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10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

2Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Mühlenberg 1, Potsdam-Golm 14476, Germany

3Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center,
8800 Greenbelt Road, Greenbelt, Maryland 20771, USA

4Universit Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

(Received 1 March 2020; accepted 15 March 2021; published 15 April 2021)

The space-based gravitational wave detector LISA will observe mergers of massive black hole binary
systems (MBHBs) to cosmological distances, as well as inspiralling stellar-origin (or stellar-mass) binaries
(SBHBs) years before they enter the LIGO/Virgo band. Much remains to be explored for the parameter
recovery of both classes of systems. Previous MBHB analyses relied on inspiral-only signals and/or a
simplified Fisher matrix analysis, while SBHBs have not yet been extensively analyzed with Bayesian
methods. We accelerate likelihood computations by (i) using a Fourier-domain response of the LISA
instrument, (ii) using a reduced order model for nonspinning waveforms that include a merger-ringdown
and higher harmonics, and (iii) setting the noise realization to zero and computing overlaps in the
amplitude/phase representation. We present the first simulations of Bayesian inference for the parameters
of massive black hole systems including consistently the merger and ringdown of the signal, as well as
higher harmonics. We clarify the roles of LISA response time and frequency dependencies in breaking
degeneracies and illustrate how degeneracy breaking unfolds over time. We also find that restricting the
merger-dominated signal to its dominant harmonic can make the extrinsic likelihood very degenerate.
Including higher harmonics proves to be crucial to breaking degeneracies and considerably improves the
localization of the source, with a surviving bimodality in the sky position. We also present simulations of
Bayesian inference for the extrinsic parameters of SBHBs, and show that although unimodal, their posterior
distributions can have non-Gaussian features.
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I. INTRODUCTION

Gravitational waves from the coalescence of black hole
binaries are now regularly observed [1] by the ground-
based interferometers Advanced LIGO [2], Advanced
Virgo [3], and, soon, KAGRA [4].
Ground-based interferometers are fundamentally limited

at low frequency by terrestrial noise, and cannot be used to
study mergers of compact objects much heavier than a few
102 M⊙. The spaceborne detector LISA [5] will overcome
this limitation, enabling the observation and precise char-
acterization of gravitational waves from binary black holes,
from the coalescence of systems with millions of M⊙
[massive black hole binaries (MBHB) [6] ] to the inspiral of
systems with tens of M⊙ [stellar-mass black hole binaries
(SBHB) [7] ]. The observation of black hole mergers and

inspirals in the LISA frequency band will yield major
scientific rewards, and they form the main target of LISA
among other classes of sources.
In order to realize the full scientific objectives of LISA

with respect to black hole mergers, adequate data analysis
tools must be prepared in advance. Similar to what happens
in LIGO and Virgo, one has to first identify the presence of
a merger waveform in the LISA data, possibly in the
presence of other superposed signals (notably galactic
white dwarf binaries [8]), and then infer the distribution
of the physical parameters of its source from the data,
enabling the construction of a catalog of black hole
binaries. Inferring the parameters of binaries, particularly
their distance and sky location, and refining the analysis as
the signal accumulates with observation time will also be
necessary to organize multimessenger observations of their
late inspirals and mergers [9,10]. Cosmological applica-
tions using LISA observations as standard sirens [11,12]
also depend on the ability to localize individual sources.*NASA Postdoctoral Program fellow
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Understanding parameter estimation of SBHBs will also be
important to understanding the outcomes and challenges of
possible multiband gravitational wave observations [7]. In
this paper we focus on the latter part of the analysis
problem, i.e., the inference of the black hole parameters
from the LISA data, once we have reasons to believe the
presence of the signal in the data, leaving aside the
identification problem. We also limit our analysis to
extrinsic parameters and ignore the effect of superposed
gravitational wave signals from various sources.
The inference problem amounts to producing samples

from the posterior distribution for source parameters related
by Bayes theorem to the likelihood function, i.e., the
probability of observing the measured data given the source
parameters and a model of the source and detector. In LISA,
this problem is more complex than in kilometer-scale
ground-based interferometers, as additional challenges
arise from the much larger expected signal-to-noise ratios
(SNRs) for high-mass systems, or the much longer duration
of the waveform for low-mass systems. In particular, for
MBHBs, the large SNR will require a very accurate
modeling of the waveform, including the merger and
ringdown regimes, the effects of spin, and corrections of
higher harmonics in the signal beyond the quadrupole.
The response of the LISA instrument to a givenwaveform

shows a time- and frequency-dependence [13–16]. Contrary
to LIGO and Virgo, which are approximately fixed in an
inertial frame during the observation of any merger, the
LISA constellation will move around the Sun and change its
orientation appreciably if the signal is observable for a
significant fraction of a year, leading to additional modu-
lations of the signals. Furthermore, due to the LISA arm
length, for many sources the long-wavelength approxima-
tionwill not hold,which introduces a frequency-dependence
in the response. Aswewill see in this study, proper treatment
of these effects is necessary in order to understand degen-
eracies between the source parameters.
Previous parameter recovery studies with LISA used

mainly simplified signal and response models, and often
relied on a Fisher matrix approximation to parameter
recovery instead of full Bayesian simulations. Numerous
works used the combination of inspiral-only post-
Newtonian waveforms (sometimes including precession),
the low-frequency approximate response, and Fisher matrix
estimates [13,17–20]. The Mock LISA Data Challenges
[21] used such a setup for the signals and the response,
albeit moving towards Markov chain Monte Carlo
(MCMC) tools with a focus on detection. Bayesian
methods going beyond Fisher, albeit still restricted to
inspiral signals, were developed in [22–31]. The impor-
tance of the higher harmonics for LISA was stressed
already in several studies [32–35]. To explore the impor-
tance of the merger-ringdown using numerical relativity
waveforms, the studies [35–38] used a Fisher approach,
while Ref. [39] used Bayesian analyses limited to extrinsic

parameters.More recently, in the context of the redesignof the
LISAmission [40], the study [6] explored the performance of
various LISA instrumental designs using Fisher matrix
estimates and inspiral signals, but used a reweighting pro-
cedure to represent the role of the merger-ringdown signal.
We also note a recent work [41] investigating parameter
recovery for ringdown-dominated signals. To this date, no full
Bayesian parameter estimation studies with inspiral-merger-
ringdown (IMR) signals have been performed.
On the other hand, important advances have been

registered in recent years in providing fast and accurate
waveforms including the merger and ringdown for the
LIGO/Virgo data analysis through phenomenological
waveforms [42,43], reduced order models (ROM) of
effective-one-body (EOB) waveforms [44,45], and numeri-
cal relativity surrogates [46,47]. This progress has yet to be
transposed to LISA applications.
Here we demonstrate that standard Bayesian inference

can be performed for MBHBs using a self-consistent
waveform model that includes inspiral, merger, ringdown,
and higher-order modes (albeit no spins) and a full model of
the LISA response. We investigate and explain degener-
acies in the posterior distribution of the source’s parame-
ters, and highlight the crucial role played by the higher
harmonics in the signal and the frequency-dependency in
the instrument response.
In the present study, we will consider a somewhat

reduced parameter space, not including the effects of the
spins of the two black holes. These could lead to more
complicated waveforms, notably through precession
effects, which we leave for future work. It should be noted,
however, that aligned spin components, though quantita-
tively important, are not expected to change many of our
conclusions due to the relative disconnect between the
inference of intrinsic and extrinsic parameters.
We start by introducing a fast method to calculate the

likelihood function for black hole merger signals. This
method includes: a fast computation of a Fourier-domain
inspiral-merger-ringdown waveform with higher-order
modes based on a reduced order model; a fast Fourier-
domain computation of the LISA response based on [16];
and a fast method for computing the noise-weighted
product between waveforms when setting the noise reali-
zation to zero. We couple our likelihood with two codes for
Bayesian inference based on different sampling techniques,
constructing an inference engine which enables us to
perform a variety of investigations with simulated black
hole mergers.
Focusing on two examples of moderately massive black

holes binaries, we perform Bayesian parameter estimation
simulation for full inspiral-merger signals, and we show the
crucial role of higher-order modes. We highlight the
challenges we encounter in the sampling, and compare
our two samplers with each other and with the Fisher
matrix approximation. We explore degeneracies appearing
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between some of the parameters when ignoring these
higher harmonics, and derive an analytic explanation of
their origin via simplified approximations to the instrument
response. We show for our examples how the posterior
distributions evolve over time as more and more data
becomes available for the inference, and explain how
degeneracies between different positions of the source in
the sky are broken by features in the instrument response.
Finally, we repeat some of our investigations for stellar-

origin black hole mergers. Parameter estimation studies for
SBHB systems have relied so far on the Fisher matrix
approach [7,48–50], with Bayesian inference tools yet to
be developed. Focusing on the posterior distribution of
extrinsic parameters (fixing the masses and time to coa-
lescence), we demonstrate that Bayesian analyses can be
run with a speed for the likelihood computation that is
comparable to the MBHB case, and discuss the features of
the posteriors.
Section II introduces comprehensive notations for the

frequency-domain signal and response, and Sec. III
explains our methods for likelihood computations and
Bayesian sampling. Section IV presents the MBHB exam-
ple signals that we analyze and their accumulation with
time, together with their instrumental response in various
approximations. In Sec. V, we present our main results for
the parameter estimation of MBHBs; we contrast results
obtained with and without higher harmonics, contrast the
Fisher matrix with Bayesian results, and describe and
explain degeneracies in the parameter space. In Sec. VI,
we turn to the refinement of parameter estimation as the
signal accumulates with ongoing observations, describing
how multiple inferred sky positions can coexist before
features of the full instrument response break the degen-
eracies. In Sec. VII, we turn to the application of our fast
likelihood computation to investigate the extrinsic param-
eter inference of SBHBs. We summarize and discuss our
findings in Sec. VIII.

II. LISA INSTRUMENT RESPONSE

In this section, we introduce a complete set of notations
for the LISA instrument response that will be useful in the
later discussion of degeneracies in parameter space. Wewill
use units with G ¼ c ¼ 1 and assume the proposed arm
length for LISA, L ¼ 2.5 Gm [5].

A. The GW signal

To describe the gravitational wave signal, we first need to
define a conventional source frame associated to the binary
system, as detailed in the Appendix A. The gravitational
wave propagation vector k, pointing from the source to the
observer, has polar angles ðι;φÞ in this source frame. Next,
one introduces polarization vectors p, q so that ðp; q; kÞ is a
direct triad. The precise choice of ðp; qÞ is a matter of
convention, for which we refer to Appendix A.

The gravitational waveform in the transverse-traceless
gauge is described by the two polarizations hþ, h×. If
Hij ¼ hTTij represents the gravitational wave signal in
matrix form,

H ¼ hþPþ þ h×P×; ð1Þ

with the polarization tensors

Pþ ¼ p ⊗ p − q ⊗ q; ð2aÞ

P× ¼ p ⊗ qþ q ⊗ p: ð2bÞ

Conversely, the polarizations are

hþ ¼ 1

2
ðp ⊗ p − q ⊗ qÞ∶ H; ð3aÞ

h× ¼ 1

2
ðp ⊗ qþ q ⊗ pÞ∶ H; ð3bÞ

with the notation A∶ B ¼ AijBij.
One can further decompose the gravitational wave

signal, seen as a function of the direction of emission
ðι;φÞ in the source frame, in spin-weighted spherical
harmonics [51] as

hþ − ih× ¼
X
l≥2

Xl
m¼−l

−2Ylmðι;φÞhlm: ð4Þ

Explicit expression of the −2Ylm can be found in, e.g.,
Sec. 3 of [52]. In the following, we will use exclusively this
parametrization of the waveform as a set of modes hlm. The
dominant harmonic is h22, while the others are called
higher modes (HM) or higher harmonics.
We will both generate the waveforms and apply the

response directly in the Fourier domain. Our convention for
the Fourier transform of a function F is1

F̃ðfÞ ¼
Z

dte2iπftFðtÞ: ð5Þ

B. Mode decomposition and polarization angle

We now translate the mode decomposition (4) in the
Fourier domain. We have

hþ ¼ 1

2

X
l;m

ð−2Ylmhlm þ −2Y
�
lmh

�
lmÞ; ð6aÞ

h× ¼ i
2

X
l;m

ð−2Ylmhlm − −2Y
�
lmh

�
lmÞ; ð6bÞ

1Note that this differs by a change f → −f from the more
usual convention used, e.g., in LAL [53].
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which is valid in general [we dropped the ðι;φÞ arguments
of the −2Ylm]. Now, for nonprecessing binary systems, an
exact symmetry relation between modes reads

hl;−m ¼ ð−1Þlh�l;m: ð7Þ

Using this symmetry, we can write

hþ;× ¼
X
l;m

Kþ;×
lm hlm; ð8Þ

with

Kþ
lm ¼ 1

2
ð−2Ylm þ ð−1Þl−2Y�

l;−mÞ; ð9aÞ

K×
lm ¼ i

2
ð−2Ylm − ð−1Þl−2Y�

l;−mÞ: ð9bÞ

Going to the Fourier domain, an approximation often
used is to neglect support for negative/positive frequencies
according to

h̃lmðfÞ ≃ 0 for m < 0; f > 0 ðm > 0; f < 0Þ; ð10Þ

and neglecting modes hl0. We will use this approximation
throughout this paper. Note that we picked our Fourier
convention (5) to ensure that modes h̃lmðfÞ with m > 0
have support for f > 0. Using (10), for f > 0 we have

h̃þ;× ¼
X
l

X
m>0

Kþ;×
lm h̃lm: ð11Þ

Next, it is convenient to introduce mode-by-mode
polarization matrices,

Plm ¼ PþKþ
lm þ P×K×

lm; ð12Þ

so that

H ¼
X
l;m>0

Plmhlm: ð13Þ

The polarization angle ψ can be seen (see Appendix A)
as a degree of freedom in the relation between the source
frame and the detector frame, parametrizing a rotation
around the wave vector k. To define this angle, one intro-
duces reference vectors ðu; vÞ orthogonal to k, that define
the zero of the polarization angle as ðp; qÞðψ ¼ 0Þ ¼
ðu; vÞ. Our convention for ðu; vÞ is detailed in Appendix A.
To make explicit the dependence in polarization, we can

define polarization tensors for a zero polarization angle as

P0þ ¼ Pþðψ ¼ 0Þ ¼ u ⊗ u − v ⊗ v; ð14aÞ

P0
× ¼ P×ðψ ¼ 0Þ ¼ u ⊗ vþ v ⊗ u: ð14bÞ

This allows us to write the dependence in polarization as

Pþ þ iP× ¼ e−2iψðP0þ þ iP0
×Þ; ð15Þ

or explicitly in Plm as

Plmðι;φ;ψÞ ¼
1

2 −2Ylmðι;φÞe−2iψðP0þ þ iP0
×Þ

þ 1

2
ð−1Þl−2Y�

l;−mðι;φÞeþ2iψ ðP0þ − iP0
×Þ:
ð16Þ

Writing the Plm matrices in this way allows us to factor out
explicitly all dependencies in the extrinsic parameters
ðι;ϕ;ψÞ. Together with the luminosity distance D scaling
the overall amplitude of the signal, these parameters enter
as constant (time- and frequency-independent) prefactors in
the response for each mode hlm.
Since ψ always appears with a factor of 2, it has an exact

π-degeneracy, and we choose the convention of restrict-
ing ψ ∈ ½0; π�.

