to the radial direction.
Therefore, flavor conversion occurs at least toward the
radial direction, which may affect the heating of the
stalled shock.
In addition, the possibility of ELN crossings in the

preshock region was suggested in our previous study [52].
Because the average energy of ν̄e is larger than that of νe, ν̄e
scattered on nuclei in the preshock region can overwhelms
νe while νe usually does ν̄e in the radial direction. We
concluded that the flavor instability does not propagate into
the postshock region from the group velocity of the
unstable modes in one spatial dimension. The results

0

0.2

0.4

0.6

0.8

1.0

FIG. 5. Growth rate σ for the velocity of frame u when ϵ ¼ −1.
We note that the thickness of the line that indicates perturbation
growth is actually infinitesimally small.

TABLE II. Associations between instabilities and model
parameters for four-dimensional perturbations.

Classification Condition

Stable ϵ ≥ 0
Convectively unstable ϵ < 0;V ≠ 0
Absolutely unstable ϵ < 0;V ¼ 0
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shown in this study, however, might overturn this con-
clusion. Radially-peaked νe distribution seems to be
imitated by a beam with G1 > 0 and v1 ¼ er in the two-
beam model while the scattered ν̄e distribution does by a
radially-ingoing beam with G2 < 0 and v2 ¼ −er. As a
result, from Eq. (72), perturbations can grow both outward
and inward, which leads flavor conversions in the post-
shock region. In other words, scattered neutrinos seems to
convey the instability into the postshock region as the
intuitive interpretation mentioned above. Realistically,
however, neutrinos do not have a discrete spectrum, as
in the two-beam model, but rather a continuous one.
Further investigations should be conducted to determine
how instabilities propagate in realistic supernovae.

D. Continuous distribution

Although we should consider a continuous spectrum in
general, as mentioned above, it seems difficult to obtain the
DR ΔðkÞ≡ detDðkÞ ¼ 0 becauseD has uncountably infin-
ite dimensions, and it seems necessary to calculate the
functional determinant of D. It should be noted that spectral
discretization generates many spurious modes, which may
affect the features of the instability, and thus, we cannot
disregard the continuous nature of the spectrum [65,66].
Fortunately, we can prove that the DR is given by the
determinant of a 4 × 4 matrix called the polarization tensor
and that the instability depends only on this determinant.
The Green’s function for the linearized equation in

Eq. (29) is defined as

v · fi∂ − ΛcðxÞgGvv0 ðxÞ

þ
Z

dv00

4π
Gðv00Þv · v00Gv00v0 ðxÞ ¼ δ4ðxÞδðv; v0Þ: ð74Þ

By defining aμvðkÞ≡ R
d2v0
4π Gðv0Þv0μGv0vðkþ ΛcÞ, the

Green’s function G can be expressed as

Gvv0 ðkþ ΛcÞ ¼
δðv; v0Þ − v · av0 ðkÞ

v · k
ð75Þ

in a locally constant and uniform approximation of the
potential ΛcðxÞ. By substituting this expression into the
definition of aμv , we obtain the following linear equation
for aμv :

ΠμνðkÞavνðkÞ ¼ GðvÞ vμ

v · k
; ð76Þ

where

ΠμνðkÞ≡ ημν þ
Z

dv
4π

GðvÞ v
μvν

v · k
ð77Þ

is called the polarization tensor [45]. By substituting this into
Eq. (75), the following expression for the Green’s function is
derived:

Gvv0 ðkþ ΛcÞ ¼
δðv; v0Þ
v · k

−
vμΠ−1

μν ðkÞv0ν
ðv · kÞðv0 · kÞGðv

0Þ: ð78Þ

Therefore, all of the singularities of G originate from the
roots of detΠðk − ΛcÞ ¼ 0 and v · ðk − ΛcÞ ¼ 0 for arbi-
trary v. The latter does not influence the instability because
ω is real for all k ∈ R3. Thus, it is sufficient to investigate
the instability for the DR detΠðkÞ ¼ 0.

IV. CONCLUSION

In this paper, we have conducted a spatiotemporal linear
instability analysis of collective neutrino flavor conversion
in four-dimensional spacetime. We have analytically
derived the asymptotic form of the linear perturbations
for a two-beam model and highlighted the importance of
four-dimensional perturbations for collective neutrino
oscillations. In addition, we have shown that collective
neutrino oscillations might influence shock heating not
only in the decoupling region but also in the preshock
region of a CCSN. We have also discussed the application
of the method of instability analysis to continuous spectra,
which are more realistic in nature.
As many previous studies have pointed out, ELN cross-

