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Ultralight bosons, which are predicted in a variety of beyond-Standard-Model scenarios as dark-matter
candidates, can trigger superradiant instability around spinning black holes. This instability gives rise
to oscillating boson condensates, which then dissipate through the emission of nearly monochromatic
gravitational waves. Such systems are promising sources for current and future gravitational-wave
detectors. In this work, we consider minimally coupled, massive vector bosons, which can produce a
significantly stronger gravitational-wave signal compared to the scalar case. We adopt recently obtained
numerical results for the gravitational-wave flux, and astrophysical models of black-hole populations that
include both isolated black holes and binary merger remnants, to compute and study in detail the stochastic
gravitational-wave background emitted by these sources. Using a Bayesian framework, we search for such
a background signal emitted using data from the first and second observing runs of Advanced LIGO.
We find no evidence for such a signal. Therefore, the results allow us to constrain minimally coupled vector
fields with masses in the range 0.8 × 10−13 eV ≤ mb ≤ 6.0 × 10−13 eV at 95% credibility, assuming
optimistically that the dimensionless spin distribution for the isolated black-hole population is uniform in
the range [0, 1]. With more pessimistic assumptions, a narrower range around mb ≈ 10−13 eV can still be
excluded as long as the upper end of the uniform distribution for dimensionless black-hole spin is ≳0.2.

DOI: 10.1103/PhysRevD.103.083005

I. INTRODUCTION

The detection of gravitational waves (GWs) emitted by
binary black-hole (BBH) and binary neutron star coales-
cence events [1–13] has opened a new era of discoveries
with far-reaching implications for astrophysics [14–17] and
fundamental physics [16,18–23]. In the very near future
[24], Advanced LIGO [25] and Advanced Virgo [26] will
be joined in observing by additional detectors, such as
KAGRA [27] and LIGO-India [28], and there are plans
for a third generation of ground-based detectors [29,30].
Together with the planned space-based GW detectors LISA
[31] and pulsar-timing arrays [32], this will allow us to
access a large range of the GW frequency spectrum.
A major target for this network of detectors is the

detection of a stochastic gravitational-wave background
(SGWB) produced by the incoherent superposition of many
sources too faint to be resolved individually (see, e.g., [33]
for a recent review). In the LIGO/Virgo frequency band,

one of the most promising targets is the background emitted
by compact binary coalescences (CBCs) [34–37]. Here, we
consider another possible source for the SGWB that would
be present if ultralight bosons in certain mass ranges exist
in the Universe [38,39] (see also Ref. [40]).
The main mechanism responsible for this SGWB is the

superradiant instability of spinning black holes (BHs) in the
presence of massive bosons [41–60]. The superradiant
instability relies on the fact that massive bosons with rest
mass mb can form (quasi)bound states around BHs with
oscillation frequency ωR ∼mbc2=ℏ, allowing for continu-
ous energy extraction whenever ωR satisfies the super-
radiant condition

0 < ωR < mΩH; ð1Þ

wherem is the azimuthal index of the boson field andΩH is
the BH’s horizon angular velocity (see Ref. [61] for a
review). As the system becomes unstable, the boson modes
start growing exponentially. The superradiant instability
is most effective when the boson’s reduced Compton*tsukada@resceu.s.u-tokyo.ac.jp
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wavelength ƛ≡ ℏ=ðmbcÞ is comparable to the BH’s
gravitational radius rg ≡ 2GM=c2, i.e., when

mbc2 ∼
ℏc3

2GM
∼ 10−12 eV ×

�
M

70 M⊙

�
−1
; ð2Þ

for a BH with mass M. In general, for a given boson rest
mass, only for a relatively narrow window of BH masses
will the superradiant instability timescale be sufficiently
short in an astrophysical context (see, e.g., Ref. [61]).
During the instability phase, the BH spins down, trans-

ferring energy and angular momentum to the boson field
until the point where the superradiant condition saturates
ωR ∼ΩH, resulting in the formation of an oscillating
nonaxisymmetric boson “cloud” which acts as a source
of nearly monochromatic GWs with frequency

fGW ∼ ωR=π ∼ 484 Hz

�
mbc2

10−12 eV

�
: ð3Þ

Combining the above equation with Eq. (2), it follows that
Advanced LIGO is especially sensitive to the GW emission
from bosons withmb ∼Oð10−12Þ eV surrounding BHs with
masses from Oð10Þ M⊙ up to Oð100Þ M⊙. These GWs
have been shown to be observable with current and future
ground-based GW detectors in two regimes—a “resolvable”
regime, in which nearby sources can be directly detected
[45,54,60,62–71], and an “unresolvable” regime, where the
incoherent superposition of all other sources in the Universe
contribute to a SGWB [38,39,60,65].
These considerations are especially important given that

light boson fields in a wide range of masses have been
proposed as potential dark-matter candidates [45,72–76]
and are predicted in many extensions to the StandardModel
of particle physics [45,72,75,77–80]. Prototypical exam-
ples include not only the hypothetical QCD axion [81,82]
and axionlike particles arising in string theory scenarios
[45], but also models involving ultralight vector fields,
such as dark photons as dark-matter candidates [72,79,80,
83–85], and more generic hidden vector fields which also
arise as a generic prediction of string theory [77]. Being a
purely gravitational effect, the superradiant instability and
subsequent GW emission from boson clouds provide a
powerful way to search for such particles and complement
more conventional searches which normally rely on (non-
gravitational) couplings of these fields with Standard
Model particles.
Most studies and searches for GW signals from boson

clouds in LIGO data have so far focused on massive scalar
fields. In particular, Ref. [39] conducted a search for
the SGWB model in the data from LIGO’s first observation
run. No signal was found, which allowed them to constrain
scalar fields with masses in the range 2.0 × 10−13 to
3.8 × 10−13 eV in an optimistic scenario. Excluding some
range of ultralight boson masses in the absence of the

detection of GW signal requires one to make assumptions
about the BH population and, in particular, the BH spin
distribution. Similarly in this work, we will consider several
different ways of parameterizing the unknown BH pop-
ulation statistics. Searches for (resolvable) continuous GWs
emitted by individual BH-scalar cloud systems have also
been conducted [67,70,71], but no signal has been found so
far either, suggesting constraints on scalar bosons in a
similar mass range (∼½10−13; 10−12� eV).
Making use of recent theoretical developments in the

understanding of superradiant instabilities from vector
fields [57,58,86], in this paper, we extend those results
by modeling in detail the SGWB emitted by vector fields
and searching for this signal in Advanced LIGO’s data.
Compared to the scalar field case, the superradiant insta-
bility and GW emission timescales for vector fields can be
significantly shorter. Intuitively, this is because ultralight
vector clouds can carry spin angular momentum (while
scalar clouds can carry only orbital angular momentum),
and, thus, vectors form more compact clouds with greater
fluxes across the BH horizons. As we will show, these
faster timescales allow us to constrain a wider range of
boson masses.
This paper is structured as follows. In Sec. II, we provide

a brief overview of the superradiant instability and sub-
sequent GW emission by massive vector bosons presented
in Ref. [86]. In Sec. III, we discuss in detail the predicted
SGWB signal from vector clouds and compare it to the
scalar field case. In Sec. IV, we present the Bayesian
framework that we use to search for this background in
GW data. Using this framework, in Sec. V, we study the
vector mass range that this search method is sensitive to
and explore the capacity of Bayesian model selection to
distinguish between the background due to the super-
radiant instability and that due to unresolved CBCs.
A search using real data is presented in Sec. VI, where
we show the range of excluded vector masses using data
from Advanced LIGO’s first and second observing runs.
Finally, Sec. VII summarizes our findings and the impli-
cations of our results.
In what follows, we use units G ¼ c ¼ 1 unless other-

wise stated.

