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Radiative corrections in the Yukawa model within the null-plane causal
perturbation theory framework
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Practical calculations in light-front dynamics are, as a general rule, complicated, since there is no
consensus about how to treat the poles which come from the instantaneous parts of Feynman’s propagators
of the fields. An alternative to solve this difficulty is null-plane causal perturbation theory, a recent
developed framework which prevents the appearance of the mentioned poles by avoiding the usage of
Feynman’s propagators in “loop distributions,” requiring no regularization of the amplitudes. In this study,
we treat the radiative corrections in the neutral Yukawa’s model in that framework. Particularly, we
explicitly calculate the boson and fermion self-energies and show that the results obtained with this
approach are equivalent to that of the instant dynamics.
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I. INTRODUCTION

As is well known, Yukawa’s model [1-4] is a phenom-
enological model for the interaction between nucleons and
pions. It was studied in light-front dynamics by Chang and
Yan [5] in 1973 by using Schwinger’s functional derivative
method. The problem of finding the fermion self-energy for
an analogous model, with scalar instead of pseudoscalar
mesons [6], in light-front dynamics was also recently
considered by Karmanov, Mathiot, and Smirnov [7]; these
investigators pointed out some difficulties: (i) the cutoffs
of the null-plane variables lead to a dependence of the
amplitudes on the null-plane orientation in some regulari-
zation techniques; (ii) such a dependence is very sensitive
because each partial amplitude in light-front dynamics
usually diverges more strongly than the corresponding
Feynman’s amplitude; (iii) that dependence disappears in
the renormalized amplitudes, but the renormalization pro-
cedures are drastically different for different regularization
schemes. Also, Bakker and Ji [8] have considered box
diagrams for light-front (scalar) Yukawa’s model; they
conclude that the question of what regularization scheme
is the one which would lead to an invariant S-matrix remains,
to date, without an answer. Another study in this problem
was done by Grang, Mathiot, Mutet, and Werner [9-11],
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which considered the distributional character of the quan-
tized fields and used Taylor-Lagrange’s regularization in
order to make finite the Feynman’s amplitudes.

Recently, the authors have developed causal perturbation
theory (CPT) on light-front dynamics [12,13], a perturbation
solution to Bogoliubov-Medvedev-Polivanov’s axioms [ 14—
16] for Heisenberg’s S-matrix program [17] which is ultra-
violet finite and aims to clarify, by introducing from the very
beginning the causality axiom, referred to as the x* time
coordinate, and performing—following Epstein and Glaser
[18]—well-defined distributional operations only, the true
meaning of the instantaneous terms which appear both in the
propagators and Hamiltonian in the usual formulation of
light-front quantum field theory (QFT)—see, for example,
Ref. [19]. This approach is inspired in the analogous instant
dynamics formulation of CPT [18,20-24]. In this paper we
reexamine the radiative corrections for the neutral Yukawa’s
model [15], which in the usual approach lead to the already
commented ambiguities regarding the regularization proc-
esses. In the causal approach, being finite by construction,
those operations are not needed; therefore, since they are
identified as the origin of some problems, we hope that null-
plane CPT could make simpler the comparison of light-front
QFT with the wusual instant dynamics formulation.
Additionally, in Ref. [13] it was shown that the singular
order of every causal distribution in null-plane Yukawa’s
model is the same as in instant dynamics, and, accordingly,
the normalization procedure in this theoretical framework is
not more difficult, but, in fact, it is the same.

Also regarding the invariance of the S-matrix to all
orders null-plane CPT can shed some light: As an inductive
theory, each causal distribution at each order is constructed
with the previous transition distributions; since these must
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be already normalized, the instantaneous terms do not
propagate to the following orders. In order to familiarize the
reader with null plane CPT we present a very brief
summary at next—the details of the construction of the
theory can be found in Ref. [13].

A. Null-plane causal perturbation theory

CPT uses the operation of adiabatic switching [15], which
consists in multiply the coupling constant of the interaction
theory by a switching function g € S(R*):R* - R, in
order to isolate the problem of infrared divergences; for
Yukawa’s model, in which the meson is massive, there are no
infrared divergences and the adiabatic limit g — 1, by means
of which the real interaction is recovered, is trivial.

The general properties that the scattering operator S(g)
must respect constitute the Bogoliubov-Medvedev-
Polivanov axioms [14-16]; however, following Epstein
and Glaser [18], we only consider the axioms which will
be used for the construction of CPT: (i) translation invari-
ance and (ii) causality—now referred to the x* null-plane
time. The remaining axioms are not needed for the theo-
retical construction but will be considered as physical
conditions for the normalization of the solutions; they are
(iii) unitarity, (iv) Lorentz’s invariance, and (v) when pos-
sible, vacuum stability, which in CPT is related to the
problem of the adiabatic limit.