C. Frequency-domain LISA response

The LISA response [13–15,54,55] can be built from
single-link observables yslr ¼ ðνr − νsÞ=ν, representing a
laser frequency shift between the transmitting spacecraft s
and the receiving spacecraft r along the link l. We use the
expression [56,57]

yslr ¼
1

2

nl ⊗ nl
1 − k · nl

∶½Hðt − L − k · psÞ −Hðt − k · prÞ�;

ð17Þ

where H is the transverse-traceless matrix representing the
gravitational wave, k is the wave propagation vector, L is
the delay along one arm, taken to be fixed, nl are the link
unit vectors (from s to r), and ps, pr are the positions of the
spacecrafts. Here nl, ps, and pr are evaluated at the same
time, t. In the following, we will use interchangeably the
notation ysr instead of yslr, since nl can be deduced from
the sending and receiving indices s, r.
Our response formalism applies to waveforms which can

be represented as a combination of harmonics with slowly
varying amplitude and phase as2

h̃lmðfÞ ¼ AlmðfÞe−iΨlmðfÞ: ð18Þ

We will use the analysis of [16] and write the response in
individual observables yslr, with a transfer function for each
spherical harmonic mode as

2Note our Fourier convention (5).
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ỹslr ¼
X
l;m

T lm
slr ðfÞh̃lm: ð19Þ

How to take the Fourier transform of (17) was investigated
in detail in the perturbative formalism of [16]. The main
timescales to compare are the radiation-reaction timescale
∝ 1=

ffiffiffiffi
_ω

p
of the binary and the LISA orbital timescale 1 yr.

At leading order in the separation of these timescales, for a
signal that is chirping fast enough, we have simply

T lm
slr ðfÞ ¼ Glm

slr ðf; tlmf Þ; ð20Þ

where

Glm
slr ðf; tÞ ¼

iπfL
2

sinc½πfLð1 − k · nlÞ�
· exp ½iπfðLþ k · ðpr þ psÞÞ�nl · Plm · nl;

ð21Þ

is the kernel from [16] with nl, ps, pr evaluated at t, with
Plm defined by the decomposition (13). In (20),

tlmf ¼ −
1

2π

dΨlm

df
; ð22Þ

is the effective time-frequency correspondence, defined
across the whole frequency band and including the merger
and ringdown. This definition generalizes the stationary
phase approximation (SPA).
The analysis of [16] has shown that higher-order

corrections in the separation of timescales in the LISA
response are small in general for MBHB systems, and are
also small for SBHB systems provided that they are not too
far from the coalescence. The fact that we use the same
Fourier-domain treatment of the transfer functions for both
the signal and the templates should also mitigate the
importance of modeling errors. We will therefore limit
ourselves to the leading order in the treatment of [16] in the
rest of this paper.
In (21) it is convenient to decompose the spacecraft

positions as

pr;s ¼ p0 þ pL
r;s; ð23Þ

where p0 is the position of the center of the LISA
constellation. This allows us to note an important
feature of (21): apart from a global phase delay factor
exp½iπfk · p0�, frequency-dependent terms only feature the
projections

kk · nl; kk · pL
s;r; ð24Þ

where kk is the projection of the wave vector k in the
(instantaneous) LISA plane, and thus the frequency-
dependent factors are invariant when we reflect k across

this plane. The delay k · p0 is the only one with a baseline
outside the LISA plane [see (36) below]. This will remain
true when constructing time delay interferometry (TDI)
variables below.3 We will investigate sky degeneracies in
detail in Sec. V B and Sec. VI B.
In Eqs. (17) and (21), one can distinguish two types of

delays: on one hand the delay associated to the position p0

of the center of the constellation on its orbit around the Sun,
with baseline R ¼ 1 au, and on the other hand the delays
associated to the individual spacecraft positions in the
constellation, with the baseline of the arm length L. This
defines the transfer frequencies

fR ¼ 1=R ¼ 2.0 × 10−3 Hz; ð25aÞ

fL ¼ 1=L ¼ 0.12 Hz: ð25bÞ

The transfer frequency fL corresponds to fitting a full
wavelength in the arm length; as we will see below
in Sec. VI, departures from the long-wavelength approxi-
mation starts to be important at significantly lower
frequencies.

D. Time delay interferometry

The basic one-arm observables of Eq. (17) are affected
by laser noise whose amplitude is orders of magnitude
larger than the astrophysical signal. However, TDI allows
one to construct a new set of observables from delayed
combinations of yslr, where laser noise is suppressed by
orders of magnitude [58–62]. Various generations of
TDI schemes have been proposed in order to deal with a
nonrigid and rotating LISA constellation [63–66].
However, these refinements only marginally affect the
response to the gravitational waves. Hence, in this work
we only consider first-generation TDI and adopt a rigid
approximation for the constellation, where delays are all
constant and equal to L. Using the notation yslr;nL ¼
yslrðt − nLÞ, the first-generation TDI Michelson observ-
able X reads [56]:

X ¼ y31 þ y13;L þ ðy21 þ y12;LÞ;2L
− ðy21 þ y12;LÞ − ðy31 þ y13;LÞ;2L; ð26Þ

with the other Michelson observables Y, Z being obtained
by cyclic permutation. Uncorrelated combinations A, E,
and T [67] are then expressed as

A ¼ 1ffiffiffi
2

p ðZ − XÞ; ð27aÞ

3Strictly speaking, it will not be true in the most general
response formalism of [16], where corrections are either slightly
nonlocal in time or involve velocities that are out of the LISA
plane.
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E ¼ 1ffiffiffi
6

p ðX − 2Y þ ZÞ; ð27bÞ

T ¼ 1ffiffiffi
3

p ðX þ Y þ ZÞ: ð27cÞ

These channels are independent under the assumption of an
identical and uncorrelated noise in the detector arms. Note
that various conventions coexist in the literature. With
constant delays in the rigid approximation, and using the
notation z≡ exp½2iπfL�, the TDI combinations in the
frequency domain take the form

ã ¼ ð1þ zÞðỹ31 þ ỹ13Þ − ỹ23 − zỹ32 − ỹ21 − zỹ12; ð28aÞ

ẽ ¼ 1ffiffiffi
3

p ½ð1 − zÞðỹ13 − ỹ31Þ þ ð2þ zÞðỹ12 − ỹ32Þ

þ ð1þ 2zÞðỹ21 − ỹ23Þ�; ð28bÞ

t̃ ¼
ffiffiffi
2

p
ffiffiffi
3

p ½ỹ21 − ỹ12 þ ỹ32 − ỹ23 þ ỹ13 − ỹ31�; ð28cÞ

where we have eliminated frequency-dependent prefactors
that are common to the signal and to the noise by
introducing the rescalings

ã; ẽ ¼ e−2iπfL

i
ffiffiffi
2

p
sinð2πfLÞ × Ã; Ẽ; ð29aÞ

t̃ ¼ e−3iπfL

2
ffiffiffi
2

p
sinðπfLÞ sinð2πfLÞ × T̃: ð29bÞ

We will use mode-by-mode transfer functions for these
reduced channels as

ã; ẽ; t̃ ¼
X
l;m

T lm
a;e;th̃lm: ð30Þ

To make the connection between these reduced TDI
observables and the gravitational strain, more familiar in
the context of ground-based instruments, we also introduce
the notations

h̃a;e;t ≡ 1

ð−6iπfLÞ × ã; ẽ; t̃; ð31aÞ

T lm
ha;he;ht

¼ 1

ð−6iπfLÞ T
lm
a;e;t: ð31bÞ

Scaling out the same square factors from the noise power
spectral density (PSD) as

SAn ; SEn ¼ 2sin2ð2πfLÞ × San; Sen; ð32aÞ

STn ¼ 8sin2ðπfLÞsin2ð2πfLÞStn; ð32bÞ

the reduced PSD for the three channels takes the form

San ¼ Sen ¼ 2ð3þ 2 cosð2πfLÞ þ cosð4πfLÞÞSpmðfÞ
þ ð2þ cosð2πfLÞÞSopðfÞ; ð33aÞ

Stn ¼ 4sin2ð2πfLÞSpmðfÞ þ SopðfÞ; ð33bÞ

where Spm is the test-mass noise PSD and Sop is the optical
noise PSD. We also include a confusion noise coming from
the background of galactic binaries in the LISA band that is
added to the instrumental noise. For the instrument per-
formance defining these noise levels, we take values from
[68] (see Appendix A 4). We can define a strainlike noise
PSD associated with the strainlike TDI observables (31) as

Sa;e;th ðfÞ ¼ Sa;e;tn ðfÞ
ð6πfLÞ2 : ð34Þ

The prefactors (29) are oscillatory and have zero-cross-
ings at high frequencies, with the first one occurring at
fL=2 ¼ 0.06 Hz, which is why it is convenient to factor
them out to avoid 0=0 numerical instabilities. This treat-
ment would not apply directly to a more realistic model for
LISAwith varying arm lengths and residual laser noise. In
that case, imperfect cancellations in the vicinity of the zero-
crossings would likely result in a localized loss of
sensitivity.

E. The low-frequency limit

Though our parameter estimation calculation primarily
applies the full LISA response, it will be useful to consider
some simplifying asymptotic limits to understand param-
eter degeneracies.
As is well-known [13], in the low-frequency limit (also

called the long-wavelength approximation), the finite arm
length effects vanish, and the response of LISA is analo-
gous to the response of two LIGO-type detectors rotated
from each other by π=4 and set in motion.
For f ≪ fL, we have 2πfL ≪ 1 and the kernel (21)

reduces to

Glm
slr ≃

iπfL
2

exp½2iπfk · p0�nl ⊗ nl∶Plm: ð35Þ

The exponential factor is a delay phase, for which we
introduce the notation

ΦR ≡ 2πfk · p0; ΔΦR ¼ ΦR −ΦRðt ¼ tpeakf Þ: ð36Þ

The quantity ΦR is often called the Doppler phase in the
literature; it may appear to be large for f ≫ fR, but we
should remember that it corresponds in part simply to the
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fixed delay between the time of arrival at the SSB and the
time of arrival at the LISA constellation. In the limit of
short-lived coalescence signals, only the Doppler phase
variation ΔΦR carries useful information about the sky
position.
For 2πfL ≪ 1, we have z ≃ 1, and the link reversal

symmetry ỹslr ≃ ỹr−ls, so that (28) becomes (dropping l
indices and symmetrizing r, s)

ã ≃ 4ỹ31 − 2ỹ23 − 2ỹ12; ð37aÞ

ẽ ≃ 2
ffiffiffi
3

p
½ỹ12 − ỹ23�; ð37bÞ

t̃ ≃ 0; ð37cÞ

with the T-channel becoming negligible in this limit. Using
(35), we can write

ã; ẽ ¼ ð−2iπfÞ exp ½2iπfk · p0�
X
l;m>0

h̃lmDa;e∶Plm; ð38Þ

where we introduced the detector tensors

Da ¼
L
2
ðn1 ⊗ n1 þ n3 ⊗ n3 − 2n2 ⊗ n2Þ; ð39aÞ

De ¼
L

ffiffiffi
3

p

2
ðn1 ⊗ n1 − n3 ⊗ n3Þ: ð39bÞ

Here, we have made apparent factors ð−2iπfÞ, which
correspond to a time derivative in the Fourier domain.
The observables ã, ẽ are therefore analogous to time
derivatives of the strain commonly used for ground-based
detectors.
We can now map these two channels to two fictitious

LIGO-type detectors as follows. For an orthogonal detector
of the same setup as the ground-based LIGO and Virgo with
arm length LD, rotated by an angle ϵD from the basis
vectors x, y, the detector tensor is

D ¼ LD

2
½cos 2ϵDðx ⊗ x − y ⊗ yÞ

þ sin 2ϵDðx ⊗ yþ y ⊗ xÞ�: ð40Þ

Compared with (39), using the LISA frame as a detector
frame (see Appendix A) we obtain

La ¼ Le ¼ 3L; ϵa ¼
2π

3
; ϵe ¼

5π

12
: ð41Þ

Note a degeneracy �π in ϵa;e, reflecting a freedom in the
choice of the orientation of these effective detectors. The
effective arm length 3L is a matter of convention, since it
depends on an arbitrary overall scaling in (27).

Next, we factor out the effective length, defining

Fþ;×
a;e ≡ 1

3L
Da;e∶P0þ;×; ð42Þ

which gives, in terms of the LISA-frame sky position
angles λL, βL (see Appendix A 3),

Fþ
a ¼ 1

2
ð1þ sin2βLÞ cos

�
2λL −

π

3

�
; ð43aÞ

F×
a ¼ sin βL sin

�
2λL −

π

3

�
; ð43bÞ

Fþ
e ¼ 1

2
ð1þ sin2βLÞ cos

�
2λL þ π

6

�
; ð43cÞ

F×
e ¼ sin βL sin

�
2λL þ π

6

�
: ð43dÞ

These functions are the familiar pattern functions of
ground-based detectors (for ψL ¼ 0) (see, e.g., [69]).
One can check that the expressions for the channel e are
obtained from the expressions for a with the replace-
ment λL → λL þ π=4.
If we introduce

Flm
a;e ¼

1

2 −2Ylme
−2iψLðFþ

a;e þ iF×
a;eÞ

þ 1

2
ð−1Þl−2Y�

l;−me
þ2iψLðFþ

a;e − iF×
a;eÞ; ð44Þ

the mode transfer functions (30) become

ã; ẽ ¼
X
l;m

T lm
a;eh̃lm

¼ ð−6iπfLÞ exp½2iπfk · p0�
X
l;m

Flm
a;eh̃lm: ð45Þ

We see that scaling out ð−6iπfLÞ as in (31) brings us back
to strainlike observables. The only difference with the
response of a ground-based observatory is the time-
dependency entering p0ðtÞ and the LISA frame angles
λLðtÞ, βLðtÞ, ψLðtÞ [see (A15)], with the time evaluated
at tlmf .
Finally, we note that we could include the polarization

angle in the pattern functions as follows. Above we have
chosen to write ψ as an outside prefactor, but we could
write ψ-dependent pattern functions as

Fþ
a;eðλL; βL;ψLÞ ¼ cos 2ψLFþ

a;e þ sin 2ψLF×
a;e; ð46aÞ

F×
a;eðλL; βL;ψLÞ ¼ − sin 2ψLFþ

a;e þ cos 2ψLF×
a;e; ð46bÞ

so that in the low-frequency approximation the response for
the strainlike observables (31) is
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h̃a;e ¼ Fþ
a;eðλL; βL;ψLÞh̃þ þ F×

a;eðλL; βL;ψLÞh̃×; ð47Þ

if we ignore the delay k · p0 and treat the angles as
constants. This is the more familiar form of the instrument
response used for ground-based detectors.

