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Calculations in field theory are usually accomplished by employing some variants of perturbation theory,
for instance, using loop expansions. These calculations result in asymptotic series in powers of small
coupling parameters, which as a rule are divergent for finite values of the parameters. In this paper, we
describe a method allowing for the extrapolation of such asymptotic series to finite values of the coupling
parameters and even to their infinite limits. The method is based on self-similar approximation theory. This
theory approximates well a large class of functions, rational, irrational, and transcendental. We present a
method resulting in self-similar factor approximants allowing for the extrapolation of functions to arbitrary
values of coupling parameters from only the knowledge of expansions in powers of small coupling
parameters. The efficiency of the method is illustrated by several problems of quantum field theory.
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I. INTRODUCTION

The solution of almost all nontrivial problems resorts to
the use of some kind of perturbation theory yield-
ing asymptotic series in powers of small parameters.
However, the physical values of the parameters of interest
are usually not small and often are even quite large. Thus
we come to the necessity of being able to extrapolate the
asymptotic series, which are usually divergent, to the finite
values of the parameters of interest. Moreover, sometimes
the main interest is in the behavior of the studied character-
istics at asymptotically large parameters tending to infinity.
Padé approximants can sometimes extrapolate small-vari-
able series to the finite-variable region. However, as is well
known, they cannot describe the large-variable behavior at
the variable tending to infinity, if only a small-variable
expansion is available [1]. Let us emphasize that here we
keep in mind the case where no large-variable behavior is
known, because of which it is impossible to turn to two-
point Padé approximants requiring the knowledge of the
large-variable behavior [1,2]. Similarly, it is not possible to
use other interpolation methods needing the information on

the large-variable asymptotic behavior for the quantity of
interest. Our aim here is to consider not interpolation but
extrapolation, when only the small-variable expansions are
available.
Padé approximants, as is known, provide the best

approximation for rational functions, but the reason why
they cannot predict the large-variable behavior for irrational
functions is rather straightforward. Really a PM=NðxÞ Padé
approximant in the limit of x → ∞ behaves as xM−N , where
M and N are integers. Moreover, the difference M − N
depends on the used Padé approximant, but not uniquely
defines the limiting exponent.
The other method of extrapolation, Borel summation,

requires the knowledge of the large-order behavior of series
coefficients, so that the error of the truncated series be
bounded by Cnn!jzjn, where C is a constant [3–5].
However, this large-order behavior of the expansion co-
efficients is not always known. There exist several variants
of the approach involving Borel summation, including the
combination of the Borel transform, conformal mapping,
and Padé approximants [3–8].
Among other methods allowing for the large-variable

extrapolation, it is possible to mention the approach based
on the introduction of control functions defined by fixed-
point conditions optimizing the series convergence [9,10].
Several variants of this approach have been considered,
e.g., [9–22]. The introduction of control functions requires
one to rearrange the considered series by either a change of
the variable containing trial parameters [4] or by incorpo-
rating trial parameters into an initial approximation [9,10].
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The series convergence depends on the choice of an
initial approximation. In many cases, one chooses as an
initial approximation a Gaussian form corresponding to
free particles. More complicated forms for the initial
approximation can also be chosen. For example, one can
start perturbation theory with a non-Gaussian approxima-
tion [23–26] or one can use for the initial approximation
nontrivial Hamiltonians, as in the method of Hamiltonian
envelopes [27].
The methods mentioned above are numerical, require

rearrangements of perturbation series and rather involved
calculations. It would be good to have a simple analytical
method that could extrapolate the standard Taylor series
derived by the usual perturbation theory in powers of a
parameter, say the coupling parameter.
Here we describe such a simple general method allowing

for the extrapolation of asymptotic series in powers of a
small variable to arbitrary values of this variable, including
infinity. To illustrate, we accomplish the extrapolation of
the series for several functions met in quantum field theory,
whose behavior at large coupling parameters is of interest
by its own. The advantages of the suggested approach, as
compared to other methods, are as follows.

