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Extending our recently published SU(2) results for zero temperature, we now compute the QCD
equation of state for finite isospin density within the three-flavor Nambu–Jona-Lasinio (NJL) model in the
mean field approximation, motivated by the recently obtained lattice QCD results for both zero and finite
temperatures. Like our previous study, here also we have considered both the commonly used traditional
cutoff regularization scheme and the medium separation scheme. Our results are compared with recent
high-precision lattice simulations as well as previously obtained results in two-flavor Nambu–Jona-Lasinio
model. The agreement between the lattice results and the predictions from three-flavor NJL model is very
good for low values of μI (for both zero and finite temperatures). For larger values of μI , the agreement
between lattice data and the two-flavor NJL predictions is surprisingly good and better than with the three-
flavor predictions.
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I. INTRODUCTION

As the fundamental theory of strong interactions, the
phase structure of quantum chromodynamics (QCD) has
been studied from different angles over the years. Aside from
the well-explored systems at finite temperatures and finite
baryon densities, several new dimensions have been added to
the QCD phase diagrams: isospin chemical potential, mag-
netic field, electric field, and rotation to name a few. Though
near future relativistic heavy-ion-collision experiments in
Facility for Antiproton and Ion Research (FAIR) and
Nuclotron-based Ion Collider Facility (NICA) have been
continuing to inspire studies of physical systems at low
temperatures and finite baryon densities such as neutron stars
[1,2], theoretical hurdles are still there, predominantly due to
the well-known fermion “sign problem” [3,4] encountered

by nonperturbative lattice calculations. Lattice QCD’s recent
progress with the sign problem can be monitored in Ref. [5].
Among the relatively new features of the QCD phase

diagram, finite isospin chemical potential (μI) plays an
important role, specially because unlike finite baryon
chemical potential it does not suffer from the sign problem
in lattice QCD–based calculations. First bunch of lattice
QCD results at finite temperature and isospin density
appeared in early 2000s [6,7] with dynamical u and d
quarks, although with unphysical pion masses and/or an
unphysical flavor content. This followed various studies
by other available theoretical tools yielding qualitatively
similar results. These studies include chiral perturbation
theory (χPT) [8–20], hard thermal loop perturbation
theory [21], Nambu–Jona-Lasinio (NJL) model [22–42]
and its Polyakov loop extended version PNJL [43,44], and
quark meson model [45–48]. Recently, early lattice QCD
results have been modified by using an improved lattice
action with staggered fermions at physical quark masses
and results for finite isospin density are presented in
Refs. [49–52].
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In our recent work along the similar line [53], we focused
on a new type of compact stars known as pion stars [11,54],
where the pion condensates are considered to be the
dominant constituents of the core under the circumstance
of vanishing neutron density. In spite of being a subset of
boson stars [55–59], pion stars are free from hypothetical
beyond standard model contributions like QCD axion.
This gave us a scenario to work with finite isospin density
along with zero temperature and zero baryon density which
bypasses the sign problem unlike systems with high baryon
densities. Hence, it is easily accessible through first
principle methods [54] and through the pion stars’ equation
of state we now know about its large mass and radius in
comparison with neutron stars [54,60]. Our study in the
said context of pion stars within two-flavor NJL model
showed better quantitative agreement with the lattice QCD
results than similar studies within the chiral perturbation
theory [18].
Unlike our last study [53], where we have only consid-

ered the setting of pion stars with zero temperature, in the
present work we plan also to explore the systems with finite
temperature. Early universe with very high temperature has
been known to have possibilities of pion condensation
driven by high lepton asymmetry [61–63]. Furthermore, in
this work, we have extended our two-flavor study within
the three-flavor NJL model. While the two-flavor studies
are sufficient to describe the pion condensation at finite
isospin density, a three-flavor study gives us the chance to
explore the roles of the strangeness degree of freedom and
the UAð1Þ anomaly in the present context. Hence, in our
three- flavor NJL Lagrangian, we will also be considering
the Kobayashi-Maskawa-’t Hooft (KMT) term, which
mimics the UAð1Þ anomaly in the NJL model.
Just like QCD systems with μI ≠ 0; μB ¼ μs ¼ T ¼ 0

[54], QCD systems with μI ≠ 0; μB ¼ 0; μs ≠ 0; T ≠ 0 are
also being explored well within lattice QCD [49,52,64–66].
Successful premises of this work have already been
provided by our previous study [53], which showed an
exceptional quantitative agreement between NJL and lattice
QCD results. On the basis of that and recently improved
three-flavor lattice QCD, results at zero and finite temper-
ature [49,52,54,64–66] give us the perfect opportunity for
the consistency check of the NJL model. As in our previous
work [53], we have tried to rectify the regularization issues
within NJL model to deal with the cutting of important
degrees of freedom near the Fermi surface because of a
sharp ultraviolet cutoff [67–69]. Besides the commonly
used traditional regularization scheme (TRS), we have
used the medium separation scheme (MSS) [67,70,71],
which properly separates the medium effects from diver-
gent integrals. For systems with high values of μI (∼Λ), the
role of MSS becomes more and more important.
The paper is organized as follows. In Sec. II, we discuss

the basic formalism of the three-flavor NJL model both
within TRS and MSS. In Sec. III, we present and discuss

our results obtained with the traditional regularization
scheme and with the medium separation scheme, for both
zero and finite temperature. Thermodynamic results and the
T − μI phase diagram are also presented and compared
with the other state-of-the-art calculations.