III. METHODOLOGY

A. Bayesian setting

Introducing the standard matched-filter inner product
[69] (also called overlap) as

ðãjb̃Þ ¼ 4Re
Z þ∞

0

df
ãðfÞb̃�ðfÞ
SnðfÞ

; ð48Þ

for stationary Gaussian noise with PSD Sn, the likelihood
L ¼ pðdjθÞ for a given gravitational wave channel takes
the form

lnL ¼ −
1

2
ðhðθÞ − djhðθÞ − dÞ; ð49Þ

with the data stream being a superposition of the gravita-
tional wave signal for the true parameters θ0 and the noise
realization in the experiment, d ¼ hðθ0Þ þ n. The posterior
distribution for the physical parameters θ given the
observed data d is then

pðθjdÞ ¼ pðdjθÞpðθÞ
pðdÞ ; ð50Þ

where pðθÞ are the priors on the parameters, and pðdÞ the
evidence. The focus of this work is not selecting between
different models, so we will treat pðdÞ as a normalization
constant and will not consider it further.
In general, the templates hðθÞ used for the analysis will

only be an approximation of the physical signals present in
the data stream d. In this work we will entirely ignore
this distinction and assume that our template waveforms
exactly match the astrophysical waveforms. In other words,
wewill not explore the issue of systematic errors arising from
incomplete modeling of compact binary merger waveforms.
In our analysis, we will simulate signals and perform

Bayesian analyses of them with Eqs. (49) and (50) to obtain
the parameter posteriors. In doing so, we will use the so-
called zero-noise approximation, i.e., setting n ¼ 0. This
allows us to accelerate the likelihood computation as
explained in Sec. III C. The approximation is sufficient
to explore the structure of the likelihood and the parameter
degeneracies, greatly improving them with respect to the
Fisher matrix approach. The extension of our analysis to
include nonzero-noise realizations will be discussed in
future work.
The log-likelihood function that we use, with a zero-

noise realization, is a sum over the three independent
channels A, E, T (27) rescaled according to (29):

lnL ¼ −
1

2
½ðã − ãinjjã − ãinjÞ þ ðẽ − ẽinjjẽ − ẽinjÞ

þ ðt̃ − t̃injjt̃ − t̃injÞ�; ð51Þ

with the “inj” subscript indicating the simulated signals,
and where the inner products ð·j·Þ are given by (48) with the
noise PSDs (33).

B. Reduced order model for EOBNRv2HM waveforms

As opposed to previous studies of Bayesian parameter
recovery for LISA, we wish to use full inspiral-merger-
ringdown signals. Since higher harmonics will play a
crucial role in our analysis, in this study we use the
EOB waveform model EOBNRv2HM [70]. These wave-
forms are based on the EOB formalism [71,72], and are
calibrated to numerical relativity waveforms. The model is
limited to nonspinning systems on quasicircular orbits, but
includes a set of higher harmonics in the signal which are
among the most important quantitatively:

ðl; mÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ: ð52Þ

The waveforms are generated in the time domain by
integrating a system of ordinary differential equations,
an operation requiring up to seconds of computing time
for long signals. For this reason, we developed a ROM for
these waveforms, EOBNRv2HMROM, following the meth-
ods of [44] and enabling a much faster generation of the
Fourier-domain amplitudes and phases of the modes in
Eq. (18). As the total massM scales out of the problem, the
parameter space reduces to the mass ratio q ¼ m1=m2 only.
The parameter space interpolation in this ROM is therefore
significantly simpler than the models [44,45,73], which
include aligned spins. The inclusion of higher harmonics,
however, mandates modeling the relative dephasing of
different modes. The output of the code consists of a
Fourier-domain amplitude and phase for each mode,
sparsely sampled on ∼300 frequencies. The unfaithfulness
with the original waveforms, assuming advanced LIGO
noise curves [74], is ≲10−4. The computational cost is
submillisecond and smaller than other stages of our like-
lihood computation.
We note that the assumption of nonspinning black holes

is an important limitation to a realistic assessment of
intrinsic parameter uncertainties. In particular, it means
that our results ignore the well-known degeneracy between
mass ratio and spin [75–77], thus underestimating the
uncertainty in the recovered mass ratio. By ignoring
misaligned spins, we also neglect the possible effects of
orbital precession on parameter degeneracies. Nevertheless,
consistently including merger, ringdown, and higher har-
monics already represents a significant improvement over
previous studies, as these features in the signal carry a large
amount of SNR [6,35–39]. In the absence of precession, we
expect intrinsic and extrinsic parameters to be weakly
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correlated, so that our investigations of the extrinsic part of
the likelihood should be valid for aligned spins.

C. Likelihood computation with zero noise

Since typical Bayesian analyses will need to evaluate
millions of likelihood values, the computational perfor-
mance of the likelihood function is crucial. In general, both
the template and the injection in (49) are given as frequency
series sampled with the Nyquist criterion Δf ¼ 1=ð2TÞ,
where T is the duration of the signal and the overlaps (48)
are simply computed as discrete sums over those frequency
samples. Although transforming (48) in a discrete sum is a
straightforward operation, the size of the frequency series
can lead to a significant cost. In the context of LIGO/Virgo
observations, this has prompted the development of
reduced order quadratures (ROQs) [78–80] to accelerate
the likelihood computation. In the LISA case, the computa-
tional cost of the standard likelihood implementation
depends primarily on the mass of the system and the
duration of the signal. This cost can range from tens of
milliseconds for MBHBs and short-lived signals (a few
days), to impracticable values for SBHB signals lasting for
years and sampled at high frequency. By setting the noise
realization to zero, however, we can represent the amplitude
and phase of the signals over a sparse frequency grid and
obtain a large speedup.
Applying the response as in Sec. II C, mode-by-mode on

the sparsely sampled amplitude and phase generated as in
Sec. III B, we obtain a complete representation of both the
waveform and of the instrument transfer functions (30) on a
few hundred points in the Fourier domain, with the full
signal being implicitly reconstructed with a standard cubic
spline interpolation over frequencies. Decomposing (49) as

lnL ¼ ðhðθÞjhðθ0ÞÞ −
1

2
ðhðθÞjhðθÞÞ − 1

2
ðhðθ0Þjhðθ0ÞÞ;

ð53Þ

we have to compute inner products of the form
ðhðθÞjhðθ0ÞÞ. Note that individual terms in (53) can be
individually large (of the order of SNR2=2), and computing
lnL relies on accurate cancellations between terms.
Taking the likelihood (51) decomposed in TDI channels,

decomposing further in harmonics as in (30), we have a
sum of terms with the structure (symbolically)

X
chan:

X
lm;l0m0

Z
df
Sn

T lm
1;chanT

l0m0
2;chanA

lm
1 Al0m0

2 e−iðΨlm
1

−Ψl0m0
2

Þ;

ð54Þ

with transfer functions T for each TDI channel, and
Fourier-domain amplitudes A and phases Ψ [see (18)].
The difficulty of numerically computing such an overlap

depends on the phase difference. A large phase difference

causes the integrand to be very oscillatory, requiring
more frequency resolution than nonoscillatory inte-
grands. On the other hand, oscillatory integrands result
in a small integral due to cancellation effects, while
nonoscillatory integrands contribute the most. For a single
mode, SNR terms of the type ðhjhÞ have a zero phase
difference by construction, but including different modes
generates cross-terms, ðl; mÞ ≠ ðl0; m0Þ, with a large phase
difference.
Note that in a Bayesian analysis, a large fraction of the

time (after burn-in) will be spent exploring signals that are
rather close to the injection with single mode phase
differences that will be mostly small. In this work, we
wish to include oscillatory cross-terms between modes, and
we use a generic numerical treatment for the integrals (53)
and keep all terms with no further approximation. Other
methods to accelerate likelihoods, applicable in the pres-
ence of noise, include heterodyning with a reference signal
[81], using a variable frequency resolution (multibanding)
[82,83], and, as discussed before, ROQs [78–80]. We leave
for future work the generalization of our likelihood
computations to accommodate for noise.
First, we build a joint sparse frequency grid suitable to

represent both signals and the transfer functions. We then
resample the integrand on this grid, separating prefactors
[noise PSD, transfer function without the Doppler phase
(36), and signal amplitude] from phases (Doppler phases
and signal phase difference). We then build a cubic spline
for the prefactor, and a quadratic spline for the phase. We
obtain the structure

X
j∈grid

Z
fjþ1

fj

dfPjðfÞeiϕjðfÞ; ð55Þ

where for each grid interval Pj is a cubic polynomial and ϕj

is a quadratic polynomial. We can then compute the
elementary integrals (55) using a combination of numerical
methods. Integrations by parts can reduce the polynomial
order in (55), leaving only Fresnel integral functions to be
evaluated. Numerical instabilities can occur in these inte-
grations by parts when the coefficients of the phase
polynomial are very small or very large, in which case
we resort to asymptotic expansions instead.
We combine this implementation of overlap computa-

tions with our fast waveform generation in Sec. III B and
fast treatment of the Fourier-domain response in Sec. II C.
Since the number of overlaps to compute in (30) is
quadratic in the number of modes, likelihoods with higher
harmonics are significantly more expensive. The final
likelihood cost depends also on the number of grid intervals
that is chosen to limit spline interpolation errors (Table I).
The accuracy of our likelihood computations is typically
jΔ lnLj≲ 0.2, due to the numerical errors being magnified
by the required cancellations between the different terms
in (53).
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D. Bayesian sampling

For this exploratory work we take a “brute force”
approach to inferring the posterior probability distribu-
tion of the parameters, without applying specific knowl-
edge or expectations about distributions and degeneracies.
Such assumptions might, in fact, lead to an incomplete
exploration of the posterior probability in ways that would
be difficult to recognize and diagnose. In order to demon-
strate that the problem is tractable without critically
depending on the details of the methodology, we also
use two independent approaches to sample the posterior
distributions: parallel tempering MCMC methods and
nested sampling.
Our MCMC code ptmcmc [84] has been developed

through several astrophysics projects, tested on several
sampling problems, and modularly designed with the aim
of minimizing opportunities for errors with new applica-
tions. The code performs parallel tempered MCMC [85,86]
with temperatures slowly adjusted to achieve nearly equal
exchange rates among all pairs of adjacent temperatures.
Most runs here performed comparably with either 80 or
240 parallel temperature chains. We applied a general-
purpose proposal distribution composed of a weighted
set of subproposals, including differential-evolution steps
[87,88] (although the proposal in this case is based on each
single chain, not an ensemble), and a collection of several
Gaussian step draws of varying sizes scaled off the prior
domain at about 0.01–1% of its scale and weighted to favor
the smaller scale proposal draws. Effective sample sizes
(ESS) were estimated from the number of post-burn-in
samples and reduced by the autocorrelation length, with the
burn-in size chosen to maximize the ESS. In most cases, the
runs were continued until achieving ESS > 2000.
For comparison and verification we also computed

posterior samples using the nested sampling code bambi
[89], a variant4 of MultiNest [27]. The nested sampling
algorithm [90] evolves a set of “live points” toward regions
of high probability by iteratively resampling the lowest
probability point from within an ever-narrowing region
covering the set of live-point samples; in MultiNest, this
region is built as a collection of overlapping ellipsoids.

The computation proceeds until the estimated Bayesian
evidence, or marginal probability, within the region covered
by the live points is smaller than some threshold. Posterior-
distributed samples are then drawn based on the set of sub-
regions and the sample posterior values thereby generated.
In our runs we used 4000 live points.

E. Fisher matrix parameter estimation

For comparison with our Bayesian inference results we
also compute estimates of parameter uncertainties using the
Fisher information matrix, which, despite its limitations,
has been the most common workhorse of LISA science
studies to date [91]. For measurements with additive
Gaussian noise, as assumed here, the Fisher information
matrix can be computed by

Fij ¼ ð∂ihj∂jhÞ; ð56Þ

where ∂i is the derivative with respect to component i of the
parameter vector θ. In the Fisher matrix approach, the
likelihood is approximated as

lnL ≃ −
1

2
FijΔθiΔθj; ð57Þ

where Δθi is the parameter deviation from the true signal.
The inverse of the Fisher matrix, Σ ¼ F−1, is the Gaussian
covariance matrix that can be used as an estimate of the true
parameter uncertainties.
We compute the derivatives by second-order finite

differences, with the signal inner-products expanded and
computed before differencing. For these calculations,
where numerical smoothness is more of a concern than
speed, we compute the inner products (48) explicitly on a
fine grid. Generally, finite-difference Fisher matrices can be
problematic, with small numerical defects potentially hav-
ing outsized impact, so the finite-difference step-size ϵi
used in each parameter derivative ∂ih must be chosen
carefully. We target the step-size to be scaled off the
diagonal Fisher matrix elements by ϵi ≈ δ=

ffiffiffiffiffiffi
Fii

p
using δ ¼

0.001 for the results shown here. To achieve this, we begin
with an initial choice of ϵi scaled off the parameter values
or prior widths, then we estimate the Fisher diagonals and
iterate until convergence. In this process we also impose the
constraint that the step is never larger than 10−10 times the
initial scaling.

IV. MASSIVE BLACK HOLES SIGNALS

A. Signals and transfer functions

We focus our analysis on a single choice of mass
parameters, representative of canonical MBHB sources
expected for LISA [5,6,92]: we pick a total redshifted
mass, M ¼ m1 þm2 ¼ 2 × 106 M⊙, and a mass ratio,
q ¼ m1=m2 ¼ 3, and place the source at the redshift

TABLE I. Approximate frequency grid resolution and like-
lihood cost for the different choices of source type and the
number of modes in the waveform.

