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We apply the exponential operator method to derive the propagator for a fermion immersed within a
rigidly rotating environment with cylindrical geometry. Given that the rotation axis provides a preferred
direction, Lorentz symmetry is lost and the general solution is not translationally invariant in the radial
coordinate. However, under the approximation that the fermion is completely dragged by the vortical
motion, valid for large angular velocities, translation invariance is recovered. The propagator can then be
written in momentum space. The result is suited to be used applying ordinary Feynman rules for
perturbative calculations in momentum space.
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I. INTRODUCTION

Collisions of heavy nuclei at high energies produce
deconfined strongly interacting matter, dubbed as the
quark-gluon plasma (QGP). When these collisions are
off-center, the inhomogeneity of the matter distribution
in the transverse plane causes the colliding region to
develop an orbital angular velocity Ω directed along the
normal to the reaction plane [1,2]. Estimates of this angular
velocity provide a value Ω ∼ 1022 s−1 [3].
When the vortical motion is transferred to the particles

spin within the QGP, its effect can show, upon hadroniza-
tion, as a global hadron polarization, namely, a preferred
direction of the spin of hadrons along the normal to the
reaction plane. Recent measurements of the global Λ and Λ̄
polarizations as functions of collision energy [3–5] show
that the Λ̄ polarization rises more steeply than the Λ
polarization when the collision energy decreases. A suit-
able explanation of this intriguing result motivates the
search for the conditions to align the particle’s spin to the
global vortical motion. In particular, it is important to

establish how these conditions depend on parameters such
as the collision energy

ffiffiffiffiffiffiffiffi
sNN

p
, the impact parameter b, the

temperature T, the baryon chemical potential μB, and the
global angular velocity Ω.
The problem has attracted a great deal of attention over

the last several years [6–23]. In a recent work [24], we have
explored theΛ and Λ̄ polarization within a model where the
overlap region in a peripheral heavy-ion collision consists
of a dense core and a less dense corona, from where
different Λ and Λ̄ production mechanisms are at play [25].
The calculation relies on the computation of the relaxation
time that a strange quark or antiquark takes to align its spin
to the global vorticity at finite temperature and baryon
density, which was computed introducing a phenomeno-
logical coupling between the quark spin and the thermal
vorticity [26,27].
However, in order to obtain a better estimate, it is

important to set up the problem in terms of a first principles
calculation to see whether the intuitive use of the above
mentioned phenomenological coupling is correct. In this
work we take the first step toward achieving this goal and
compute the propagator of fermions within a rotating
environment.
Fermion and scalar propagators within a rotating system

and subject to a thermal bath have been first computed in
Ref. [28]. In the absence of medium effects, Lorentz
symmetry is still broken due to the preferred direction
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provided by the angular velocity. Therefore the propagators
are in general given by cumbersome expressions in the
space-time representation. The situation worsens even
further when including finite temperature as well as
chemical potential effects, since then analytical results
are not possible and the calculation requires a numerical
estimate. This approach has been taken in Ref. [29] to
compute the rotation effects on meson masses. It is thus
desirable to find an expression that, under suitable con-
ditions, can be approximated by a translationally invariant
result. As we show in this work, this can be done provided
we keep the first nontrivial contribution in the angular
velocity Ω, which is taken as a large quantity compared to
the expansion rate Γ, effectively making fermions partake
of the rigid rotational motion. In this approximation the
focus is on how the rotation influences the spin states rather
than on the detailed dynamics of the fermion motion. In this
work we concentrate on the computation of the fermion
propagator in vacuum, and postpone the discussion of
medium effects for a future work.
To compute the fermion propagator subject to rotation,

we follow the method introduced in Refs. [30,31] that
requires knowledge of the explicit set of solutions of the
Dirac equation. These solutions have been studied by
several authors imposing different boundary conditions.
Working in a cylindrical geometry, in the pioneering work
that introduced the MIT bag model [32], these boundary
conditions are chosen such that the fermion current normal
to the cylinder surface vanishes. These conditions are
nowadays known as the MIT boundary conditions. A
slight modification of these conditions, known as the chiral
MIT conditions, can also be imposed on the fermion modes
[33]. Bound and unbound solutions have also been studied
in Ref. [34]. The solutions can also be found in the presence
of a magnetic field pointing in the same direction as the
angular velocity, given that the geometry of the problem is
not modified by the presence of the field [33,35,36].
Thermal and rotating states were studied in Ref. [37].
Lattice QCD has also been formulated in rotating frames to
study the angular momenta of gluons and quarks in a
rotating QCD vacuum [38]. In all these calculations, the
causality condition, whereby the angular velocity and the
cylinder radius R must satisfy RΩ < 1, is imposed.
In this work we take a pragmatic approach. We find the