II. FORMALISM

We start with the partition function for the three-flavor
NJL model at finite baryonic and isospin chemical poten-
tial, given by

ZNJLðT; μB; μI; μSÞ

¼
Z

½dψ̄ �½dψ � × exp

�Z
β

0

dτ
Z

d3xðLNJL þ ψ̄ μ̂γ0ψÞ
�
;

ð2:1Þ

where the quark chemical potential matrix in flavor space is

μ̂ ¼

0
B@

μu 0 0

0 μd 0

0 0 μs

1
CA; ð2:2Þ

and μu;d;s can be expressed in terms of the baryonic, the
isospin, and the strangeness chemical potential as

μu ¼
μB
3
þ μI

2
; ð2:3Þ

μd ¼
μB
3
−
μI
2
; ð2:4Þ

μs ¼
μB
3
− μS; ð2:5Þ

such that μI ¼ ðμu − μdÞ.1 LNJL appearing in Eq. (2.1) is
the NJL Lagrangian considering scalar and pseudoscalar
interactions, i.e.,

LNJL ¼ ψ̄ði=∂ −mÞψ þ G
XN2
f−1

α¼0

½ðψ̄λαψÞ2 þ ðψ̄iγ5λαψÞ2�

− K½det ψ̄ð1þ γ5Þψ þ det ψ̄ð1 − γ5Þψ �; ð2:6Þ

where ψ ¼ ðudsÞT and m ¼ diagðmu;md;msÞ represent
the quark fields and their current mass, respectively, and G
is the scalar coupling constant of the model from the four-
fermion interaction. The last term is the KMT term which
represents the breaking of the flavor symmetry in the chiral
limit due to UAð1Þ anomaly. K is also known as the UAð1Þ
breaking strength.

1We would like to point out here that Ref. [53] has typos in the
definitions of μu=d and in the dispersion relation, where μI should
be replaced by μI=2.
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Next, in the mean field approximation, we introduce the
chiral condensates

σl ¼ σu=d ¼ −4Ghūui=hd̄di; σs ¼ −4Ghs̄si ð2:7Þ

and the pseudoscalar pion condensate

Δ ¼ 2ð2G − KσsÞhūiγ5di; ð2:8Þ

whereΔ can be considered as real without loss of generality
as the related phase factor can be arbitrarily chosen due to
the spontaneously broken UIð1Þ symmetry2 [29]. In terms
of these condensates, the thermodynamic potential for
Nf ¼ 2þ 1 in the mean field approximation is given as

Ωðσl; σs;ΔÞ ¼
2σ2l þ σ2s

8G
þ Kσsσ

2
l

16G3

þ
�
Gþ Kσs

4G

�
×

Δ2

ð2Gþ Kσs
4G Þ2

− 2Nc

Z
Λ

k
½Eþ

k þ E−
k þ Es

k þ 2T

× ln fð1þ e−βE
−
k Þð1þ e−βE

þ
k Þð1þ e−βE

s
kÞg�;
ð2:9Þ

with E�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEl

k � μI
2
Þ2 þ Δ2

q
with El

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

l

q
and

Es
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

s

p
and the symbol

R
Λ
k indicates three

momentum integrals that need to be regularized.
Different effective masses Ml and Ms are defined as

Ml ¼ ml þ σl þ
Kσlσs
8G2

; ð2:10Þ

Ms ¼ ms þ σs þ
Kσ2l
8G2

þ K
2

Δ2

ð2Gþ Kσs
4G Þ2

; ð2:11Þ

whereml ¼ mu ¼ md andms are the current quark masses.
The ground state at finite temperature and isospin chemi-

cal potential is determined by minimizing Ωðσl; σs;ΔÞ
with respect to σl, σs, and Δ, i.e., by solving ∂Ω=∂σl ¼∂Ω=∂σs ¼ ∂Ω=∂Δ ¼ 0.
In the following subsections, we discuss in more details

different ways of regularizing these integrals. The thermo-
dynamic quantities, i.e., the pressure, the isospin density,
and the energy density of the system are then, respectively,
given by

PNJL ¼ −ΩNJLðσl=s ¼ σ0l=s;Δ ¼ Δ0Þ; ð2:12Þ

hnIiNJL ¼ ∂PNJL

∂μI ; ð2:13Þ

εNJL ¼ −PNJL þ μIhnIiNJL þ T
∂PNJL

∂T : ð2:14Þ

Finally, the interaction measure (or trace anomaly) within
the NJL model is given by the relation between PNJL and
εNJL, i.e.,

