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In this work we provide a framework that connects the corotating and counterrotating f-mode
frequencies of rotating neutron stars with their stellar structure. The accurate computation of these modes
for realistic equations of state has been presented recently and they are here used as input for a Bayesian
analysis of the inverse problem. This allows to quantitatively reconstruct basic neutron star parameters,
such as the mass, radius, rotation rate or universal scaling parameters. We find that future observations of
both f-mode frequencies, in combination with a Bayesian analysis, would provide a promising direction to
solve the inverse stellar problem. We provide two complementary approaches, one that is equation of state
dependent and one that only uses universal scaling relations. We discuss advantages and disadvantages of
each approach, such as possible bias and robustness. The focus is on astrophysically motivated scenarios in
which informed prior information on the neutron star mass or rotation rate can be provided and study how
they impact the results.
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I. INTRODUCTION

Ongoing advances in gravitational wave (GW)
astronomy offer unprecedented opportunities to study the
complex and rich physics of neutron stars. The milestone
detection GW170817 of two merging neutron stars [1–3]
(and subsequent events such as GW190425 [4]) triggered
an enormous amount of studies and insights to a wide range
of questions on neutron stars, nuclear physics, cosmology,
and fundamental physics [5–11]. Among the key observ-
ables that should be detectable in the future by advanced
detectors are the f-mode frequencies of massive post-
merger objects or rotating neutron stars (both isolated as
well as part of a binary system). Those are a promising
laboratory to study extreme nuclear physics and strong field
gravity in more detail and will help constrain the nuclear
equation of state (henceforth EOS) [12,13].
While binary mergers involving at least one neutron star

will provide a plethora of observations that can be utilized in
order to put constraints on current unknowns in nuclear
physics, we will in this study focus on the subfield of
gravitational wave asteroseismology [14–16]. Starting in
the 1970s, helioseismology has proven extremely successful
in gaining highly detailed knowledge on the composition as
well as processes operating in the interior of the Sun, based on
the observation of acoustic modes visible on the solar surface

[17,18]. Asteroseismology of neutron stars will never be able
to reproduce that level of detail known from solar studies,
however, it will play a crucial role in the long-lasting effort to
constrain the nuclear EOS; the inverse problem has to be
tackled. Even though neutron stars exhibit a rich spectrum of
different oscillation modes [19–21], we will focus on the
fundamental acousticmode, ormoreprecisely, the l¼jmj¼2
f-mode, as it is the fluid mode strongest coupled to
gravitational radiation and hence most likely to be detected
via future gravitational wave observations. The computation
of the f-modes of arbitrarily fast rotating neutron stars is
numerically very complex and has a long history [22–26].
Asteroseismology often relies on the availability of certain
universal relations that are independent of the nuclear EOS,
i.e., they allow deductions from mode frequencies to bulk
properties of theobserved star by solving the inverse problem.
Several such universal relations have been proposed for
various oscillation modes of neutron stars; they often utilize
“basic” neutron star properties such as mass, radius and
rotation rate to parametrize the mode frequency [15,25,27]
but more recently also more complex quantities such as the
effective compactness or tidal deformability have been
employed in the universal relations [16,28–30] in order to
improve the accuracy of the estimate. In our study, we will
mostly focus on themost recently proposed universal relation
in Ref. [31], as it is the first fitting formula for f-mode
frequencies that does not rely on simplifications in their
determination.
In this work we adopt a Bayesian framework that allows

us to quantify the connection between future measurements
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of the corotating and counterrotating l ¼ jmj ¼ 2 f-modes
with key neutron star properties, such as their stellar
structure and underlying EOS. This particular choice for
the modes is motivated from earlier studies that predict
them to be more relevant for typical observations than other
modes of the spectrum. The Bayesian framework is related
to the one presented recently in Ref. [32], where it was
applied to reconstructing parametrized black hole space-
times from their quasinormal mode spectrum.
Gravitational wave observations of different types of