(i) First of all, the suggested method is analytical,
allowing for the derivation of explicit forms of the
sought functions. This makes it straightforward to
analyze the results with respect to different param-
eters entering the problem, which is not always easy
in numerical methods.

(ii) Moreover, numerical methods in some cases are not
applicable, while the presented method of extrapo-
lation of asymptotic series can always be applied,
provided at least several terms of perturbation theory
are available.

(iii) Even if numerical simulations could be invoked,
they usually require powerful computational facili-
ties and essential calculational time. On the contrary,
the suggested method is very simple and straight-
forward.

(iv) Numerical methods have their own problems and
limitations. Therefore, the employment of simpler
analytical methods can serve as a guide for numeri-
cal calculations.

(v) Finally, the physics of the considered problem
becomes much more transparent when possessing
an explicit, although approximate, formula, allowing
for study of its behavior in limiting cases.

It is important to stress that the main aim of the article is
to develop a method of extrapolation that would be simple,
analytical, and applicable even for those cases where just a
few terms of perturbative series are available. This is why
we concentrate our attention on these points.
When numerous terms of a series are available, there are

several methods allowing for accurate extrapolation.
However, this is not the point of our interest. If we were

interested in getting high accuracy of extrapolation for
series with numerous terms, we should resort to some
modifications of our method, using additional tricks, such
as the introduction of control functions into self-similar
approximants [21], the combination of self-similar approx-
imations with Padé approximants, or with Borel transforms,
etc. Thus, it has been demonstrated [28,29] that the
combination of self-similar and Padé approximants con-
verges much faster and provides essentially higher accu-
racy then the best Padé approximants of the same order.
However, all that is a quite different problem, requiring
separate investigations and publications, some of which we
cite. We stress it again that the main aim of the present
paper is to suggest a simple analytical method provid-
ing reliable approximations when other methods are not
applicable.

II. SELF-SIMILAR APPROXIMATION THEORY

The suggested method is based on self-similar approxi-
mation theory advanced in Refs. [30–34]. In Ref. [35], this
theory is used for developing a convenient approach to the
problems of “interpolation” in high-energy physics, when
weak coupling as well as strong coupling expansions are
known. Here we extend the applicability of the approach
for the essentially more complicated problem of extrapo-
lation in quantum field theory, when only the weak-
coupling asymptotic series are available, but the behavior
at the strong-coupling limit is not known, and even more,
finding this behavior is the point of main interest.
First, we briefly recall the main ideas of self-similar

approximation theory so that the reader could understand
its justifications and why it can successfully work. This
approach is based on mathematical techniques of renorm-
alization group theory, dynamical theory, and optimal
control theory [36–38]. Note that these theories are closely
interrelated since the renormalization group theory,
actually, is a particular case of dynamical theory.
The pivotal idea is to reformulate perturbation theory to

the language of dynamical theory or renormalization group
theory. For this purpose, we treat the approximation-order
index as discrete time and the passage from one approxi-
mation to another as the motion in the space of approx-
imations. Suppose we can find the sought function only as a
sequence of approximations at a small variable, fðxÞ ≃
fkðxÞ for x → 0, where k ¼ 0; 1; 2;… is the approximation
order. For concreteness, we consider here real-valued
functions of real variables. The extension to complex-
valued functions can be straightforwardly done by consid-
ering several functions corresponding to real and imaginary
parts of the sought function.
The sequence of the bare approximants fkðxÞ is usually

divergent. Therefore, the first thing that is necessary to do is
to reorganize this sequence by introducing control func-
tions uk ¼ ukðxÞ governing the sequence convergence.
Control functions can be incorporated in several ways,
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through initial conditions, calculational algorithm, or by a
sequence transformation. Thus, instead of the bare approx-
imants fkðxÞ, we pass to a transformed sequence of the
approximants

Fkðx; ukÞ ¼ T̂½u�fkðxÞ:

For short, we write here one control function uk, although
there can be several of them, so that uk can be understood as
a set of the necessary control functions. We assume that the
used transformation is invertible, in the sense that

fkðxÞ ¼ T̂−1½u�Fkðx; ukÞ:

The sequence fFkðx; ukÞg is convergent if and only if it
satisfies the Cauchy criterion, when for each ε > 0 there
exists a number kc, such that

jFkþpðx; ukþpÞ − Fkðx; ukÞj < ε

for all k > kc and p > 0. In the language of optimal control
theory, this implies that control functions can be defined as
the minimizers of the convergence cost functional [38]

C½u� ¼
X
k

jFkþ1ðx; ukþ1Þ − Fkðx; ukÞj: ð1Þ

In order to formulate the passage between different Fk as
the evolution of a dynamical system, it is necessary to
define an endomorphism in the space of approximants

A ¼ fFkðxÞ∶k ¼ 0; 1; 2;…; x ∈ Rg:

For this purpose, we introduce the expansion function x ¼
xkðfÞ by the reonomic constraint

F0ðx; ukðxÞÞ ¼ f:

The endomorphism in the approximation space is defined
as

ykðfÞ≡ FkðxkðfÞ; ukðxkðfÞÞÞ;

with the inverse relation

Fkðx; ukðxÞÞ ¼ ykðF0ðx; ukðxÞÞÞ:

By this construction, the approximation sequence fFkg
is bijective with the sequence of the endomorphisms fykg.
Therefore, if the sequence fFkg converges to a limit F�,
then the sequence of the endomorphisms fykg converges to
a limit y�. The limit y� plays the role of a fixed point for the
endomorphism sequence fykg, where ykðy�ðfÞÞ ¼ y�ðfÞ.
In the vicinity of a fixed point, the endomorphism enjoys
the property of self-similarity

ykþpðfÞ ¼ ykðypðfÞÞ; ð2Þ

with the initial condition y0ðfÞ ¼ f. This is, actually, just
the semigroup property ykþp ¼ yk · yp, with the unity
element y0 ¼ 1. The sequence of endomorphisms, with
the above semigroup property, is called cascade (or semi-
cascade),

fykðfÞ∶Zþ × R → Rg;

where the role of time is played by the approximation
order k.
A cascade, which is a dynamical system in discrete time,

can be embedded [39] into a flow that is a dynamical
system in continuous time,

fykðfÞ∶Zþ ×R → Rg ⊂ fyðt; fÞ∶Rþ ×R → Rg:

The embedding implies that the flow enjoys the same group
property

yðtþ t0; fÞ ¼ yðt; yðt0; fÞÞ;

and the flow trajectory passes through all points of the
cascade trajectory

yðt; fÞ ¼ ykðfÞ ðt ¼ kÞ

with the same initial condition yð0; fÞ ¼ f.
The above group property can be rewritten as the Lie

differential equation

∂
∂t yðt; fÞ ¼ vðyðt; fÞÞ; ð3Þ

with the velocity

vðyÞ≡ lim
τ→0

∂
∂τ yðτ; yÞ:

Integrating the differential evolution equation (3) yields the
evolution integral Z

y�k

yk

dy
vðyÞ ¼ tk; ð4Þ

in which the integration is from a point ykðfÞ to an
approximate fixed point y�kðfÞ, with tk being the effective
time needed for reaching the latter point. Here y�kðfÞ is an
approximate fixed point, since in practice we always have
to limit the consideration by a finite number of steps.
Taking in the evolution integral, the cascade velocity
represented in the form of the Euler discretization

vkðfÞ ¼ ykþ1ðfÞ − ykðfÞ;

SELF-SIMILAR EXTRAPOLATION IN QUANTUM FIELD … PHYS. REV. D 103, 076019 (2021)