INJL ¼ εNJL − 3PNJL: ð2:15Þ

A. Regularization

Due to the nonrenormalizable nature of the NJL model,
any physical quantity determined in its framework will be
dependent on the scale of the model Λ. In the SU(2)
version, the usual regularization schemes consist in to
determine Λ, the coupling constant G, and current quark
massmu ¼ md ¼ mc that reproduce the empirical values of
the pion massmπ , the pion decay constant fπ , and the quark
condensate hψ̄ψi. Since our aim is to compare our results
with lattice simulations, we have used two different sets of
parameters, for T ¼ 0 and T ≠ 0, as can be seen in Table I.
The SU(3) case is much more complicated; the pro-

cedure is shown in details in the Appendix and the values
obtained are shown in Table II. The two sets represent the
parameters we use for two different cases, set I for the case
of zero temperature and set II for the case of finite
temperature, following the value of mπ used by lattice
QCD, respectively, for both the cases.
The fact that all physical quantities are dependent on Λ

does not mean that we can just naively use this cutoff in all
integrals, since it may lead to incorrect results. In this work,
we compare the results of two different schemes, namely,
the TRS and the MSS. The TRS is the most common in
NJL studies and consists only in to perform up to Λ the
integrals that do not depend on the temperature, e.g., the
first three terms between brackets of the integral in Eq. (2.9)
and its correspondents in the gap equations and thermo-
dynamic quantities, while thermal integrals are performed
up to infinity.

TABLE I. Different parameter sets are listed, which have been
used in the present study for SU(2) case.

Sets Input parameters Output parameters

I fπ ¼ 93 MeV Λ ¼ 659.325 MeV
mπ ¼ 131.7 MeV G ¼ 2.07835=Λ2

hψ̄ψi1=3 ¼ 250 MeV mc ¼ 4.757 MeV

II fπ ¼ 92.4 MeV Λ ¼ 659.325 MeV
mπ ¼ 135.5263 MeV G ¼ 2.07691=Λ2

hψ̄ψi1=3 ¼ 250 MeV mc ¼ 4.93651 MeV

2It is important to note here that in this work we are not
considering kaon condensation as we are working in the limit of
vanishing baryonic and strangeness chemical potentials, i.e.,
μB ¼ μS ¼ 0.
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On the other hand, MSS provides a tool to disentangle all
the medium dependencies from divergent contributions,
so that only vacuum integrals remain to be regularized.
This scheme has been applied to the NJL model and
successfully shows qualitative agreement with lattice sim-
ulations and more elaborated theories, as might be seen in
Refs. [53,67,70,71]. Let us start, e.g., from integral IΔ of Δ
gap equation

IΔ ¼
X
j¼�1

Z
Λ

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEl

k þ jμÞ2 þ Δ2
q ; ð2:16Þ

whose TRS version is obtained just by making the
replacement

R
Λ

d3k
ð2πÞ3 →

R Λ
0 dk k2

2π2
. To use MSS, we first

rewrite

IΔ ¼ 1

π

X
j¼�1

Z þ∞

−∞
dx

Z
Λ

d3k
ð2πÞ3

1

x2 þ ðEl
k þ jμÞ2 þ Δ2

;

ð2:17Þ

where, to ease the notation, we made the replacement
μI=2 → μ. After two iterations of the following identity

1

x2 þ ðEl
k þ jμÞ2 þ Δ2

¼ 1

x2 þ k2 þM2
0

þ M2
0 − Δ2 − μ2 −M2 − 2jμEl

k

ðx2 þ k2 þM2
0Þ½x2 þ ðEl

k þ jμÞ2 þ Δ2� ; ð2:18Þ

where M0 is the vacuum mass of light quarks, obtained in
the T ¼ μ ¼ Δ ¼ 0 limit, we obtain

X
j¼�1

1

x2 þ ðEl
k þ jμÞ2 þ Δ2

¼ 2

x2 þ k2 þM2
0

þ 2M
ðx2 þ k2 þM2

0Þ2

þ 2M2 þ 8μ2ðEl
kÞ2

ðx2 þ k2 þM2
0Þ3

þ
X
j¼�1

ðM − 2jμEl
kÞ3

ðx2 þ k2 þM2
0Þ3½x2 þ ðEl

k þ jμÞ2 þ Δ2� ;

ð2:19Þ

where we have defined M ¼ M2
0 − Δ2 − μ2 −M2

l . After
some manipulations and performing the integration in x
indicated in (2.17), we obtain

IMSS
Δ ¼ 2IquadðM0Þ − ðM2

l −M2
0 þ Δ2 − 2μ2ÞIlogðM0Þ

þ
�
3ðM2 þ 4μ2M2

l Þ
4

− 3μ2M2
0

�
I1 þ 2I2; ð2:20Þ

with the definitions

IquadðM0Þ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

0

p ; ð2:21Þ

IlogðM0Þ ¼
Z

d3k
ð2πÞ3

1

ðk2 þM2
0Þ

3
2

; ð2:22Þ

I1 ¼
Z

d3k
ð2πÞ3

1

ðk2 þM2
0Þ

5
2

; ð2:23Þ

I2 ¼
15

32

X
j¼�1

Z
d3k
ð2πÞ3

Z
1

0

dtð1 − tÞ2

×
ðM − 2jμEl

kÞ3
½ð2jμEl

k −MÞtþ k2 þM2
0�

7
2

: ð2:24Þ

A similar procedure can be used to obtain the integrals of
other quantities,

Iσl ¼
X
j¼�1

Z
Λ

d3k
ð2πÞ3

1

El
k

El
k þ jμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEl
k þ jμÞ2 þ Δ2

q ; ð2:25Þ

InI ¼
X
j¼�1

Z
Λ

d3k
ð2πÞ3 j

El
k þ jμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEl
k þ jμÞ2 þ Δ2

q ; ð2:26Þ

Iσs ¼
Z
Λ

d3k
ð2πÞ3

1

Es
k
: ð2:27Þ

TABLE II. Different parameter sets are listed, which have been
used in the present study for SU(3) case.