II. SUPERRADIANT INSTABILITY
AND GW EMISSION

In this section, we briefly review how a vector cloud
would spontaneously grow around a spinning BH through
the superradiant instability, eventually saturate, and then
dissipate through the emission of GWs. The super-
radiant instability can occur for bosons with spin 0 (scalar)
[38,41–44,63–65,87] or spin 1 (vector) [48,52–56,59] (see
also Refs. [50,60] for massive spin-2 fields). The qualitative
picture is the same in either case, the main difference being
the generically shorter timescales for the vector field case.
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We then describe our specific model for the GW signal
from a vector cloud, which is based on Ref. [86].

A. Evolution of the Proca cloud

We consider a single (real) massive vector Aμ, or Proca
field, which is minimally coupled, and ignore any coupling
with Standard Model particles, as well as any nontrivial
self-interactions beyond the mass term. Around a spinning
BH, bound Proca states with oscillation frequency ωR
satisfying Eq. (1) can spontaneously grow, exhibiting
exponential growth with imaginary frequency ωI. The
BH-cloud system is then characterized by three distinct
timescales: the oscillation timescale τosc ¼ ω−1

R , the super-
radiant instability growth timescale τinst ¼ ω−1

I , and the
GW emission timescale τGW (defined below). The hier-
archy of these timescales, τosc ≪ τinst ≪ τGW, enables us to
treat the extraction of angular momentum from the spinning
BH in a quasiadiabatic form and ignore gravitational
radiation during the evolution of the superradiant instability
[88]. See Fig. 1 for a cartoon representation of the dynamics
of the BH-cloud system from the onset of the superradiant
instability, through saturation and to the GW emission
phase. Assuming that the instability is triggered by some
small initial Proca field configuration [e.g., a quantum
fluctuation with Oð1Þ massive vector bosons], it grows
exponentially with timescale τinst. In the limit Mμ ≪ 1,
the typical instability timescales are roughly given by (see,
e.g., [59])

τSinst ≈ 30 days

�
M

10 M⊙

��
0.1
Mμ

�
9
�
0.9
χi

�
; ð4Þ

τVinst ≈ 280 s

�
M

10 M⊙

��
0.1
Mμ

�
7
�
0.9
χi

�
; ð5Þ

where the superscripts S and V each stand for the scalar and
vector field case, respectively. While doing so, it extracts

angular momentum δJ from the Kerr BH. For linear fluxes
across the BH horizon, it follows that δJ ¼ mτoscδM.
Hence, we can assume that the BH-cloud system moves
through a sequence of Kerr spacetimes with decreasing
angular momentum J and mass M (but increasing irre-
ducible mass).
The amplitude of the Proca field Aμ increases by roughly

180 e-folds from the onset of the instability to saturation.
As was noted in Refs. [53,56,89], the BH-cloud system is
well modeled by the linear Proca solution on the back-
ground of a Kerr BH with mass and angular momentum
that slowly decreases until the synchronization criterion

ΩHðMf; JfÞ ¼ ΩHðMi þ δM; Ji þ δJÞ ¼ ωR=m ð6Þ

is satisfied and the instability shuts off. Here,Mi and Ji are
the initial BH mass and angular momentum, respectively,
Mf and Jf are the final BH parameters, and ΩHðM; JÞ ¼
J=½2MðM2 þ ðM4 − J2Þ1=2Þ� is the BH horizon frequency.
This expression, combined with knowledge of ωR (which
has implicit dependence on M and J), determines the
energy Esat

A ¼ −δM that is extracted from the BH.
Depending on the parameters, the cloud can contain up
to ∼10% of the original BH’s mass, while oscillating
with frequency ωR around the BH. This induces strong
gravitational radiation that can potentially be observed.1

After saturation, the only dynamical timescales are τosc and
τGW. Since the GW power is proportional to the square of
the cloud energy, _EGW ∝ E2

A, the cloud energy reduces as

FIG. 1. A schematic representation of the evolution of the superradiance instability and subsequent GW emission. Initial (e.g.,
quantum) fluctuations in the Proca field seed the instability, leading to an exponentially growing boson cloud around the spinning BH
(with growth timescale τinst). The Proca cloud grows at the expense of BH angular momentum and mass: Mi −Mf ¼ Esat

A > 0. After
saturation, in the GWemission phase the cloud slowly decays with timescale τGW by emitting monochromatic gravitational radiation at
frequency ωGW ≈ 2μ [see also Eq. (12)], until the cloud’s mass is too small to emit detectable GWs or an unstable higher azimuthal mode
begins dominating the dynamics.

1Note that a complex massive vector field undergoes the same
exponential growth as its real counterpart. However, if the real
and imaginary components of the field are arranged such that the
resulting stress-energy distribution is axisymmetric (assuming
similar initial conditions as above), the GW emission is highly
suppressed compared to the case considered here [53].
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EAðtÞ ¼
Esat
A

1þ t=τGW
; τGW ¼ Esat

A
_EGWðt ¼ tsatÞ

: ð7Þ

The GW power for vector clouds is to be contrasted
with the scalar field case, for which the GW power is much
smaller [86]. This difference in the GW power translates in
a large difference in the typical GW emission timescale,
of which the nonrelativistic estimates (i.e., Mμ ≪ 1)
roughly read

τSGW ≈ 105 yr

�
M

10 M⊙

��
0.1
Mμ

�
15
�

0.5
χi − χf

�
; ð8Þ

τVGW ≈ 8 days

�
M

10 M⊙

��
0.1
Mμ

�
11
�

0.5
χi − χf

�
; ð9Þ

where again the superscripts S and V each stand for the
scalar and vector field case, respectively, and χi and χf
stand for the BH spin at the birth and the end of the
instability phase, respectively. Comparing these to the
instability timescales [Eqs. (4) and (5)], it clearly follows
that τGW ≫ τinst, and, hence, during the exponential evo-
lution of the Proca cloud, the GW emission can be
neglected. This is true even beyond the nonrelativistic
regime [86].

B. Proca-BH bound states

In our approach, which follows closely the Proca mode
analysis in Refs. [58,86], we use BH perturbation theory to
compute the bound Proca states. The underlying field
equations are

∇αFαβ ¼ μ2Aβ; ð10Þ

where Fαβ ¼ 2∇½αAβ� is the Proca field strength tensor,
μ ¼ mb=ℏ, and geometric quantities are computed using
the Kerr metric of a spinning BH. Lunin discovered a
separation ansatz in Ref. [90] for the Maxwell equations in
Kerr spacetimes (and generalizations thereof) that makes a
direct reconstruction of the 4-potential trivial after solving
the respective second-order ordinary differential equations
(ODEs).2 In Refs. [57,92], this ansatz was shown to
separate the massive vector field equations in Kerr space-
times (which are not separable in the Teukolsky formal-
ism). The vector potential ansatz takes the form