CPT is a perturbation theory; therefore the S(g) operator
is written as the following series:

_1+Z /dXT (1)

with X := {x; € M|j = 1,...,n} and the notations:
Tu(X)=Tu(x- %), 9(X)=glxr) - g(x),

dX = d*x, - - d*x,,. (2)

Equation (1) serves as the definition of the operator-valued
distributions T, (x;;---;x,) € S'(R*), called transition
distributions of order n or n-point distributions.

The inverse operator S(g)~! is given as a perturbation
series as well:

_1+Z /dXT

The causality axiom implies that the transition distribu-
tions are chronologically ordered:

T,X)=T,(X>)T,_.(X;) for X; < Xy; (4)

[T,(X);T,(Y)]=0 forX~Y. (5)

This result as a consequence of the causality axiom
was first established by Bogoliubov and Shirkov [15].
However, they failed in the way of chronologically ordering
these products: They took the product by Heaviside’s
functions in order to make contact with the more usual
formulation of QFT by Feynman and others, and then
arrived at the same ultraviolet divergences. To see how
extremely important it is to take care in performing such
multiplications, let us consider as an example the distri-
bution §(x). Its product by a Heaviside’s function ®(x) has
Fourier’s transform:

@m»:@@*ﬂ/mﬂmﬁ@—m

dq
= i(27)73/2
im0 [ o

which is ultraviolet divergent. It was Bogoliubov and
Parasiuk [25] who discovered that the ultraviolet divergen-
ces in QFT are due to the presence of products of
distributions with discontinuous functions as Heaviside’s.
Epstein and Glaser, then, modified the prescription of
chronological order: To obtain the transition distribution
they did not use that ill-defined recipe but the causality
axiom to perform the following (distributional) well-
defined construction: Define the advanced distribution of
order n as the following distribution:

=Y T.(x

XuX'=y
Xnx'=¢

n(Y:x,) Thm(X U{x}),  (6)

and the retarded distribution of order n as

Rn(Y; xn) = Z Tn—m(X/ U {xn})Tm(X) (7)

Xux'=y
Xnx' =g

In the sums in Eqs. (6) and (7) the n-point distribution
appears once. Separating it from the other terms:

Ay (Yixy) =T, (Y U{x,}) + A, (Y5 x,), (8)

Ry (Y;x,) = Tu(Y U {x,}) + Ry(Ysx),  (9)

with the following definitions of the advanced subsidiary
distribution and of the retarded subsidiary distribution,
respectively:

A/ Y; xn = n m X/ U {xn}) (10)

§ Tm
Xux'=y

XnX'=¢f
X0
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R,(Y;x,)

= ST, (X U DTA(X). (1)

xux'=y
Xnx' =g
X+0

These subsidiary distributions do not contain 7', but only
the transition distributions 7',, with m < n — 1. The tran-
sition distribution of order n is then equal to

T,(YU{x,})=
- Rn(Y;xn) - R;:(Y; xn)’ (12)

In this way, the n-point distribution can be found if we
know the distributions 7,, with m < n — 1—this is the
inductive hypothesis—and the advanced or retarded dis-
tribution of order n, which can be found by splitting
[26-28] the causal distribution of order n:

D,(Y;x,) =
= R, (Y;x,) = AL(Y;x,), (13)

which is known once the subsidiary distributions are. The
splitting procedure is based on the results: (i) the support of
the retarded (respectively, advanced) distribution is con-
tained in [29] ' (x,,), and (ii) the support of D,, is causal
for n > 3, while for n =2 it must be proven in each
particular model. It must be done as follows: Suppose that
the causal distribution of order n was already constructed
by means of the inductive procedure, and that it has causal
support. In general, it will have the following form:

D xl,-- WX

Zd X5 X Ck( )" (14)

with @ (x;;---;x,) a numerical distribution and : C;(u”):
a Wick’s monomial of the different quantized free operator
fields u” of the theory. Since these operator fields do not
restrict the support of the complete distribution—they are
defined in all Minkowski’s space-time—it is sufficient to
consider the split of the numerical distribution d%, whose
support, then, is causal by hypothesis. Also the advanced
and retarded distributions will maintain the operator fields
structure of the causal distribution:

An(xl;" X Za X5 X Ck( )" (15)

Ry(xisee3%,) = > rh(ogs -

k

;xn):ck(uA):’ (16)

with @ and rX the advanced and retarded parts, respec-
tively, of the numerical distribution d%. Using the transla-
tional invariance, define the numerical distribution
d € S(R*4) as

d(x) = d]r{l(xl —Xps i Xp—1 T Xn;O); (17)

supp(d) €T, (0) U T, (0). (18)
which will be split as

d =r—a;supp(r) CT,_(0),supp(a) CT;,_;(0).  (19)
In Eq. (17) we have written d(x); x means: (x; —x,;---;
X,_1 —X,). In the following we will use Schwartz’s
multi-index notation [30]. We will also use the notation
xt=(x§ =X X8 = xp).