076019-3



we come to the integralZ
F�
k

Fk

df
vkðfÞ

¼ tk; ð5Þ

in which

F�
kðxÞ ¼ y�kðF0ðx; ukðxÞÞ

is the effective limit of the sequence fFkg corresponding
to the approximate fixed point y�k. Applying the inverse
transformation, we obtain the self-similar approximant

f�kðxÞ ¼ T̂−1½u�F�
kðxÞ:

These are the principal steps in deriving self-similar
approximants. The practical realization depends on the
form of the bare approximants fkðxÞ, the concrete form of
the transformation T̂ introducing control functions, and on
the method of defining the latter. When the asymptotic
behavior of the sought quantity is known for small as well
as for large-coupling parameters, it is convenient to
accomplish the interpolation with the use of self-similar
root approximants, as is demonstrated in Ref. [35]. But for
the problem of extrapolation we need to employ another
type of approximants.
Usually, the asymptotic behavior at small-coupling

parameters x → 0, is of the form

fkðxÞ ¼ f0ðxÞ
�
1þ

Xk
n¼1

anxn
�
; ð6Þ

where f0ðxÞ is a given function. The above sum is usually
divergent for finite values of x, and hence makes no sense
for finite x. Moreover, often it is necessary to find the
behavior of the sought function fðxÞ at asymptotically
large x → ∞.
By the fundamental theorem of algebra [40], a poly-

nomial of any degree of one real variable over the field of
real numbers can be split in a unique way into a product
of irreducible first-degree polynomials over the field of
complex numbers. This implies that the finite series (6) can
be represented as the product

fkðxÞ ¼ f0ðxÞ
Y
j

ð1þ bjxÞ; ð7Þ

with bj expressed through an.
Control functions can be explicitly incorporated by

employing fractal transforms [38,41], which can be written
in the form

T̂½s; u�fkðxÞ ¼ xskfkðxÞ þ uk: ð8Þ

Then, following the scheme described above, we obtain the
self-similar factor approximants

f�kðxÞ ¼ f0ðxÞ
YNk

j¼1

ð1þ AjxÞnj ; ð9Þ

with Aj and nj playing the role of control parameters
[42–44].
The number of factors Nk equals k=2 for even k and

ðkþ 1Þ=2 for odd k. A factor approximant (9) represents
the sought function, therefore their asymptotic expansions
should coincide. Then the parameters Aj and nj are to be
chosen so that the asymptotic expansion of approximant (9)
of order k be equal to the asymptotic form (6); that
is, f�kðxÞ ≃ fkðxÞ for x → 0. This condition yields the
equations

XNk

j¼1

njAn
j ¼ Dn ðn ¼ 1; 2;…; kÞ; ð10Þ

where

Dn ≡ ð−1Þn−1
ðn − 1Þ! limx→0

dn

dxn
ln

�
1þ

Xn
m¼1

amxm
�
:

When k is even, hence Nk ¼ k=2, we have k equations
for k unknown parameters Aj and nj, uniquely defining
these parameters [44]. However, if k is odd, and Nk ¼
ðkþ 1Þ=2, we have k equations for kþ 1 parameters. Then,
to make the system of equations complete, it is necessary to
add one more condition. For instance, resorting to scaling
arguments [44], it is possible to set one of Aj to one, say,
fixing A1 ¼ 1. This method gives for odd approximants the
results close to the nearest even-order approximants.
However, below we prefer to deal with uniquely defined
even orders. Sometimes it may happen that the solutions for
the parameters Aj and nj are complex valued. But this does
not lead to any problem, since such complex solutions for
the parameters appear in complex conjugate pairs, so that
the whole expression remains real valued.
When we are interested in predicting the large-variable

behavior of a function fðxÞ, we study the self-similar factor
approximant (9) at x → ∞. If the function f0 behaves as
f0ðxÞ ≃ Axα for x → ∞, then the self-similar factor approx-
imant (9) for large x is