Source type Modes Grid Cost

SBHB (2, 2) 500 2 ms
MBHB (2, 2) 300 1.2 ms
MBHB (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) 300 15 ms

4bambi comes with the additional option to train a neural
network to learn the likelihood, but this was not used in the
present study.
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z ¼ 4.5 The corresponding source-frame total mass is
M=ð1þ zÞ ¼ 4 × 105 M⊙. The inclination plays an impor-
tant role in deciding the importance of higher harmonics;
we set it to the value ι ¼ π=3. We will study two such
systems in detail, named system I and system II, stemming
from a series of twelve runs with randomized orientation
parameters, and chosen to exemplify qualitative differences
in the parameter estimation. The parameters are summa-
rized in Table II, along with the SNR of these signals with
and without higher harmonics. The randomized orienta-
tions and the inclusion of higher harmonics both have a
sizeable impact on the SNR.
We note that, contrasted with the current ground-based

observations that are horizon-limited and that have a strong
selection bias towards systems with favorable orientations
(face-on or face-off), the LISA horizon for MBHB systems
extends to essentially the entirety of the observable uni-
verse [5]. It is therefore natural to consider randomized
orientations. Here, although we focus on just two systems,
we take ι ¼ π=3, the median value when inclination is
randomized.
We illustrate the Fourier-domain signal in Fig. 1, with

mode-by-mode contributions to the characteristic strain, as
well as the characteristic noise PSD, defined to be

h̃ca;e;tðfÞ ¼ 2fh̃a;e;tðfÞ; ð58aÞ

Sa;e;tc ðfÞ ¼ fSa;e;th ðfÞ; ð58bÞ

with the strainlike observables and noise PSD defined in
(31) and (34). We only show the A TDI channel, as the E
channel is qualitatively similar and the T channel is
negligible at low frequencies. Although the individual

harmonics have fairly smooth amplitudes as a function
of frequency, the full signal shows strong oscillations
caused by the beating between the harmonics. The effect
of the LISA response can be seen in the amplitude
oscillations at low frequency, which are caused by the
modulation resulting from the LISA motion.
Fig. 2 focuses on the details of the transfer functions. The

Doppler phase variation ΔΦR (36) is a small effect at low
frequencies, being suppressed by a factor of ∼2πfR; it is
also small at higher frequencies, because the chirp happens
over a short time interval during which ΦR does not have
time to vary. We also show transfer functions for the mode
h22 in the three TDI channels A, E, T (T is suppressed at
low frequencies), after factoring out the Doppler phase. The
low-frequency features show the time-dependency of the
response created by the LISA motion, while frequency-
dependency in the response appears at high frequencies.
Section IV C will further investigate these different physi-
cal effects in the response.

B. Accumulation of signal with time

We now illustrate the accumulation of the gravitational
wave signal with time, which is crucial to understanding the
ability of the instrument to identify and localize MBHB
signals in advance of their coalescence, as well as the
requirements put on the instrumental configuration (data
gaps and downlink cadence). As will be shown in more
detail in a separate publication [94] (see also [95]), within
the uncertainties of astrophysical models we can expect the
bulk of MBHB signals to be detectable only a few days
prior to merger, while a tail of more favorable events could
be observable for a significantly longer time, up to months.
We will focus on system II of Table II, and we will

highlight four different epochs, corresponding to the time
before the merger where a certain fraction of the total

TABLE II. Parameters of the simulated MBHB mergers.
Angles are given in the SSB frame. The SNR labelled hlm is
obtained including all harmonics listed in (52).

Identifier I II

Mass 1 (M⊙) 1.5 × 106

Mass 2 (M⊙) 0.5 × 106

Source-frame Mass 1 (M⊙) 3 × 105

Source-frame Mass 2 (M⊙) 1 × 105

Redshift 4.
Lum. Distance (Mpc) 36594.3
Inclination (rad) π=3
Phase (rad) 2.140 −1.249
Ecliptic longitude (rad) 3.335 2.275
Ecliptic latitude (rad) 1.468 −1.376
Polarization (rad) 2.237 1.635

LISA SNR h22 857.4 645.7
LISA SNR hlm 944.8 666.0

FIG. 1. Characteristic strain signal (58), shown here for the TDI
channel A of system II, decomposed as a set of ðl; mÞ con-
tributions from the modes available in the waveform model. The
gray curve shows the characteristic noise PSD (58). Vertical bars
indicate for each mode the frequencies corresponding to the time-
to-merger cuts marking the points where (1=64, 1=16, 1=4) of the
final SNR has accumulated as in our premerger analysis as
described in Sec. IV B, while the dots mark the merger frequency.

5We convert between luminosity distances and redshifts using
the cosmological parameters of [93].
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SNR ¼ 666 has been accumulated. We include higher
harmonics here. These epochs are:

(i) SNR=64: ∼42 hr before the merger, which corre-
sponds roughly with SNR ≃ 10, the first time we
could confidently claim a detection;

(ii) SNR=16: ∼2.5 hr before the merger;
(iii) SNR=4: ∼7 min before the merger.
We approximate the abrupt interruption of the observa-

tion as an upper frequency cutoff. The cutoff frequency is
derived from the end time of the observation via the time-
to-frequency correspondence (22). In reality, an abrupt
interruption of the signal would produce nonlocal features
in the Fourier domain (unless tapering is applied), which
we do not consider here.
The time-to-frequency correspondence (22) gives time as

a function of frequency for each ðl; mÞ mode. Due to the
scaling hlm ∝ e−imϕorb with ϕorb as the orbital phase, a given
time corresponds to different frequencies according to

ωlmðtÞ ≃
m
2
× ω22ðtÞ ðinspiralÞ; ð59aÞ

tlmf

�
m
2
f

�
≃ t22f ðfÞ ðinspiralÞ; ð59bÞ

where ωlm ¼ _ϕlm is the instantaneous mode frequency in
the time domain. Figure 3 illustrates these relations and we
use them to mark in Fig. 1 the frequencies corresponding to
our time cuts that differ for each mode, together with the
merger frequency (also called the peak frequency).
The relations (59) are only accurate for the inspiral

regime, as such a correspondence is at the heart of the SPA.
Although tlmf (22) can be formally extended even past the
merger time, close to the merger it starts to lose accuracy
and physical interpretation, eventually becoming nonmo-
notonic with the frequency [16]. The departure from the
scaling (59) between modes can be seen in Fig. 3: the
scaling holds up to a fewminutes before the merger, and the
mode h21 shows the earliest signs of a deviation.

Figure 4 shows the cumulative contributions to the total
SNR of individual mode combinations. For a generic signal
s ¼ P

lm slm with mode contributions slm (where s stands
for any of the channels ã, ẽ, t̃),

SNR2 ¼ ðsjsÞ ¼
X
lm

X
l0m0

ðslmjsl0m0 Þ: ð60Þ

We choose to show contributions to SNR2 because this is
the scale on which the contributions of different modes and
channels are additive, and because it is the relevant scale for
the log-likelihood (49), since lnL ∼ SNR2. We also sum
over the three channels. Together with the total contribution
to SNR2, the three panels of Fig. 4 show diagonal terms
ðslmjslmÞ, cross-terms involving the dominant quadrupolar
mode ðs22jslmÞ, and finally other cross-terms between
subdominant modes. Results are displayed as a function
of the time-to-merger, and we show separately the result
obtained for the full postmerger signal.

FIG. 2. Example of instrument response for system II in Table II. The first panel isolates the Doppler phase ΔΦR as defined in (36),
while the three other panels show the TDI transfer functions for A, E, T. We show here the rescaled transfer functions for the 22-mode as
defined below (30). The vertical lines correspond to the frequency at merger.

FIG. 3. Relation between time and frequency for MBHB
systems I and II with M ¼ 2 × 106 M⊙, q ¼ 3, and z ¼ 4.
The different lines correspond to the ðl; mÞ harmonics available
in the waveform model. The time-to-frequency correspondence is
computed according to tlmf defined in (22), evaluated at mf=2 to
map to the same time according to (59). The vertical lines
represent the time cuts explained in Sec. IV B and the merger
frequency.
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We can draw several conclusions from Fig. 4. The signal
reaches a roughly detectable level of SNR ¼ 10 about two
days before the merger. We see that the SNR accumulates
rapidly in the last instant before the merger, as shown in
particular by reaching SNR=4 only seven minutes before
coalescence. For a period following the first detection most
or all of the higher modes are not significant. Stopping the
signal at a given time in the inspiral somewhat alters the
hierarchy between subdominant modes that was seen in
their power spectra. Contrasting Fig. 4 with Fig. 1, we see,
e.g., that h21 is now subdominant before the merger (and
increases significantly in strength when including the
postmerger signal). This is because the modes hlm with
a higher m will reach a higher frequency at any given time,
while the weighting by the noise favors higher frequencies.
This is also visible in Fig. 1, where ticks translate a cut in
time into a different cut in frequency for different modes.
We also see that since even the most subdominant modes

contribute significantly to SNR2, our set (22, 21, 33, 44, 55)
seems to be incomplete; we will need waveforms with a
richer set of higher harmonics to analyze real LISA data.
Diagonal-terms ðslmjslmÞ and cross-terms with ðlmÞ ≠
ðl0m0Þ are qualitatively different. Diagonal-terms accumu-
late coherently, while cross-terms are oscillatory, as they
feature two modes with different phasings. This oscillatory
character tends to suppress the contribution of the cross-
terms, however, we see they are not negligible, particularly
the ones involving the dominant harmonic and a subdomi-
nant harmonic.

C. Decomposing the instrument response

The LISA instrument response, as recalled in Sec. II, is
both time- and frequency-dependent. As we will see, these
features play an important role in breaking degeneracies in
the parameter estimation of the source, notably allowing us
to localize the source in the sky. It is therefore important to

understand these features, also in the light of the premerger
accumulation of signal with time.
The time-dependency in the response follows the motion

of the LISA constellation. In the low-frequency picture of
Sec. II E, the time-dependency enters both in the Doppler
phase term (36) (LISA moves in the wavefront) and in the
time-dependent LISA-frame angles (A15) (the LISA arms
change orientation). However, we have seen in the previous
section that the MBHB signals we consider here are quite
short (less than two days). This limits the effect of the LISA
motion; between the time where the signal becomes detect-
able and the merger, LISA has barely changed in orientation
and position. Moreover, the period when the signal accu-
mulates most of its SNR is even shorter, as shown in Fig. 4.
To disentangle these different physical effects, we dis-

tinguish four different approximations of the response:
(i) Full: in this case, we keep the full response

of Secs. II C–II D, with its complete time- and
frequency-dependency;

(ii) Frozen: we neglect the LISA motion by evaluating
all time-dependent vectors at tf ¼ tpeakf , effectively
freezing LISA in its orbit while keeping the fre-
quency-dependency in the response;

(iii) Low-f: we implement the low-frequency (long-
wavelength) approximation as in Sec. II E, while
still keeping the time-dependency due to the motion;

(iv) Frozen low-f: we neglect both the time- and
frequency-dependency in the response.

Case (iii), Low-f, has been extensively used in the past
for the analysis of MBHB signals. Since it is based on the
f ≪ fL approximation, it is more appropriate for inspiral-
only signals (to which most of the previous studies were
limited) than for a full IMR signal.
In case (iv), Frozen low-f, the response is equivalent to

two LIGO-type detectors, lying motionless in the same
location and rotated from each other by π=4, and there is

FIG. 4. Cumulative contribution to SNR2 as defined in (60) for system II. The left panel shows inner products of modes with
themselves, the middle panel shows cross-terms involving h22, while the right panel shows other cross-terms. Note that oscillatory cross-
terms change sign, we show their absolute value. In all panels the black line represents the total. The horizontal axis gives the time-to-
merger, with vertical lines for the cuts of Sec. IV B, and the dots on the right of each panel show the result for the full signal including the
ringdown.
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no other information on the source’s sky position other than
the frequency-independent pattern functions of the two
effective detectors. Contrary to networks of ground-based
observatories, we have no triangulation information from
times of arrival at different detectors. This case is the most
degenerate, and it will be useful to get an analytical under-
standing of approximate degeneracies that occur when using
the more complicated full response [case (i)]. This limit can
also be a representative approximation for some short-
duration premerger LISA MBHB observations.
The effect on the response of adopting these approx-

imations is shown in Fig. 5. We display the strain transfer
function T 22

ha
ðfÞ as defined in (31) for the mode h22, with

the four lines showing the four approximations [(i)–(iv)].
Vertical lines also indicate the times to merger highlighted
in Sec. IV B, as well as the peak frequency. Relating this
figure to Figs. 1 and 4, we stress that most of the SNR is
accumulated in the very last instant before the merger and at
the merger itself, due to the noise normalization not visible
at the level of the transfer function.
The Frozen low-f transfer function is just a constant

factor, similar to the LIGO response where hþ;× are simply
multiplied by pattern functions. The Low-f transfer func-
tion goes to the same constant at high frequencies, where
the signal chirps so rapidly that the LISA motion is
negligible. At low frequencies, however, modulations
due to the LISA motion appear. The Frozen transfer
function asymptotes to the constant of the Frozen low-f
case at low frequencies, for f ≪ fL. At higher frequencies,
we see a growing departure from this approximation. As
noted in Sec. II E, when reaching the arm length transfer

frequency fL ¼ 0.12 Hz, the long-wavelength approxima-
tion has completely broken down; departures start to be
significant at much lower frequencies. Finally, the Full
transfer function displays all the features we discussed.
We finally note a coincidence in Fig. 5: the frequency

below which we see the imprint of the LISA motion and the
frequency above which we see the breakdown of the long-
wavelength approximation appear to be the same. This will
not be true in general—the former is essentially a measure
of the time-to-frequency correspondence tf, with lower-
mass signals having support and showing these features at
higher frequencies, while the latter only marks the magni-
tude of 2πfL factors and is source-independent.6

V. MASSIVE BLACK HOLES PARAMETER
ESTIMATION

A. Analysis of IMR signals

Using the methodology summarized in Sec. III, here we
present the results of Bayesian parameter estimation for the
two MBHB sources listed in Table II. The priors used are
logarithmic in mass, flat in luminosity distance, and uni-
form for the angles: flat on the sphere for the pairs of angles
ðι;φÞ and ðλ; βÞ, and flat for the polarization ψ . We expect
priors to be unimportant for the masses, since they are well-
determined in this very high SNR limit. The luminosity
distance, as we will see, can be less well-determined in the
absence of higher harmonics, and one should keep in mind
that the prior choice does affect the posterior there.
We find that both our samplers, ptmcmc and MultiNest,

require between ∼107 and ∼108 likelihood evaluations to
produce a final set of posterior samples. Thanks to our fast
likelihood implementation, this already represents a man-
ageable computing cost. We stress again that the settings of
both samplers were not optimized by taking into account
the characteristics of the specific problem or the expected
correlations between parameters. Therefore, we expect that
the cost can be reduced with future optimizations.
To illustrate the role of higher harmonics in the analysis,

we will present two classes of results: “22”, where we inject
and recover signals including only the dominant harmonic
h22, and “HM”, where we both inject and recover with the
higher harmonics ðh22; h21; h33; h44; h55Þ. We do not
attempt to recover an injection with higher modes using
22-mode waveforms; one would expect parameter biases in
that case, induced by the inadequacy of the simplified
waveforms. A related question would be to assess the mode
content necessary for waveform models to mitigate sys-
tematic biases when analyzing full physical signals. We
leave such waveform systematic studies for future work; we
only note that, as shown in Fig. 4, from SNR only the set of

FIG. 5. Real and imaginary parts of the transfer function T 22
ha

(31) in different response approximations. The four lines
stand for the four approximation levels (i)–(iv) defined in
Sec. IV C. Vertical lines indicate the frequencies of the time
cuts of Sec. IV B and the peak frequency.