In order to perform the splitting, the first natural attempt
is to multiply by Heaviside’s functions. But, as we already
know, such a multiplication is ill defined if the singularities
of the distribution lay on the discontinuity surface of the
function—as it was exemplified by the product ®(x)5(x);
this is the second important contribution of Epstein
and Glaser [18]: they use the distribution splitting theory
[26-28] to perform those operations. As it was said, to do
that it is very important to know how the distribution
behaves near the splitting point. Fassari and Scharf [31]
simplified the analysis of the singularity of distributions
made by Epstein and Glaser by using the concept of
quasiasymptotics developed by Vladimirov, Drozzinov,
and Zavialov [32]. In null-plane dynamics, since the planes
of constant x™ time intersects the light-cone all along the x~
axis, it is the behavior of the distribution d(x) near the x~
axis that is essential for the splitting procedure. Such
behavior will be examined at the light of the following
definition of quasiasymptotics by selected variables [32]:

Definition—Let d € S'(R™) be a distribution, and
let p be a continuous positive function. If the (distribu-
tional) limit

lim p(s)s3/*d(sxt;sxtx7) = d_(x) (20)

s—0*

exists in S'(R™) and is non-null, then the distribution d_ is
called the quasiasymptotics of d at the x~ axis, with regard
to the function p. n

With this definition, the function p(s) can be shown to be
a regularly varying at zero function, also called an
automodel function [20,32], which means that for every
a>0

o

for some a € R, called the order of automodelity of the
function p. This number serves as a characterizing param-
eter of the distribution, which is called its singular order at
the x~ axis and is denoted by w_. The singular order of the
causal distribution at the x™ axis is extremely important, as
it determines the space of test functions on which the
retarded distribution can be defined in principle:
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For negative singular order, w_ < 0, it is the entire Schwartz’s space S, and the retarded distribution can be obtained
by simple multiplication of the causal distribution by Heaviside’s function. In momentum space the following
splitting formula holds for this case:

L‘/Jroogl((pH—k;pl);"‘Q(Pn—H_k;p"—l)) _ !

7 = dk. 22
#(p) 2w J_ k+i0" 2w J_ (22)

For non-negative singular order, w_ > 0, the retarded distribution can only be defined (in principle) on the space of
test functions for which the first w_ derivatives at the x™ axis vanish. Such a retarded distribution can be extended to
the whole S by means of the so-called W operation, which projects the general test function onto the restricted space
in which the retarded distribution is defined. By transposing the W operation to the distribution and going to

momentum space, we obtain the retarded distribution with normalization line (¢, ;q,;p_):

b (9) i/+°° dk_ .
7 =— —
P = k+i0"

which is a well-defined distribution on the entire S.
A particular case of normalization line is (0;0; p_);
the solution normalized at it is called the central
solution, and is the one we will use in this paper.
Finally, if (r|,a;) and (r,,a,) are two solutions of
the splitting problem, then by Eq. (13) we have that
ri—a; =r,—a,, so that r, —r, = a; —a,. Since the
left-hand side of this equation has support on ', while
its right-hand side has support in I'-, the difference
(ry —ry) can only have support on I't NI~ = x™-axis.
Therefore, r; and r, could be different only by normali-
zation terms which are distributions with support on the x~
axis. In momentum space

() =) =D Colpo)ph L. (24)

|b|=0

with C,(p_) some distributions of the variable p_. The
singular order of each one of these terms is
ently of which the distribution C,(p_) is, because the
variable p_ is not scaled in the singular order calculus. The
procedure of determining these unknown distributions by
the imposition of physical requirements is called the
normalization process.

II. MESON’S SELF-ENERGY

Yukawa’s model is defined by the one-point distribution

“y(x) ().

According to the inductive procedure [Egs. (10), (11), and
(13)], the causal distribution of the second order is obtained
from 7' as

Ty(x) = —ig:y(x)y (25)

Dy (x1:xy) =

[T (x1); Ty (x2)]. (26)

-] 4
Z; Pia—

4+a)DSod(q, —kiqysp-) } (23)

Replacing here the distribution from Eq. (25) and using
Wick’s theorem, it is shown that the second order causal
distribution, describing the meson’s self-energy, is given by
[13]—we use in the following the relative coordinate
Y =X — Xp—!

(BSE)

Dy (x3x0) = tp(xy)d(y)ep(xa) (27)
with the following definitions:
d(y) = P(y) = P(-y);
P(y) = ¢°Tr[S, (v)7*S—(=»)r’]. (28)

Already at this point we can see one very important
advantage of null-plane CPT: Different from other
approaches which use Feynman'’s rules, Feynman’s propa-
gators do not appear in our “loop distributions,” so the
instantaneous term in the fermion propagator, which con-
tains a spurious pole whose removal has been a matter of
study for many years [7,8,11], simply does not appear.