f�xðxÞ ≃ Bkxγk ðx → ∞Þ; ð11Þ

with the amplitude and the exponent

Bk ¼ A
YNk

j¼1

A
nj
j ; γk ¼ αþ

XNk

j¼1

nj: ð12Þ

In those cases, where the large-variable asymptotic
behavior of the sought function is known, say, being fðxÞ ≃
Bxγ for x → ∞, it is straightforward to determine the
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accuracy of the prediction by calculating the percen-
tage errors εðBkÞ≡ ððBk − BÞ=BÞ × 100% and εðγkÞ≡
ððγk − γÞ=γÞ × 100%. When the exact large-variable
asymptotic behavior is not available, one usually presents
the difference between the subsequent approximations for
the quantity of interest. This difference characterizes the
variation bar or dispersion of the obtained results, which is
related to the stability of the calculational procedure [45]. If
the subsequent results strongly differ from each other, this
induces suspicion of the procedure stability.
Often, the most important hard case is the prediction of

the exponent in the strong-coupling limit, since the value of
the exponent essentially defines the physics of the problem.
This hard case is the main study in the present article.
It is important to stress that the derivation of self-similar

factor approximants is based on the Cauchy criterion of
convergence, so that these approximants are expected to
converge by construction. Moreover, the numerical con-
vergence of self-similar factor approximants has been
confirmed by a number of problems enjoying many terms
in their asymptotic expansions, when a long sequence
of the factor approximants could be considered [38,
42–44,46]. It has been shown that for finite values of
the considered variable the accuracy of self-similar approx-
imants is comparable with that of heavy numerical cal-
culations. In the present paper, we concentrate on the
most difficult and interesting challenge of finding strong-
coupling limits of functions, especially their exponents,
from the knowledge of only a few terms in their asymptotic
weak-coupling expansions. This type of problem is difficult
even for numerical methods. The approach is illustrated by
several problems of quantum field theory.

III. CONVERGENCE OF SELF-SIMILAR
FACTOR APPROXIMANTS

When a number of terms in a weak-coupling expansion
are available and the asymptotic behavior in the strong-
coupling limit is known, it is possible to study numerical
convergence of the approximants. Below we illustrate this
by several examples.

A. Zero-dimensional φ4 theory

Let us start with the simple example of the so-called
zero-dimensional φ4 theory characterized by the generating
functional (partition function)

ZðgÞ ¼ 1ffiffiffi
π

p
Z

∞

−∞
e−φ

2−gφ4

dφ; ð13Þ

with the coupling parameter g ≥ 0. The weak-coupling
asymptotic expansion reads as

ZkðgÞ ¼
Xk
n¼0

angn ðg → 0Þ; ð14Þ

where the coefficients are

an ¼
ð−1Þnffiffiffi
π

p
n!

Γ
�
2nþ 1

2

�
:

Using only this weak-coupling expansion, we construct the
self-similar factor approximants and study their strong-
coupling limit, which gives

Z�
kðgÞ ≃ Bkgγk ðg → ∞Þ: ð15Þ

The accuracy of the obtained strong-coupling exponents
can be found by comparing the above limit with the known
strong-coupling behavior

ZðgÞ ≃ 1.022765 g−1=4 ðg → ∞Þ: ð16Þ

The results, shown in Table I, demonstrate monotonic
convergence to the exact limiting value −0.25. In the 16th
order, we have

Z�
16ðgÞ ≃ 0.828 g−0.187 ðg → ∞Þ: ð17Þ

B. One-dimensional anharmonic oscillator

The one-dimensional anharmonic oscillator with the
Hamiltonian

H ¼ −
1

2

d2

dx2
þ 1

2
x2 þ gx4; ð18Þ

where g ≥ 0 and −∞ < x < ∞, imitates the one-dimen-
sional φ4 theory. The weak-coupling expansion of the
ground-state energy is