neutron star systems may also come along with comple-
mentary information on some of the system properties: e.g.,
the remnant mass after a neutron star merger may be
estimated from the inspiral signal; or the neutron star spin
known from radio observation may be accompanied by
glitch induced GW signal [33]. Hence, we incorporate mass
and spin into our framework. More specifically, we study
scenarios in which different levels of prior knowledge on
the neutron star mass or independent measurements of the
rotation rate are available.
Because the extraction of f-modes from complex

numerical simulations is computationally time consuming
and difficult to automatize, we calculate the f-mode
frequencies for a sufficiently dense set of equilibrium
configurations across the possible parameter space of each
considered EOS (they are the same as those used in
Ref. [31]) and interpolate the frequencies of intermediate
neutron star models. We call this framework, which always
requires an initial choice for the underlying EOS, in the
following the EOS method. The second, complementary
approach to the inverse problem is based on using universal
relations (URs), which have been reported in the samework
[31]. URs allow to compute f-mode frequencies from
analytic functions of key neutron star parameters up to
percent level. The URs have been constructed by fitting the
extracted f-mode frequencies to a simple analytical func-
tion. We call this approach in the following the UR method.
We find major advantages and disadvantages between

the two methods, which are strongly related to the specific
context and what additional information on neutron star
parameters is known. One difference is that the EOS
method has two parameters to uniquely compute the f-
modes for a given EOS, while the UR method requires
three parameters to do so. If informed prior knowledge on
the remnant mass or additional constraints on the rotation
rate is known, meaning one already knows them to some
extent, the UR method provides reliable constraints on
neutron star bulk properties when both f-modes have been
observed. Since the currently available universal relation
we are using is not directly incorporating the neutron star
radius, it cannot directly be used to recover all neutron star
parameters, for which some knowledge of the EOS is still
needed, but most of them. The EOS method has the
advantage of being, in principle, independent of approx-
imations and directly provides all neutron star parameters

that have been computed for the equilibrium solutions
previously. The disadvantage is that the true EOS is not
known and assuming a wrong EOS, i.e., one that does not
reflect the physical reality, will in general yield biased
parameters; in our case, our method will yield a neutron star
with different radius and rotation rate as the underlying one
which we used to generate the f-mode frequencies (see
Sec. III A). The case, in which two neutron stars con-
structed using different EOS and stellar structure yield
similar f-mode frequencies, simply shows that the unique
reconstruction requires in general additional information.
This work is structured as follows. Section II provides an

overview of the theory and methods being used, which are
then applied in Sec. III. We discuss our findings in Sec. IV
and conclude in Sec. V.

II. THEORY AND METHODS

In the following we summarize our methods being used
in this work. We start with a review of the underlying
theoretical framework to study neutron star oscillations in
Sec. II A, before we outline the actual computation of
f-modes in the present work in Sec. II B. We then describe
the adopted universal relations in Sec. II C and the
Bayesian analysis in Sec. II D.

A. Mathematical formulation

The framework in which we calculate the f-mode
frequencies is laid out in detail in a previous article (see
Ref. [26]), however, for completeness, we will repeat the
fundamentals here. In this work we assume standard
general relativity (with units in which G ¼ c ¼ 1), whose
field equations, along with the law for the conservation of
energy momentum, are given in terms of the Einstein tensor
Gμν and the energy-momentum tensor Tμν as

Gμν ¼ 8πTμν and ∇μTμν ¼ 0: ð1Þ

As is common practice in mode studies, we restrict
ourselves to linear perturbations around equilibrium.
To model the neutron star, we consider a perfect fluid

with energy density ϵ and pressure p; the energy momen-
tum tensor then takes the form

Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð2Þ

where uμ is the 4-velocity and gμν the underlying metric. Its
line element, which describes an axisymmetric neutron star,
can be written in quasi-isotropic coordinates as

ds2 ¼ −e2νdt2 þ e2ψr2 sin2 θðdφ − ωdtÞ2
þ e2μðdr2 þ r2dθ2Þ: ð3Þ

In order to construct neutron star equilibrium solutions
(for which we employ the RNS code [34–36]), it is
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necessary to close the system of equations by providing an
equation of state that relates p and ϵ. Since the true EOS is
still part of current research and subject to large uncer-
tainties, we resort to commonly used proposals for realistic
EOSs for our simulations, which are based on various
approaches such as detailed microscopic calculations,
relativistic mean-field theory, or Skyrme models. In par-
ticular, we will use the proposed piecewise-polytropic
approximations [37] of the EOSs APR4, H4, MPA1,
MS1, SLy4, and WFF1. While different observational
constraints, such as a lower bound for the maximum mass
[38] or the radius of a neutron star [39], may rule out certain
EOSs, our choice of EOSs is intended to cover a broad
range of the parameter space.
The field equations then are expanded up to linear order

around an equilibrium solution and then evolved in time.
While the full oscillation problem has been studied for
many decades, and many different families of modes and
relations are known from theoretical computations, we here
only focus on some part of the so-called f-mode spectrum.

B. Computation of f -mode frequencies

While our linear perturbation code allows the determi-
nation of f-mode frequencies at comparatively low compu-
tational expense (when compared to nonlinear simulations
in full general relativity), that task is still tedious and requires
manual tweaking of parameters. Hence, we determine the
mode frequencies for a sufficiently large number of equi-
librium configurations with rotation rates up to the Kepler
limit and use linear interpolation to estimate the frequencies
of an arbitrary model (based on the same EOS) in the
following way: For each of the considered EOSs, we work
with a tabulated grid which contains the f-mode frequencies
as a function of the star’s gravitational mass M and its
equatorial radiusR. Note that in the rotating case, for a given
one-parameter EOS, the star’s rotation rate Ω and other
parameters are uniquely related toM andR. Thus, one is left
with a two-dimensional interpolation to relate a specific star
with its f-mode frequencies. For the technical reasons
described above, our grids have a resolution that can in
practice not easily be increased arbitrarily. However, we
performed several Markov chain Monte Carlo (MCMC)
analyses, beyond the precision reported later in this work,
and find that our grids would need to be refined if f-modes
with below percent precision are studied.

C. Universal relations

The estimation of f-mode frequencies, based on inter-
polation as described in the previous Sec. II B, are EOS
dependent and rely on the availability of sufficiently dense
tabulated input for the interpolation. While this can in
principle be done for specific choices for EOS, we also
study EOS independent properties, commonly known as
universal relations. These are obtained by scaling key

stellar properties with oscillation modes or damping times
and allow to constrain, some, but not all stellar parameters.
In the following, we provide such an alternative

approach by utilizing numerically fitted universal relations
in order to compute the frequencies of the corotating and
counterrotating f-modes. Such a relation has been pro-
posed in Ref. [31] and is given by

σ̂i ¼ ðci1 þ ci2Ω̂þ ci3Ω̂
2Þ þ ðdi1 þ di3Ω̂

2Þη: ð4Þ

Here i denotes the branch of the f-mode (co- or
counterrotating) and σ̂i ¼ M̄σi=kHz and Ω̂ ¼ M̄Ω=kHz,
where M̄ ¼ M=M⊙. Furthermore, η is the effective com-
pactness, which is related to the mass and moment of inertia
I of the star via η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̄3=I45
p

, with I45 ¼ I=1045 g cm2.
The numerical values of the coefficients have been reported
in the same work and were obtained by fitting a range of
different realistic EOSs with stellar sequences [31].
The simplicity of universal relations does not only

enhance the qualitative understanding of parameter depend-
encies, but it also allows for back-of-the-envelope esti-
mates. The trade-off is that universal relations are not exact,
but come with an intrinsic uncertainty due to their sim-
plicity; in this case the error is at percent level as long as Ω
is not too close to the Kepler limit (see Ref. [31]). Also note
that the universal relation comes at the price of requiring
three neutron star parameters, whereas the EOS dependent
method is satisfied with only two of them; in a certain way,
the EOS is encoded as the third parameter in the universal
relation.