Sets Input parameters Output parameters

I fπ ¼ 93 MeV Λ ¼ 574.68 MeV
mπ ¼ 131.7 MeV G ¼ 2.2066=Λ2

mK ¼ 490 MeV K ¼ 10.426=Λ5

mη ¼ 950 MeV ms ¼ 140 MeV
ml ¼ 5.3 MeV

II fπ ¼ 92.4 MeV Λ ¼ 608.431 MeV
mπ ¼ 135.5263 MeV G ¼ 1.782=Λ2

mK ¼ 497.7 MeV K ¼ 12.8525=Λ5

mη ¼ 957.8 MeV ms ¼ 140.305 MeV
ml ¼ 5.5 MeV
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Since the steps to obtain these integrals for MSS are
described in detail in previous references [53,70,71], here
we will just show the final results of each of these integrals,

IMSS
σl ¼ 2IquadðM0Þ − ðM2

l −M2
0 þ Δ2ÞIlogðM0Þ þ I3

þ 3

�
M2

4
þ μ2ðM2

l −M2
0 −MÞ

�
I1 þ 2I2; ð2:28Þ

IMSS
nI ¼ 2μΔ2IlogðM0Þ

× 3μ

�
M2

4
þMðM2

0 −M2
l Þ þM2

l μ
2 þ 2μ2M2

0

3

�
I1

þ 2μI2 −
5μM2

l

4
½3M2 þ 4μ2M2

l �I4

þ 5μ

4
ð4μ2ðM2

0 − 2M2
l Þ − 3M2ÞI5 þ I6; ð2:29Þ

IMSS
σs ¼ IquadðM0sÞ þ

M2
0s −M2

s

2
IlogðM0sÞ þ I7; ð2:30Þ

where M0s is the vacuum strange quark mass, obtained in
the T ¼ μ ¼ Δ ¼ 0 limit, and the remaining definitions,

I3 ¼
15

16

X
j¼�1

Z
d3k
ð2πÞ3

Z
∞

0

t2dtffiffiffiffiffiffiffiffiffiffi
1þ t

p

×
1

El
k

jμðM − 2jμEl
kÞ3

½ðk2 þM2
0Þtþ ðEl

k þ jμÞ2 þ Δ2�72 ; ð2:31Þ

I4 ¼
Z

d3k
ð2πÞ3

1

ðk2 þM2
0Þ

7
2

; ð2:32Þ

I5 ¼
Z

d3k
ð2πÞ3

k2

ðk2 þM2
0Þ

7
2

; ð2:33Þ

I6 ¼
35

32

X
j¼�1

Z
d3k
ð2πÞ3

Z
∞

0

t3dtffiffiffiffiffiffiffiffiffiffi
1þ t

p

×
jEl

kðM − 2jμEl
kÞ4

½ðk2 þM2
0Þtþ ðEl

k þ jμÞ2 þ Δ2�92 ; ð2:34Þ

I7 ¼
3

4

Z
d3k
ð2πÞ3

Z
∞

0

tdtffiffiffiffiffiffiffiffiffiffi
1þ t

p

×
ðM2

0s −M2
sÞ2

½ðk2 þM2
0sÞtþ k2 þM2

s �52
: ð2:35Þ

Note that integrals I1 to I7 are all finite and must be
performed up to infinity in k. This is the fundamental
difference between TRS, where we cut the whole integral
in the cutoff Λ, and MSS, where all finite medium
contributions are separated and performed for the whole
momentum range.
Finally, the MSS expression for the normalized thermo-

dynamic potential reads

ΩMSS
NJL ðσl; σs;ΔÞ ¼

2σ2l þ σ2s
8G

þ Kσsσ2l
16G3

þ
�
Gþ Kσs

4G

�
Δ2

ð2Gþ Kσs
4G Þ2

− 2Nc

�
M̃IquadðM0Þ þ

M2
s −M2

0s

4
IquadðM0sÞ

−
1

4
ðM̃2 − 4μ2Δ2ÞIlogðM0Þ −

M2
s −M2

0s

8
IlogðM0sÞ þ

Z
d3k
ð2πÞ3

�
M̃2 − 4μ2Δ2

4ðEl
k;0Þ3

−
M̃
El
k;0

− 2El
k;0

þ Es
k − Es

k;0 −
M2

s −M2
0s

2Es
k;0

þ ðM2
s −M2

0sÞ2
8ðEs

k;0Þ3
þ
X
j¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEl

k þ jμÞ2 þ Δ2

q ��
; ð2:36Þ

with the definitions M̃¼Δ2þM2
l −M2

0, Ek;0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þM2

0

p
,

and Es
k;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

0s

p
.