solutions to the Dirac equation for fermions rigidly rotating
inside a cylinder. In order to satisfy the causality condition
for a given Ω, the solutions are taken as not existent for
r > R, but otherwise do not need to satisfy a given
boundary condition. The problem thus formulated, lends
itself to attempt finding the fermion propagator in momen-
tum space, which is a useful quantity to employ in
perturbative calculations using ordinary Feynman rules.
The work is organized as follows: In Sec. II we formulate
the Dirac equation and find the solutions for a rigidly
rotating cylinder in unbound space. In Sec. III we find the

fermion propagator. We apply the approximation whereby
fermions are totally dragged by the rigid motion to find the
expression of this propagator in momentum space. We
finally summarize and provide an outlook for the use of
these results in Sec. IV.

II. FERMIONS IN A RIGIDLY
ROTATING CYLINDER

The physics within a relativistic rotating frame is most
easily described in terms of a metric tensor resembling that
of a curved space-time. For our purposes, we consider that
the interaction region after a relativistic heavy-ion collision
can be thought of as a rigid cylinder rotating around the
ẑ-axis with constant angular velocity Ω. Therefore, the
metric tensor is given by

gμν ¼

0
BBB@

1 − ðx2 þ y2ÞΩ2 yΩ −xΩ 0

yΩ −1 0 0

−xΩ 0 −1 0

0 0 0 −1

1
CCCA: ð1Þ

A fermion with mass m within the cylinder is described by
the Dirac equation [33,35]

½iðγμ∂μ þ ΓμÞ −m�ψ ¼ 0; ð2Þ

where Γμ corresponds to the affine connection, determined
from the equations

Γμ ¼ −
i
4
ωμijσ

ij;

ωμij ¼ gαβeαi ð∂μe
β
j þ Γβ

μνeνjÞ; ð3Þ

where the commutator

σij ¼ i
2
½γi; γj� ð4Þ

corresponds to the fermion spin and, the Christoffel
symbols are given in terms of the metric tensor by

Γλ
μν ¼

1

2
gλσðgσν;μ þ gμσ;ν − gμν;σÞ: ð5Þ

Greek indices (μ; ν;… ¼ t, x, y, z) refer to the general
coordinates in the moving frame, while Latin indices
(i; j;… ¼ 0, 1, 2, 3) refer to the Cartesian coordinates in
the local rest frame. Notice that γμ ¼ eμi γ

i corresponds to
the Dirac matrices in curved space-time, which satisfy the
usual anticommutation relations

fγμ; γνg ¼ 0: ð6Þ
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The tetrad eμi is written in the Cartesian gauge [37], such
that it connects the general coordinates with the Cartesian
coordinates in the local rest frame as xμ ¼ eμi x

i. Explicitly,

et0 ¼ ex1 ¼ ey2 ¼ ez3 ¼ 1;

et1 ¼ yΩ;

et2 ¼ −xΩ; ð7Þ

with the rest of the components being equal to zero.
The nonzero components of the Christoffel symbols,
Eq. (5), are

Γy
tx ¼ Γy

xt ¼ Ω; Γx
ty ¼ Γx

yt ¼ −Ω;

Γx
tt ¼ −xΩ2; Γy

tt ¼ −yΩ2: ð8Þ

Thus, given the above results and Eq. (3), it is straight-
forward to see that Γμ merely reduces to

Γμ → Γt ¼ −
i
2
σ12: ð9Þ

Subsequently, the gamma matrices in the rotating frame are
expressed, in terms of the usual gamma matrices, as

γt ¼ γ0; γx ¼ γ1 þ yΩγ0;

γz ¼ γ3; γy ¼ γ2 − xΩγ0: ð10Þ

Therefore, Eq. (2) becomes

�
iγ0

�
∂t − xΩ∂y þ yΩ∂x −

i
2
Ωσ12

�

þ iγ1∂x þ iγ2∂y þ iγ3∂z −m

�
ψ ¼ 0: ð11Þ

In the Dirac representation,

σ12 ¼
�
σ3 0

0 σ3

�
; ð12Þ

where σ3 ¼ diagð1;−1Þ is the Pauli matrix associated with
the third component of the spin. In consequence, Eq. (11)
can be conveniently rewritten as