D. Bayesian framework

In the following we briefly summarize the basics of the
Bayesian analysis as used in this work. It is similar to the
analysis for black hole quasinormal modes, which one of
the authors reported recently in Ref. [32].
Bayes’ theorem connects the parameters θ of a model

with the observed data D via

PðθjDÞ ¼ PðDjθÞPðθÞ
PðDÞ : ð5Þ

Here PðθjDÞ is the posterior, which describes the
probability distribution of the parameters given the data.
It is equal to the likelihood PðDjθÞ, the probability
distribution of the data given the parameters, times the
prior PðθÞ, the probability distribution of the parameters
before looking at the data. The normalization is given by
the evidence PðDÞ, which is the probability of the data
itself. In our work we will utilize different levels of
informed/uninformed priors for the parameters, which
for us here means the distributions are described by
narrow/wide Gaussians.
The f-mode doublet is the quantity which we consider as

data. Without real analyzed data, one has to make some
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assumptions for the likelihood. In the following we assume
that a future experiment would provide the modes and that
the likelihood can be described by two normal distributions
N ðμi; σiÞ with μi ¼ ν and σi ¼ νδν. Here δν is the
dimensionless relative error with which an experiment
has determined the f-mode frequency ν (in order to avoid
confusion with the standard deviation, we have denoted the
f-mode frequency here with ν). It can be seen as a free
parameter that can be used to qualitatively study the
prospects of future gravitational wave detectors.
The actual computation of the posteriors is done using a

Markov chain Monte Carlo (MCMC) analysis based on the
Python probabilistic programming framework PYMC3 [40].
The MCMC requires to compute f-mode frequencies in
each step of the chain; since this is, as mentioned above, not
a trivial task, we interpolate it from our dataset and couple it
via a custom THEANO (Python library) function to the
workflow of PYMC3.

III. APPLICATIONS

In this section, we apply the EOS and UR methods to
hypothetically observed f-mode frequencies coming from
a sample of representative neutron stars with the EOS
described previously. In all cases we assume that the
corotating and counterrotating f-mode frequencies are
normal distributed, whereas the one sigma relative error
and the prior knowledge on M are being varied depending
on the application. Since detailed computations on how
precise f-mode frequencies can be reconstructed from
future observations are highly nontrivial, we assume
3%–5%, which seems to be in reach, at least for future
detectors, e.g., the Einstein Telescope along with a Cosmic
Explorer observatory (see Ref. [41] for a recent study).
First, we start with the EOS method in Sec. III A and then
apply the UR method in Sec. III B. We provide results for
their joint application in Sec. III C.

A. EOS method

The EOS method requires the assumption of a particular
EOS which we deem to be the physically “correct” one to
infer the stellar parameterswith theMCMC.We have studied
this formultipleEOSsandvaried thepriors of the parameters.
In the following, we discuss two representative cases.
In the first application, which can also be seen as proof of

principle, we chose the H4 EOS and take the f-mode
frequencies from our dataset for a typical neutron star with
M ¼ 1.8 M⊙ and R ¼ 15 km1; this fully specifies the neu-
tron star and hence all its bulk parameters. These are the true
neutron star parameters that we want to infer from the