Aμ ¼ Bμν∇νZ; Z ¼ e−iωtþimφRðrÞSðθÞ; ð11Þ

where Bμν is a polarization tensor constructed from the
hidden symmetries of the Kerr-NUT-(A)dS family of

spacetimes (see Ref. [58] for the explicit form used here).
With this ansatz, Eq. (10) reduces to two separated ODEs
parameterized by the vector boson mass Mμ and dimen-
sionless BH spin χ ¼ J=M2 and coupled only by the
respective separation constants: the azimuthal mode num-
ber m ≥ 1, the overtone number n̂ ≥ 0, the polarization
state S ∈ f−1; 0; 1g, and the real and imaginary parts of the
frequency ω ¼ ωR þ iωI.
In the nonrelativistic limit, i.e., if Mμ ≪ 1 [47,48,54,

55,59],

ωR ¼ μ

�
1 −

μ2M2

2ðjmj þ n̂þ Sþ 1Þ2
�
þO½ðMμÞ4�; ð12Þ

ωI ¼ Cm;n̂;SðJ;M;ωRÞðMμÞ4mþ2Sþ5ðωR −mΩHÞ; ð13Þ

where Cm;n̂;SðJ;M;ωRÞ is a set of coefficients [54,55,59]
and the modes with S ¼ −1 polarization, n̂ ¼ 0, and lowest
value of m that satisfies ωR < mΩH are the most unstable
(fastest growing). Here, we focus on such modes and
restrict to m ¼ 1 and 2.3 Note that, in the nonrelativistic
limit, the fastest growing vector mode corresponds to a
hydrogenlike cloud with orbital number l ¼ 0 spatial
dependence, but with j ¼ m ¼ 1, due to the spin contri-
bution, where j is the total angular momentum number
[54]. In contrast, the fastest growing scalar mode has l ¼ 1,
and, therefore, the cloud sits farther from the BH due to the
centrifugal barrier. Hence, in the vector case, the relative
flux across the BH horizon is greater, leading to faster
superradiant growth, and the cloud is more compact,
leading to greater gravitational radiation.
We additionally restrict ourselves to GWs emitted by

BH-cloud systems in the saturated state (again due to the
hierarchy of timescales mentioned above). This implies that
the angular momentum dependency of ω can be removed
by solving for Jsat: using Eq. (6). We thus need only the
real frequency ωR and can ignore the instability timescale.
(For a detailed analysis of the growth rates as a function
of Proca mass and BH spin in the relativistic regime, see
Refs. [52,55,57,58,86].) We use the numerical data in
Ref. [86], obtained from solving the Proca field equations
as described above for the marginally unstable modes, to fit
the following functional form, which already includes the
leading-order, nonrelativistic behavior:

ωsat
R

μ
¼ 1 −

ðMμÞ2
2m2

þ
X10
α¼4

cmα ðMμÞα; ð14Þ

2This can be contrasted with the well-established Teukolsky
formalism [91] that provides only a single polarization and
requires an elaborate reconstruction mechanism to construct
the 4-potential.

3We note that, as shown in Ref. [86], there are regions of the
parameter space where the fundamental mode (n̂ ¼ 0) grows
slower than one or more of the overtones for m ≥ 2 in the
relativistic regime. This raises the possibility of several modes
being populated simultaneously, generating a unique beating GW
signal. We do not consider such signals here, since they will have
a small contribution to the stochastic GW background.
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where the fitted coefficients are given in Table I (see also
Appendix A in Ref. [86] for fits covering the whole
parameter space). This value is used to compute the
saturation energy and angular momentum of the cloud,
as well as the GW frequency, as described below.

C. Gravitational radiation

In order to compute the GW power from the boson
cloud, we use the stress-energy tensor calculated from the
Proca field solutions described above and numerically
solve the Teukolsky equation for the GW perturbations
with this as a source. See Ref. [86] for details. Since the
stress-energy is quadratic in the field, the (angular) fre-
quency of the GW radiation is ωGW ¼ 2ωR. The angular
dependence of the GWs has spheroidal harmonic compo-
nents with azimuthal number�2m and is dominated by the
l ¼ 2m contribution, though higher l components can be
significant in the relativistic and high-spin regime (and are
included in our calculation of the power). Because the GW
energy flux scales as _EGW ∝ EAðtÞ2 in this treatment, we
can phrase these results in terms of the mass-rescaled

(dimensionless) GW power _̃EGW ¼ _EGW × ðM=EAÞ2. In
the relativistic regime—in particular, for Mμ > 0.05 if
m ¼ 1 and μM > 0.67 if m ¼ 2—we use the following
polynomial fitting function for convenience:

_̃E
m
GW ¼

XNm

α¼0

dmα ðMμÞα; ð15Þ

where the respective coefficients, determined from the
numerical data of Ref. [86], are given in Table II. In order

to extrapolate our results to the nonrelativistic limit, we use
the following expressions:

_̃E
m¼1
GW ¼ 1.3 × 10−12

�
Mμ

0.05

�
10

; Mμ ≤ 0.05;

_̃E
m¼2
GW ¼ ðMμÞ14

1.0 × 105
þ 6.4 × 10−4ðMμÞ16; Mμ ≤ 0.67:

ð16Þ

The exponent of the lowest-order term in the respective
expressions was chosen to match that of the analytic
calculation in Ref. [54], but the coefficients were deter-
mined by fitting against the numerical data of Ref. [86] up
toMμ ≈ 0.1 (0.7) form ¼ 1 (2), respectively (since even in
nonrelativistic limit one expects leading-order corrections
to the flat space results in Ref. [54]). Because the GW
power is heavily suppressed in this regime, our results are
not overly sensitive to how this extrapolation is done.
Finally, the total GW energy emitted over a time Δt is

given by

EGW ¼
Z

Δt

t¼0

dt
dEGW

dt
¼ Esat

A Δt
Δtþ τGW

: ð17Þ

For our purposes, we will define the signal duration to be
the lifetime of each BH, namely, Δt ¼ t0 − tðzfÞ, where t0
is the age of the Universe, t0 ≈ 13.8 Gyr, and tðzfÞ is the
cosmic time at the redshift of the BH formation. For all
cases of interest, the instability timescale is much smaller
than the BH lifetime, so we neglect the small delay between
BH formation and saturation of the superradiant instability.
For BHs whose age is comparable to the instability time-
scale, the overestimated GW radiation is negligibly small in
any case, and, therefore, this approximation does not affect
our estimate of the overall energy densityΩGW. The SGWB
is then determined from summing over the energy emitted
by each BH-cloud system over the population of spinning
BHs, as we describe in the next section.

III. MODELING THE STOCHASTIC
BACKGROUND

In this section, we describe our SGWB model from the
whole population of BH-cloud systems. The model follows
the construction in Refs. [38,39], where the superradiant
instability of ultralight scalar bosons was considered. In
particular, we will see that some differences between the
background emitted by scalar and vector clouds arise,
mainly due to the larger GW power emitted by vector
bosons when compared to the scalar case.