½γ0ði∂t þΩĴzÞ þ iγ⃗ · ∇⃗ −m�ψ ¼ 0; ð13Þ

where

Ĵz ≡ L̂z þ Ŝz ¼ −iðx∂y − y∂xÞ þ
1

2
σ12: ð14Þ

Ĵz defines ẑ-component of the total angular momentum
operator, such that the first term is associated with the
orbital angular momentum (L̂z), while the second one is

related with the spin (Ŝz). As usual, −i∇⃗ is the momentum
operator. The solution of Eq. (13) has been studied in
many works, e.g., [33–35,37,39]. For instance, Ref. [34]
thoroughly discusses the bound and unbound solutions.
At this stage, one could in principle be tempted to write

Eq. (13) already in cylindrical coordinates. Nevertheless, in
such cases, the relevant Dirac matrices become coordinate
dependent and use of some not uniquely determined unitary
transformations would be required [40,41]. To avoid this
issue, we follow a different strategy. Consider a solution of
the form

ψðxÞ ¼ ½γ0ði∂t þ ΩĴzÞ þ iγ⃗ · ∇⃗þm�ϕðxÞ: ð15Þ

Then, Eq. (13) implies that ϕðxÞ obeys the second order
differential equation

½ði∂t þΩĴzÞ2 þ ∂2
x þ ∂2

y þ ∂2
z −m2�ϕðxÞ ¼ 0: ð16Þ

Since the above equation does not contain gamma matrices,
to find solutions consistent with the background geometry
it now becomes convenient to work in cylindrical co-
ordinates, ðt;x; t; zÞ→ ðt;ρsinφ;ρcosφ; zÞ. Thus, Eq. (16)
becomes

�
ði∂tþΩĴzÞ2þ

�
∂2
ρþ

1

ρ
∂ρþ

1

ρ2
∂2
φ

�
þ ∂2

z −m2

�
ϕðxÞ ¼ 0:

ð17Þ

In these coordinates

L̂z ¼ −i∂φ ⇒ Ĵz ¼ −i∂φ þ Ŝz: ð18Þ

Assuming that the solution of Eq. (17) admits a separation
of variables, we can write

ϕðxÞ ¼ e−iEtþikzzuðρ;φÞ: ð19Þ

Due to the form of Ŝz, Eqs. (12) and (14), the spin operator
will produce eigenvalues s ¼ �1=2. Consequently, total
angular momentum conservation (j ¼ lþ s) demands
solutions with l (for s¼þ1=2) and lþ1 (for s¼−1=2).
Thus, writing

ϕ ¼

0
BBB@

ϕ1

ϕ2

ϕ3

ϕ4

1
CCCA; ð20Þ

Eq. (17) becomes
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��
Eþ

�
lþ 1

2

�
Ω
�

2

þ
�
∂2
ρ þ

1

ρ
∂ρ −

l2

ρ2

�

− k2z −m2

�
ϕ1;3ðxÞ ¼ 0; ð21Þ

��
Eþ

�
lþ 1 −

1

2

�
Ω
�

2

þ
�
∂2
ρ þ

1

ρ
∂ρ −

ðlþ 1Þ2
ρ2

�

− k2z −m2

�
ϕ2;4ðxÞ ¼ 0: ð22Þ

The above correspond to Bessel equations

½ρ2∂2
ρ þ ρ∂ρ þ ðρ2k2⊥ − l2Þ�ϕ1;3 ¼ 0; ð23Þ

½ρ2∂2
ρ þ ρ∂ρ þ ðρ2k2⊥ − ðlþ 1Þ2Þ�ϕ2;4 ¼ 0; ð24Þ

where

k2⊥ ¼ Ẽ2 − k2z −m2 ð25Þ

is the transverse momentum squared and we have defined
Ẽ≡ Eþ jΩ, which represents the fermion energy as seen
from the inertial frame. The solutions of Eqs. (23) and (24)
that are finite for ρ → 0 are given by Bessel functions of the
first kind, which means that

uðρ;φÞ ¼ eiφlJlðk⊥ρÞ; for ϕ1;3; ð26Þ

uðρ;φÞ ¼ eiφðlþ1ÞJlþ1ðk⊥ρÞ; for ϕ2;4: ð27Þ

Therefore, the solution of Eq. (15) can be explicitly
written as

ϕðxÞ ¼

0
BBB@

Jlðk⊥ρÞ
Jlþ1ðk⊥ρÞeiφ

Jlðk⊥ρÞ
Jlþ1ðk⊥ρÞeiφ

1
CCCAe−iEtþikzzþilφ: ð28Þ

Having determined the solutions ϕ, Eq. (15) can be used
to find the spinor wave functions which become