III. RESULTS AND DISCUSSIONS

In this paper, we have considered the SU(3) version of
the NJL model at finite isospin imbalance incorporating
the strange quark sector and the KMT determinant for
both the zero and finite temperature cases. Thus, we have
extended our previous study of the QCD equation of state
at nonzero isospin density and zero temperature within
the SU(2) version of the Nambu–Jona-Lasinio model.
Besides, in this work, we have also considered for the
SU(2) model the effects of finite temperature in order to

perform a complete comparison between the two versions
of the NJL model.
The effects of the regularization scheme are discussed in

details. We have used two alternative approaches for the
regularization of the nonrenormalizable NJL model, the
first one, which we have named TRS, is the most frequently
found in the literature where the ultraviolet divergences are
regularized through a sharp three-dimensional (3D) cutoff,
as shown in Sec. II. It is important to point out that the TRS
approach does not disentangle finite medium contributions
from the infinity vacuum term and physically meaningful
contributions are usually discarded. The second scheme,
which we named MSS, is capable of disentangling exactly
the vacuum divergent term from the finite medium ones and
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only the truly divergent vacuum is regularized through a
sharp 3D cutoff. It will be discussed in what follows how
dependent are the observables on the chosen regularization
scheme and which one is the more appropriated for each
particular situation.
The most important first principle approach to QCD in the

nonperturbative regime is the lattice QCD simulation. Since
for the finite isospin scenario no sign problem is found in the
LQCD calculations, whenever possible, our results are
compared with recent LQCD data. In order to make possible
such comparisons, we have had to fit the SU(2) and the
SU(3) NJLmodel parameters according to the pion mass and
pion decay constant adopted in LQCD calculations. In
Tables I and II, our fitted parameters are shown for the
SU(2) and SU(3) NJL models, respectively. To compare our
results with lattice simulations, we used Set I for zero
temperature and Set II for finite temperature cases. The
fitting procedure for the SU(3) version of the NJL model is
more involved and due to this fact we have included some
details of this parametrization procedure in the Appendix.
Next, we discuss our results for the SU(2) and SU(3)

NJL models at finite isospin density and zero and finite
temperature using the TRS and MSS regularization
schemes. At this point, we would like to emphasize the
fact that the results for finite isospin and zero temperature
within the SU(2) NJL model have been obtained in our
previous paper [53]. However, they are shown here for a
complete comparison between the NJL model versions as
we have extended the zero temperature results for the SU(3)
case. The finite temperature extension, however, is a
completely new addition in this present work, which has
been done here for both SU(2) and SU(3) cases.

A. Zero temperature results

We start by showing our zero temperature SU(3) results,
Fig. 1, for the chiral and pion condensates, which have been
evaluated, respectively, according to the equations

Σψ̄ψ ¼ ml

m2
πf2π

�
σl − σ0l
2G

�
þ 1; ð3:1Þ

Σπ ¼
ml

m2
πf2π

Δ
2Gþ K σs

4G

; ð3:2Þ

as a function of the isospin chemical potential μI for both
the TRS and MSS approaches. Here it is worth to mention
that the chiral condensate in Eq. (3.1) does not include the
contribution from the strange quarks. We have used the
same definitions for these quantities as LQCD [49,52], as
we have compared our results against them for the case
of finite temperature.3 Our results show that the difference
between both approaches increases at higher μI, where the
condensates calculated in the MSS scheme are systemati-
cally lower than the corresponding ones calculated within
the TRS scheme.
The results for the normalized pressure are shown in

Fig. 2 as a function of the isospin chemical potential. The
normalized pressure pN is defined as

pN ¼ PNJLðT; μIÞ − PNJLðT; μI ¼ 0Þ; ð3:3Þ

where PNJL is defined in Eq. (2.12). It is apparent of this
latter figure that compared to the LQCD results [54], the
SU(3)-NJL is better in the MSS scheme (dotted lines) than
in the TRS scheme (dashed lines), at least, for μI ≤ 2mπ. It
is also apparent from Fig. 2 that the SU(2)-NJL results [53]
agree slightly better with LQCD data than the SU(3) ones
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FIG. 1. Chiral and pion condensates as functions of μI at T ¼ 0,
evaluated according to Eqs. (3.1) and (3.2), for TRS and MSS.
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FIG. 2. Normalized pressure pN as a function of μI at T ¼ 0,
for SU(2) (solid and dot-dashed lines) and SU(3) (dashed and
dotted lines) comparing TRS, MSS, and lattice results from
Ref. [54] (small dots).

3Note that there is an apparent 1
2
factor difference between

our definition of the condensates and the definition given in
Refs. [49,52], like it has been done in Ref. [20]. This has been
done to compensate for the same factor in our definitions of
σl and Δ.
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and the differences between TRS and MSS are less
important in this case.
The results for the isospin density [see Eq. (2.13)] as a

function of μI at T ¼ 0 are shown in Fig. 3. Although the
lattice data points are few, one can see that for small μI the
SU(3)-NJL model using the MSS scheme is in better
agreement with LQCD results [54]. Nevertheless, when
μI increases, the SU(3)-NJL model in the TRS scheme
seems to be closer to the LQCD results. As compared to the
SU(2)-NJL model results, the MSS scheme is closer to
lattice data for μI=mπ < 1.6. Thus, for both SU(2) and
SU(3) versions of NJL, it seems that for larger isospin
chemical potential the TRS scheme is closer to lattice data.
If one considers the overall trend of the lattice data, the
SU(2)-NJL model seems to reproduce better the lattice
data, as already noticed in our discussion of the behavior
of the pressure. We mention here that it would be highly
desirable to get more lattice data in order to better
distinguish the differences among the versions of NJL
and regularization schemes.
Next up in Fig. 4, we show the scaled energy density [see