A. General formulation

Under the assumptions that the SGWB is (a) isotropic,
(b) unpolarized, (c) stationary, and (d) Gaussian, the

TABLE I. The coefficients cmα , defined in Eq. (14), of the
higher-order terms in ωR for the m ¼ 1 and m ¼ 2 mode,
respectively.

mnα 4 5 6 7 8 9 10

1 −2.56 13.85 −97.65 349.53 −615.29 532.55 −183.08
2 −0.076 0.0071 0.029 −0.051 0.14 −0.12 0.034

TABLE II. The coefficients dmα for the GW power ansatz in
Eq. (15), fitted against the numerical data of Ref. [86]. Here,
Nm¼1 ¼ 10 and Nm¼2 ¼ 14.

mnα 0 1 2 3 4 5 6

1 −9.6 × 10−6 −0.000064 0.018 −0.27 2.36 −12.8 41.5
2 −0.00014 −0.019 0.080 0.00011 1.00 −1.95 −9.31

mnα 7 8 9 10 11 12 13 14

1 −76.9 70.0 −15.9 −10.2 � � � � � � � � � � � �
2 60.5 −165.1 275.5 −304.2 −224.6 −107.1 29.9 −3.72
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background spectrum can be described in terms of the GW
energy density per logarithmic frequency interval. This can
be computed by integrating the SGWB spectrum from
individual sources over the entire population [93]:

ΩGWðfÞ≡ 1

ρc

dρGW
d lnðfÞ

¼ f
ρc

Z
dz

dt
dz

Z
dθpðθÞRðz; θÞ dEs

dfs
ðθÞ: ð18Þ

Here, ρc is the critical energy density required to have a
spatially flat universe, Rðz; θÞ is the event rate of GW
emission per unit comoving volume per unit source frame
time, and pðθÞ is the multivariate probability distribution of
the source parameters θ. Since the individual sources emit
GWs with nearly constant frequencies, the energy spectrum
from individual signals can be approximated by

dEs

dfs
≈ EGWδðfð1þ zÞ − f0Þ; ð19Þ

where f0 ¼ ωR=π [computed using Eq. (14)] and EGW is
given by Eq. (17). Note that, due to the cosmological
redshift z, the observed frequency f is related to the source
frame frequency fs such that f ¼ fs=ð1þ zÞ.

B. BH population models

To compute the stochastic background, we consider two
possible BH formation channels: isolated extragalactic BHs
and BBH merger remnants. We treat their contribution to
the total GWenergy density independently. Importantly, we
do not consider the galactic BH population (e.g., as recently
described in Ref. [71]), as our method to search for a
SGWB (described in Sec. IV) is optimized for a Gaussian
distributed signal. The signal emitted from galactic BHs is
expected to add a mostly non-Gaussian and nonisotropi-
cally distributed component to the stochastic background.4

This non-Gaussian component would typically be vetoed in
the process of data conditioning in the SGWB search
pipeline we use [94]. Studying the specific features of this
component goes beyond the scope of this paper, but adding
it to the search pipeline is certainly an important addition
for future work and could make the constraints we here
present even stronger.
Let us then briefly explain the prescription for each

channel (see Ref. [39] for more details). In the isolated BH
channel, Eq. (18) can be written as

Ωiso
GWðfÞ ¼

f
ρc

Z
dz

dt
dz

Z
dMdχpðχÞ d _n

dM
dEs

dfs
; ð20Þ

where d _n
dM is the BH formation rate per BH mass, which we

construct following Ref. [39] using a BHmass function that
spans masses in the range ½3–60� M⊙. Since not much is
known about the spin distribution at birth of isolated BHs,5

for the probability density of the natal BH spin χ we assume
a uniform distribution

pðχÞ ¼
�
0 ðχ < χll; χul < χÞ;

1
χul−χll

ðχll ≤ χ ≤ χulÞ; ð21Þ

where χll and χul are the lower and upper limit of the
distribution, respectively. Given that these limits in the natal
spin distribution of isolated BHs are extremely uncertain,
for simplicity when searching for this SGWB, we will
parametrize the distribution in two different ways: (a) leave
the lower limit χll as a free parameter but fix χul ¼ 1;
(b) leave the upper limit χul as a free parameter but fix
χll ¼ 0. In the remainder of the text, we will denote these
parametrizations as the χll and χul parametrizations, respec-
tively. In general, the first case allows for a larger amplitude
for the background than the second case, since it ensures a
population of BHs born with high spin, from which it is
possible to extract more energy through the superradiant
instability. Different choices for χll;ul can significantly
affect the background spectrum. Hence, as we will show
in Sec. VI, constraints on the vector boson mass obtained
when searching for such background in LIGO data cru-
cially depend on the parametrization one uses.
For the BBH merger remnant channel, Eq. (18)

reduces to

Ωrem
GWðfÞ ¼

f
ρc

Z
dz

dt
dz

×
Z

dmdχpðmÞRmðz;mÞpðχÞ dEs

dfs
;

ð22Þ

where m denotes the component masses of the BBH
system, pðmÞ is the component mass distribution, and
Rmðz;mÞ is the BBH merger rate density for a given m and
cosmological redshift z. Compared to the spin distribution
of isolated BHs, the spin distribution pðχÞ for this channel
can be more easily constrained, using measurements of
the spin of remnant BHs observed by Advanced LIGO
and Virgo [1–6,8,9,12]. For a population of merging BHs
dominated by near-equal mass BHs that are not rapidly
spinning, as the majority of the observations made so far
suggest, the spin magnitude of the final remnant BHs is4We should also note that, for a given boson mass, the GW

signals emitted by the galactic population would tend to accu-
mulate in a very narrow frequency window around ωR [see
Eq. (3)] [71], unlike the extragalactic component which should be
spread over a broader range of frequencies due to the cosmo-
logical redshift. Our search method is better suited for signals that
emit in a broad range of frequencies.

5Some predictions for the natal BH spin distribution can be
found in Ref. [95] (see their Figs. 1 and 2), where it is shown
that the BH spin distribution depends very strongly on the
assumed model for the angular momentum transport in the
progenitor stars.
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clustered around 0.7 [96,97]. Therefore, for simplicity,
we assume that all the remnant BHs initially have χ ¼ 0.7,
that is,

pðχÞ ¼ δðχ − 0.7Þ: ð23Þ

To model the BBH merger rate, we follow the prescrip-
tion described in Refs. [34,37], calibrating it with the local
merger rate inferred from the BBHs detected in the first two
observing runs6 of Advanced LIGO and Virgo. We adopt
the rate estimated in Ref. [8], in particular, the one derived
from the BH mass function with a power law distribution,
such that

Z
pðmÞRmðz ¼ 0;mÞdm ¼ 56 Gpc−3 yr−1: ð24Þ

The two assumptions made above contribute to a
systematic uncertainty in the prediction of the energy
density spectrum, Ωrem

gw ðfÞ. However, as we will show in
the next subsection, the contribution from the BBH
remnant channel is subdominant (compared to the isolated
BH channel) for the range of vector masses to which
current GW detectors are sensitive. Therefore, this uncer-
tainty does not affect the results from our search and, hence,
the constraints on the vector boson mass.