In order to go to momentum space we apply Fourier’s
transformation to P(y), obtaining

P(q) = (2n)72¢? / d*pTr(S. (p)r*S_(p — q)r°]

— (20)¢" / BTt m)r (7= b+ m)y’]

N

x D, (p)D_(p - q). (29)
Using that y*y> = —py#, the trace in Eq. (29) is
Tr[(p +m)r’ (7 = 4 + my)y°] = 4(mi = p*> + pq), (30)

so that, remembering that
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D, (p) = +i(2z)~'O(xp_)s(p* — m?),
we obtain
Pg) = 4Ca)*g [ dplnt =+ p)0(p)
x0(q- — p_)8(p* —m3)s((p — q)* —m37). (31)

The supports of Dirac’s delta distributions appearing
here are

p>=m? and ¢*=2pq. (32)
Therefore, Eq. (31) is equal to
P(q) =2(22)"a*¢*1(q), (33)
with
I(q) = / d*pO(p_)0(q- — p_)6(p* — m})d(q* = 2pq).
(34)

In order to calculate this integral we move to an appropriate
reference frame. Since p,qg— p € V', then also g =
p+ (g —p) € V', and there is a reference frame in which
q = (g+;0.;¢_). In that reference frame,

1 >
x8(29,9- —2q_py —2q,p_)
1

= /dp_dzpﬁ(p_)@(q_ —P—)m

xé((p_%)z—Az) (35)

with

Dy
S
heIS)

Performing the integration,

0= [ S

S e

n a:9-/2  d(@?)
= 0(q-)0(2g.q- — 4mj) L
|4LI+| m% < 9-9p
4 2q,
0(q_)0(2 am) 1= 4 (37)
=-0(q-)0(2g,q_ —4m :
i : 2q.q-
In Lorentz’s covariant form this integral is
n ) 5 4m?
1(q) 259(6] )0(q" —4m7)y [ 1 —7, (38)

and, substituting into Eq. (33),

a7 0(q )0l — 4m), —46]& (39)

Accordingly, the numerical part of the causal distribution
for boson’s self-energy has Fourier’s transform [see
Eq. 28)]:

lq) =5(2n) ¢ q’sen(q-)0lq* —4m)| 1= 5L (40

By the supports of Heaviside’s function and Dirac’s delta
distribution we have that d(g) is non-null only when
g € V7, therefore there exists a reference frame in which
(g4) = (¢4+30,;¢_); in that reference frame,

N

P(q) =

N —

d(q) = (27)¢’q, q_sgn(q_)0©(2q, q_ — 4m})

4 2
11— (41)
2q.q-

According to the factorization of the polynomials
theorem—see Ref. [24]—, it will be sufficient to split
the distribution

A 4m?
dy(q) = sgn(q-)0(2q,q_ —4mi)y[1—5—— (42)
2q9.q-
whose singular order at the x™ axis is
ol =0, (43)

so that its retarded part, according to Eq. (23) and choosing
the central solution, is obtained as

076022-5
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1(q) = —k;0,;9)

i dk
2n/k+10+{ 14+

—di(=k;0139)}. (44)

Substituting Eq. (42) into Eq. (44) we will have, using the
variable s = —2¢q_k,

. i ds
Pi(q) = —ﬁ/m {@(S +2q,q_ —4m7)

4m? 4
LT R AT
s+2q.q_ s

(45)
Applying Sokhotskiy’s formula into the first integral, then

making s +2¢,q_ — s in it and joining with the second
term in Eq. (45), we obtain

i +oo ds 4m?
7 ) - = 1
" (Q) 2n 1= Am% S(S - 2q+Q—) s
1 4m?3
Z 42 _ 1
+55gn(q-)0(2¢,q- —4mi)y /1 -5 Gia (46)

The remaining integral can be found by using Euler’s
substitution:

1 2 d 1—x?
iz*( %) 0<x<1) _52:_ 2x dx;
m? x mi x
Am? 11—
_amy * (47)

s 14+x

We also define the parameter £ as

2q.q- __(1-¢7 £ V1—4mi/2q.q_—1 (48)
m? e V1-4m}/2q. q_+1
Therefore,
/*”L _4mi
am S(s—2q.q_) s

e dx(1 —x)
‘maA (t e oary @

which, having rational integrand, can already be calculated
by the technique of partial fractions decomposition. It is
found that Eq. (49) is equal to

o 1+ o) + 2601 - ). (50

mi(1-¢)

whose substitution into Eq. (46) leads us to

. 1+
) = = 5 | T log(lE) +2
1 4m?
+§sgn(q_)®(261+q_—4m%) 1—26;3_- (51)

The retarded distribution corresponding to the distribu-
tion d(g) in Eq. (41) is therefore already in Lorentz’s
covariant form—which is obtained by the replacement of

2g.q_ by ¢*—:
i 2
Nm——ﬂffq{l ogll¢]) +

4m7y
1- 7} (52)

Subtracting the subsidiary distribution #(g)—whose only
effect is to change sgn(g_) by 1 in the imaginary term
coming from Sokhotskiy’s formula—to obtain the distri-
bution 7(q) = #(q) — ¥ (g), and defining

—in@®(q* — 4m?)