6The effect in the transfer functions is source-independent;
however, the total SNR will determine the impact of these
features on the parameter estimation.
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five modes we include in the present study is quite
obviously incomplete.
While the 22-mode-only signals here are nonphysical,

studying them is instructive not only because 22-only
waveforms have been a common approximation in previous
work but also because (as seen in Fig. 4) upon first

detection LISA MBHB signals will often be fairly approxi-
mated by 22-mode-only signals.
Figures 6 and 7 show posterior distributions for all

parameters for cases I and II respectively. We overlay the
“22” and “HM” posteriors. All results for MBHB systems
are presented using LISA-frame parameters, as defined in

FIG. 6. Inferred parameter posterior distribution for the MBHB system I of Table II, with 1-2-3-σ contours and the black cross
indicating the true parameters. The result injecting and recovering with only the 22-mode is shown in blue, and the result injecting and
recovering with higher harmonics is in red. The top right panels zoom on the masses, distance-inclination, and sky position marginalized
posteriors. The time is centered so that Δt ¼ 0 corresponds to the injection. All extrinsic parameters are given in the LISA-frame as
defined in Appendix A 3.
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Appendix A. We should keep in mind the difference in
SNR of cases I and II (SNR ≃ 945 versus SNR ≃ 666 with
higher harmonics, see Table II) resulting from their differ-
ent orientation. However, their posteriors have qualitative
differences that go beyond a simple scaling of the errors
as ∼1=SNR.
In case I, the “22” posterior appears to be well repre-

sented by a multimodal Gaussian, with multimodality for
the angular parameters. The sky position, most notably,

admits a degenerate mode at βL → −βL, although it has less
weight than the main mode around the injection. By
contrast, in case II, the “22” posterior is much more
degenerate. The distance and inclination are very degen-
erate with each other, with a support extending all the way
to ι ¼ 0 (or ι ¼ π). The phase φ and polarization ψL have a
distinct extended degeneracy along lines of constant φþ
ψL and φ − ψL. Most notably, the sky position, if retaining
the same overall bimodality βL → −βL as in case I, shows

FIG. 7. Same as Fig. 6, for the MBHB system II of Table II. In the extrinsic parameters, the red 2D contours are barely visible on this
scale.
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here a curious feature: the marginalized sky posterior peaks
away from the injected value. Looking at correlations, we
see that the shifted peak corresponds to the region of high
distance (and extremal inclination). This is a genuine
feature of the multidimensional posterior, even without
noise, and will be explained in Sec. V C.
In both cases I and II, including the higher harmonics has

a major effect on the parameter recovery (as was already
stressed in [32–35]), much beyond what we would expect
solely from the modest gain in total SNR shown in Table II
(and a scaling of statistical errors ∼1=SNR). The margin-
alized posterior of the masses is narrower, although not
qualitatively different; the major change is in the extrinsic
parameters.
We can understand the dramatic effect of the higher

harmonics on distance and inclination by noting that, in a
signal of the form

P
lm −2Ylmðι;φÞhlm where the −2Ylm

all have a different dependency with the inclination ι,
measuring independently two separate contributions,
ðlmÞ ≠ ðl0m0Þ, gives us an independent measurement of
ι by the relative amplitude of the two mode contributions.
When only the h22 mode is included, both the luminosity
distance and inclination determine the overall signal
amplitude and they are therefore degenerate.
Higher harmonics also lead to an independent determi-

nation of the phase φ, which in turn breaks degeneracies in
the other angular parameters. In both cases I and II, the sky
localization in vastly improved, with a remaining multi-
modality that we will discuss in the next section.
We compare the Bayesian inference results obtained with

our two samplers, ptmcmc and MultiNest, with the error
estimates, given by the Fisher matrix approximation from
Sec. III E, in Fig. 8 for the masses, Fig. 9 for distance/
inclination, and Fig. 10 for the sky position. We find a good

FIG. 8. Comparisons between inferred posteriors obtained with our two different Bayesian samplers described in Sec. III D and with
the Fisher matrix approximation described in Sec. III E. Results are shown for systems I and II of Table II, with the 22-mode-only for the
two left panels and with higher harmonics in the two right panels. Blue (22) and red (HM) show the ptmcmc result, and green (22) and
yellow (HM) the MultiNest result. In all panels, the black ellipses show the Fisher matrix estimate for the posterior.

FIG. 9. Same comparisons as in Fig. 8, for the distance and inclination parameters, zooming on the relevant regions.
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agreement between the two Bayesian samplers, except for
in case II when using only 22-mode signals. There,
MultiNest seems to fail to explore the full posterior,
remaining stuck in the large-distance region of the very
degenerate parameter space. We will futher explore the
nature of this degeneracy in Sec. V C and in Appendix B.
The Fisher matrix approach focuses on the vicinity of the
true signal’s parameters and is by construction unable to
handle multimodality. It is also insufficient in capturing the
degeneracy features of case II with h22 signals. It gives
good results, however, for the mass parameters and for the
main mode of the posterior in nondegenerate cases,
particularly when including higher harmonics.

B. Degeneracies in the sky

A remarkable feature in Figs. 6 and 7 is the existence
of a degenerate mode (or secondary maximum) in the
posterior distribution for the sky position ðλL; βLÞ, located
at β�L ¼ −βinjL , i.e., by reflecting the wave vector k across the
plane of the LISA constellation. The secondary mode
contains less probability than the “correct” mode close
to the true parameters, but it is present in both simulations
and it survives the inclusion of higher harmonics.
We can gain insight about degeneracies in the parameter

space by considering the simple expressions representing
the instrument response in the Frozen low-f approximation
described in Sec. IV C, appropriate for the low-frequency
limit and signals short enough that the LISA motion can be
neglected. We will explore the respective influence of these
sometimes neglected effects in Sec. VI.
The Frozen low-f response is given by Eqs. (43)–(45),

ignoring the k · p0 delay as a mere constant delay, and

neglecting time-dependency in the LISA frame angles
ðλL; βL;ψLÞ. The response is then summarized by the
pattern functions for harmonics Flm

a;eðι;φ; λL; βL;ψLÞ given
in (44), which we reproduce here:

Flm
a;e ¼

1

2 −2Ylmðι;φÞe−2iψLðFþ
a;e þ iF×

a;eÞðλL; βLÞ

þ 1

2
ð−1Þl−2Y�

l;−mðι;φÞeþ2iψLðFþ
a;e − iF×

a;eÞðλL; βLÞ:
ð61Þ

Changing the sign of βL in the pattern functions Fþ;×
a;e

given in (43) has no effect on Fþ
a;e and it changes the sign of

F×
a;e for both channels. Thus, the ðFþ

a;e � iF×
a;eÞ factors in

the two terms of Eq. (61) are exchanged. Moreover, since
spin-weighted spherical harmonics [51] obey the relation

−2Ylmðπ − ι;φÞ ¼ ð−1Þl−2Y�
l;−mðι;φÞ; ð62Þ

we see that simultaneously changing βL → −βL, ι → π − ι
and ψL → π − ψL leaves Flm

a , Flm
e unchanged.

This defines a transformation of extrinsic parameters
yielding an exact degeneracy in the Frozen low-f approxi-
mation, which we call the reflected sky position (for a
reflection with respect to the LISA plane):

λL
� ¼ λL;

βL
� ¼ −βL;

ψL
� ¼ π − ψL;

ι� ¼ π − ι;

φ� ¼ φ; ð63Þ

FIG. 10. Same comparisons as in Fig. 8, for the sky position parameters, zooming on the relevant regions for inclination. The
parameters shown are in the LISA-frame as defined in Appendix A 3.
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where we chose the transformation for ψL to keep this
parameter in the range ½0; π�.
From the structure of (61), other points in parameter

space are degenerate in the low-frequency limit. First, λL →
λL þ π leaves the pattern functions Fþ;×

a;e invariant. For
λL → λL � π=2, these pattern functions acquire an overall
minus sign. Such an overall minus sign is readily compen-
sated by a shift, ψL → ψL � π=2, so that we have the other
transformation,

λL
ðkÞ ¼ λL þ kπ

2
mod 2π; k ¼ 0;…; 3;

ψL
ðkÞ ¼ ψL þ kπ

2
mod π; k ¼ 0;…; 3: ð64Þ

Combining Eqs. (63) and (64), we arrive at eight
different degenerate positions in the sky, equally spaced
in λL and symmetric above and below the LISA plane, with
an inclination π − ι for the reflected positions and various
values for the polarization ψL. Among these eight secon-
dary modes in the sky, two play special roles: first, the
reflected mode (63) already mentioned; and second, the
antipodal mode with

λL
ðaÞ ¼ λL þ π;

βL
ðaÞ ¼ −βL;

ψL
ðaÞ ¼ π − ψL;

ιðaÞ ¼ π − ι;

φðaÞ ¼ φ: ð65Þ

How does this situation change when considering a more
complete instrument response, moving away from the
Frozen low-f approximation? As in Sec IVC we separately
consider relaxing each of the qualifiers Frozen and Low-f.
When adding back the frequency-dependence while

keeping LISA motionless, in the Frozen response, the
reflected mode is the only mode remaining degenerate.
Indeed, as noted in Sec. II C, in (21) the frequency-
dependent terms feature k · nl, k · ps;r projections that

depend only on the projection of the wave vector k in
the plane of LISA, and are invariant for βL → −βL. The
LISA motion, however, will break this degeneracy in
general.
When adding back the LISA motion while still ignoring

the frequency-dependence in the response, in the Low-f
response, the antipodal mode is the only one that keeps
pattern functions that are exactly degenerate with the injec-
tion: all other modes will evolve with the time-dependent
LISA frame. The antipodal mode is not moving, because the
antipode of the true direction of the arriving signal is defined
as k → −k independently of the orientation of LISA; the only
degeneracy-breaking term is then the orbital delay k · p0 in
the Doppler phase (36). When considering the Full response,
the frequency-dependency terms in (21) featuring k · nl, k ·
ps;r will break this antipodal degeneracy.
Thus, we have found that in the Frozen low-f approxi-

mation for the response we expect a pattern of eight
degenerate positions in the sky (with certain rules for
inclination and polarization). Table III summarizes the
qualitative picture of degeneracy breaking by the features
of the response. We note that the recent work [41], focusing
on low-frequency ringdown-dominated signals for which the
LISA motion can be neglected, remarked the same eight-
mode sky degeneracy that we described in this section. We
will see in Sec. VI that the eight-mode degeneracy pattern
indeed appears when doing a premerger analysis. On the
other hand, in the results of Figs. 6 and 7 for full IMR signals,
out of the eight possible sky modes only the reflected mode
(63) survives. We will investigate in detail in Sec. VI how
time-dependence and frequency-dependence in the response
break part, but not all, of the degeneracies.
However, this analysis does not explain why one obtains,

with a zero-noise realization, marginalized posteriors for
the sky positions that appear biased from the injected
signal, when ignoring higher harmonics. This is the
question that we will address in the next section.

C. Apparent sky position bias for 22-mode signals

In this section, we investigate the cause of the apparent
bias in sky position in the posterior distribution of system II

TABLE III. Sketch of the degeneracy structure of the eight modes in the sky, with the cases where the degeneracy
is exact (degen.), and with the qualitative effects that break the degeneracy with the injected signal: t-dependency,
f-dependency, both, or only the Doppler phase, ΔΦR (36). This qualitative structure is the same with and without
higher harmonics.

Sky mode Full Frozen Low-f Frozen low-f

reflected: −βL, λL t-dep. degen. t-dep. degen.
antipodal: −βL, λL þ π f-dep:þ ΔΦR f-dep. ΔΦR degen.
βL, λL þ π=2 t-f-dep. f-dep. t-dep. degen.
βL, λL þ π t-f-dep. f-dep. t-dep. degen.
βL, λL − π=2 t-f-dep. f-dep. t-dep. degen.
−βL, λL þ π=2 t-f-dep. f-dep. t-dep. degen.
−βL, λL − π=2 t-f-dep. f-dep. t-dep. degen.
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when injecting and recovering with 22-mode-only wave-
forms, as shown in Fig. 7 (and in the middle left panel of
Fig. 10). The posterior for the sky forms a peak that appears
shifted from the injection. This feature is surprising since
we set the noise realization to zero and the maximum
likelihood is, by construction, reached at the injection. It
occurs only when 22-mode-only signals are used, and is
present for both Bayesian samplers, although ptmcmc and
MultiNest differ noticeably for this case with ptmcmc
recovering more parameter volume. We will show that we
can understand this feature as a projection effect in the
multidimensional degenerate posterior. Understanding the
structure of these features could prove useful to inform
Bayesian samplers, for instance by adapting jump propos-
als to speed up mixing of MCMC chains.
In the following we will aim at explaining these features

analytically by building a simplified model for the
response. In this simplified likelihood approximation, we:

(i) pin the masses and the LISA-frame coalescence time
to their injected values;

(ii) use the Frozen low-f response, ignoring the LISA
motion and the frequency-dependence in the response.