Eq. (2.13)] as a function of the scaled μI chemical potential
for the SU(3)-NJL model and T ¼ 0. The energy density is
scaled with its ideal or the Stefan-Boltzmann limit for finite
μI and μB ¼ T ¼ 0, given by [72]

εSBðμIÞ ¼
NcNf

4π2
μ4I
16

: ð3:4Þ

A comparison with the perturbative QCD calculation [72]
is performed for larger values of μI . Some care is necessary
when using NJL for larger μI, since we have the Λ cutoff as
a natural momentum scale which makes the model quanti-
tatively trusty for scales ≤ 4mπ; nevertheless, only quali-
tative conclusions can be done extrapolating such limit.

However, it is clear from the latter figure that the MSS
scheme follows the trend of pQCD for higher values of μI .
Moreover, one clearly sees in the inset of Fig. 4 that the
Stefan-Boltzmann limit is expected to be achieved only in
the MSS scheme.
We finish our discussions on the zero temperature results

showing in Fig. 5 the normalized interaction measure ΔI as
a function of the scaled isospin chemical potential. The
normalized interaction measure ΔI is defined as

ΔI ¼ INJLðT; μIÞ − INJLðT; μI ¼ 0Þ; ð3:5Þ

where INJL is defined in Eq. (2.15). As can be seen from
Fig. 5, the difference between the TRS (solid and dashed
lines) and MSS (dot-dashed and dotted lines) results for
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FIG. 3. Isospin density nI as a function of μI at T ¼ 0, for
SU(2) (solid and dot-dashed lines) and SU(3) (dashed and dotted
lines) comparing TRS, MSS, and lattice results from Ref. [54]
(small dots).
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both SU(2) and SU(3) is small, but the MSS results appear
closer to the LQCD results [54,66].
At zero temperature, we observe the general trend that

the agreement between lattice and NJL results is better
for two flavor at larger values of μI and for three flavor at
lower values of μI . Similar observations can also be found
in recent χPT studies [19,20]. In the next subsection, we
discuss the results at finite temperature and isospin chemi-
cal potential.

B. Finite temperature results

At finite temperature, we begin with Fig. 6, where
the chiral and pion condensates as a function of the
temperature calculated at fixed isospin chemical potential
(μI ¼ 0.206 GeV) are shown. In the latter figure, results for
the SU(3)-NJL model using both the MSS and TRS
schemes are compared. One clearly sees that the melting
temperature is larger in the MSS scheme compared to the
TRS one for both condensates. However, the pion con-
densate melting is a second order phase transition with the
critical temperature ∼158 MeV for TRS and ∼173 MeV
for MSS. On the other hand, the corresponding chiral
condensate behavior signals a crossover. Below a certain
temperature (around ∼165 MeV for μI ¼ 206 MeV) the
TRS result for the chiral condensate supersedes the MSS
result, whereas after that temperature the TRS result
decreases more rapidly than the MSS result.
Next, we discuss about our findings for the thermody-

namic quantities. In Fig. 7, the results are shown for the
normalized pressure, Eq. (3.3), as a function of the isospin
chemical potential for three different temperatures, which
have been chosen because they are available in LQCD
simulations [49,52,64,65]. The results have been shown for
both SU(2) and SU(3)-NJL model within the TRS andMSS
schemes. For larger values of μI, the SU(3)-NJL model
within the TRS scheme is closer to the LQCD results,
although the agreement is better for lower temperatures.

For each of the plots, we have also displayed an inset,
where we show the results for smaller values of μI
(0.4mπ < μI < 1.6mπ) and in this case we observe that
the MSS and TRS schemes are closer to each other, and
for the largest temperature considered in this work the
SU(3)-NJL using the MSS scheme is slightly better. Here,
we notice a different behavior for finite temperature when
compared to the zero temperature case. For T ¼ 0, the
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FIG. 6. SU(3) chiral and pion condensates as functions of the
temperature T with μI ¼ 0.206 GeV for TRS and MSS.
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SU(2)-NJL results for the pN are in general in better
agreement with LQCD results (for TRS and MSS) than the
SU(3) NJL model.
In Fig. 8, the isospin density as a function of isospin

chemical potential is plotted for the same three temper-
atures as discussed above. We can observe a change of
slope in the isospin density for T ¼ 122 MeV and T ¼
149 MeV which is related to the formation of the pion

condensate, when Δ becomes nonzero. This change is not
present in the curves correspondent to T ¼ 179 MeV
because this temperature is high enough to prevent the
pion condensate to be formed. In this case, we have a
similar behavior as obtained for the normalized pressure,
i.e., the SU(3)-NJL with the TRS scheme gives a better
overall agreement with the LQCD results [49,52,64,65].
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For the lower temperature (T ¼ 122 MeV) considered
here, the SU(2)-NJL in TRS scheme gives good results.
As before, the inset plots show that the MSS and TRS are
very similar for low isospin chemical potential and the
SU(3)-NJL is the better model. At this point, we once
again stress the fact that the LQCD data for the isospin
density are not conclusive enough because of its scarcity
and oscillating nature.
Within the thermodynamic quantities we have also