Hq) = —ill(q),
T (x15x,) = =i () )T(x) = x2)0(x2):. (53)

with IT being the so-called boson’s self-energy, we arrive at
the result,

*gmgww+2

— i7®(g* —4mi) (/1 - ﬁ} (54)
q*

Now, the whole I1(g) distribution has singular order
®_ = +2, so its most general form is

M(q) = TI(q) + Co + caq® + Caq?. (55)

However, Yukawa’s model is parity invariant, so that the
term linear in g cannot be present—the same is implied by
the fact that the transition distributions must be symmet-
rical. Being that way,

M(q) + Co + Crq?
I1(q) + b+ Cy(q*> — m3). (56)

(g) =

In order to fix the normalization coefficients b and C, we
must impose some additional physical conditions. First,
note that for 0 < g> < 4m? the number & turns out to be a
complex number with unitary modulus, so it can be
represented as

076022-6
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. 0\?2
E=e, q* = 4m7 sin <§> ) (57)

Therefore,

1_’_5 4 2 B 4 2
1—_(glog(§)z21/%—lcot1(“%—1), (58)

and the boson’s self-energy takes the form

2 2 2
- g 4m _ 4m
“(q’:m)”z{\/q_zl‘mt ( ra

+ b+ Cy(q* — m3). (59)

On the other hand, in the case g > 4m7, substituting back
£ from Eq. (48) and using that || = —& because in this case
itis & <0,

M(q) = - gy %log L= VL= dm/q
2(2xn)* q° 1 —4m?/q*> +1
4 2

For the normalization we will study the fermion-fermion
scattering with meson’s self-energy insertions. Let us write
the two-point distribution as

TéFF)(xl;xz) = i925j(x1)féFF>(x1 —x2)j(x2) 75

J(x) =y (x)rw(x). (61)

By the inductive procedure of CPT we construct the
fourth order causal distribution for this process, which
turns out to be

= 74 (30 T3

FF
D™ (x5 303 x33.x4) (x45%2)

- TgFF) (%23 x4)TgFF) (x15x3)
= ()i () = x3)d (s - x,)
x 15 (g = 2)j(x2) (62)

with d(y) the causal distribution for meson’s self-energy
given in Eq. (28). Since tgFF) has negative singular order it
is sufficient to split the d(y) distribution without obtaining
divergences. In this manner,

(FF)
T,

(132003033 34) = —ig? ()1 ) (3 = x3)

X T(xs = x)ty " (o4 = x5)j (1) 2.

(63)

An analogous analysis holds for the next perturbation
orders. Therefore, by defining the total meson propagator
D,y by the sum of this series,

T (x15%) =

i6j(x1) Doy (X1 — X2) j(x2) 2, (64)

we will obtain that in momentum space it is given by

Dtot = ;( " -(2n ) ( 1 g "
+ e3P —
=&"(1 = (22)*M1D,,). (65)

Since the two-point transition distribution is

A(FF) -2 1 ANF
=—(2 =D , 66
Sp) == Ca) e = D). (66)
we obtain that
N 1

Dy (q) = _(2”) (67)

¢ — (3 + (2x)Ti(q)) + 0"
The physical conditions that we must impose are the
following:
(1) The physical mass of the pseudoscalar particle is m,,
SO ﬁmt(q) must have its pole in that value, which
occurs if

lim TI(q) = 0; (68)
q*—mj
(2) the physical value of the coupling constant is g.
Since D (g) will multiply a current gy y, the
coefficient of ¢* in D, (¢) will divide effectively the
value of g; then the normalization condition that we
must impose is

im 9 _ (69)
q2—>m§ dq2

Additionally, Yukawa’s model, in the real world,
describes the interaction between pions and nucle-
ons, so the mass m, is the pion mass, which is less
than the nucleon mass m;. Because of this, the
normalization conditions must be analyzed with
Eq. (59). Since there are no infrared divergences,
the limits in Eqgs. (68) and (69) are equal to the
simple evaluation at g> = m3. We obtain

) 4 2 4 2
b=-3"0 0o [T oot ) TaE—1 | 428,
2(2n) ms m;

(70)
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co__ & ) m N\ Ami
2 — 4 2 _ 2 2
2(2x) 4my — m3 ms

4 2
x cot™! ﬂ21—1 +37. (71)
my

With this normalization, the obtained results are
identical to those found in instant dynamics—
see Ref. [33].