“observed” f-modes by using the same EOS. The result,
which is represented by blue data, is shown in Fig. 1 and
demonstrates that the framework gives reasonable results. The
red cross and lines indicate our chosen values for M and R.
In the second application, we use the same f-modes of

the first application, but now assume a different EOS to
infer the neutron star parameters. This reflects a less
optimistic situation, since there is no hint in the observation
that would point towards only one unique EOS. In a
“lucky” case, it might be such that many of the hitherto
proposed EOSs do not support an equilibrium configura-
tion that possesses the specifically observed f-modes and
would thus be ruled out. However, in general, we do not
expect such constraints from observed f-mode frequencies
as the possible range is rather large; instead, we would
expect to recover biased parameters describing a different
neutron star with coinciding f-mode frequencies.
We find and report a case in which an alternative EOS

yields biased results, which is represented by the orange
data in Fig. 1. Here we have used the MPA1 EOS for the
parameter estimation. Looking only at the posteriors, there
is no indication as to which of the two EOSs is the one we
have selected to generate the frequencies, or if maybe yet
another EOS would explain the observation better. In both
applications we have assumed that M and R have unin-
formed priors, and that both f-modes have a relative error
of 3%.
Furthermore we verified that the expected distributions

of f-modes from both EOSs are in agreement with the
initially provided ones. This has been done by computing
their distributions from draws of both of the here shown

FIG. 1. We compare the EOS method assuming the H4 EOS
(blue) and the MPA1 EOS (orange). The diagonal panels show
the sampled posterior distribution of M and R, while the main
panel combines a scatter plot with logarithmic contour lines. The
red cross and red line indicate the true H4 parameters that belong
to the assumed f-mode data being used for both EOSs for the
parameter estimation. The f-mode relative error is assumed
to be 3%.

1We could also have used two typical values for the f-mode
frequencies rather than using our dataset to simulate a proper
neutron star model; however, in that case, we would not be able to
test our method by comparing how well it reconstructs the chosen
neutron star.
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posteriors. We find no significant deviation that could be
used to easily rule out the “false” EOS.
Finally, we also studied how prior knowledge of M

changes the above findings. Since precise knowledge of M
reduces the given inverse problem to finding the unknown
equatorial radius R from two mode frequencies, one would
expect that two different EOS become distinguishable. For
the above example we report that knowing M within 10%
causes strong tensions between posterior and prior ofM for
the MPA1 EOS, as well as discrepancies for the simulated
versus observed f-modes. We have verified this by sam-
pling f-modes using the posterior distributions of both
EOSs and compared these with the ones describing the
observed f-modes. Thus, as expected, one can distinguish
the correct from the false EOS.

B. Universal relation method

In the following, we demonstrate the application of the
UR method to a range of different pairs of f-mode
frequencies, representing neutron star models employing
different EOSs. Since the URmethod is (intentionally) blind
to the underlying EOS, but only depends on a subset of the
neutron star parameters, the application is straightforward.
We start with the reconstruction of the rotation rateΩ and

its relative error. Both are shown as a function of the prior
knowledge of M in Fig. 2. First, it seems that the relative
errors of Ω are almost independent of the prior knowledge
of the mass M. Second, the absolute values of the relative
errors depend more strongly on the underlying EOS than on
the knowledge of M. However, in all cases it seems to be
possible to constrain the rotation rate Ω, for the given 5%
precision for the f-modes, almost independently from the
prior knowledge of M to within 10% to 20%.
In the bottom panel of Fig. 2, we show the corresponding

analysis for the effective compactness η, again as a function
of the standard deviation of the prior normal distribution for
the massM. Since we assume only two f-mode frequencies
as observation, but the UR is a function of three parameters,
one can only expect to constrain some part of the parameter
space. However, if the mass is known to within a few or
tens of percent, the parameter space is already strongly
confined. We find bounds on ηwhich scale for a wide range
roughly linear with the uncertainty of M. This scaling is
comparable for all of the considered EOSs, which suggests
that this scaling is also universal.
In order to compare how the two very different scalings

depend on the precision of the provided f-modes, we
repeated the above analysis with smaller relative errors
of 3%. As expected, the qualitative scaling remains
unchanged, but now provides a bit more stringent bounds.