EkðgÞ ≃
1

2
þ
Xk
n¼0

angn ðg → 0Þ; ð19Þ

with coefficients that can be found in Refs. [47,48].
Constructing the factor approximants and looking for

their strong-coupling limit

E�
kðgÞ ≃ Bkgγk ðg → ∞Þ ð20Þ

yields the results for the exponents shown in Table II. The
accuracy is found by the comparison with the known
strong-coupling asymptotic behavior

TABLE I. Strong-coupling exponents and their percentage
errors for the generating functional of zero-dimensional φ4

theory.

k 2 4 6 8 10 12 14 16

γk −0.09 −0.13 −0.15 −0.16 −0.17 −0.18 −0.18 −0.19
εðγkÞ% −63 −48 −41 −36 −32 −29 −27 −25
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EðgÞ ≃ 0.667986 g1=3 ðg → ∞Þ: ð21Þ

In the 16th order, we get

E�
16ðgÞ ≃ 0.736 g0.298 ðg → ∞Þ: ð22Þ

Table 2 demonstrates monotonic numerical convergence.

C. Massive Schwinger model in lattice theory

One of the simplest nontrivial gauge theory models is
the Schwinger model [49]. This is a lattice model of
quantum electrodynamics in 1þ 1 space-time dimensions.

The model exhibits several phenomena typical of quantum
chromodynamics, such as confinement, chiral symmetry
breaking with an axial anomaly, and a topological vacuum
[50–54]. The spectrum of excited states for a finite lattice,
calculated by means of perturbation theory, is expressed
through the series

fkðzÞ ≃ 1þ
Xk
k¼1

anzn ðz → 0Þ ð23Þ

in powers of the variable z≡ 1=ðgaÞ4, where g is the
coupling parameter and a is the lattice spacing [55]. The
coefficients for the vector boson are

a1 ¼ 2; a2 ¼ −10; a3 ¼ 78.66667; a4 ¼ −7.362222 × 102;

a5 ¼ 7.572929 × 103; a6 ¼ −8.273669 × 104; a7 ¼ 9.428034 × 105;

a8 ¼ −1.108358 × 107; a9 ¼ 1.334636 × 108; a10 ¼ −1.637996 × 109:

Constructing factor approximants and considering their
large-z limit, we have

f�kðzÞ ≃ Bkzγk ðz → ∞Þ; ð24Þ

with the results for the large-z exponent listed in Table III.
This is to be compared with the known limiting behavior

fðzÞ ≃ 1.1284z1=4 ðz → ∞Þ: ð25Þ

For example, in the tenth order

f�10ðzÞ ≃ 1.519z0.2 ðz → ∞Þ: ð26Þ

D. Ground-state energy of Schwinger model

The ground-state energy of the Schwinger model with a
vector boson, in the continuum limit, can be found [51–54]
as an expansion in powers of the dimensionless variable
x ¼ m=g, where m is the electron mass and g is the
coupling parameter,

EðxÞ
g

≃ 0.5642 − 0.219xþ 0.1907x2 ðx → 0Þ: ð27Þ

This short series allows us to construct only the second-
order factor approximant

E�
2ðxÞ
g

¼ 0.5642
ð1þ 1.35339xÞ0.286805 : ð28Þ

In the large-x limit this gives

E�
2ðxÞ
g

≃ 0.5173x−0.287 ðx → ∞Þ: ð29Þ

Comparing the large-x exponent, with the known asymp-
totic behavior [54–57]

EðxÞ
g

≃ 0.6417x−1=3 ðx → ∞Þ; ð30Þ

we find that the percentage error of the predicted exponent
is εðγ2Þ ¼ −14%.