III. FERMION’S SELF-ENERGY

Now we turn to the fermion’s self-energy, which is
described by the second order causal distribution [13].
Again, using the relative coordinate y = x; — x5:

DY) (xy %) = @ 1 (x1)r (S (v)D (v)

—S_(y)D_(y))rw(xy):
— 0% ()7 (S4.(=y) D (=)
— S_(=y)D_(=y))r’w(x):. (72)

Defining the distributions,

d(y) = ¢’ (dy.(y) + d-(y))r’.
di(y) = £S.(y)Ds(y), (73)
Eq. (72) can be written as
FSE _
DY (xy3 xy) = (1 )d () (x2)
— W (n)d(=yw(x):.  (74)
As we can see, the second term can be obtained from the
first one by the exchange of x; and x,, so we only need to
focus on the first term. Again, no instantaneous term (no
spurious pole) appears here due to the implementation
of the causal inductive procedure. We apply Fourier’s

transformation in order to go to momentum space.
Starting with d_,

d_(p) = —(22)7 / d*ye'™S_(y)D_(y)
= —(27)°° / d*yd*qd*ke!P=1=S_(q)D_(k).
(75)
Integrating in the variable y, then in the variable k,
i(p)=-(a)? [ deS @D -(p-0). (76)

But,

S_(q) = (¢ +m)D_,, (q), (77)

D_,(q) = —é@(—q_ﬁ(q2 —m?), (78)

which, substituted into Eq. (76), leads us to the following
expression:

A

d_(p) = 2z)*[y"Lu(p) + mili(p)].  (79)

with the integrals

Ii(p) = /d461®(—q_)@(q_ — p_)8(q* — m})

x8((p—q)* —m3), (80)

L (p) = /d“qqa@(—q_)@(q_ — p_)8(q* — m})

x8((p = q)* = m3). (81)

As usual, the evaluation of these integrals is simplified in a
convenient reference frame, such that (p,) = (p.;0,;p_);
such a reference frame exists because, as implied by the
support of Dirac’s deltas distributions and Heaviside’s
functions in Egs. (80) and (81), (p—¢g) € V7(0) and
g€V (0), so p=(p—q)+qe€V~(0) as well. Clearly,
this implies, in particular, that p_, p_ < 0. In this reference
frame, Eqgs. (80) and (81) are

I = / #40(~q_)0(q_ — p_)5(q* — m?)

X 8(2pyp-—2p_qy —2p.q_+ (mi—m3)), (82)

Iy :/d4‘IQi®(_Q—)®(Q— —p_)8(q* —m7)
X8(2p p-=2p_q. =2p.q_+(mi—m3)),  (83)
IZL = 0 (84)

Particularly, Eq. (84) comes from the fact that the integrand
in Eq. (81) becomes odd for g, = ¢, in the chosen
reference frame. Also, the product of two Dirac’s delta
distributions appearing in these integrals can be put in the
following form by using their properties:

1 p+a)2> ( w?
——0O(A?—=——2)5(q_ - | F(q:q.).
|8p_| < 2p_ q 2q+ (q+ qJ_)

with the quantities F(q,;q ) and A defined as
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1

Flav341) = ===
A2

)
el -
+ 2p_ )

4p_

+0

This quantity A is constant in the integration process.
Now, since @} = g% + mi > mi, Heaviside’s function in
Eq. (85) implies that 2p_A?/p_ > m?. Putting the value of
A in this inequality we arrive at

(2pp-— (3 + m3))? —4mimd > 0. (87)

With these manipulations, and writing d*q, = zd(w;), the
integrals in Eqgs. (82) and (83) are

m0(-p-)
Ih=—g, OCper—- (m +m3))? — 4mim3)
2p_A%/p, 0
x / d(w}) / dqF(q.391),  (88)
m? @3 /2p-
n0(-p-)
I, = WG(@IMP— = (mi + m3))* = 4mim3)
2p_A%/p, o [©
X / d(wy) / dq.qF(q.3q1), (89)
m? wy/2p_
70(-p_)
I :WG)(QPH’?— = (m}+m3))? —4mim3)
217,A2/pJr 0 0)2
x/ d(a)g)/ dq+2—qF(Q+§QJ_)- (90)
m% a)§/2p, q+

In order to integrate in the variable ¢, we need to see under
what conditions the Dirac’s delta distributions are non-null.
Since g, < 0, it must be A < 0, which means [see Eq. (86)
and remember that p_ < 0]

2pyp- > mi—mj. (91)

Additionally, the argument of Heaviside’s functions in
Egs. (88)—(90) can be written as

(2pip-—(m}—m3))* —8p,p-m3 >0, (92)

which jointly with Eq. (91) leads to the inequality
2p.p_—2my\/2p p_— (m}—m3) >0, with roots