ψðxÞ ¼

0
BBB@

Ẽþm 0 −kz −P−

0 Ẽþm −Pþ kz
kz P− −Ẽþm 0

Pþ −kz 0 −Ẽþm

1
CCCA

×

0
BBB@

Jlðk⊥ρÞ
Jlþ1ðk⊥ρÞeiφ

Jlðk⊥ρÞ
Jlþ1ðk⊥ρÞeiφ

1
CCCAe−iEtþikzzþilφ; ð29Þ

where P� ¼ kx � iky. In cylindrical coordinates,

P� ¼ −ie�iφð∂ρ � iρ−1∂φÞ: ð30Þ

P� acts on the wave functions as ladder operators [34],
namely

P�eilφJlðk⊥ρÞ ¼ �ik⊥eiðl�1ÞφJl�1ðk⊥ρÞ: ð31Þ

Thus, combining Eqs. (29)–(31), the explicit result for ψðxÞ
reads as

ψðxÞ ¼

0
BBBBB@

½Ẽþm − kz þ ik⊥�Jlðk⊥ρÞ
½Ẽþmþ kz − ik⊥�Jlþ1ðk⊥ρÞeiφ
½−Ẽþmþ kz − ik⊥�Jlðk⊥ρÞ

½−Ẽþm − kz þ ik⊥�Jlþ1ðk⊥ρÞeiφ

1
CCCCCA

× e−iẼtþikzzþilφ: ð32Þ

Armed with the explicit expressions, we now follow the
approach discussed in Refs. [30,31] to find the fermion
propagator.

III. FERMION PROPAGATOR IN A RIGIDLY
ROTATING CYLINDER

Recall that in order to find the solution for an equation
describing the Green’s function Gðx; x0Þ of a given differ-
ential operator Hð∂x; xÞ, namely,

Hð∂x; xÞGðx; x0Þ ¼ δ4ðx − x0Þ; ð33Þ

the Green’s function can be represented as

Gðx; x0Þ ¼ ð−iÞ
Z

0

−∞
dτUðx; x0; τÞ; ð34Þ

where τ is known as a proper-time parameter andUðx; x0; τÞ
is an evolution operator in this proper time. This operator
satisfies

i∂τUðx; x0; τÞ ¼ Hð∂x; xÞUðx; x0; τÞ; ð35Þ

together with the boundary conditions

Uðx; x0;−∞Þ ¼ 0;

Uðx; x0; 0Þ ¼ δ4ðx − x0Þ; ð36Þ

from where the solution is readily found as

Uðx; x0; τÞ ¼ exp½−iτHð∂x; xÞ�δ4ðx − x0Þ: ð37Þ

In order to find the precise form of the proper-time
evolution operator, we can use that, when the eigen-
functions ϕλðxÞ of the operator Hð∂x; xÞ are known, the
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Dirac delta-function can be expressed in terms of the
closure relation obeyed by the eigenfunctions ϕλðxÞ,
namely,

X
λ

ϕλðxÞϕ†
λðx0Þ ¼ δ4ðx − x0Þ: ð38Þ

Therefore, an exact expression for the proper-time evolu-
tion operator can be written as

Uðx; x0; τÞ ¼
X
λ

exp½−iτλ�ϕλðxÞϕ†
λðx0Þ; ð39Þ

where we have used the eigenvalue equation

Hð∂x; xÞϕλðxÞ ¼ λϕλðxÞ: ð40Þ

Using Eqs. (34) and (39), the propagator Gðx; x0Þ can be
written as

Gðx; x0Þ ¼ ð−iÞ
Z

0

−∞
dτ
X
λ

exp½−iτλ�ϕλðxÞϕ†
λðx0Þ: ð41Þ

It is easy to show that the solutions in Eq. (28) satisfy the
closure relation

X∞
l¼−∞

Z
dEdkzdk⊥k⊥

ð2πÞ3 ϕðxÞϕ†ðx0Þ ¼ δ4ðx − x0Þ; ð42Þ

where we have taken the quantum numbers E; k⊥; kz;l as
independent, namely, the on-shell restriction of Eq. (25) is
not imposed, as corresponds for a procedure to find the
propagator. Furthermore, notice that k⊥ is taken in the
continuous domain 0 ≤ k⊥ ≤ ∞ and, thus, no boundary
restriction is required on the space variable ρ.
To obtain the fermion propagator, we notice that, in the