C. Total background model

We derive the total background by summing over the
contributions from the two channels, namely,

ΩGWðfÞ ¼ Ωiso
GWðfÞ þ Ωrem

GWðfÞ; ð25Þ

where the superscripts represent each of the isolated BH
and BBH merger remnant populations defined by Eqs. (20)
and (22), respectively. Figure 2 compares the contribution
to the total energy density spectrum from each of these two
channels, where we assumed a uniform distribution for the
natal BH spin χ ∈ ½0; 1� in the isolated BH channel. As one
can see, the isolated BH channel (solid lines) dominates
over the BBH merger remnant channel (dashed lines) for
mb ≳ 10−13.5 eV, corresponding to frequencies ≳10 Hz.
Since current GW detectors are mainly sensitive in this
frequency range (see Fig. 4), the detectable SGWB from
ultralight vector bosons is expected to be dominated by the
isolated BH channel.
For completeness, in Fig. 2 we also compare the back-

grounds emitted by vector bosons against those produced

by scalar bosons (dash-dotted lines) considered in
Refs. [38,39]. For mb > 10−12.5 eV, both cases predict
almost identical spectra. This is because, in both cases, the
typical instability and GW emission timescales for these
boson masses are sufficiently short, such that, for most BHs
that become superradiantly unstable, almost all the energy
in the cloud is dissipated away in GWs within the lifetime
of the BHs we consider in our population models. Since the
total amount of energy that can be extracted through the
superradiant instability is nearly independent of the boson
spin, it therefore follows that total energy emitted in GWs
by the whole BH population should be almost independent
of the boson spin for boson masses mb > 10−12.5 eV.
On the other hand, for mb ≲ 10−12.5 eV, there can be

significant differences between the background predicted
in the scalar field case and the one due to a vector field.
Formb ¼ 10−12.5 eV, this difference is more pronounced at
larger frequencies because of the fact that the GWs emitted
at higher frequencies are typically sourced by BHs at
smaller redshifts [see Eq. (19)] and, hence, BHs with
smaller lifetimes. Since the typical GW emission timescale
for scalar bosons is larger than that for vector bosons, the
total energy emitted in GWs for those BHs tends to be
smaller for the scalar case than the vector case, hence the
difference at higher frequencies seen for mb ≲ 10−12.5 eV.
For lighter boson masses (mb < 10−12.5 eV), the amplitude
of the background predicted in the scalar field case tends to
be much smaller than for vector fields, because for those
boson masses the couplingMμ is very small for most of the

FIG. 2. Contribution of different BH formation channels for
the total background spectrum ΩGW. Solid curves correspond to
the spectrum from the isolated BH channel with different boson
masses represented by the color bar assuming a uniform
distribution for the initial BH spin χ ∈ ½0; 1�, whereas dashed
curves show the spectrum due to the BBH merger remnant
channel. For comparison, we also show the total energy spectra
that scalar bosons with massmb ≥ 10−13.5 eV would give rise to
(dash-dotted lines), including both BH formation channels, and
assuming the same BH mass and spin distribution as in the
vector case.

6During the writing of this paper, the BBH merger rate was
updated based on GWTC-2 [17], RBBH ¼ 23.9 Gpc−3 yr−1.
Although we do not use this new rate estimate in the search
presented here, the update would not change the detectability of
the signal model significantly, as the contribution from the BBH
remnant population is mostly subdominant.
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BHs in our population [see Eq. (2)] and, therefore, the total
energy emitted in GWs over the lifetime of those BHs is
typically much smaller for the scalar field case. In par-
ticular, for scalar fields with masses mb ¼ 10−14 and
10−13.5 eV, the typical GW power for the systems in our
BH population models is so small that the background
spectra do not even appear in Fig. 2.
In addition to the comparison between the scalar and

vector cloud models, Fig. 2 also shows a significant
difference between the two BH formation channels. The
spectra from the BBH merger remnant channel for vector
boson masses mb ≥ 10−11.5 eV are strongly suppressed,
because such vector fields tend to induce strong super-
radiant instabilities only in lighter BHs (M ≲ 10 M⊙),
which are less likely to be produced by this channel. In
addition, one can notice from Fig. 2 that, for mb ¼
10−14 eV, the background due to the BBH remnant channel
predicts a higher amplitude compared to the background
induced by the isolated BH channel. This is to be contrasted
with what happens for heavier vector bosons, where the
opposite is true. This can be explained from the fact that the
BHs formed through the isolated BH channel [typically
Oð10 M⊙Þ] are on average much lighter than the ones
formed through the BBH merger remnant channel [typi-
cally ∼Oð50 M⊙Þ or more], such that for mb ¼ 10−14 eV
the GW emission timescale is typically much larger for
the isolated BH channel compared to the BBH merger
remnant channel [see Eq. (9)]. Therefore, for this boson
mass, BBH merger remnants tend to radiate more energy
within the lifetime of the BHs, leading to the strong
suppression of the overall amplitude for the isolated
channel with respect to the merger remnant channel that
we see in Fig. 2. This hierarchical flip between the two BH
formation channels also occurs in the scalar field case but
occurs at mb ∼ 10−13 eV due to the larger emission time-
scale for scalar fields (see Ref. [39]).
Lastly, in Fig. 3, we study how astrophysical uncertain-

ties related to the choice of the BH population models
impact the SGWB spectra. More specifically, while the BH
mass function and local BBH merger rate we adopt are
motivated by the theoretical and observational constraints
as described in Ref. [39], there are currently several models
for the cosmic star formation rate (SFR). Figure 3 shows
how the energy density spectra change assuming four
different SFR models: Hopkins and Beacom [98] (blue
line), Wilkins, Trentham, and Hopkins [99] (yellow line),
and two models from Vangioni et al. [100] (green and red
lines). Vangioni et al. 2015 A/B represent different ways of
calibrating the nominal SFR function. Model A calibrates
it to the observational rate of gamma-ray bursts [101],
whereas model B calibrates it to observations of the
luminous galaxies [102,103]. We note that our BH pop-
ulation modeling implicitly assumes the SFR model of
Vangioni et al. 2015 A. The contributions from both the
isolated BH and BBH remnant channels are included under

the assumption of isolated BH spin uniformly distributed
over χ ∈ ½0; 1�. We find that over the boson mass range of
interest, 10−13 to 10−12 eV, the uncertainties in the SFR
would bring an astrophysical uncertainty of approximately
a factor of 10 or less. This is typically much smaller than
the uncertainty related to the unknown BH spin distribu-
tion. The SGWB spectrum predicted with the SFR model
of Vangioni et al. 2015 A lies between the other SFR
models, and, thus, the model we use in our analysis can be
considered an intermediate scenario given the astrophysical
uncertainty.

D. Impact of modes with m > 1

The results shown above take into account only the mode
with the smallest instability timescale, i.e., m ¼ 1.
However, the superradiant instability occurs for any azi-
muthal number m, as long as the superradiance condition
Eq. (1) is satisfied. For some values of the boson mass and
BH parameters, this condition will be satisfied only for
m > 1 (either due to the BH’s properties at birth or because
the BH has been spun down by them ¼ 1mode growing to
saturation), making these modes relevant. As can be seen
from Eqs. (13) and (16), the instability and GW emission
timescales increase with m, and, therefore, in general, we
expect the dominant contribution to the background to
come from the most unstable mode m ¼ 1. For the SGWB
from ultralight scalar bosons, since the most unstable mode