ings allow neutrino flavor conversion, and the spatiotem-
poral behavior of such conversion in four-dimensional
spacetime is revealed in this paper for the first time.
When we consider two-dimensional perturbations, the
instabilities can appear as both absolute and convective
depending on the directions chosen for the perturbations,
and such an analysis cannot elucidate how perturbations
truly behave in four-dimensional spacetime. When four-
dimensional perturbations are taken into account, it is
clarified that the instabilities are actually convective and
the perturbations grow toward the direction between the
neutrino and antineutrino beams.
Needless to say, one of our goals is to gain an under-

standing of nonlinear spatiotemporal behaviors. However, it
seems that more qualitative studies are also needed for
guidance, especially in the current situation, in which
numerical calculations seem to be extremely difficult.
Additionally, more systematic studies are certainly needed
to determine how flavor instabilities are actually triggered
and evolve in supernovae. It is true that the two-beam model
is simply a toymodel, butwehope that this first-ever study on
the spatiotemporal behaviors of flavor conversion in four-
dimensional spacetimewill help develop an understandingof
the more realistic flavor conversion behaviors in supernovae.

ACKNOWLEDGMENTS

I am grateful to Shoichi Yamada and Hiroki Nagakura
for useful discussions. I am supported by a JSPS Grant-in-
Aid for JSPS Fellows (No. 19J21244) from the Ministry
of Education, Culture, Sports, Science, and Technology
(MEXT), Japan.

SPATIOTEMPORAL LINEAR INSTABILITY ANALYSIS OF … PHYS. REV. D 103, 083014 (2021)

083014-11



[1] L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D
17, 2369 (1978).

[2] L. Wolfenstein, Neutrino oscillations and stellar collapse,
Phys. Rev. D 20, 2634 (1979).

[3] T. Takiwaki, K. Kotake, and Y. Suwa, A comparison of two-
and three-dimensional neutrino-hydrodynamics simulations
of core-collapse supernovae, Astrophys. J. 786, 83 (2014).

[4] E. J. Lentz, S. W. Bruenn, W. R. Hix, A. Mezzacappa,
O. E. Messer, E. Endeve, J. M. Blondin, J. A. Harris, P.
Marronetti, and K. N. Yakunin, Three-dimensional core-
collapse supernova simulated using A 15 M⊙ progenitor,
Astrophys. J. Lett. 807, L31 (2015).

[5] H.-T. Janka, T. Melson, and A. Summa, Physics of core-
collapse Supernovae in three dimensions: A sneak preview,
Annu. Rev. Nucl. Part. Sci. 66, 341 (2016).

[6] E. P. O’connor and S. M. Couch, Two-dimensional core-
collapse supernova explosions aided by general relativity
with multidimensional neutrino transport, Astrophys. J. 854,
63 (2018).

[7] C. D. Ott, L. F. Roberts, A. Da, S. Schneider, J. M. Fedrow,
R. Haas, and E. Schnetter, The progenitor dependence of
core-collapse supernovae from three-dimensional simula-
tions with progenitor models of 12–40 M⊙, Astrophys. J.
Lett. 855, L3 (2018).

[8] D. Vartanyan, A. Burrows, D. Radice, M. Aaron Skinner,
and J. Dolence, A successful 3D core-collapse supernova
explosion model, Mon. Not. R. Astron. Soc. 482, 351
(2019).

[9] B. Müller, T. M. Tauris, A. Heger, P. Banerjee, Y. Z. Qian,
J. Powell, C. Chan, D.W. Gay, and N. Langer, Three-
dimensional simulations of neutrino-driven core-collapse
supernovae from low-mass single and binary star progeni-
tors, Mon. Not. R. Astron. Soc. 484, 3307 (2019).

[10] A. Burrows, D. Radice, andD.Vartanyan, Three-dimensional
supernova explosion simulations of 9-, 10-, 11-, 12-,
and 13-M⊙ stars, Mon. Not. R. Astron. Soc. 485, 3153
(2019).

[11] S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Wong,
Self-induced conversion in dense neutrino gases: Pendulum
in flavor space, Phys. Rev. D 74, 105010 (2006).

[12] L. Johns and G. M. Fuller, Strange mechanics of the
neutrino flavor pendulum, Phys. Rev. D 97, 023020 (2018).

[13] R. F. Sawyer, Speed-up of neutrino transformations in a
supernova environment, Phys. Rev. D 72, 045003 (2005).

[14] H. Duan, G. M. Fuller, and Y. Z. Qian, Collective neutrino
flavor transformation in supernovae, Phys. Rev. D 74,
123004 (2006).

[15] G. G. Raffelt and G. Sigl, Self-induced decoherence in
dense neutrino gases, Phys. Rev. D 75, 083002 (2007).

[16] G. G. Raffelt and A. Y. Smirnov, Self-induced spectral splits
in supernova neutrino fluxes, Phys. Rev. D 76, 081301(R)
(2007).

[17] A. Esteban-Pretel, S. Pastor, R. Tomàs, G. G. Raffelt, and G.
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