E. Summary for considered examples

The above examples show that the knowledge of only a
small-variable asymptotic expansion makes it possible to
extrapolate the small-variable expansion to finite values of
the variable and even to predict the behavior of the
corresponding function at asymptotically large values of
the variable. When a number of terms in the small-variable
series are known, the sequence of the related self-similar
approximants is shown to converge. The self-similar

TABLE II. Strong-coupling exponents and their percentage
errors for the ground-state energy of one-dimensional anhar-
monic oscillator.

k 2 4 6 8 10 12 14 16

γk 0.18 0.23 0.26 0.27 0.28 0.29 0.29 0.30
εðγkÞ% −47 −31 −23 −18 −16 −13 −12 −11

TABLE III. Large-z exponents and their percentage errors for
the function fðzÞ of the finite-lattice Schwinger model.

k 2 4 6 8 10

γk 0.167 0.185 0.193 0.198 0.200
εðγkÞ% −33 −26 −23 −21 −20
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extrapolation allows for sufficiently accurate evaluation of
the large-variable exponent even when just a few terms of
the small-variable expansion are available.
The reason why a small-variable expansion can be

extrapolated to the finite and even infinite values of the
variable lays in the following. The coefficients of the
expansion contain hidden information on the whole func-
tion from which they are derived. Separate coefficients
do not allow for noticing this hidden information. However,
this information can be extracted by analyzing the rela-
tions between the coefficients. Self-similar approximation
theory provides an instrument revealing the relations
between the expansion coefficients and thus allowing for
the reconstruction of the whole sought function.

IV. EXACT RECONSTRUCTION OF
GELL-MANN-LOW FUNCTIONS

Gell-Mann-Low functions in quantum field theory are
usually calculated by means of loop expansions yielding
series in powers of asymptotically small-coupling param-
eters. However, the behavior of these functions at strong
coupling is of special interest. Below we consider the
extrapolation of these functions to the arbitrary values
of coupling parameters, including the limit to ∞, by
employing self-similar factor approximants. Special atten-
tion will be paid to the study of the strong-coupling limit. In
the present section, we demonstrate that, in some cases,
having just a few perturbative terms, self-similar approxi-
mants can reconstruct the sought Gell-Mann-Low function
exactly.
For this purpose, let us turn to theN ¼ 1 supersymmetric

pure Yang-Mills theory, whose exact beta function is
known [58–62],

βðgÞ ¼ −
3g3Nc

16π2ð1 − g2Nc=8π2Þ
: ð31Þ

If one resorts to perturbation theory with respect to the
coupling g, one gets

βkðgÞ ¼ −
3g3Nc

16π2
Xk
n¼0

bng2n; ð32Þ

with the coefficients

bn ¼
�
Nc

8π2

�
n
:

For the second-order factor approximant, we have

β�2ðgÞ ¼ −
3g3Nc

16π2
ð1þ A1g2Þn1 : ð33Þ

Expanding Eq. (33) and comparing the expansion with
series (32) yields

n1 ¼ −1; A1 ¼ −
Nc

8π2
:

Thus the second-order factor approximant results in the
exact expression (31). It is easy to check that all approxi-
mants of orders k ≥ 2 give the exact beta function (31).

V. GELL-MANN-LOW FUNCTION
IN φ4 FIELD THEORY

Let us consider theOðNÞ symmetric φ4 field theory. The
Gell-Mann-Low function is defined as

βðgÞ ¼ μ
∂g
∂μ ; ð34Þ

where g ¼ λ=ð4πÞ2 is the coupling parameter and μ is the
renormalization scale. This function has been found [63],
within a minimal subtraction scheme, in the six-loop
approximation

βðgÞ ≃ g2
Xk
n¼0

bngn ðg → 0Þ; ð35Þ

with the coefficients

b0 ¼
N þ 8

3
; b1 ¼ −

3N þ 14

3
;

b2 ¼
1

216
½96ð5N þ 22Þζð3Þ þ 33N2 þ 922N þ 2960�;

b3 ¼ −
1

3888
½1920ð2N2 þ 55N þ 186Þζð5Þ − 288ðN þ 8Þð5N þ 22Þζð4Þ

þ 96ð63N2 þ 764N þ 2332Þζð3Þ − ð5N3 − 6320N2 − 80456N − 196648Þ�;