FIG. 3. Energy density spectra assuming different SFR models.
Here, we adopt the following four SFR models: Hopkins and
Beacom [98] (blue line), Wilkins, Trentham, and Hopkins [99]
(yellow line), and two models from Vangioni et al. [100] (green
and red lines). Vangioni et al. 2015 A/B represent different ways
of calibrating the nominal SFR function; i.e., model A calibrates
it to the observational rate of gamma-ray bursts [101], and model
B calibrates it to observations of luminous galaxies [102,103].
The different line styles indicate the three vector masses, 10−13 to
10−12 eV. The contributions from both BH populations (isolated
and merger remnant) are included under the assumption that the
isolated BHs’ spins are uniformly distributed over χ ∈ ½0; 1�.
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already has a typically long GW emission timescale, the
contribution of higher modes to the total ΩGWðfÞ is, in
general, much smaller, and, therefore, the contribution from
these modes was not considered in Refs. [38,39]. Ultralight
vector bosons, on the other hand, exhibit much smaller
instability timescales, and, therefore, one might expect that
the contribution from m > 1 modes could be important.
To study the impact of modes with m > 1, in Fig. 4, we

compare the background produced by the m ¼ 1 (solid
lines) and m ¼ 2 (dashed lines) modes, considering only
the isolated BH channel, and assuming a uniform distri-
bution χ ∈ ½0; 0.8� for the natal BH spin. For this BH
population, one can see that the contribution from the
m ¼ 2 mode is generally small for mb ≲ 10−12 eV but can
be as important as, or even dominate over, the contribution
from the m ¼ 1 mode for mb ≳ 10−12 eV. To understand
why this happens, we note that, for a given BH mass and
mode m, the critical BH spin below which a given mode is
stable [Eq. (6)] increases with the boson mass, whereas
for a fixed Mμ it decreases with m. For example, for
mb ∼ 10−11 eV, a majority of the BH population is unstable
only against m > 1 modes. For the few BHs that spin
sufficiently fast to be unstable against the m ¼ 1 mode,
their natal spin is close to the critical spin, and, hence, much
less energy is extracted and emitted by the m ¼ 1 mode
compared to the m ¼ 2 mode.
We note, however, that, in the band where LIGO is most

sensitive, the m ¼ 1 contribution is, in general, dominant
(see Fig. 4), and the contribution from the m > 2 modes is

expected to be much smaller. Therefore, we will include
only the contribution of the m ¼ 1 and m ¼ 2 modes in the
signal model used in Secs. V and VII, where we show the
results of injection studies and a search of this signal in
Advanced LIGO’s data.

IV. SEARCH METHOD

In this section, we review the conventional search
method and Bayesian statistics framework we use in order
to either claim a detection or to place constraints on the
SGWB model we presented above, when searching for
such a background in LIGO data.

A. Definitions

For a single baseline with a pair of detectors, the SGWB
is analyzed using the cross-correlation between two output
streams. Although the formalism can be extended to handle
a larger network of detectors [106,107], we will consider
this simpler case as we analyze only the data from the two
LIGO detectors. Following the notation in Ref. [108], we
define a cross-correlation estimator that is optimal for a
Gaussian background as [107,109]

ĈðfÞ≡ f3

T
20π2

3H2
0

s̃�1ðfÞs̃2ðfÞ: ð26Þ

Here, s̃iðfÞ is the Fourier transform of the time series output
of the ith detector, T is the total observation time, andH0 is
the Hubble parameter. This is normalized such that

hĈðfÞi ¼ γðfÞΩGWðfÞ; ð27Þ

where γðfÞ is the overlap reduction function [110]. In the
low signal-to-noise ratio limit, the variance of the cross-
correlation estimator ĈðfÞ is approximately given by

σ2ðfÞ ≈ 1

2TΔf

�
10π2f3

3H2
0

�
2

P1ðfÞP2ðfÞ; ð28Þ

where Δf is the frequency resolution and PiðfÞ is the
power spectral density (PSD) of the ith detector.

B. Bayesian inference

Following the method in Ref. [111], we discuss a
Bayesian formalism for our detection statistics, parameter
estimation, and model selection. For our analysis, Bayes’
theorem states that, using the estimator ĈðfÞ,

pðθAjfĈg;AÞ ¼ LðfĈgjθA;AÞπðθAjAÞ
ZðfĈgjAÞ ; ð29Þ

where pðθAjfĈg;AÞ is the posterior probability on the
multidimensional space of parameters θA that describe the

FIG. 4. Contribution to the energy density spectra of differentm
modes. The solid curves show the contribution from the m ¼ 1
mode for the isolated BH model, whereas the dashed curves
represent the contribution from them ¼ 2mode. For the BH spin,
we assume a uniform distribution χ ∈ ½0; 0.8�. The black solid
curves are the (2σ) power-law integrated sensitivity curves [104],
obtained using LIGO’s first (O1) and second (O2) observing runs
[36], and for Advanced LIGO at design sensitivity [105]. For
comparison, we also show the predicted CBC background [37]
(gray solid curve), which is extrapolated down to 1 Hz using a
power-law spectrum model.
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SGWB model in the signal hypothesis A, LðfĈgjθA;AÞ is
the likelihood, πðθAjAÞ is the prior probability of the
parameters θA, and ZðfĈgjAÞ is the evidence. We use
nested sampling package PyMultiNest [112] to evaluate the
likelihood. PyMultiNest is a PYTHON interface to the nested
sampling package MultiNest [113–115], which produces a
set of samples drawn from an estimated posterior.
Let fĈg be the cross-correlation estimator obtained from

the data within an analyzed frequency band. For a given
fĈg, we define a Gaussian likelihood for every frequency
bin, and, hence, a joint likelihood given by the product of
each likelihood, such that

ln ½LðfĈgjθA;AÞ�
¼

X
f

ln ½LðĈðfÞjθA;AÞ�

¼
X
f

�
−
½ĈðfÞ − γðfÞΩAðf; θAÞ�2

2σ2ðfÞ −
1

2
ln ð2πσ2ðfÞÞ

�
:

ð30Þ

Here, ΩAðf; θAÞ is a model energy-density spectrum for
a given set of parameters θA.
For the priors, we set a log-uniform prior7 on the vector

mass mb and a linearly uniform prior on the BH spin upper
and lower limits χul=ll. Therefore, following Bayes’ theorem
[Eq. (29)], the posterior probability is inversely propor-
tional to the boson mass:

pðθAjfĈg;AÞ ∝ 1

mb
LðfĈgjθA;AÞ: ð31Þ

We will also be interested in performing model selection
between different signal models. The Bayesian evidence for
a given hypothesis quantifies how well the model fits the
obtained data and is defined as

ZðfĈgjAÞ ¼
Z

LðfĈgjθA;AÞπðθAjAÞdDθA: ð32Þ

This expression can also be interpreted as the fully
marginalized likelihood over the entire parameter space.
In the case where no signal is present (the null hypothesis),
the evidence is obtained by fixing ΩAðf; θAÞ to zero in the
likelihood [Eq. (30)]. To assess which hypothesis, A or B,
better describes the observed data, we can compute the
odds ratio OA

B defined as

OA
B ≡ pðAjfĈgÞ

pðBjfĈgÞ ¼
ZðfĈgjAÞ
ZðfĈgjBÞ

πðAÞ
πðBÞ ; ð33Þ

where ZðfĈgjAÞ and ZðfĈgjBÞ are the evidence for the
hypotheses A and B, respectively, whereas πðAÞ and πðBÞ
are the prior probability of the respective hypothesis.
Hereafter, we will set the a priori probability ratio for
the two models, πðAÞ=πðBÞ, to unity. Therefore, for our
case, the odds ratio will be effectively equivalent to the
Bayes factor (defined as the ratio between the evidences).
In what follows, we will evaluate the statistical significance
for a given hypothesis in terms of the Bayes factor and
follow the convention that a natural logarithmic Bayes
factor ≈8 indicates that one model is favored over the other
with great confidence [117].

V. RESULTS

We are now in a position to study the sensitivity of
Advanced LIGO to the SGWB we described in Sec. III,
using the tools introduced in the previous section. We first
study the range of vector boson masses that LIGO will be
able to probe at its design sensitivity by performing
injections of the SGWB model into synthesized data and
then explore if one could successfully discriminate between
the SGWB due to CBCs and the one due to the superradiant
instability.