C. Joint EOS and UR method

While the EOS method can in principle recover all
neutron star parameters, we already argued that the result
will, in general, be biased and resemble a different neutron

star with similar f-modes. In order to quantify how robustly
the EOS method is able to constrain the same parameters
that can be inferred from the UR method, we have injected
a particular f-mode pair and applied both methods. The
observed f-modes have been produced using the H4 EOS,
and the EOS method reconstruction is then done via the H4
EOS (which we used to generate the frequencies), the
“wrong” MPA1 EOS, as well as the UR method.
We report our findings in Fig. 3, which shows the

posterior distribution of the normalized rotation rate Ω
and effective compactness η for different prior knowledge
onM. The normalization is with respect to the true H4 EOS
values for the provided f-modes.
It is evident that the H4 EOS method (blue lines) and UR

method (green lines) yield very similar results for the
rotation rate Ω, while assuming the MPA1 EOS (orange

FIG. 2. Here we show the relative error of the reconstructed
rotation rate Ω (top panel) and effective compactness η (bottom
panel) as a function of the relative error of the mass M for
different EOSs (different colors). The dashed lines are the linear
interpolation of the individual points. The central (solid) lines are
the mean value of the reconstruction, while the upper and lower
lines show the 68% highest credible interval. The black dashed
lines indicate a uniform linear scaling. The f-mode relative error
is assumed to be 5%.
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lines) indicates a value that is larger than the correct
one. Note that both observations hold independent of
the specific prior knowledge of M assumed here (30%
and 10%).
The situation for the effective compactness η is quali-

tatively different. First, the prior knowledge of M plays a
big role for the UR method, but is less important for the
EOS methods. For those we find that the correctly assumed
H4 EOS is almost independent of uncertainties inM, while
the posterior distribution obtained by the MPA1 EOS is
shifted. Note that the rather different scaling behavior of the
UR method is in agreement with the findings of Sec. III B.
Finally, while the posteriors of Ω are very smooth,

one observes small “bumps” for the H4 EOS, e.g., at
η=η0 ≈ 1.02. We have verified that this does not originate
from a too small sample size of the MCMC sampling, but
most likely is an artifact from the finite resolution and

particular range of the used H4 f-mode data, as described
in Sec. II B. This directly sets the scale of how precise our
currently implemented EOS data can be used to resolve the
underlying parameters, which is of order percent level.

IV. DISCUSSION

In the following we discuss our EOS and UR method
based findings in Sec. IVA, comment on the uniqueness of
the inverse problem in Sec. IV B, provide some computa-
tional details in Sec. IV C, and provide a brief outlook in
Sec. IV D.

A. EOS and UR method

Knowing the correct underlying EOS for hypothetically
observed f-modes is a very optimistic assumption,
since the current variety of proposed realistic EOS still
produces quite different neutron stars and f-mode spectra.
Consequently, by assuming we know the exact EOS one
would naively expect to find overly optimistic and biased
bounds on the reconstructed stellar parameters. By apply-
ing the EOS and UR methods in different contexts in
Sec. III, we have quantified several related aspects and
discuss them in the following.
In order to quantify the expectation of biased neutron

star parameters, we applied the EOS method twice to the
same pair of f-mode frequencies in Sec. III A. In the first
case the same EOS was assumed, in the second case a
different realistic EOS was chosen. The correlations and
posteriors for the neutron star mass M and the equatorial
radius R, both presented in Fig. 1, clearly show bias. Both
reconstructed parameters differ by order 10%, and most
importantly, the posterior distributions do not overlap
significantly. This particular example demonstrates that
EOS based reconstruction using interpolation schemes and
MCMC is in principle very powerful, but only reliable if the
correct EOS is known. Results from any realistic applica-
tion where the underlying EOS is not known have thus to
be interpreted with great care, even if the shape of the
posteriors does not show any obvious flaws.
Since the UR method relies on a simple analytic function

