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The space-based gravitational-wave observatory LISA relies on a form of synthetic interferometry
(time-delay interferometry, or TDI) where the otherwise overwhelming laser phase noise is canceled by
linear combinations of appropriately delayed phase measurements. These observables grow in length and
complexity as the realistic features of the LISA orbits are taken into account. In this paper we outline an
implicit formulation of TDI where we write the LISA likelihood directly in terms of the basic phase
measurements, and we marginalize over the laser phase noises in the limit of infinite laser-noise variance.
Equivalently, we rely on TDI observables that are defined numerically (rather than algebraically) from a
discrete-filter representation of the laser propagation delays. Our method generalizes to any time
dependence of the armlengths; it simplifies the modeling of gravitational-wave signals; and it allows a
straightforward treatment of data gaps and missing measurements.
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I. INTRODUCTION

Interferometry is not indispensable to the experiments
that seek to detect gravitational waves (GWs) bymonitoring
the displacement of freely falling test masses. Sensitivity is
set by disturbances to free fall (acceleration noise) and by the
precision of the distance measurement (position noise).
Interferometry becomes crucial when the ruler by which
distance is measured (typically, the wavelength of an infra-
red laser) is not sufficiently stable at the GW frequencies of
interest, so its fluctuations must be canceled out interfero-
metrically. Such is the case of the space GW observatory
LISA [1], in which laser frequency noise is several orders of
magnitude larger than acceleration and position noise. LISA
is a strange kind of interferometer, where the laser-noise-
canceling interferometric observables are not realized physi-
cally, but reconstituted in post-processing from the set of
one- or two-way phase measurements between the pairs of
spacecraft in the constellation.
This reconstitution is known as time-delay interferom-

etry (TDI, [2–6]) because the phase measurements are
delayed by multiples of the LISA armlengths before they
are combined. While this design is ingenious, and indeed
seminal to the LISA concept, it is inconvenient for data
analysis. GWs are completely buried in the laser-noise-
dominated phase measurements, so both the phase data and
the theoretical GW templates must undergo a time-domain

transformation, which is computationally costly and time
dependent (because the LISA armlengths are changing
continuously). TDI compounds the difficulties of data
reduction: for instance, gaps in the phase measurements
are replicated multiple times across the TDI time series [7];
clock noise requires a complicated subtraction procedure
[8]; stretching LISA armlengths couple noisily to the
interpolation of the delays [9]; and more.
In this paper we propose that the LISA phase measure-

ments can be analyzed directly for the purpose of GW
detection and parameter estimation, without transforming
them explicitly into TDI observables with analytical forms
derived a priori. Equivalently, the TDI observables can be
computed numerically from the LISA armlengths and
plugged directly into the calculation of the likelihood, the
essential ingredient of GW data analysis. The mathematical
counterparts of these qualitative statements are the formu-
lation of a joint probability density for the phase measure-
ments and laser noises, which is marginalized with respect to
the latter to yield the likelihood used in data analysis; and the
definition of TDI observables as the null-space basis vectors
of the design matrix that models the delayed appearance of
the laser noises in the phase measurements. We refer to these
vectors as “TDI-∞”observables, since they cancel laser noise
for any time dependence of the LISA armlengths, whereas
“first-generation” TDI is limited to constant armlengths,
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“second-generation” TDI to linearly evolving armlengths
with sufficiently small rates, and so on.

II. TOY PROBLEM AND DISCRETIZED
REPRESENTATION

In this paper we describe our proposed scheme in the
context of a representative toy model of the LISA mea-
surements (see Fig. 1). We consider a single laser cðtÞ,
propagated along arms 1 and 2 (with lengths that may be
evolving with time), and reflected back by perfect mirrors;
phase measurements y1ðtÞ and y2ðtÞ are performed at the
origin, separately for each arm. Thus the measurement can
be written as

y1ðtÞ ¼ cðt − l1ðtÞÞ − cðtÞ þ n1ðtÞ;
y2ðtÞ ¼ cðt − l2ðtÞÞ − cðtÞ þ n2ðtÞ; ð1Þ

where l1;2ðtÞ are the roundtrip flight times along the two
arms for light pulses that are received at time t, and n1;2ðtÞ
represent measurement noises. In terms of one-way arm-
lengths we have l1ðtÞ ¼ L