A. Range of sensitivity for vector boson masses

The results shown in Fig. 4 suggest that, for vector
bosons with masses roughly in the range mb ∼ ½10−13;
10−12� eV, the SGWB could be detected by LIGO at design
sensitivity and that even with the sensitivity of LIGO’s first
and second observing runs, one could already probe bosons
with masses mb ∼ 10−12.5 eV. To study this in more detail
and assess the vector mass range that we can probe through
this method, we inject our SGWB model into synthesized
data with different values of the model parameters and then
infer the detectability of the signal by computing Bayes
factors between the signal and noise hypotheses.
We follow the injection scheme described in Ref. [39],

where the simulated cross-correlation spectrum is
defined as

ĈsimðfÞ≡ γHLðfÞΩinjðf; θinjÞ þ σðfÞn̂: ð34Þ

Here, γHLðfÞ is the overlap reduction function for the LIGO
baseline [110], Ωinjðf; θinjÞ is the injected background for
the given model parameters θinj, and n̂ is a random variable
drawn from a Gaussian distribution with zero mean and
unit variance. To synthesize data, we set Δf as 0.25 Hz
for the injection studies in this and the next subsections
and specify σðfÞ using Eq. (28) for a given PSD and
observation time. We assume 3 yr of observation with
the projected design sensitivity PSD for the LIGO

7At this point, we choose to adopt mostly uninformative priors
for θA, since this is the most conservative choice. However,
in principle, we could also choose a prior that encodes prior
knowledge on the boson mass obtained from independent experi-
ments, such as constraints from BH spin measurements in x-ray
binaries [54,55,61,116]. This will be revisited in future work.
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detectors [105] (see Fig. 4). From this simulated cross-
correlation spectrum, our pipeline computes the likelihood
function and the posterior distribution of the parameters
θinj, as well as the Bayesian evidence ZðfCinjgÞ.
In Fig. 5, we show an example of the parameter

estimation results for one of the injections, where the
injected parameters θinj are mb ¼ 4.58 × 10−14 eV and
ðχul; χllÞ ¼ ð0.8; 0Þ. In the parameter estimation recovery,
we adopt the more conservative parametrization for pðχÞ
where χll ¼ 0 is kept fixed while χul is allowed to vary. In
order to obtain evidence for the noise hypothesis, we also
perform the same analysis for the identical noise realization
without the injection. The star marker represents the true
parameters of the injection, which lie within the 2 and 3σ
contours. For this recovered injection, we estimate the
signal-to-noise ratio to be 20.2 and find that the log Bayes
factor of the signal versus noise hypotheses is approx-
imately 500, showing that the signal is detected with great
confidence.
We repeat this injection recovery varying the vector

boson mass of each injection but using the same BH spin
distribution for all injections, namely, a uniform distribu-
tion with χll ¼ 0 and χul ¼ 0.8 [see Eq. (21)]. Our results
are summarized in Fig. 6, where we show the log Bayes
factor as a function of the vector boson mass for this set of
injections. These results indicate that, given the detection
criteria of lnOSIG

N ¼ 8, we could detect vector bosons with

masses in the range 5 × 10−14 to 10−12 eV. We note that
this detectable mass range is wider than that for ultralight
scalar bosons due to the enhanced energy spectrum for
masses below mb ≲ 10−13 eV (cf. Fig. 5 in Ref. [39]).

B. Distinguishing the background
from vector clouds and CBCs

In the previous subsection, we neglected the fact that,
besides the SGWB signal due to the formation of vector
clouds, CBCs also produce a background that is expected to
be detectable by Advanced LIGO at design sensitivity, and
so in reality we should consider both types of SGWBs in
our simulation. Figure 4 illustrates that the SGWB signal
from the vector clouds can dominate over the projected
CBC background for some choices of the vector mass and
BH spin distribution, and, therefore, a natural question to
ask is whether we can distinguish between these two signal
models based on the Bayesian framework of Sec. V B.
A similar study was done in Ref. [39] for the case of scalar
boson clouds, and here we repeat this study for the vector
boson model.
We consider an energy density spectrum that consists

of the contributions from both the vector cloud and the
projected CBC background, which reads

Ωinjðf; θÞ ¼ ΩVC
inj ðf; θÞ þΩCBC

inj ðfÞ: ð35Þ

ΩVC
inj ðf; θÞ is the background due to superradiant instabil-

ities under a χul parametrization of the natal spin distribu-
tion for isolated BHs [Eq. (25)], and ΩCBC

inj ðfÞ is the fixed
CBC background approximated as a power-law spectrum:

FIG. 6. The Bayes factor of the recovered signal as a function of
injected mb½eV�, fixing χll ¼ 0 and χul ¼ 0.8 in the injected
signals. The red horizontal line shows our detection criterion
lnOSIG

N ¼ 8. Injections that have a Bayes factor above the red line
are confidently detected.

FIG. 5. The posterior samples recovered for one of the
injections Ωinjðf; θÞ where the injected parameters θinj are
ðmb; χulÞ ¼ ð4.58 × 10−14 eV; 0.8Þ and χll ¼ 0 is kept fixed in
the parameter recovery. The star marker indicates the true values
for the injected parameters. The contours represent the 2 and 3σ
credible regions.
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ΩCBC
GW ðfÞ ¼ 1.8 × 10−9

�
f

25 Hz

�
2=3

; ð36Þ

as inferred from Ref. [37].
Because of the computational expense, for the injection

recovery of the vector cloud background, we consider only
the isolated BH channel [Eq. (20)]. Since the merger
remnant channel is subdominant for the boson masses of
interest (see Fig. 2) and slightly below the projected CBC
background, we do not expect the inclusion of this addi-
tional channel to change the results significantly. Like we
did in the previous subsection, we adopt the χul para-
metrization for pðχÞ; i.e., we use a parametrization where
χll ¼ 0 is kept fixed while χul is allowed to vary. The
injected CBC background is recovered with the following
parametrization8:

ΩCBC
rec ðf;Ω0; αÞ≡Ω0

�
f

25 Hz

�
α

: ð37Þ

To see whether we can detect the vector cloud back-
ground in the presence of the CBC background, we will
compute a log Bayes factor between two hypotheses: a
CBC-only hypothesis, corresponding to the hypothesis that
only the CBC background is present in the data, and a joint
vector cloud and CBC hypothesis (VCþ CBC), corre-
sponding to the hypothesis that both the CBC and vector
cloud backgrounds are present in the data. The parameters
considered when evaluating the evidence for each back-
ground model are listed in Table III. We repeat this
computation for several injections, varying the parameters
ðmb; χulÞ until we explore a grid over the entire prior space.
The results of this study are shown in Fig. 7, where we plot
a grayscale map of the log Bayes factors, highlighting
the contours where lnOVCþCBC

CBC ¼ 8 (magenta contour)
and lnOVCþCBC

CBC ¼ 0 (cyan contour). The parameter space
inside the magenta contour indicates the region where one
can confidently discern the vector cloud background from
the projected CBC background. As expected, for large χul
the range of boson masses for which one could claim a
confident detection agrees with the one obtained in the
previous subsection.