with previously fitted coefficients, it can be applied very
efficiently. We therefore used it to infer the effective
compactness and rotation rate using f-modes provided
from various realistic EOS and furthermore assumed a wide
range of different prior knowledge of the mass in Sec. III B.
For the effective compactness we find a roughly EOS
independent scaling reaching up to few percent level
reconstruction of η, assuming the mass is known with
similar precision. However, the posterior distribution of
the rotation rate Ω is almost independent of the prior on M
and slightly more EOS dependent. Because the UR method
can only be used to infer a combination of mass M,
effective compactness η and rotation rate Ω, it can—by
construction—not be used to directly infer the equatorial

FIG. 3. Here we show the posterior distributions of the rotation
rate Ω (top panel) and effective compactness η (bottom panel)
normalized to the injected H4 values (Ω0, η0). Posteriors are
obtained by using the EOS method with H4 EOS (blue), the
MPA1 EOS (orange), as well as the UR method (green). Solid
lines correspond to 30% relative error on the prior mass M and
dashed lines to 10%. We indicate each mean of the posteriors as
vertical lines. The f-mode relative error is assumed to be 3%.
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radius R. The most important finding is the robust and thus
mostly EOS independent reconstruction of η and Ω. This
implies that those two parameters can be reliably extracted
and their accuracy is mainly limited by the precision with
which the f-modes can be measured, as well as the prior
of M.
In the third application, provided in Sec. III C, we

directly compared the reconstruction of effective compact-
ness and rotation rate using the same f-modes with the two
EOS methods from Sec. III A and the UR method. As is
evident from Fig. 3 the latter one yields results comparable
to those obtained by assuming the correct EOS. For the
rotation rate we confirm what can partially already be
expected from the results in Sec. III B. The UR method
includes the correct value, but with larger uncertainties than
those coming from the correct EOS method and are quasi-
independent of the prior of M. Since the wrong EOS
method seems to converge towards a value being larger
than the correct one, but without obvious flaws, one finds
biased results, similar to the ones for M and R reported in
Sec. III A.

B. Uniqueness of the inverse problem

Unlike in the nonrotating case, the relation between mass
and radius is in general not unique. It will crucially depend
on the rotation rate that deforms the neutron star, which
implies that there are now two unknowns that need to be
determined from observations. Measuring two f-mode
frequencies allows, in principle, for any given one-param-
eter EOS to uniquely determine the stellar structure.
However, this system of equations is not over determined
and can thus not be used to rule out certain EOS, unless the
observed f-modes naturally cannot be explained for any
neutron star model of that EOS. The consequence is that for
the given information, the inverse problem is not uniquely
solvable, and in some cases, the biased parameters simply
describe viable neutron stars with different structure prop-
erties, but very similar f-mode spectrum. Only if additional
observations, e.g., the mass or rotation rate, can be provided
with high accuracy, it is possible to distinguish among the
remaining EOS. Especially the robust reconstruction of the
rotation rate seems to indicate that glitch induced GW
signals could be particularly valuable.

C. Computational aspects

Since realistic f-mode computations, as well as Bayesian
analysis in terms of a MCMC analysis are both computa-
tionally expensive we want to make a few comments.
Reliably and robustly extracting f-mode frequencies from
a single time evolution, as done in Ref. [31], requires at
least a few dozens of hours on a regular workstation,
as well as human interaction to guarantee the robustness
of the extracted modes. Having a sufficiently dense
parameter space for a specific EOS is therefore cumber-
some. However, once it has been obtained, applying the

interpolation scheme described in Sec. II B allows for
almost instant mode computation. Even faster than this
is the simple analytic formula describing the universal
relation. Depending on the exact size of this parameter
space, we find that the UR method speeds up the MCMC
analysis by at least 1 to 2 orders of magnitude compared to
a given EOS method. A typical analysis with sufficient
sample size will take a few minutes for the UR method, and
at maximum up to a few hours for the EOS method, both on
a regular workstation. Especially the application to numeri-
cally involved parameter estimation problems demonstrates
the enormous advantages of UR based approaches.