shown the variation of the normalized interaction measure
ΔI [see Eq. (3.5)] as a function of isospin chemical
potential for three different temperatures in Fig. 9. In this
case though, instead of T ¼ 179 MeV, the highest
temperature we choose is T ¼ 168 MeV, based on the
availability of LQCD results [66]. For lower temperature
(T ¼ 122 MeV), it is apparent from Fig. 9 that both TRS
and MSS results for SU(2) and SU(3) fall within the
domain prescribed by LQCD. At T ¼ 149 MeV, for very
low μI, all the NJL results fall within the LQCD domain;
however, with increasing μI , only SU(3) TRS result
appears closer to LQCD result. For the higher temperature
considered in Fig. 9 (T ¼ 168 MeV), we can see that the
SU(2)-NJL results for TRS andMSS are more in agreement
with the LQCD results. It is worth to mention here that for
T ¼ 168 MeV at higher values of μI the pion condensate is
zero in TRS, which is not the case of MSS. The presence
of a nonzero Δ makes both pressure and energy density
smaller, and the change of slope is related to the isospin
density, as we discussed before (see Fig. 8).
We conclude our discussion for finite temperature

with the T − μI phase diagrams shown in Fig. 10 for both
SU(2) and SU(3). In each of the phase diagrams, we have
considered TRS andMSS results within NJL and compared
them with the available LQCD results [49,52,64,65]. We
notice that for both SU(2) and SU(3), TRS results appear
closer to LQCD for pion condensation and chiral crossover,
compared to MSS. For μI ¼ 0, the critical temperature for
the chiral phase transition within NJL is higher than the

same within LQCD, with maximum quantitative difference
of ∼16 MeV for SU(2) and ∼22 MeV for SU(3). On the
other hand, investigating the pseudo triple point, beyond
which both the phase transitions coincide, we find that the
pseudo triple points within MSS are closer to the LQCD
results compared to TRS, specially for SU(3)-NJL.
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APPENDIX: NJL SU(3) PARAMETRIZATION

In this appendix, the procedure used for the parametri-
zation of the NJL SU(3) model is discussed. Although we
use standard techniques, the expressions are not usually
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FIG. 10. T − μI phase diagram within NJL model, implementing both TRS and MSS and comparing SU(2) and SU(3) to lattice results
from Refs. [49,52,64,65].
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given in a friendly way in the literature [73–75]. Moreover,
having in mind to allow the reader to reproduce our
calculations, the essential expressions are given here. In
order to restrict the number of free parameters, we set the u
and d current quark masses equal, i.e.,mu ¼ md. Therefore,
we obtain by solving the self-consistent gap equations
that the corresponding constituent u and d quark masses
are also equal to each other, Mu ¼ Md. The free model
parameters are the coupling constants G and K, the current
s quark mass ms, and the cutoff parameter Λ. The value of
the mu ¼ md current quark mass is arbitrarily fixed. The
observables that are used in the fitting procedure are the
pion mass, the pion decay constant, the kaon mass, and
the η0 meson mass.

1. Gap equations

The gap equations for the NJL SU(3) model are given by

Mi ¼ mi − 4Gσi þ 2Kσjσk; ðA1Þ

with (ijk) being any cyclic permutation of (u; d; s), and the
condensate is defined as

σi ¼ hq̄iqii ¼ −iTr½SiðpÞ� ¼ −iTr
1

=p −Mi
:

After the explicit calculation of the trace in Dirac and color
spaces, one obtains

σi ¼ hq̄iqii ¼ −4MiIi1; ðA2Þ

with

Ii1¼
Nc

4π2

Z
Λ

0

p2dp
Ei

¼ Nc

8π2

�
ΛϵΛi −M2

i ln

�
ΛþϵΛi
Mi

��
; ðA3Þ

where Ei¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

i

p
and ϵΛi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

p
, i ¼ ðu; d; sÞ.

2. Pion and kaon masses and decay constants

The dispersion relations for the pion and kaon masses are
given by

1 − 2GπΠ
p
π ðQ2ÞjQ2¼m2

π
¼ 0; ðA4Þ

1 − 2GKΠ
p
KðQ2ÞjQ2¼m2

K
¼ 0; ðA5Þ

where Πp
π ¼ Πp

uu þ Πp
dd ¼ 2Πp

uu and Πp
K ¼ 2Πp

us are the
pseudoscalar polarization loops for the pion and kaon
mesons, respectively, which can be evaluated from the
general expression

Πp
ijðQ2Þ ¼ 2ððIi1 þ Ij1Þ − ½Q2 − ðMi −MjÞ2�Iij2 Þ; ðA6Þ

with Ii1 already given in Eq. (A3) and Iij2 is given by

Iij2 ðQ2Þ ¼ Nc

4π2

Z
Λ

0

p2dp
EiEj

Ei þ Ej

Q2 − ðEi þ EjÞ2
; ðA7Þ

whereas the modified couplings Gπ and GK for pions and
kaons, respectively, are given by