1⃖
ðtÞ þ L

1⃗
ðt − L

1⃖
ðtÞÞ, with L

1⃖

the incoming flight time along arm 1, and L
1⃗
the out-

going flight time; the two will be different if the mirror is
moving with respect to the origin. Crucially, we assume
cðtÞ ≫ n1;2ðtÞ. We do not model gravitational waves, but
they would appear in both y1 and y2 with appropriate delays
and geometric projections.
In practical measurements, all continuous time series

will be sampled discretely with sufficiently high cadence,
so in what follows we adopt the language and notation of
linear algebra. Doing so is appropriate also for laser noise,
under the assumption that interferometric signals are
filtered so that the Nyquist criterion is satisfied by the
sampling.
It is convenient to combine the two measurements y1;2

and their noises n1;2 into vectors y and n, so we write

y ¼ Mcþ n; ð2Þ

where c is the (discretized) laser noise time series, andM is
a design matrix that models the delayed finite differences of
Eq. (1) by way of fractional-delay finite-impulse-response
filters. These very filters will be used in the post-processing
of the LISA data to delay the interferometric measurements
as required in TDI (see below). Therefore the approxima-
tion that we make by writing Eq. (2) as a discrete equation
is already implicitly accepted in standard usage.
If we assume (without loss of generality) that the laser

noises are switched on instantaneously at time t ¼ 0, and
that the delays l1 and l2 are constant multiples 2Δt and
3Δt of the basic sample cadence, the application of the
design matrix would look like

0
BBBBBBBBBBBBBBBBBBBBBB@

y1ðt0Þ
y2ðt0Þ
y1ðt1Þ
y2ðt1Þ
y1ðt2Þ
y2ðt2Þ
y1ðt3Þ
y2ðt3Þ
y1ðt4Þ
y2ðt4Þ

..

.

1
CCCCCCCCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBBBBBBBB@

−1 0 0 0 0 � � �
−1 0 0 0 0 � � �
0 −1 0 0 0 � � �
0 −1 0 0 0 � � �
1 0 −1 0 0 � � �
0 0 −1 0 0 � � �
0 1 0 −1 0 � � �
1 0 0 −1 0 � � �
0 0 1 0 −1 � � �
0 1 0 0 −1 � � �
..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCCCCCCCCCCA

·

0
BBBBBBBBBB@

cðt0Þ
cðt1Þ
cðt2Þ
cðt3Þ
cðt4Þ
..
.

1
CCCCCCCCCCA
;

ð3Þ

where tk ¼ kΔt, and where we have interleaved y1 and y2
measurements. If we obtain measurements at n epochs,
then c is an n-vector, y a 2n-vector, andM a 2n × n matrix.
Fractional delays would spread out the leftmost 1s into the

appropriate filtermasks. In this paperwe shall use delay filters
based on Lagrange interpolation: that is, the m-point filter
mask follows from approximating a function gðδtÞ, with
0 < δt < 1, by evaluating its (m − 1)-order interpolating
polynomial, as obtained from the node values gð−m=2þ 1Þ;
gð−m=2þ 2Þ;…; gð−1Þ; gð0Þ; gð1Þ;…; gðm=2Þ. (In this
illustration, for simplicity we have set the cadence Δt equal
to 1.) Filters with bδtc ≠ 0 are obtained by first shifting the
nodes by that integer part, then evaluating the interpolating
polynomial at δt − bδtc. These filters have the property of
maximal flatness in the frequency domain at f ¼ 0; we
always use them with even m, so that fractionally delayed
quantities are continuous across δt ¼ 1=2.
Figure 2 shows a graphical representation of the design

matrix, this time for linearly evolving, non-integer delays
implemented with fractional-delay masks of length m ¼ 6.
Odd and even rows, corresponding to y1 and y2, are shown
as thicker and thinner lines respectively. The diagonal

FIG. 1. Setup of our toy model: a single laser source is
propagated into arms with lengths l1;2ðtÞ and reflected back
toward the origin. The phases of the two beams are measured as
y1;2ðtÞ, and are subject to the common laser noise cðtÞ, and to
measurement noises n1;2ðtÞ.
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pattern of dips, common to both y1ðtÞ and y2ðtÞ, corre-
sponds to the “direct” −cðtÞ terms. The patterns below the
diagonal correspond to delayed cðt − l1;2ðtÞÞ terms, as
realized by way of fractional-delay filter masks, and they
are seen to shift with changing l1;2ðtÞ.