VI. CONSTRAINTS ON ULTRALIGHT VECTOR
BOSONS USING LIGO DATA

Using the Bayesian framework presented in Sec. IV, we
now conduct a search for the vector cloud background
[Eq. (18)] using the cross-correlation spectra obtained from
the first (O1) and second (O2) observing runs of Advanced

LIGO [36]. (The data products used in this paper are
publicly available at Ref. [120].) The analysis is conducted
following the prescription presented in the injection studies
done in Secs. VA and V B, except for the likelihood
evaluation. Since in this case the independent cross-
correlation spectrum is obtained from each observing
run, the full likelihood expression takes the form

LðĈO1; ĈO2jθ;HVCÞ ¼ LðĈO1jθ;HVCÞLðĈO2jθ;HVCÞ;
ð38Þ

where each likelihood in the right-hand side follows the
definition of Eq. (30). These cross-correlation spectra are
provided over the frequency range from 20 to 700 Hz with
the frequency resolution of Δf ¼ 1=32 Hz.
We do not find statistically significant evidence for a

vector cloud background. Therefore, we place constraints
on the two-dimensional space (mb; χul;ll) using the esti-
mated posterior probability distribution. Figures 8 and 9
show the posteriors under the χul and χll parametrizations,
respectively [see Eq. (21) and the corresponding discus-
sion]. In particular, the results shown in Fig. 8 indicate
that, when using the χul parametrization, the data disfavor
boson masses close to mb ≈ 10−13 eV and relatively high
χul ≳ 0.2. We note, however, that the marginalized 1D
posterior for mb does not indicate a strong constraint at the

FIG. 7. Grayscale map of a log Bayes factor between CBC-
only and the joint VCþ CBC models with two contours of
lnOVCþCBC

CBC ¼ 8 (magenta curve) and 0 (cyan curve). The
parameter space inside the magenta contour indicates the region
where one can confidently discern the vector cloud background
from the projected CBC background.

TABLE III. Parameters in each recovered background model.

Models CBC-only VCþ CBC

Parameters Ω0; α mb; χul;Ω0; α

8We refer to Eq. (37) as a CBC model, even though this could
be generally called a “power-law spectrum model.” It has been
shown that the systematic error potentially caused by this bias is
below the statistical error and, hence, would not affect the
detectability of the background [118,119].
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95% confidence level. On the other hand, when we fix
χul ¼ 1 and allow the lower bound χll to vary, then Fig. 9
suggests that the mass range 0.8 × 10−13 to 6.5 × 10−13 eV
is excluded (95% credible interval) regardless of the spin’s

lower bound χll, as can be seen in the 1D marginalized
posterior of mb.
In summary, these results suggest that minimally coupled

vector bosons with masses around mb ≈ 10−13 eV are
highly disfavored, unless most stellar-mass BHs are born
with a small spin.

VII. CONCLUSION

In this paper, we computed and studied in detail the
SGWB produced by the superposition of GW signals from
extragalactic BH-ultralight vector cloud systems formed
through the superradiant instability. Using a Bayesian
framework, we performed the first search for such signal
in LIGO data. This extends previous works [38,39] where a
similar background for scalar bosons was studied. We also
improved on those works by adding the contribution of the
second most unstable mode,m ¼ 2 (in addition to the most
unstable one, m ¼ 1), to the SGWB model, which was not
considered in Refs. [38,39]. In particular, we found that the
contribution from the m ¼ 2 mode can be as important as,
or even dominate over, them ¼ 1mode formb ≥ 10−12 eV
and, therefore, affect the detectability and potential con-
straints on the vector boson mass.
To estimate the potential detectable window, we per-

formed injection tests on simulated Advanced LIGO data
at design sensitivity and found that Advanced LIGO is
especially sensitive to the background emitted by mini-
mally coupled vector bosons with masses in the range
∼½5 × 10−14; 10−12� eV (see Fig. 6). This detectable mass
range is broader than that for ultralight scalar bosons
(cf. Fig. 5 in Ref. [39]), especially at small masses, due
to the considerably larger GW power for vector bosons. We
also studied the capability to claim a detection for this
background model in the presence of a (fiducial) CBC
background model. Our results suggest that we can dis-
tinguish between both models in a large part of the
parameter space (see Fig. 7).
Additionally, in the future, we may be able to place

constraints using only BBH merger remnants, which are
much less sensitive to unknown BH population statistics.
We performed similar simulations using the LIGO’s design
sensitivity with and without an injection to search for the
BBH remnant component alone. With the injection of
the SGWB for mb ¼ 10−13 eV, we recovered it with a
Bayes factor of 10.4 and consistent vector mass estimation.
On the other hand, without the injection, we ruled out
mb ∼ 10−13 eV at the 95% confidence level. Although we
leave the model selection test between this and the CBC
background as future work, these results indicate that we
will potentially be able to make a detection, or place more
robust constraints on the vector mass, by probing the BBH
remnant signal model.
Lastly, we presented results obtained by analyzing data

from Advanced LIGO’s first and second observing runs.

FIG. 8. Posterior results obtained with the data from the first
and second observing runs of Advanced LIGO, recovered with
the χul parameterization. The contour on the two-dimensional
posterior represents the 95% confidence level.

FIG. 9. Posterior results, analogous to Fig. 8, for the χll spin
parameterization.
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We did not find any signal consistent with our vector cloud
model, independent of the parametrizations employed for
the BH spin distribution. For the more optimistic para-
metrization (the χul parametrization), we rule out (mini-
mally coupled) ultralight vector bosons in the mass range
0.8 × 10−13 to 6.5 × 10−13 eVwith 95% percent credibility.
A less optimistic parametrization χll, which allows for the
possibility that all isolated BHs have negligible spins, does
not give strong constraints. However, boson masses around
∼10−13 eV are highly disfavored by our results, unless all
isolated BHs form with spins ≲0.2. We note that these
constraints depend on our specific choice for the BH spin
distribution as well as the astrophysical models we adopted
in this analysis.
Aside from these constraints, the observation of stellar-

mass BHs in x-ray binaries spinning above the superradiant
threshold already disfavors the existence of ultralight vector
fields in the range ∼½10−14; 10−11� eV [54,55,61,116],
which overlaps with the range of masses we are able to
probe with the SGWB. However, we should note that such
constraints should be interpreted with caution, since BH
spin measurements from x-ray binaries are often suscep-
tible to large systematic uncertainties (see, e.g., Ref. [121]).
GW searches should, therefore, be seen as complementary
to those measurements. Given sufficiently robust estimates
of all the relevant uncertainties, it could be interesting to
include GW searches and BH spin measurements in the
same Bayesian framework, which would, in principle, lead
to stronger constraints.
We considered only a minimally coupled ultralight vector

field, neglecting possible (nongravitational) couplings with
other particles, as well as any nontrivial self-interactions
beyond the mass term. Our results apply to any massive
vector field as long as any additional interactions are
negligible compared to the gravitational interaction between
the BH and vector field. Sufficiently large nongravitational
interactions could change the picture, in particular, by
affecting the evolution of the superradiant instability. For
example, for ultralight scalar fields it has been shown that
self-interactions [62,122,123] and couplings to photons

[124–126] can quench the superradiant instability and
effectively increase the timescale needed to extract a sub-
stantial amount of energy and angular momentum from the
BH [127,128]. The effect of such interactions has been less
studied for massive vector fields—with the exception of
some consideration of the case where the vector boson mass
arises through a Higgs mechanism [54,127]—but one might
expect that similar results also apply for this case. It would be
important to study this question in more detail in the future.
Finally, we should note that if ultralight dark-matter photons
couple directly to ordinary matter, they could also produce
another kind of observable signal in GW interferometers by
inducing displacements on the LIGO mirrors [129–132].
Since our results mainly apply to ultralight bosons for which
nongravitational interactions are negligible, our constraints
complement those searches.
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