The first point allows us to focus only on the extrinsic
parameters, as we find weak correlations between intrinsic
and extrinsic parameters. Such a decoupling is also at play
in LIGO/Virgo, and makes low-latency sky localization
possible [96]. The second point is partly justified by the fact
that our signal is short, as shown in Fig. 4. For the MBHB
system that we picked as an example, the SNR accumulates
in a matter of days, with SNR ¼ 10 reached ∼40 h before
the merger. Neglecting the high-frequency features is in
fact a stronger approximation, as will be explored in
Sec. VI B. In this limit we can apply the simple analytic
expressions for the response given in Sec. II E.
Under all these simplifying assumptions, the likelihood

becomes pure function of the extrinsic parameters ðD; ι;
φ; λL; βL;ψLÞ, and takes the form of trivial geometric factors
multiplying constant mode overlaps that can be precom-
puted.Equation (37) shows that theT-channel is negligible in
this approximation, so that the likelihood (51) is

lnL ¼ −
1

2
ðã − ãinjjã − ãinjÞ −

1

2
ðẽ − ẽinjjẽ − ẽinjÞ: ð66Þ

Having fixed the intrinsic parameters and the time, in (45) the
modes hlm are fixed as well, and it is convenient to introduce
the notation (note that these quantities are defined as
complex)

hlmjl0m0i ¼ 4

Z
df
Sa;en

ð6πfLÞ2h̃lmh̃�l0m0 : ð67Þ

for mode overlaps that are constant factors and can be
precomputed for a given system. Here, the noise PSD Sa;en

is given by (33) and is identical between the channelsa and e.

Using the results of Sec. II E, and ignoring in (45) the
factor exp½2iπfk · p0� as a pure constant corresponding to a
redefinition of time, we obtain

lnL ¼ −
1

2
Re

X
lm

X
l0m0

½ðslma − slma;injÞðsl
0m0

a − sl
0m0

a;injÞ�

þ ðslme − slme;injÞðsl
0m0

e − sl
0m0

e;injÞ��hlmjl0m0i; ð68Þ

where we introduced

slma;e ¼
1

d
Flm
a;e; ð69Þ

where d ¼ D=Dinj is the dimensionless ratio of luminosity
distances, and with the mode transfer functions Flm

a;e given
in (44). In each term the intrinsic/extrinsic parameter
dependence is thus separated with the intrinsic parameters
(that we keep fixed), intervening only in hlmjl0m0i.
In the case where we only include the dominant

harmonic h22, the likelihood (68) simplifies to

lnL ¼ −
1

2
h22j22i½js22a − s22a;injj2 þ js22e − s22e;injj2�: ð70Þ

For ðlmÞ ¼ ð22Þ, the functions (69) take the explicit form

s22a;e ¼
1

4d

ffiffiffi
5

π

r
cos4

ι

2
e2iðφ−ψLÞðFþ

a;e þ iF×
a;eÞ

þ 1

4d

ffiffiffi
5

π

r
sin4

ι

2
e2iðφþψLÞðFþ

a;e − iF×
a;eÞ; ð71Þ

with the pattern functions for the channels a and e defined
in Eqs. (42) and (43).
In order to elucidate the degeneracies in the problem, it

will be useful to introduce the following notation. First,
since ι ∈ ½0; π� while βL ∈ ½−π=2; π=2�, it will be more
convenient to work with the colatitude θL ¼ π=2 − βL. We
will further abbreviate notation by using the variables

tι ≡ tan
ι

2
; tθ ≡ tan

θL
2
: ð72Þ

We also introduce the azimuthal angles λa ¼ λL − π=6,
λe ¼ λL þ π=12 ¼ λa þ π=4, and form the combinations

σ� ≡ 1

2
½s22a � is22e �: ð73Þ

In this notation, we obtain

σþ ¼ ρe2iφ½t4θe−2iψL þ t4ι e2iψL �e−2iλa ; ð74aÞ

σ− ¼ ρe2iφ½e−2iψL þ t4θt
4
ι e2iψL �e2iλa ; ð74bÞ

with a common prefactor
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ρðd; ι; θLÞ ¼
1

4d

ffiffiffi
5

π

r
1

ð1þ t2ι Þ2ð1þ t2θÞ2
: ð75Þ

Finding points in the parameter space that are degenerate
with the injection, i.e., with lnL ≃ 0, amounts to finding
choices for the parameters which obtain the same values as
the injection for both quantities σþ and σ−.
We can now use the simplified response written in the

form shown in Eqs. (74) and (75) to look for symmetries
and degeneracies. First, it is easy to check in this new
notation that the transformations (63) and (64) indeed leave
the likelihood exactly invariant. There is also a symmetry
based on exchanging ι ↔ θL. While leaving σ− unchanged,
this conjugates the factor inside brackets for σþ, which
can be compensated using the phase term φ − λa. If
Φ ¼ Arg½t4θe−2iψL þ t4ι e2iψL �, we obtain the symmetry

ι0 ¼ θL; θ0L ¼ ι;

φ0 ¼ φþ 1

2
Φ mod π;

λ0a ¼ λa −
1

2
Φ mod π: ð76Þ

Beyond these discrete symmetries, since likelihood
function dependence on the six extrinsic parameters is
funneled through just two complex functions, we should
expect a two-dimensional degenerate subspace. Indeed
we can explicitly find a general solution for parameter
values that solve σ�ðD; tι; tθ;φ; λa;ψLÞ ¼ σ�;inj, which we
just sketch here as needed to explain features of the
degeneracies.
Defining the ratio

rðλa; tι; tθ;ψLÞ ¼
σþ
σ−

¼ t4θ þ t4ι e4iψL

1þ t4θt
4
ι e4iψL

e−4iλa ; ð77Þ

makes clear that r ¼ rinj provides one complex condition
on four real unknown parameters, eliminating parametersD
and φ while retaining the features of the full degenerate
subspace. Going further, jrj2 ¼ jrinjj2 yields one condition
on three parameters, eliminating λa. In fact, with a little
rearrangement, this can be written as a quadratic expression
for either t4ι or t4θ given the other variable (tθ or tι) and ψL.
Given a solution for ðtι; tθ;ψLÞ, the rest of the solution then
proceeds backwards. An explicit expression for commen-
surate λ comes from solving r ¼ rinj, and then D and φ are
obtained from solving, e.g., σ− ¼ σinj− .
We can now understand the degeneracies we saw by

considering limits of the ratio r. For instance, when t4ι ≪ 1,
we have simply jrj ≃ t4θ. This means that in this limit all
values of ψL are allowed, with θL fixed to a specific value.
Similarly, for t4ι ≫ 1, we have jrj ≃ t−4θ . A large part of the
degenerate subspace volume then tends to be found with a
parameter βL near these special values fixed by the

modulus constraint, with a special value of λL coming
from the complex argument constraint. By contrast, inter-
mediate values of t4ι will not give as much parameter space
allowed for the degeneracy, as illustrated by the case tι ¼ 1
(i.e., ι ¼ π=2). In that case, jrj ¼ 1 irrespective of θL and
ψL, and no solution exists if jrinjj ≠ 1.
In terms of the original parameters, these special sky

positions are

βL ≈ β†L ¼ �
�
π

2
− 2Arctanjrinjj1=4

�
; ð78aÞ

λL ≈ λ†L ¼ π

6
−
1

4
Argrinj mod

π

2
; ð78bÞ

ρe2iðφ−ψLÞ ≈ e−2iðλ
†
L−π=6Þσinj− ; ð78cÞ

with the λL → λL þ kπ=2 and βL → −βL symmetries cor-
responding to the eight-mode sky symmetry discussed in
Sec. V B. The degeneracy for the pair of parameters ðφ;ψLÞ
is exact, and the constraint ρ ¼ jσinj− j gives an approximate
degeneracy for the pair ðd; ιÞ as long as we remain in the
regime t4ι ≪ 1 or t4ι ≫ 1 (which is quite extended, thanks to
the quartic power). Thus, for each of these sky positions
built from (78), many different values of ðφ;ψLÞ and ðd; ιÞ
produce a waveform very close to the injection, resulting in
apparent peaks in the marginalized posterior distribution
for the sky position, located at the special sky positions
ðλ†L; θ†LÞ, which are offset from the injected value.
Similarly, considering the limits t4θ ≪ 1, t4θ ≫ 1, we can

expect a significant part of the degenerate parameter space
near special values for inclination and correspondingly for
λL þ φ,

ι ≈ ι† ¼ π

2
∓

�
π

2
− 2Arctanjrinjj1=4

�
; ð79aÞ

λL − ψL ≈ ðλL − ψLÞ† ¼
π

6
−
1

4
Argrinj mod

π

2
ð79bÞ

ρe2iφ ≈ e−2iððλL−ψLÞ†−π=6Þσinj− : ð79cÞ

When considering more harmonics beyond the dominant
mode h22, such degeneracies will be broken easily. As in
the case of the full likelihood, the simplified likelihood (68)
will have several terms with different inclination and phase
dependencies. If the signal is loud enough for at least two
modes to be detected, then the inclination ι and the phase φ
are fixed by the relative amplitude and phase of these
modes. This will break the degeneracy ðd; ιÞ and the
degeneracy ðφ;ψLÞ.
We illustrate our findings in by running a Bayesian

parameter estimation for the simplified likelihood (70) with
our two samplers, MultiNest and ptmcmc. The results
display the degeneracy structure that we discussed in this
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section. Focusing on the sky position in the vicinity of the
true source parameters, Fig. 11 contrasts the posterior
distribution obtained with the full and the simplified like-
lihoods. Although differences are visible, we see that both
show a similar peak shifted from the true signal’s sky
position that agrees well with our prediction (78). More
details on the full posterior distribution with the simplified
likelihood are given in Appendix B.

VI. MASSIVE BLACK HOLES: ACCUMULATION
OF INFORMATION WITH TIME

A. Premerger analysis

The rate at which parameter information accumulates
during the observation of an inspiral is crucial for establish-
ing the LISA downlink and data processing requirements,
as well as for planning multimessenger observations [9,10].
In this section, we explore how parameter information
accumulates on approach to the merger by performing
parameter estimation studies with temporally truncated
signals, as explained in Sec. IV B: The signals are cut at
points where the accumulated SNR is about f10; 42; 166g
corresponding to f1=64; 1=16; 1=4g of the total SNR ¼
666.0, and times f41 hr; 2.5 hr; 7 ming before the merger.
As shown in Fig. 4, most of the SNR accumulates over the
last few minutes of this signal.
We implement these temporal cuts in the Fourier domain,

using the time-frequency correspondence (22) adapted for
higher harmonics following (59). Our cuts are sufficiently
early before the merger for this relation to be a good
approximation for temporal cuts, and consistent among the
various harmonics, as shown in Fig. 3.
In Fig. 12 we show how parameter information accu-

mulates at these time points. The results are shown for case
II, including the higher harmonics in the signal. Individual
masses are loosely constrained, within a factor of 2, at first

detection; the chirp mass combination is better determined.
They start to be individually constrained to better than 10%
by 2.5 hours before merger. The luminosity distance is
poorly determined, within a factor of 4, when reaching the
detection threshold 41 hours before merger; the constraint
improves to roughly 10% at 2.5 hours prior to merger.
Merger time is estimated with an uncertainty of roughly
2 hours at first detection, which improves to a few minutes
by 2.5 hours before the merger.
The corresponding sky position posteriors are shown in

Fig. 13, using the LISA frame angles in (A15). The lines
show the 1-2-3-σ uncertainty contours on the sky, for each of
our time cuts as well as for the full, postmerger signal, with
the two panels differing by the inclusionof higher harmonics.
We see clearly, in the premerger analysis, the eight-mode sky
degeneracy introduced in Eqs. (63) and (64). The different
cuts give us an idea of the continuous evolution from a badly
determined sky position at first, when reaching detection, to
an eight-mode degeneracy structure, to finally only two
modes survivingwhen reaching themerger, the true injection
and the reflected sky position.

B. Degeneracy breaking by the time- and
frequency-dependence in the response

The premerger analysis of the previous section made
apparent the eight-mode degeneracy pattern that can be
predicted analytically from the structure of the Frozen, low-
f response approximation [see (63) and (64)]. However, the
analysis of IMR signals in Sec. VA shows that only the
reflected mode (63) survives postmerger. In this section we
explain how and why this transition occurs.
We have already presented a discussion of different

qualitative effects in the instrument response in Sec. IV C
and Fig. 5: on one hand, the motion of LISA leaves an
imprint (the time-dependency) on the low frequencies,
where the time-frequency map is steep enough that a short
interval in frequency maps to a large interval of time; on the
other hand, the breakdown of the long-wavelength approxi-
mation leaves an imprint (the frequency-dependency) at
high frequencies. Here we look at the quantitative impor-
tance of these features on the inference as a function of
frequency (or as a function of time). We can readily select
one or the other feature by using the Frozen response,
ignoring time-dependency, or the Low-f response, ignoring
frequency-dependency.
In Fig. 14 we show log-likelihood values obtained with

either the Full, Frozen, or Low-f response, with and
without higher harmonics, for each of the eight modes
in the sky described by Eqs. (63) and (64). The likelihood
(51) is computed with the same response approximation for
the injection and for the template. The results are shown as
a function of frequency in a cumulative sense: We compute
the likelihood by accumulating signal up to the frequency
shown in the x-axis. When including higher harmonics, this

FIG. 11. Sky position posterior for system II in Table II in the
presence of strong degeneracies, zooming close to the injected
value and discarding the secondary mode in the sky. The left
panel shows the complete likelihood, while the right panel shows
the simplified likelihood (68) in the Frozen, low-f approximation
and with fixed masses and time. The results of ptmcmc (blue)
and MultiNest (green) are superimposed. The black cross is the
injected value, and the grey cross is the analytic prediction (78)
for the offset peak created by degeneracies.
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cut in frequency is interpreted as a cut in time and
propagated to other harmonics, according to (59).
A value of lnL ¼ 0 means that the template signal with

shifted parameters is identical to the injection, while a very
negative lnL means that these parameter values are ruled
out. The injection (full black line) always has lnL ¼ 0 by
construction. The reflected sky mode (63) is the dashed
black line, and the antipodal sky mode (65) is the dashed
red line.
We choose here to show a likelihood measure instead of

the perhaps more familiar mismatch between signals.
Mismatches are by definition normalized and therefore
SNR-insensitive, while the log-likelihood scales are with
SNR2. Since LISA could observe SNR values in the
hundreds or thousands and intuition based on previous
familiarity with mismatch measures used in the LIGO/
Virgo context might be lost.
With the Low-f response, the antipodal mode remains

almost exactly degenerate with the injection, differing
only by the Doppler phase (36), which has a small effect
on our short signals as shown in Fig. 2. As explained
below (65), other modes fail to reproduce the injected
signal because of the time-dependence of the pattern

functions. They acquire a moderate penalty at low
frequency, but lnL then goes to a constant since the
motion becomes negligible at high frequencies, as shown
by the transfer functions in Fig. 5.
With the Frozen response, the reflected mode remains

exactly degenerate as anticipated in Sec. V B. All other
modes see their lnL fall rapidly at around 2 mHz due to
the onset of frequency-dependency in the response.
Although the frequency-dependency vanishes in the limit
f ≪ fL ≈ 0.12 Hz, note that the effect is crucial even for
f=fL ≈ 0.02. Compared with Fig. 5, we see that, around
2 mHz, the breaking of the long-wavelength approximation
still appears mild; however, the SNR starts to accumulate a
lot from SNR=16 ∼ 40 at 2.5 h to SNR=4 ∼ 160 at 7 min,
magnifying the effect of these features. Comparing the two
rows of the figure, we see that the higher harmonics have an
effect here, in making the elimination of secondary modes
happen slightly earlier in frequency (or time). This is
expected as they start to contribute significantly to the
SNR (see Fig. 4) and reach higher in frequency than the h22
harmonic according to (59).
The Full response case is essentially a superposi-

tion of the previous two response approximations, with a

FIG. 12. Refinement of parameter inference over time for system II. The posteriors shown correspond to the time cuts defined in
Sec. IV B at SNR=64 (green), SNR=16 (yellow), SNR=4 (red), and postmerger (blue) for the masses (left), distance/inclination (center),
and time/phase (right). On the first row, all four posteriors are shown, while in the second row we display only SNR=4 and postmerger,
zooming closer to the true parameters. We inject and recover with higher harmonics. The black cross shows the true parameters.
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successive onset of the time-dependency and frequency-
dependency to break degeneracies. We note that overall,
including the higher harmonics does not change this
qualitative picture, despite an earlier onset of frequency-
dependent degeneracy-breaking features.