III. CLASSICAL TDI

In the classical TDI approach [2–6], one derives laser-
noise-free TDI observables written as linear combinations
of delayed measurements y1;2. In our toy model there is one
single such observable, which we may identify with the
standard Michelson combination if l1;2 are equal and
constant:

y1ðtÞ − y2ðtÞ; ð4Þ

with “first-generation TDI” X1 if l1;2 are unequal and
constant:

X1ðtÞ ¼ ðy1ðtÞ þ y2ðt − l1ðtÞÞÞ
− ðy2ðtÞ þ y1ðt − l2ðtÞÞÞ; ð5Þ

and with “second-generation TDI” X2 if l1;2 are unequal
and mildly evolving:

X2ðtÞ ¼ ðy1ðtÞ þ y2ðt;1Þ þ y2ðt;12Þ þ y1ðt;122ÞÞ
− ðy2ðtÞ þ y1ðt;2Þ þ y1ðt;21Þ þ y2ðt;211ÞÞ; ð6Þ

where t;1 ¼ t − l1ðtÞ, t;12 ¼ t − l1ðtÞ − l2ðt − l1ðtÞÞ, and
so on. By inserting Eq. (1) into Eqs. (4)–(6) one can verify
that the laser noises cancel in pairs. This is trivial for the
Michelson combination. As for X1 and X2, we see that in
each line of Eqs. (5) and (6) the delayed-laser term of each
measurement cancels the direct term on the next one; also,
the direct terms of y1ðtÞ and y2ðtÞ cancel out, as do the
delayed terms of the last measurements. This last cancel-
lation is only approximate for X2 when the delays are
unequal and evolving: Taylor-expanding all laser noises,
one sees that TDI cancels noise terms that are linear in _l1;2,
but not those of higher orders (terms that are Oð _l2

1;2Þ,
Oðl̈1;2Þ, and so on). Nevertheless, second-generation TDI
is sufficient to reduce laser noise to levels compatible with
the LISA requirements, as shown by experiments [10–13]
and analytic and numerical studies [9,14,15].
This procedure has a beautiful geometric formulation in

terms of synthesized interferometric paths [16]. It can
also be formalized algebraically in terms of polynomial
syzygies [17]. Last, it can be recast as an application of
principal component analysis [18,19]—a formalism closely
related to ours, and discussed further below.
Going back to our linear-algebraic notation, we represent

a TDI observable evaluated at times t0; t1;… as the vector

o ¼ Ty; ð7Þ

with T an n × 2n matrix that encodes the delays of
Eqs. (4)–(6) by way of fractional-delay filters. Laser-noise
cancellation then corresponds to

TM ≃ 0; ð8Þ

where the cancellation is exact for Michelson (or X1) with
constant and equal (unequal) l1;2, and approximate but
very accurate for X2 with evolving and unequal l1;2.
GW searches and source parameter estimation proceed

from the evaluation of the likelihood of the data as a
function of GW parameters θ. In terms of the TDI vector o,
we obtain the likelihood by postulating that the measure-
ment noises n1;2ðtÞ are independent Gaussian processes
with zero mean and covariance Nðt0; t00Þ, and by equating
the probability of observing the measurement residual
Δo ¼ Tðy − yGWðθÞÞ to the sampling probability of the
noise, appropriately mapped from y to o:

FIG. 2. Visualization of the design matrixM that maps the laser
noise c to the phase measurements y1;2. The thick gray (thin
black) lines plot the coefficients that multiply the c to yield the y1
(y2). Here light-propagation delays are set as l1ðtÞ ¼ 6.2þ 0.02t
and l2ðtÞ ¼ 4.6 − 0.03t, and are implemented with six-point
Lagrange-interpolation filters. For simplicity, cðtÞ ¼ 0 for t < 0.

TIME-DELAY INTERFEROMETRY WITHOUT DELAYS PHYS. REV. D 103, 082001 (2021)

082001-3



logpðΔo ¼ TΔyjθÞ

¼ −
1

2
Δo†ðTNT†Þ−1Δo − 1

2
log j2πTNT†j; ð9Þ

where

NðaiÞðbjÞ ¼ hyaðtiÞybðtjÞi ¼ δabNðti; tjÞ: ð10Þ

In the classical treatments of TDI, one would usually
compute the spectral density SXðfÞ of the TDI observable
as a function of acceleration and position noise in each
element of LISA, and then write the log likelihood (modulo
an additive normalization constant) as

−2Re
Z

ΔX̃�ðfÞΔX̃ðfÞ
SXðfÞ

df; ð11Þ

this equation carries the same meaning as Eq. (9), where
TNT† plays the role of SXðfÞ in the discretized time
domain.