same manner that the solutions of the Dirac equation are
obtained from the solutions to the second order differential
equation, Eq. (15), the fermion propagator Sðx; x0Þ can be
derived [30] from

Sðx; x0Þ ¼ ½γ0ði∂t þ ΩĴzÞ þ iγ⃗ · ∇⃗þm�Gðx; x0Þ; ð43Þ

where

Gðx; x0Þ ¼ ð−iÞ
Z

0

−∞
dτe−iτðẼ2−k2⊥−k2z−m2þiϵÞ

×
X∞
l¼−∞

Z
dEdkzdk⊥k⊥

ð2πÞ3 ϕðxÞϕ†ðx0Þ: ð44Þ

Therefore, substituting Eq. (28) into Eq. (44) and perform-
ing the integral over τ, the expression for the fermion
propagator can be written as

Sðx; x0Þ ¼
X∞
l¼−∞

Z
dEdkzk⊥dk⊥

ð2πÞ3 Φðρ; ρ0Þ

×
e−iðE−ðlþ1=2ÞΩÞðt−t0Þeikzðz−z0Þeilðφ−φ0Þ

E2 − k2z −m2 − k2⊥ þ iϵ
; ð45Þ

where

Φðρ;ρ0Þ≡diag½ðE−kzþmþik⊥ÞJlðk⊥ρÞJlðk⊥ρ0Þ;
ðEþkzþm−ik⊥ÞJlþ1ðk⊥ρÞJlþ1ðk⊥ρ0Þeiðφ−φ0Þ;

ð−Eþkzþm−ik⊥ÞJlðk⊥ρÞJlðk⊥ρ0Þ;
ð−E−kzþmþik⊥ÞJlþ1ðk⊥ρÞJlþ1ðk⊥ρ0Þeiðφ−φ0Þ�;

ð46Þ

and we have implemented the change of variable E →
Eþ Ωðlþ 1=2Þ. Notice that the propagator turns out to be
diagonal in Lorentz space. Also, translational invariance is
only lost in the transverse direction, for otherwise the
propagator depends on the coordinate differences ðt − t0Þ,
ðz − z0Þ, and ðφ − φ0Þ.
The expression for the propagator can be further

reduced. Let us focus on one of the elements, the compo-
nent S11ðx; x0Þ. We use the partial translation invariance to
write

S11ðρ; ρ0;φ; z; tÞ ¼
X∞
l¼−∞

Z
dEdkzk⊥dk⊥

ð2πÞ3

× ðE − kz þmþ ik⊥ÞJlðk⊥ρÞJlðk⊥ρ0Þ

×
e−iðE−ðlþ1=2ÞΩÞteikzzeilφ

E2 − k2z −m2 − k2⊥ þ iϵ
: ð47Þ

In order to calculate the sum over l, we use the integral
representation of the Bessel functions

JlðxÞ ¼
1

2π

Z
π

−π
eiðx sinðτÞ−lτÞdτ; ð48Þ

thus arriving at

S11ðρ; ρ0;φ; z; tÞ ¼
Z

dEdkzk⊥dk⊥
ð2πÞ4 e−iðE−Ω=2Þteikzz

×
ðE − kz þmþ ik⊥Þ

E2 − k2z −m2 − k2⊥ þ iϵ

×
Z

π

−π
dτeik⊥ρ

0 sinðτÞ

×
X∞
l¼−∞

Jlðk⊥ρÞeilðφþΩt−τÞ: ð49Þ

We now use the Jacobi-Anger expansion
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X∞
l¼−∞

JlðxÞeily ¼ eix sinðyÞ; ð50Þ

supplemented by the change of variable ρ; ρ0 → R; r
given by

ρ0 ¼ R − r=2;