\/2pip_ =my £ my. Under the assumption that
m; > my,—for example, the mass of the nucleons is
greater than that of the pions my ~ 940 MeV/c? and
m, =~ 140 MeV /c>—we find that the integration in the
variable ¢, is proportional to

O2p.p_ — (my +my)?]. (93)

For the integration in the variable wé, we use the following
result:

/zp_AZ/p+ _dey) —q4 |P= p-A* mi
m A2 P P+ P+ 2

2p_
2m2 + m2 2 _ 232
—2p_|41- (my +m3) n (mi m2)2 ' (94)
2pip- (2p.ip-)

The required integrals are then, in Lorentz’s covariant form,

T
I = 56(—]9—)@[192 — (my + my)?]
2 2 2 2\2
« \/1 _ (mlp;r m3) | (mj 4m2) . (95)
)
I, = % (1 M 2m2> 1. (96)
P

Substituting Egs. (95) and (96) into Eq. (79), and using that
(y5)2 — 1 and ]/5]/”]/5 — _yu’

2
P A (p)r’ = 2x)20(=p_)0[p* = (m) +m;)’]

y \/1 _2Amd tm3) | (m} —m3)?

p? p*

X {m1 -§<1 +’”%p_2m%>}. (97)

For the distribution d, we must follow the same steps;
the result is

P2 () == (20)70(p )0l — (m, + ms)?

2(m? + m?
i) |

p? p*

« {ml —4;(1 +m%p_2m%>}. (98)

Being that way, the numerical part of the causal distribution
describing fermion’s self-energy, in momentum space, is
[see Eq. (73)]

(mt — m3)*
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d(p) = =5 2x)sen(p )O[p? = (my +m;)?

o[ 2w - map
2 4
p P

« {ml —§<1 +m%p_2m%)}. (99)

In order to split this causal distribution and obtain its
retarded part we will write it in a convenient way by
factorizing a polynomial:

) = =S x> =Ll + k= m) ba),
(100)
with
(p) = sen(p_)O[p? = (m; + ms)?
o \/l_2<m%;m2> (m} ;4m%>2 (101)

Then, by theorem it is sufficient to split the distribution
d,(p). Going to a reference frame in which (p,) =
(p+30.; p_), which is possible since p € V™ by the
support of Dirac’s delta distribution and Heaviside’s
function in Eq. (102),

di(p) =sgn(p_)®2p, p_ — (m) +m,)?|

1 1_2(m%+m%)+(m%_m%)22. (102)
2pip- 2pip- (2pyp-)
This distribution has singular order @! = —1 < 0, so its
retarded part is simply given by
#(p) i / dk sen(p_) 1
7 =— [ ——— _
W= 0 ) kior BN ok v op o
X ©[=2kp_ +2p,p_ = (m; +my)?]
e e
~2kp_+2p.p_ (=2kp_+2p,p_)
(103)

Using Sokhotskiy’s formula for treating the pole, then
making the change s = —2kp_+2p.p_,

i +°° ds

my+my)* S 2p+p— )

ml + mz) i (m% - m%)z

77:
1-
T2 sgn(p_)O2p,p- — (my +my)?)
— _ m m
2 P+P 1 2 2.1
« 1— 2(’"% + m%) (m% - m%)zz (104)
2pyp- (2pip-)

Let us call J the integral in Eq. (104). It can be written as

J— /+oo ds
(my+m;)? S2(2p+p_ - s)

x\/ls = (my 4+ ma)[s = (my — my)?).

(105)

This integral can be solved by the third Euler’s substitution
[34]. We perform the change of variable,

¢ — (my +my)* = (my —my)°x*
1—x? ’

0<x<1, (106)

with which,

Vs = Oy ma 2l = (my = ma)?] = dmymy =

8mmoxdx

H T

Defining also the parameters a and b according to

(my —m,)? 2pp_—(my—my)?
the integral J adopts the form
8m m,(a> — b?)
! 2p.p_(my —my)?
1 2dx
X , 108
| e 0

withp=+1if2p,p_<(m —m,)? or2p, p_>(m;+m,)*
andn = —1if (m; —m,)? < 2p,p_ < (m; + m,)?. These
integrals can already be evaluated by the technique of
partial fractions. We obtain the following results:

2p p-—(m

(2p+p-) e {bzz_ i <’ = )

a2+b2lo a+1\).
2a 8a1) S

J+l -

(109)
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B 2p p_— (my — m2)2 (b2 - a2)2
a 2pip-)* 2a(a® +b?)?

x {(b2 —a?) 1og(2f :)

+4abtan_l (l) — M}

Jo

110
b a? -1 (110)

Lorentz’s covariant version of this distribution is
obtained by the replacement of 2p_ p_ by p> By virtue
of Egs. (100) and (104) the retarded distribution is

Hp) = —4(%)4 { (m1p2 —%‘f[p2 + (mf - m%)])h(p)

—izsgn(p_)O(p* — (m; + my)?)