IV. INTRODUCING TDI INFINITY

Instead of formulating the TDI observables algebraically
or geometrically by matching direct and delayed noise
terms, resulting in equations similar to (4)–(6), we take the
approach of defining the set of discretized TDI vectors by
solving the matrix equation

TM ¼ 0 ð12Þ

for T given the design matrixM, which is determined by the
LISA orbits and by the accurate times at which the y1;2 are
sampled. (See also Ref. [20], which derives the TDI
observables by solving Eq. (12) in the frequency domain,
under the assumption that the armlengths are constant.)
The solution T̂ to Eq. (12), which is unique up to affine

transformations, provides a basis for the null space of M†:
any vector t̂ within the null space solves the equation
M†t̂ ¼ 0. Correspondingly, each row t̂k of T̂ can be dotted
into an observed vector y to generate a laser-noise–free
observation ok. We refer to these as TDI-∞ observables; by
construction, they cancel laser noise for any time depend-
ence of the light-propagation delays. Given that M is a
2n × n matrix of rank n, we obtain n linearly independent
TDI-∞ observables.
It should be clear from our theoretical development so far

that T̂ can be used with Eq. (9) to evaluate the TDI
likelihood directly from the interferometric measurements
y, without the additional step of computing time-delayed
combinations of measurements and GW templates.
Furthermore, the solution of Eq. (12) and the computation
of the inverse covariance matrix K−1 ≡ ðT̂NT̂†Þ−1 can be
performed offline (given an estimate or measurement of the
time evolution of the armlengths), before the repeated

evaluation of the likelihood in a search or parameter-
estimation scheme. The online steps are the TDI-∞
projection Δô ¼ T̂ðy − yGWðθÞÞ and the kernel product
− 1

2
Δô†K−1Δô.
We further motivate our proposal by demonstrating that,

in the LISA-appropriate limit of large laser noise, the
TDI-∞ likelihood is equivalent to the likelihood written
from first principles for the ymeasurements. That is, we can
derive TDI-∞ from a complete generative model of the
LISA measurements, without need to model laser-noise
subtraction explicitly.
Representing cðtÞ as a Gaussian process with mean zero

and covariance function Cðt0; t00Þ (with Cij ≡ Cðti; tjÞ), we
write the likelihood of c and of the observed residuals
Δy ¼ y − yGWðθÞ as

pðΔy; cjθÞ ¼ j2πNj−1=2e−1
2
ðΔyðθÞ−McÞ†N−1ðΔyðθÞ−McÞ; ð13Þ

integrating this likelihood with respect to c, after multi-
plying by their prior pðcÞ ¼ j2πCj−1=2e−1

2
c†C−1c, yields the

marginalized log likelihood [21]

logpðΔyjθÞ ¼ −
1

2
Δy†ðθÞðNþMCM†Þ−1ΔyðθÞ

−
1

2
log j2πðNþMCM†Þj: ð14Þ

The marginalization can be seen as a probabilistic version
of solving for the lasers, and then propagating the uncer-
tainty of the solution to the remaining degrees of freedom.
In Eq. (14), the augmentation of the covariance matrixN by
MCM† has the effect of downweighting (or, in the limit
cðtÞ ≫ n1;2ðtÞ, completely projecting out) the linear com-
binations of the y in which the laser noises are dominant.
While Eq. (14) could be used directly for GW applica-

tions, doing so carries the risk of losing numerical
precision, possibly catastrophically. The reason is that
for LISA the y will always be strongly dominated by
the laser noise c; while the specific form of the covariance
matrix will (in effect) select the c-orthogonal components
of the y, that projection will involve the dangerous
cancellation of very large numbers.
We can instead rely on Eqs. (9) and (12), which we show

to be equivalent to Eq. (14) in the limit of overwhelming
laser noise. To realize that limit, we take C ¼ σ1 with
σ → ∞, and write the inverse Gaussian-process kernel of
Eq. (14) using the singular value decomposition (SVD)
M ¼ USV†:

ðNþMCM†Þ−1 ¼ ðNþ σUSS†U†Þ−1
¼ UðU†NUþ σSS†Þ−1U†; ð15Þ

where the second equality follows by inserting factors
UU† ¼ I and shifting the 2n × 2n orthogonal matrix U
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outside the inverse. We then refactor the second line of
Eq. (15) as a block-matrix product, subdividing the
columns of U as ðE;FÞ, where E spans the range of M
and F† the null space of M†:

ðEFÞ
�
E†NEþ σSþS

†
þ E†NF

F†NE F†NF

�−1�E†

F†

�
; ð16Þ

where Sþ is the n × n top block of S, which contains all the
nonzero singular values on its diagonal. Using the block
inverse formula, we find that all blocks of the inverse are
Oðσ−1Þ and disappear in the limit σ → ∞, except for the
bottom right block ðF†NFÞ−1. Thus

lim
σ→∞

logpðΔyjθÞ ¼ −
1

2
Δy†ðθÞFðF†NFÞ−1F†ΔyðθÞ

−
1

2
log j2πF†NFj: ð17Þ

This limiting procedure is similar in spirit and mathematical
detail to the marginalization over timing-model corrections
in the time-domain analysis of pulsar-timing-array data
[22,23]; in that case, as here, the degrees of freedom with
very large variance are effectively projected out of the data
vector.
Now, F is a 2n × n orthogonal matrix such that

M†F ¼ F†M ¼ 0; given that the TDI-∞ matrix T̂ is full
rank and that T̂M ¼ 0, there must exist an invertible but not
necessarily orthogonal matrix A such that F† ¼ AT.
Inserting this representation in Eq. (17) reproduces
Eq. (9), modulo an additive factor that does not depend
on N.
In addition to demonstrating the large-c equivalence of

Eqs. (9) and (14), this derivation suggests that the numeri-
cal instability of Eq. (14) is resolved in Eq. (9), since the
large components proportional to C drop out of Eq. (16),
while the T̂ projection cancels out the large laser-noise
contributions to the y measurements. The projection does
require sufficient measurement precision and linearity, but
no more so than the computation of the delayed combi-
nations of classical TDI.
In Ref. [18], Romano and Woan identify the TDI

observables with the small-eigenvalue eigenvectors of
the y covariance matrix (NþMCM† in our notation),
and emphasize that its singular value decomposition
factorizes the y likelihood into a TDI term (a sufficient
statistic for astrophysical inference), and a laser-dominated
term (useful for laser-noise monitoring but not GW
detection). They also recover the classical TDI expressions
by analyzing the covariance matrix for integer-Δt laser
delays. In the limit of large laser noise, Romano and
Woan’s approach is equivalent to the null-space formu-
lation discussed here: indeed, Eqs. (15) and (16) describe
how the SVD of M induces the factorization of the

marginalized likelihood. Baghi and colleagues [19] per-
form the Romano–Woan eigenvector decomposition in the
frequency domain, and work with the resulting y likelihood
to simultaneously fit the GW source parameters, the LISA
armlengths, and the components of the covariance matrix.

V. THE OBSERVABLES OF TDI INFINITY

The standard linear-algebra approach to computing a
basis for the null space of a matrix consists of factorizing it
by SVD and then selecting the rows of the right factor that
correspond to the null singular values. These rows are
orthogonal by construction, and in general they are dense
across the matrix. This means that TDI-∞ vectors obtained
from the SVD are nonlocal: they span the length of the
data, instead of being restricted to a few multiples of l1;2 as
the classical TDI observables. The left panel of Fig. 3
shows such SVD vectors for the evolving-l1;2 design
matrix of Fig. 2. The particular SVD implementation used
here (dgesdd from LAPACK [24]) results in some
diagonal structure in the second half of the plotted time-
span, but little regularity overall. The vectors satisfy
Eq. (12) (and indeed also T̂ðMcÞ ¼ 0) to round-off error,
thus demonstrating laser-noise cancellation in the context
of our toy model, at least for n up to a few hundred.
Dense TDI-∞ vectors do not necessarily lead to loss of

precision, but they certainly have other disadvantages.
They obfuscate the time dependence of GW signals and
instrument noise; they make it hard to analyze data in
chunks; and they guarantee that the offline and online
phases of likelihood evaluation have maximum computa-
tional complexities Oðn3Þ and Oðn2Þ (where 2n is the
length of the vector y).
All these concerns (except for offline computational

complexity) can be addressed with algorithms that generate
banded basis matrices for the null space of sparse banded
matrices such as M†. One such algorithm is the turnback
method, originally suggested by Topçu [25] in the context
of the matrix force method for linear elastic analysis, and
further refined in Refs. [26,27]. The turnback method
begins with the standard LU decomposition (e.g., [28] )
of the sparse matrix, followed by a number of triangular
factorizations of its submatrices. The resulting basis vectors
are not orthogonal, but they are concentrated along the
diagonal.
We experimented with the method using an implemen-