Limitations of such explorations should be made clear.
By using a pointwise estimate, we cannot make statistical
statements and are missing volume effects discussed in
Sec. V C; by transforming the angular parameters with an
analytical prescription while keeping the other fixed, we

FIG. 13. Refinement of the LISA-frame sky position inference over time for system II. The posteriors shown correspond to the time
cuts defined in Sec. IV B at SNR=64 (green), SNR=16, SNR=4, and postmerger (blue). For the top figure, we inject and recover with a
22-mode-only waveform, while for the bottom figure we inject and recover with higher harmonics. The black cross is the injected sky
position; the apparent offset in the 22-mode analysis corresponds to the phenomenon highlighted in Sec. V C. The blue contour for the
analysis with the full signal corresponds to the posterior of Fig. 7 (where blue and red were used for “22” and “HM”); in the bottom
figure with higher harmonics, it is almost reduced to two dots on this scale.
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are, in a sense, overconstraining the degeneracy. In par-
ticular, it is conceivable that one could find a better match
to the injected signal in the vicinity of a degenerate sky
mode, by adjusting all parameters slightly.
This is indeed what happens in multidimensional

Bayesian parameter estimation, and is illustrated in
Fig. 14. In the first panel, for the three premerger analyses
as well as for the postmerger analysis, we overlay circles
indicating the best lnL found among the posterior samples,
in each eighth of the sky corresponding to the eight sky
modes (when no samples are present in this region of the
sky, nothing is displayed). A sampler is not an optimizer, so
the precise value achieved is not optimal and would vary
when repeating runs; nevertheless, this measure gives a
good proxy for how much closer to the injected signal we
could get by slightly biasing the parameters.
We see that the best lnL among samples can be higher

than the point estimate would tell us, especially for the
analysis at ∼7 min before merger, and higher harmonics
make a visible difference. This has consequences for

approximations like the Fisher analysis, if secondary peaks
are shifted from the analytical predictions. We leave for
future work the investigation of approximate representa-
tions of sky degeneracies.

VII. STELLAR-MASS BLACK HOLES

A. Signals and transfer functions

Stellar-mass black hole binary inspirals have been
recently recognized as a potentially important source of
LISA detections [7,48]. Full Bayesian parameter estimation
studies for these LISA signals have not yet been developed,
but the Fisher approach has been used in [7,48–50]. In this
section we present two case studies of parameter inference
for such sources using the formalism and methods
described earlier, while limiting the analysis to the extrinsic
parameters (excluding the masses, and fixing the time to
coalescence). The parameters of the simulated mergers
were drawn from the Radler LISA Data Challenge, which
itself followed the population of [7], and are listed in

FIG. 14. Log-likelihood (51) at degenerate modes in the sky summarized in Table III, for different response approximations (from left
to right: Full, Frozen, Low-f), with 22-mode only (top) and with higher harmonics (bottom). The log-likelihood is shown as a function
of the maximal frequency where we cut the 22-mode signal [with the rescaling (59) for the other modes], which can be thought of as
accumulating signal with time (the vertical lines represent the time cuts of Sec. IV B and the merger). The lines represent the sky
positions listed in Table III: In terms of LISA-frame parameters full or dashed stands for the reflection in latitude, and the color stands for
the π=2-shifted longitudes. The dashed black curve corresponds to the reflected position, and the dashed red curve to the antipodal
position. At the true position (solid black), lnL is zero by construction while it is decreasing as a function of f for other sky positions.
Reaching a very negative lnL means that this sky position is excluded by the data accumulated thus far. In the left panel, the circles
indicate the maximum log-likelihood found among the posterior samples, when the parameters are allowed to deviate slightly from the
theoretical degenerate point.
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Table IV. System I is moderately massive, placed at a
favorable close distance; with an SNR of 26.6 it would be at
the tail of the most favorable detections that we can hope
for [7,97,98]. System II is a higher-mass, moderate-SNR
system. Both systems happen to be close to the eclip-
tic plane.
Figure 15 illustrates, for the system I in this table,

the instrumental transfer functions (30) as well as the
Doppler phase (36). Contrasting with the MBHB case,
we see that the transfer functions have much more
structure in this case. Both the time-dependency and
the frequency-dependency in the response lead to oscil-
latory features in the transfer functions. The Doppler
phase (36), that was negligible for our short MBHB
systems, now varies by tens of radians already at the
lowest frequency.

B. Bayesian inference of extrinsic parameters

We caution the reader that our purpose here is to show
the feasibility of Bayesian inference for SBHB sources in

LISA using the methodology presented in this paper, and to
illustrate the qualitative features of the posterior distribu-
tion for extrinsic parameters, in relation to our pre-
vious investigations for MBHB systems. To this end, the
problem we pose is simplified in several ways: we assume
that we know the signal to be present, bypassing the
challenges of detection itself [98], we fix the masses and
the time-to-merger to the injected value, and we neglect
spins. The parameter recovery of the intrinsic parameters,
masses, and spins is important to address as one can
expect strong degeneracies in mass ratio and spin for these
inspiral signals; it will be tackled in a forthcoming
publication [99].
The waveform model used to work with SBHB

systems is a standard post-Newtonian frequency-domain
waveform (we use a version of the TaylorF2 approx-
imant as implemented in LAL [53]). In practice, because
LISA only observes the early inspiral of SBHB systems,
the signal is well within the domain of applicability of
the post-Newtonian approximation [100]. In the early
inspiral, harmonics beyond the dominant quadrupole
give a negligible contribution, so we only include the
(2,2) mode.
As done in the previous section, we apply our

parameter inference procedure to these systems using
both the MultiNest and ptmcmc samplers, and we
numerically evaluate the Fisher matrix at the parameters
of the injection. In order to generate these results, our
ptmcmc sampler requires between 5 × 105 and 3 × 106

steps with 100 temperatures, taking on the order of days
on a single CPU core without careful optimization. The
MultiNest sampler, on the other hand, completes in a few
hours only.
The resulting posterior distributions are shown in

Figs. 16 and 17. We find close agreement between the
MultiNest and ptmcmc samplers. The joint distributions for

TABLE IV. Parameters of the simulated SBHB inspiral signals.

Identifier I II

Mass 1 (M⊙) 21.44 63.51
Mass 2 (M⊙) 20.09 45.15
Redshift 0.01 0.07
Lum. Distance (Mpc) 49.1 318.2
Inclination (rad) 0.65 1.92
Phase (rad) 0 0
Ecliptic longitude (rad) 3.44 5.66
Ecliptic latitude (rad) −0.074 −0.055
Polarization (rad) 1.74 2.20
Time-to-merger (yr) 2 2

LISA SNR h22 26.6 11.9

FIG. 15. Example of instrument response for the SBHB system I in Table IV. The first panel isolates the Doppler phaseΔΦR as defined
in (36), while the three other panels show the TDI transfer functions for A, E, T. We show here the transfer functions for the 22-mode
contribution to a, e, t as defined in (30).
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extrinsic parameters are fairly simple, with extended
degeneracies occuring only in the angular parameters
ðφ;ψÞ. Thanks to the complexity of the instrument transfer
functions shown in Fig. 15 carrying a lot of information, the
sky position determination is very good. The typical
degeneracy between inclination and distance is evident,
as there is no degeneracy breaking from higher harmonics.
Even though the SNR values are much lower than for our

MBHB systems, the Fisher matrix estimates represent quite
well the marginal distributions of most parameters. We
note, however, some notable deviation fromGaussianity for
the system II: the sky position is almost bimodal, with an
approximate symmetry across the ecliptic plane (we recall
here that the ecliptic plane is not the plane of the LISA
instrument that was used to report MBHB results), owing
probably to the localization being close to this plane; and

FIG. 16. Inferred parameter posterior distribution for the SBHB system I of Table IV, with 1-2-3-σ contours and the black cross
indicating the true parameters. The black ellipses show the same contours for the Fisher matrix approximation. Waveforms include only
the 22-mode. The results obtained with our two different samplers are shown, ptmcmc in blue and MultiNest in green. The initial
frequency is fixed to obtain a time-to-merger of two years. All extrinsic parameters are given in the SSB frame.
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the distance and inclination posteriors show a long tail
extending way beyond the Fisher estimate.

VIII. SUMMARY AND DISCUSSION

In this work, we have explored the Bayesian para-
meter estimation for full, inspiral-merger-ringdown
MBHB signals including higher harmonics, albeit neglect-
ing the spin degrees of freedom, and we have also produced
posterior distributions for the extrinsic parameters of
SBHB signals.

We improved the speed of likelihood computations by
combining several ingredients: fast IMR Fourier-domain
waveforms, a fast Fourier-domain treatment of the instru-
ment response, and accelerated overlap computations
between amplitude/phase signals in the absence of noise.
The resulting likelihood costs, of about 15 ms for wave-
forms with higher harmonics and 1 ms for waveforms
including only the dominant harmonic, allowed us to easily
perform Bayesian parameter estimation on high-SNR
signals requiring up to 108 likelihood evaluations with
standard Bayesian samplers.

FIG. 17. Same as Fig. 16, for the SBHB system II of Table IV.
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Using these tools to simulate the parameter recovery of
two examples of MBHB signals, we produced multidi-
mensional posterior distributions. Because our study did
not consider spins and their well-known degeneracy with
masses, our posterior distributions for masses cannot yet be
taken as representative of the actual LISA capabilities.
Nevertheless, we encountered and investigated two differ-
ent kinds of degeneracies in the extrinsic parameter space.
Considering first IMR signals, we found a two-fold

degeneracy for the sky position corresponding to the
reflected sky localization with respect to the plane of the
LISA constellation (opposite sign of the LISA-frame
latitude). We also found that, when limiting the signals
to their dominant harmonic h22, strong degeneracies in
distance-inclination can occur, causing the posterior dis-
tribution in the sky to appear shifted from the injected
value. We gave an analytic explanation of this degeneracy
by eliminating the time and frequency dependencies in the
response, reducing it to an explicitly degenerate form.
However, including higher harmonics in the analysis
strongly breaks those degeneracies, and leads to a much
better determination of both distance-inclination and sky
position. Although the reflected sky localization survives
with higher harmonics, we also note that the posteriors
appear as much more Gaussian in all extrinsic parameters;
using a simplified signal with only the dominant harmonic
significantly complicates the posterior sampling.
Second, considering premerger analyses to investigate

how information accumulates with time, we found an eight-
fold degeneracy for the sky position, obtained by rotating
the original and reflected sky positions by integer multiples
of π=2 around the axis of the LISA constellation. For our
example systems, the posterior only collapses on the two-
fold degeneracy, noticed previously for IMR signals,
minutes before the merger. By decomposing the LISA
instrument response into different effects, separating its
time-dependency from its frequency-dependency, we could
pinpoint the role of both effects. The time-dependency of
the response, consequence of the motion of LISA, leaves
a moderate imprint at low frequencies, penalizing moder-
ately other modes in the sky but leaving the antipodal
sky position degenerate. By contrast, the frequency-
dependency of the response, not included in previous
parameter studies, is responsible for the degeneracy break-
ing and the collapse from eight to two modes in the sky.
Note that the relative importance of the time- and fre-
quency-dependency of the response will change for heavier
or lighter systems.
We also explored the recovery of extrinsic parameters of