v mi —m3
X |:ml - E (1 + p2
y \/1 _20md 4 md) | (= )]
)4 )4

The numerical distribution 7(p) contained in the transition
distribution is finally obtained by subtracting the subsidiary
distribution #(p): 7(p) = #(p) — #(p). Therefore, defin-
ing the fermion’s self-energy 2(p) by

(111)

i(p)=: —iZ(p);
(FSE)

Ty "7 (x13x0) = =i (x)Z(x —x)w(x):,  (112)

from Eq. (111) it follows that

3(p) = 4(gﬂ)4 { (m1p2 - g[pz + (m7 — m%)])h(ﬁ)

2_ 0
— in®(p* = (my +m,)?) |:ml —§<1 +2 2m2>]

P
y \/l_2<m%+m%>+<m%—m%>2}.

5 7} (113)

P p

The singular order of £(p) at the x~ axis is w_ = +1,
hence its most general form is

5(p)=%(p)+Co+Crp=2(p)+c+Ci(p—m). (114)

As in the case of boson’s self-energy, the constants ¢ and C,
will be fixed by imposing additional physical conditions.
Those could be imposed to the total fermion propagator,
defined as the series for the meson-fermion scattering:

TBO) (x15xy) = —ig? 1 (x))r° Sier (X1 — 2) 77w (x3) :

X 1p(x1)p(x2) 1 (115)
To calculate the fourth order contribution to this series we
start, in the inductive process, by constructing the causal
distribution:

(BF)

DE;BF)(xl;Xz;M;M):TEBF)(XH%)TQ (x4;x2)

=180 (g3 ) T (v303). - (116)

By writing the second order transition distribution for the
meson-fermion scattering as

TEBF) (x13%) = igzil/_/(h)}’sngF)

X 1p(xp)p(xs):,

(X1 = x2)7 w(x,):
(117)

we obtain by using Wick’s theorem,

thBF)(X1§X2;X3;x4)
= g% (x )}’SthF) (x) —x3)
xd(xy = x) 157 (2 =32y (x2) 1 () )p(xa) -, (118)

and its corresponding transition distribution can be
obtained by the splitting of the distribution d(x3 — x4),
which is the one in Eq. (73), because the distributions thF)

have negative singular order:

BF
Tfl )(x1§x2;x3§x4)

=—ig’ 3‘7/()‘1)751‘5”) (X1 —x3)

x (3 —xg) 1y (2 =) (%) 1o () p(x2) 1, (119)

and similarly for the next order perturbation terms. As a
consequence, the total fermion propagator in momentum
space is given by the series:

s ~(BF ~(BF)&n(BF
St = =127 + ay PP
— 2m)BEPISEI SRR 4

PEO (1 + 27)458,00).

= i (120)

Now, the two-point transition distribution for the meson-
fermion scattering is given by

A(BF _ P +m
" p) = ~n) 2p2—m%+io+
1
- Q) 121
i (121)

because the distributions of a given order are constructed
with the already normalized transition distributions of less
order, as explained in Sec. I A. In this case, although
Feynman’s propagator of the fermion field has an
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instantaneous term, it is eliminated by a suitable normali-
zation at tree level and no more appears in the next-order
calculations—for details, see Ref. [13]. Accordingly, from
Eq. (120) it follows that

1
p = (mi + (22)*Z(p)) +i0*

Stot(p) = (2”)_2 (122)

The physical conditions which this propagator must sat-
isfy are
(1) the physical mass of the fermion is m;, s0 Sy (p)
must have a pole in p = m;; and
(2) the physical value of the coupling constant is g,
hence the coefficient of p in the denominator of
Sii(p) must be one. In this way,

lim £(p) =0 and lim ——>=0.

p=m
These two conditions are satisfied by the choice—
we use the case with 7 = —1 because it is the one
which contains the mass-shell p? = m?—:

__gzmlm% —
c= 8(27[)4 J—l(p/_ml)’
gzm% d.]_]
Cl:_8(27[)4 J—l(p:ml)—i_ml dp, (p/:ml) .

As in the meson’s case, also the fermion’s self-
energy in light-front dynamics is equal to the result
obtained in instant dynamics [33].

IV. CONCLUSIONS

We have obtained the expression for boson’s self-energy
and fermion’s self-energy in the neutral Yukawa’s model in
light-front dynamics without ambiguities and avoiding the
complications of the different regularization schemes. In
particular, null-plane CPT has shown to be very useful
because, since it does not use Feynman’s rules but the causal
inductive procedure, no Feynman’s propagator appears as
part of loop distributions, avoiding the appearance of the
spurious pole that the fermion Feynman’s propagator con-
tains in its instantaneous term, and whose removal is a major
problem in the usual approaches.

Our results must be compared with those obtained in
instant dynamics [33], which shows in a very direct manner
the equivalence of both dynamical forms.
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