ρ ¼ Rþ r=2; ð51Þ

we get

S11ðR; r;φ; z; tÞ ¼
Z

dEdkzk⊥dk⊥
ð2πÞ4 e−iðE−Ω=2Þteikzz

×
ðE − kz þmþ ik⊥Þ

E2 − k2z −m2 − k2⊥ þ iϵ

×
Z

π

−π
dτe−ik⊥rðsin τ−sin θÞ=2

× eik⊥Rðsin τþsin θÞ; ð52Þ

where we have defined θ≡ φþ Ωt − τ.
We now make the approximation whereby the fermion is

totally dragged by the vortical motion such that the angular
position is determined by the product of the angular
velocity and the time, namely, φþΩt ¼ 0. This is a very
good approximation, for instance, during the early stages of
a peripheral heavy-ion collision, where particle interactions
have not yet produced the development of a radial
expansion, characterized by a rate Γ. In this sense, Ω
being much larger than Γ, can be considered as the largest

of the intrinsic energy scales in the problem. In this way,
sinθ→−sinτ and thus the last factor in Eq. (52) becomes 1.
Notice that, under this approximation, the function depends
only on relative coordinates making it translationally
invariant.
Using the identity

Z
π

−π
dτeik⊥r sin τ ¼ ð2πÞJ0ðk⊥rÞ; ð53Þ

we obtain

S11ðr;φ; z; tÞ ¼
Z

dEdkzk⊥dk⊥
ð2πÞ3 e−iðE−Ω=2Þteikzz

×
ðE − kz þmþ ik⊥Þ

E2 − k2z −m2 − k2⊥ þ iϵ
J0ðk⊥rÞ: ð54Þ

We now use that the function depends only on relative
coordinates to introduce the Fourier transform

S11ðpÞ ¼
Z

d4xeip·xS11ðxÞ; ð55Þ

and obtain

S11ðpÞ ¼
p0 þ Ω=2 − pz þmþ ip⊥
ðp0 þ Ω=2Þ2 − p⃗2 −m2 þ iε

: ð56Þ

The rest of the terms in the propagator can be worked in a
similar fashion and thus we get

SðpÞ ¼

0
BBBBBBBB@

p0þΩ=2−pzþmþip⊥
ðp0þΩ=2Þ2−p⃗2−m2þiε 0 0 0

0
p0−Ω=2þpzþm−ip⊥
ðp0−Ω=2Þ2−p⃗2−m2þiε 0 0

0 0
−ðp0þΩ=2Þþpzþm−ip⊥
ðp0þΩ=2Þ2−p⃗2−m2þiε 0

0 0 0
−ðp0−Ω=2Þ−pzþmþip⊥
ðp0−Ω=2Þ2−p⃗2−m2þiε

1
CCCCCCCCA
: ð57Þ

The result can be further simplified by introducing the
operators

O� ≡ 1

2
½1� iγ1γ2�; ð58Þ

such that the propagator looks like

SðpÞ ¼ ½p0 þ Ω=2 − pz þ ip⊥�γ0 þm
ðp0 þ Ω=2Þ2 − p⃗2 −m2 þ iε

Oþ

þ ½p0 −Ω=2þ pz − ip⊥�γ0 þm
ðp0 −Ω=2Þ2 − p⃗2 −m2 þ iε

O−: ð59Þ

Equation (59) is our main result. We emphasize that this
propagator is obtained under the approximation whereby the
fermion is dragged by the vortical motion. In this manner we
have traded the detailed description of the fermion motion in
favor of accounting for theway the angular velocity translates
into an influence on the fermion spin degrees of freedom.

IV. SUMMARY AND OUTLOOK

In this work we have derived the propagator for a
fermion immersed within a rigidly rotating environment.
The motivation stems from the search of the description
from first principles to study how the fermion spin is
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affected by the overall rotational motion. The method we
used has been recently put forward in Refs. [30,31] and it
has been applied to rederiving the propagator for electri-
cally charged bosons, fermions, and even gauge bosons in
the presence of a magnetic field. To our knowledge, this is
the first time the method is used in the context of fermions
immersed in a rotating environment.
We found that the propagator is diagonal in Lorentz

space and the general expression is not translationally
invariant in the transverse radial coordinate. However,
under the approximation that the fermion is completely
dragged by the overall vortical motion, translation invari-
ance is recovered, which allows us to find the expression
for the propagator in momentum space.

The propagator thus found is now suited to be
used in perturbative calculations using ordinary Feynman
rules in momentum space. Work in this direction is
currently being pursued and will be soon reported
elsewhere.
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