SBHB signals (fixing the masses and spin parameters as
well as the merger time), using the same methodology as
for MBHB signals to arrive at a likelihood cost of ∼2 ms.
Investigating two example systems, we found that the
distribution of extrinsic parameters is mostly Gaussian,
with a bimodality in the sky position found for one source

lying close to the ecliptic plane, and an extended tail in the
distance posterior.
Comparing the parameter estimation results obtained

with our two samplers, ptmcmc and MultiNest, we found
an overall good agreement. We noted however that
MultiNest can fall short of exploring the full degeneracies
in parameter space, in the degenerate case of a signal
without higher harmonics; this limitation is further illus-
trated by the example of a fully degenerate response. We
also found that using Fisher matrix estimates does not
reproduce Bayesian results in general: The complicated
degeneracies in the sky cannot be covered by a Fisher
computation that is intrinsically unimodal, and neither can
the specific features of the 22-mode degenerate posteriors.
That degeneracies even occur with the high SNRs of our
MBHB signals is remarkable, and reminds us that the usual
statement of the validity of the Fisher matrix approximation
in the high-SNR limit is very dependent on the morphology
of the signal. In many respects, the moderate-SNR poste-
riors for our SBHB systems are more Gaussian than our
high-SNR MBHB 22-mode posteriors.
Our exploratory work calls for a number of natural

extensions that will help us to better understand the future
capabilities of the LISA instrument.
First, we only investigated a handful of sources. In

particular, we chose our MBHB systems to be represen-
tative of the bulk of the expected population; they are not
“golden sources”, i.e., they are not part of the tail of lower-
redshift systems that will deliver the most interesting
science outputs with LISA, notably in terms of electro-
magnetic counterparts. It is likely that the parameter
recovery here will be different, with a longer detectable
signal and the motion of LISA playing a role in the
premerger localization. We also limited ourselves to a
single redshifted mass, while the morphology of the
signals will change strongly between the two ends of the
LISA spectrum, from intermediate mass black holes
(M ∼ 103 M⊙) to massive systems (M > 107 M⊙).
Second, it will be necessary to incorporate more physics

in our waveform models. In this study our signals were
limited to nonspinning, quasicircular systems. The spin
components along the orbital angular momentum will be
degenerate with the masses, but we do not expect this to
qualitatively change the posterior distributions for the
extrinsic parameters. This will be investigated in a forth-
coming publication [101]. Orbital precession and eccen-
tricity, however, will change the harmonic structure of the
signals and we expect they will play a much more
important role.
Third, we used zero-noise realizations in order to

accelerate the likelihood computation. Although we do
not expect that the noise realization will cause drastic
changes, particularly with the structure of degeneracies of
signals in parameter space remaining relevant, fast like-
lihoods for presampled noisy data will eventually be
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necessary. Analyzing signals with a noise injection will
also become more important when considering more
realistic instrumental noise models and in prototyping
algorithms for analysis of actual LISA data.
We also note that our sampling tools themselves

(MultiNest and ptmcmc) were not tailored for the problem
at hand; it is very possible that better sampling algorithm
would require much less evaluations of the likelihood. The
understanding we gained of the parameter space degener-
acies will allow us to inform the sampler with, e.g., tailored
jump proposals, effectively telling MCMC chains where to
look for degenerate signals in parameter space. For in-
stance, parameter estimation tools used in ground-based
gravitational wave astronomy make use of an analytical
knowledge of degeneracies [102].
Finally, we recall that many scientific questions about

LISA rely on parameter estimation tools, and would benefit
from proper Bayesian analyses with realistic signals:
premerger localization of sources and advance warnings
for electromagnetic instruments, cosmography using LISA
sources as standard sirens, astrophysical inference from the
source population, accuracy requirements on waveform
models, and trade-offs between instrumental design and
scientific outputs. We will keep extending our tools to
address all these applications.
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APPENDIX A: CONVENTIONS FOR ORBITS
AND FRAMES

For completeness, we give in this Appendix the defi-
nitions and convention choices that were sketched in Sec. II
but were not essential for the discussion.

1. Source frame, wave frame, and SSB frame

We first introduce a source frame ðx̂S; ŷS; ẑSÞ attached to
the binary system emitting gravitational waves. Relating
this frame to the physical configuration of the binary is
understood as being part of the waveform model. For
comparable-mass systems without spin or with aligned
spins,7 the natural choice is to take the normal to the orbital

plane as ẑS, and we will assume that the remaining rotation
around ẑS is fixed by the phase convention of the wave-
form model.
Introducing k, the wave propagation unit vector going

from the source towards the observer, we define the
inclination ι and the observer phase φ as its spherical
angular coordinates in the source frame, so that in that
frame

kS ¼ ðsin ι cosφ; sin ι sinφ; cos ιÞ: ðA1Þ

By convention, for our polarization vectors p and q we
will use the spherical coordinate vectors p ¼ eSθ , q ¼ eSϕ. In
terms of only ẑS,

p ¼ q × k; ðA2aÞ

q ¼ ẑS × k=jẑS × kj: ðA2bÞ

The vectors ðp; q; kÞ form the wave frame, such that the
gravitational wave takes in this frame the familiar form

HW ¼

0
B@

hþ h× 0

h× −hþ 0

0 0 0

1
CA: ðA3Þ

We can now relate the wave frame to a detector frame
ðx̂; ŷ; ẑÞ, which will fix our convention for the sky position
and polarization angle. We choose here this detector frame
to be based on the plane of ecliptic, and centered on the
Solar System Barycenter; we will call this frame the SSB
frame. Below, we will introduce another detector frame
more suitable for short-lived signals, the LISA frame.
The source position in the sky is given by ðλ; βÞ,

the ecliptic longitude and latitude in this SSB frame.
Like with the source frame, we can introduce spherical
vectors ðeSSBr ; eSSBθ ; eSSBϕ Þ. Since the propagation vector is
k ¼ −eSSBr ,

k ¼ ð− cos β cos λ;− cos β sin λ;− sin βÞ: ðA4Þ

The last degree of freedom between the frames repre-
sents a rotation along the line-of-sight, parametrized by the
polarization angle ψ . We introduce reference polarization
vectors in the SSB frame as

u ¼ ẑ × k=jẑ × kj; ðA5aÞ

v ¼ k × u: ðA5bÞ

In terms of spherical vectors, ðk; u; vÞ ¼ ð−eSSBr ;
−eSSBϕ ;−eSSBθ Þ.
In the following, we will use the notation Rðv;ϖÞ to

denote the matrix of an active rotation around the vector v

7For precessing systems different choices are possible, like
ẑS ¼ Ĵ, the direction of the total angular momentum.
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by an angle ϖ. The polarization angle ψ is then defined
such that ðp; qÞ are obtained by rotating ðu; vÞ by the angle
ψ around k, i.e.,

ðp; qÞ ¼ Rðk;ψÞ · ðu; vÞ: ðA6Þ

These relations can be summarized by the active rotation
matrix RW from the SSB frame to the wave frame:

RW ¼ Rðz; λ − π=2Þ · Rðx; β þ π=2Þ · Rðz;ψÞ: ðA7Þ

2. LISA trajectories

The orbits of the three spacecrafts around the Sun can be
chosen so that, at leading order in the eccentricity of the
orbits, the constellation retains the shape of an equilateral
triangle in a cartwheeling motion following the Earth’s
orbit. We denote by a the semi-major axis, e the eccen-
tricity, and pose α ¼ Ω0ðt − t0Þ, with t0 a reference time
for the initial position (t0 ¼ 0 in our case) and Ω0 ¼
2π=ð1 yrÞ. The reference SSB frame is ðx̂; ŷ; ẑÞ.
Using the notation c; s ¼ cos; sin α, the trajectory of the

center of the constellation is simply

p0 ¼ acx̂þ asŷ; ðA8Þ

and we take a≡ R ¼ 1 au. We denote the positions of the
spacecrafts as pA for A ¼ 1, 2, 3, and the positions relative
to the constellation center as pL

A ¼ pA − p0. Setting βA ¼
2ðA − 1Þπ=3þ β0 (with β0 and initial condition set to zero
in our case), the Cartesian coordinates in the SSB frame of
the position of the spacecrafts read

pL
A ¼ ae½sin βAcs − cos βAð1þ s2Þ�x̂

þ ae½cos βAcs − sin βAð1þ c2Þ�ŷ
− ae

ffiffiffi
3

p
cosðα − βAÞẑ; ðA9aÞ

The arm length, constant in this approximation, is related to
the eccentricity and semi-major axis by

L ¼ 2
ffiffiffi
3

p
ae: ðA10Þ

The rigid approximation for the constellation, at first order
in e, can be seen as a first-order approximation in the small
parameter L=R ≃ 0.017 for a 2.5 Gm arm length.

3. The LISA frame

It will be very useful to introduce a time-dependent
frame ðx̂L; ŷL; ẑLÞðtÞ following the detector in its motion.
Specifically, we choose this LISA frame (L-frame for short)
such that at any time,

pL
1 ¼ −

Lffiffiffi
3

p x̂L; ðA11aÞ

pL
2 ¼ L

2
ffiffiffi
3

p x̂L −
L
2
ŷL; ðA11bÞ

pL
3 ¼ L

2
ffiffiffi
3

p x̂L þ L
2
ŷL: ðA11cÞ

This frame also provides us with an equivalent repre-
sentation of the trajectories making use of rotation
matrices. Since in our rigid approximation the constella-
tion remains an equilateral triangle in its cartwheeling
motion around the Sun, the configuration of the con-
stellation at a later time is given by a rotation around the
Sun composed with a rotation of the constellation around
its symmetry axis.
If we denote by RL the active rotation from the SSB

frame to the L-frame such that for each of the three basis
vectors ðx̂L; ŷL; ẑLÞ ¼ RLðx̂; ŷ; ẑÞ, we have

RL ¼ Rðz; αÞ · Rðy;−π=3Þ · Rðz;−αÞ; ðA12Þ

where we recall that α ¼ Ω0ðt − t0Þ. For all vectors X
among pL

A, nA we have XðtÞ ¼ RL · Xðt ¼ t0Þ. If a vector X
is given by its components in the SSB frame, in the L-frame
the components are XL ¼ R−1

L · X.
While long-lasting signals like SBHBs will see a strong

imprint of the LISA orbital motion over the course of
observation, MBHB signals are dominated in SNR by a
short-lived burst of emission at the merger. For such
signals, it will be useful to use a parametrization based
on the LISA frame at the time of merger instead of the
SSB frame.
The new parameters are defined as playing the same role

as the SSB parameters, but relative to the L-frame. Namely,
we define RLW the active rotation matrix from the L-frame
to the wave frame, expressed in the L-frame basis, so that
for each basis vector expressed in the L-frame basis
ðx̂W; ŷW; ẑWÞL ¼ RLW · ðx̂L; ŷL; ẑLÞL. The defining condi-
tion on ðλL; βL;ψLÞ is

RLW ¼Rðz;λL−π=2Þ ·Rðx;βLþπ=2Þ ·Rðz;ψLÞ: ðA13Þ

Coming back to vectors expressed in the SSB-
basis, R−1

L · ðx̂W; ŷW; ẑWÞ ¼ RLW · R−1
L · ðx̂L; ŷL; ẑLÞ. Since

ðx̂W;ŷW;ẑWÞ¼RW ·ðx̂; ŷ; ẑÞ and ðx̂L;ŷL; ẑLÞ¼RL ·ðx̂; ŷ; ẑÞ,
we arrive at

RLW ¼ R−1
L · RW: ðA14Þ

Combining (A14), (A12), (A7), and (A13) yields the
following expressions for the L-frame angular parameters8:

8The convention here is that the point of coordinates ðx; yÞ in
the plane has for argument arctan ½x; y�.
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βL ¼ arcsin
h
cos

π

3
sin β − sin

π

3
cos β cos ðλ − αÞ

i
; ðA15aÞ

λL ¼ arctan
h
cos β cos λ

�
cos

π

3
cos2αþ sin2α

�

þ cos β sin λ cos α sin α
�
cos

π

3
− 1

�

þ sin
π

3
sin β cos α;

cos β sin λ

�
cos

π

3
sin2αþ cos2α

�

þ cos β cos λ cos α sin α
�
cos

π

3
− 1

�

þ sin
π

3
sin β sin α

i
; ðA15bÞ

ψL ¼ ψ þ arctan
h
cos

π

3
cos β þ sin

π

3
sin β cosðλ − αÞ;

− sin
π

3
sinðλ − αÞ

i
: ðA15cÞ

Through α ¼ Ω0ðt − t0Þ, these expressions are time-
dependent, reflecting the rotation of this frame to follow
LISA on its orbit.
Finally, it is useful to introduce a “time-at-LISA”

parameter tL, taken into account the propagation delay
from the SSB to the center of the LISA constellation, as

tL ¼ tþ k · p0: ðA16Þ

Labeling short-lived MBHB signals by their time of arrival
at the SSB is a bad parametrization. For a given measured
arrival time at the LISA instrument tL, different sky
positions will give separate peaks in the “time-at-SSB”
variable t. The use of tL eliminates this issue.

4. LISA instrumental noise

The instrumental noise we consider in this study is
constructed from [68], which specifies the LISA noise
budget for different subsystems. The numerical expressions
we use are (with all quantities in SI units):

SpmðfÞ ¼
�

1

2πfc

�
2

ð3 × 10−15Þ2
�
1þ 36

��
10−4

f

�
2

þ
�
3 × 10−5

f

�
10
��

þ 1

4
ð1.7 × 10−12Þ2

�
2πf
c

�
2

þ SWDðfÞ; ðA17aÞ

SopðfÞ ¼
�
2πf
c

�
2

½ð8.9 × 10−12Þ2 þ ð1.7 × 10−12Þ2 þ ð2 × 10−12Þ2�: ðA17bÞ

APPENDIX B: SAMPLING THE FULLY
DEGENERATE EXTRINSIC POSTERIOR

In this Appendix, we further illustrate our findings of
Sec. V C by running our Bayesian parameter estimation
codes with the simplified likelihood (70) consisting in
pinning intrinsic parameters (masses and time) and using
the Frozen, low-f response approximation.
Since the inner products (67) are constants computed only

once, the external factors become trivially inexpensive, and
the likelihood is very fast to compute. We take advantage of
this to run ptmcmc for a very large number of steps,
ensuring that we do not miss degenerate regions of the
parameter space. The resulting posterior distribution is
extremely degenerate, as shown in Fig. 18. The sampler
MultiNest fails to resolve this structure, stopping after having
only explored the degenerate region ι → 0 and ι → π and the
eight sky positions (78). In accordance with (78), this
corresponds to lines in φ� ψL ¼ const. The sampler
ptmcmc finds more degenerate regions, particularly it finds
similar structures with the roles of ι and βL exchanged
following (79) [as shown notably by the ðd; ιÞ and ðd; βLÞ
panels], as well as intermediate regions connecting all these
features.

Figure 18 also shows the result obtained when including
all available harmonics (52) in (68). The degenerate
structures collapse to leave the eight modes corresponding
to βL → −βL and λL → λL þ kπ=2, this time centered
around the injected value and not the shifted value
ðλ†L; β†LÞ. We found that this degeneracy-breaking occurs
already when including a single subdominant harmonic (for
instance h21).
These results also give us a hint to explain the results of

Sec. VA, and particularly the difference between Bayesian
samplers shown in the center left panels of Figs. 9 and 10.
Since making the likelihood more degenerate in the
simplified likelihood limit (70) magnifies the difference
between ptmcmc and MultiNest, with ptmcmc exploring a
much larger volume in parameter space, their disagreement
with the full likelihood can likely be attributed to an
apparent shortcoming of MultiNest9 for resolving extended
degenerate regions.

9We only used standard values for the metaparameters for this
sampler, and we do not exclude that it would be possible to
improve results with minor changes.
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