D. Outlook

Our analysis only focused on the observation of
the corotating and counterrotating f-mode frequencies,
as well as on various choices for informed priors being
motivated from different observational scenarios. Other, in
principle, available and related quantities are the associated
damping times as well as overtones or higher order
modes of the acoustic mode spectrum. It can be expected
that the reconstruction of stellar parameters would improve
if additional modes, e.g., r-modes or g-modes, were
observed, and also the potential to exclude certain EOS.
This is particularly interesting for the UR method. As
demonstrated in Sec. III B, one requires an informed prior
on M to obtain reconstructed properties. We argue that this
is mainly due to the fact that the universal relations, Eq. (4),
involve three unknowns M, Ω and η. Thus, any additional
mode or damping time would lead to at least as many
observables as unknowns and therefore, in principle, to a
unique reconstruction, modulo intrinsic uncertainties.
Another interesting extension of our work could be to
perform a Bayesian model comparison to further quantify
our observations from Sec. III A, namely how much prior
knowledge on neutron star parameters is necessary to
distinguish different EOS in cases where they include
similar f-modes. While the current work has focused on
the EOS, other studies have suggested to reconstruct the
metric directly from the knowledge of w-modes through the
non-rotating perturbation equations [42], and find qualita-
tive bounds on the EOS [43]. Note that in principle the
Bayesian approach could also be extended to this perspec-
tive of the problem.

V. CONCLUSIONS

In this work we have studied the inverse problem of
rotating neutron stars with realistic equations of state by
assuming that measurements of the corotating and counter-
rotating f-mode frequencies become available with next
generation gravitational wave detectors. These frequencies,
along with universal relations, have been reported recently
in Refs. [26,31], which defines the theoretical framework of
this work. To solve the inverse problem we have conducted
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a Bayesian analysis by performing MCMC simulations. We
provide results using two complementary methods, each of
them coming with their own strong and weak aspects.
The EOS method assumes that the underlying EOS is

known and is used to recover the stellar parameters.
To perform the computationally expensive analysis, we
compute f-mode frequencies by interpolating from pre-
viously obtained multidimensional tables. The UR method
is EOS independent and purely based on universal rela-
tions. This allows a fully analytic computation of f-modes
and thus major computational advantages, which are
beneficial for a Bayesian analysis. In order to account
for different astrophysical scenarios, in which prior knowl-
edge of the neutron star mass M could be obtained from
complementary observations, we study different cases of
informed priors for M. Furthermore we have selected
various representative neutron star models of different
EOSs, computed their f-mode spectrum, and applied the
UR method.
The main findings of this work are the following.

The UR method is powerful in the reconstruction of the
effective compactness, depending on the prior knowledge
of M, and yields EOS independent results up to a few
percent. For all of the here studied cases the reconstructed
rotation rate is only mildly depending on the prior ofM and
its posterior distribution is including the correct value. By

construction, the UR method cannot be used to directly
recover the equatorial radius. The latter one can only be
reconstructed using the EOS method by assuming a
specific EOS or by performing further calculations. Here
we report that if the correct EOS is assumed, the one used to
produce the observed f-modes, the reconstruction is well
behaved and converges towards the injected stellar param-
eters. However, using a different EOS can in general point
towards biased parameters, whose posterior distributions
do not necessarily show any flaws, but can admit some
shifts once more precise data is included. The falsification
of realistic EOS, unless some extreme values of neutron star
f-modes are considered, will in general require additional
and very informed knowledge on other stellar parameters,
e.g., the rotation rate or the mass. Finally, we expect that
further inclusion of additional universal relations will
provide a quantitative and computationally feasible frame-
work to solve the inverse problem of rotating neutron stars.
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