tation kindly provided by Thuy Van Dang and Keck Voon
Ling [29]. For integer delays, turnback basis vectors
reproduce exactly the observable X1 of first-generation
TDI [Eq. (5) ]; for constant fractional delays, they have the
same bandwidth as X1 (the larger of the l1 and l2 plus half
of the filter delay width), but with smoother structure; for
evolving delays, as shown in the center panel of Fig. 3, they
have bandwidth comparable to X1 rather than to X2 (which
has extent ≳3 × l1;2), again with smoother structure.
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These statements discount the first few vectors at the top of
the center panel, which have trivial structure because
cðtÞ ¼ 0 for t < t0, so delayed laser-noise terms do not
affect the y1;2 until t7. Again we confirm that laser noise is
canceled to round-off error.
We note that in a realistic data-reduction scenario the

bandwidth may be dominated by the length m of the
fractional-delay filters, which will span one or more LISA
armlengths to achieve the required interpolation accuracy.
While the offline phase of likelihood evaluation has again
complexity Oðn3Þ, as required by the turnback algorithm,
the banded structure of T and therefore T†NTmay allow the
optimization of the online phase to complexities lower
than Oðn2Þ.
In the right panel of Fig. 3 we demonstrate that the

TDI-∞ approach automatically takes data gaps into
account. Here we have modeled missing phase measure-
ments at four epochs by removing eight rows of the 2n × n
design matrix. The solution of Eq. (12) with the turnback
method yields (n − 8) TDI-∞ vectors that combine the
measurements around the gap, shown as the blank vertical
band in the plot. Notably, the l1;2ðtÞ used here allow for
two vectors that bridge the disruption. Near the gap, the
bandwidth of the observables increases by ∼50%. By
contrast, in this example the second-generation TDI
observable X2 would be unavailable for more than

20 epochs, since it requires phase observations spanning
≳3 × l1;2. This advantage washes out for longer gaps.

VI. DISCUSSION

By way of a toy model of LISA interferometry, we have
offered a proof of principle that the LISAGW data analysis
can be formulated and performed directly in terms of the
phase measurements, without recourse to the analytical
observables of classical TDI. This approach leads to the
numerically defined observables of TDI-∞, which cancel
laser noise for any time dependence of the armlengths, and
which can be conveniently time-localized to bandwidths
comparable to or smaller than those of second-generation
TDI. The scheme has several additional advantages:

(i) There is no need to select a set of analytical TDI
observables, model their power-spectral densities,
and track their data quality;

(ii) GW theoretical templates can be computed directly
for the simpler phase measurements rather than the
more complicated TDI observables, or even for the
basic GW strain polarizations, and then projected to
the phase measurements;

(iii) Measurement gaps are handled automatically and
gracefully, including the shift between one, two,
and three independent combinations when four, five,
and six LISA laser links are available;

FIG. 3. Left: TDI-∞ vectors obtained by SVD from the design matrix of Fig. 2. The thick gray (thin black) lines plot the coefficients
that multiply the y1 (y2) to yield each laser-noise-free ok observation. The emergent diagonal structure on the right is a byproduct of the
specific SVD algorithm used here. Center: TDI-∞ vectors obtained by the turnback method [25–27], plotted with the same conventions.
These null-space basis vectors recover the banded diagonal structure of the design matrix (Fig. 2) and the interpretation as time-local
observables. The trivial structure at the top left is due to the simplifying assumption that cðtÞ ¼ 0 for t < 0. Right: TDI-∞ vectors
obtained by the turnback method when phase measurements y1;2ð15Þ through y1;2ð18Þ are missing. The last few TDI-∞ vectors have
analogous structure outside the range plotted here.
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(iv) The link to the computation of matrix null-space
bases, a linear-algebra problem with many practical
applications, raises the possibility of adopting
new sophisticated algorithms [e.g., [30–32] ], in-
cluding parallelized or streaming variants suited
to GPUs.

While our toy model is extremely idealized and therefore
limited, we believe these advantages warrant a detailed
investigation of the numerical implementation of TDI-∞
for a realistic LISA system: in particular, one would need to
demonstrate that the computational scaling of band-
diagonal null-space algorithms is manageable, and that
laser noise is cancelled with sufficient accuracy for realistic
data vector sizes and noise strengths. We leave this for
future work.
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