Gπ ¼ G −
1

2
Kσs; ðA8Þ

GK ¼ G −
1

2
Kσu: ðA9Þ

For the pion decay constant, we have

fπ ¼ gπq̄q
Qμ

Q2
iNc

Z
d4pTr

�
γμγ5Su

�
pþQ

2

�

× γ5Su

�
pþQ

2

��
;

and after the explicit calculation of the trace in the last
equation, one obtains

fπ ¼ −4Mugπq̄qðm2
πÞIuu2 ðm2

πÞ; ðA10Þ

where the coupling strength for the meson-quark-quark
interaction is given by

g−2πq̄qðm2
πÞ ¼

∂Πp
π

∂Q2

				
Q2¼m2

π

¼ 2
∂Πp

uu

∂Q2

				
Q2¼m2

π

: ðA11Þ

The last expression follows from the derivative of Eq. (A6),

∂Πp
uu

∂Q2
¼ −2Iuu2 − 2Q2

∂
∂Q2

Iuu2 :

3. η and η0 mesons

For the case of η and η0 meson, the inverse mesonic
propagator assumes a matrix form [73]

D−1 ¼ 1

2
K−1 − Π; ðA12Þ

where the effective coupling matrixK and the mesonic self-
energy Π for the η − η0 system are given by the matrices

Π ¼
�Π00 Π08

Π08 Π88

�
; K ¼

�
K00 K08

K08 K88

�
;

K−1 ¼ 1

detK

�
K88 −K08

−K08 K00

�
; ðA13Þ

where the determinant of K is given by detK ¼ K00K88 −
K2

08 and the specific components are given by
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K00 ¼ Gþ 1

3
Kð2σu þ σsÞ; ðA14Þ

K88 ¼ G −
1

6
Kð4σu − σsÞ; ðA15Þ

K08 ¼ K80 ¼ −
ffiffiffi
2

p

6
Kðσu − σsÞ; ðA16Þ

and

Π00 ¼
2

3
½2Πp

uuðQÞ þ Πp
ssðQÞ�; ðA17Þ

Π88 ¼
2

3
½Πp

uuðQÞ þ 2Πp
ssðQÞ�; ðA18Þ

Π08 ¼ Π80 ¼
2

ffiffiffi
2

p

3
½Πp

uuðQÞ − Πp
ssðQÞ�: ðA19Þ

So, finally the inverse propagator is given by

D−1 ¼ 1

2 detK

�
A B

B C

�
; ðA20Þ

with

A ¼ K88 − 2 detKΠ00; ðA21Þ

B ¼ −ðK08 þ 2 detKΠ08Þ; ðA22Þ

C ¼ K00 − 2 detKΠ88: ðA23Þ

Diagonalizing D−1, we get

D−1 ¼ 1

2 detK
O−1

�D−1
η 0

0 D−1
η0

�
O; ðA24Þ

where the diagonalizing orthogonal matrix O is given by

O ¼
�

cos θp sin θp
− sin θp cos θp

�
; tanð2θpÞ ¼

2B
A − C

;

and the diagonal elements now represent the dispersion
relations for η and η0 mesons, i.e.,

D−1
η ¼ ðAþ CÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC − AÞ2 þ 4B2

q
; ðA25Þ

D−1
η0 ¼ðAþ CÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC − AÞ2 þ 4B2

q
: ðA26Þ

The masses of the η and η0 meson can now be determined
from the equations

D−1
η ðQ ¼ mηÞ ¼ 0; ðA27Þ

D−1
η0 ðQ ¼ mη0 Þ ¼ 0: ðA28Þ

At this point, we want to note that mη can be evaluated
from Eq. (A27) by using the integrals from Eqs. (A3) and
(A7). But as η0, in general, exists above the q̄q continuum,
Eq. (A28) has complex poles, which we can assume to
be of the form, Q ¼ Q0 ¼ mη0 − 1

2
iΓ, with Γ being the

width of the η0 resonance. In the latter case, the calculation
of A, B, and C in Eq. (A26) can be readily done making in
Eq. (A6) the replacement

Q2Iii2 → ½m2
η0ReI

ii
2 þmη0ΓImIii2 � þ i½m2

η0ImIii2 −mη0ΓReIii2 �;
ðA29Þ

where terms of order Γ2 have been neglected [74]. (For
some other studies where Γ2 terms have not been neglected,
see [75].) Then, after substituting the latter expression in
Eq. (A6), one obtains

Πp
iiðQ2Þ ¼ ReΠp

iiðQ2Þ þ iImΠp
iiðQ2Þ;

where

ReΠp
iiðQ2Þ ¼ 4Ii1 − 2ðm2

η0ReI
ii
2 þmη0ΓImIii2 Þ;

ImΠp
iiðQ2Þ ¼ 2ðmη0ΓReIii2 −m2

η0ImIii2 Þ: ðA30Þ

The real and imaginary parts of the integral Iii2 can be
obtained from Eq. (A7) by using the Sokhotski-Plemelj
formula

limϵ→0

1

x − iϵ
¼ P

1

x
þ iπδðxÞ; ðA31Þ

where P stands for the Cauchy principal value and this
formula makes sense only when integrated in x. Then, one
obtains

ReIii2 ðQÞ ¼ Nc

2π2
P
Z

Λ

0

p2dp
Ei

1

Q2 − 4E2
i

ImIii2 ðQÞ ¼ Nc

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
i

Q2

s
;

where in these expressions we assume that Q ¼ mη0

and mη0 > 2Mi.
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