b4 ¼
1

62208
½112896ð14N2 þ 189N þ 526Þζð7Þ − 768ð6N3 þ 59N2 − 446N − 3264Þζ2ð3Þ

− 9600ðN þ 8Þð2N2 þ 55N þ 186Þζð6Þ þ 256ð305N3 þ 7466N2 þ 66986N þ 165084Þζð5Þ
− 288ð63N3 þ 1388N2 þ 9532N þ 21120Þζð4Þ − 16ð9N4 − 1248N3 − 67640N2 − 552280N − 1314336Þζð3Þ
þ 13N4 þ 12578N3 þ 808496N2 þ 6646336N þ 13177344�;
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b5 ¼ −
1

41990400
½204800ð1819N3 þ 97823N2 þ 901051N þ 2150774Þζð9Þ

þ 14745600ðN3 þ 65N2 þ 619N þ 1502Þζ3ð3Þ
þ 995328ð42N3 þ 2623N2 þ 25074N þ 59984Þζð3; 5Þ
− 20736ð28882N3 þ 820483N2 þ 6403754N þ 14174864Þζð8Þ
− 5529600ð8N3 − 635N2 − 9150N − 25944Þζð3Þζð5Þ
þ 11520ð440N4 þ 126695N3 þ 2181660N2 þ 14313152N þ 29762136Þζð7Þ
þ 207360ðN þ 8Þð6N3 þ 59N2 − 446N − 3264Þζð3Þζð4Þ
− 23040ð188N4 þ 132N3 − 93363N2 − 862604N − 2207484Þζ2ð3Þ
− 28800ð595N4 þ 20286N3 þ 277914N2 þ 1580792N þ 2998152Þζð6Þ
þ 5760ð4698N4 þ 131827N3 þ 2250906N2 þ 14657556N þ 29409080Þζð5Þ
þ 2160ð9N5 − 1176N4 − 88964N3 − 1283840N2 − 6794096N − 12473568Þζð4Þ
− 720ð33N5 þ 2970N4 − 477740N3 − 10084168N2 − 61017200N − 117867424Þζð3Þ
− 45ð29N5 þ 22644N4 − 3225892N3 − 88418816N2 − 536820560N − 897712992Þ�:

Here ζð3; 5Þ denotes the double zeta function

ζð3; 5Þ ¼
X

1≤n<m

1

n3m5
¼ 0.037707673:

The numerical values of the coefficients for the number of components from N ¼ 0 to N ¼ 4 are given in Table IV.
In the case ofN ¼ 1, the Gell-Mann-Low function is known in the seven-loop approximation [64] having the coefficients

b0 ¼ 3; b1 ¼ −5.66667; b2 ¼ 32.5497; b3 ¼ −271.606;

b4 ¼ 2848.57; b5 ¼ −34776.1; b6 ¼ 474651:

We construct self-similar factor approximants for differ-
ent N. Thus for N ¼ 0, we have

β�2ðgÞ ¼
2.66667g2

ð1þ 9.16021gÞ0.191044 ðN ¼ 0Þ;

β�4ðgÞ ¼
2.66667g2

ð1þ 6.06377gÞ0.194059ð1þ 15.5161gÞ0.0369468 ;

ð36Þ

which yields the strong-coupling limit

β�2ðgÞ ≃ 1.747g1.809; β�4ðgÞ ≃ 1.699g1.769

ðN ¼ 0; g → ∞Þ: ð37Þ
For N ¼ 2, we find

β�2ðgÞ ¼
3.33333g2

ð1þ 9.98433gÞ0.200314 ðN ¼ 2Þ;

β�4ðgÞ ¼
3.33333g2

ð1þ 5.79973gÞ0.206354ð1þ 16.2195gÞ0.0495207 ;

ð38Þ
with the strong-coupling limit

β�2ðgÞ ≃ 2.102g1.7997; β�4ðgÞ ≃ 2.020g1.7441

ðN ¼ 2; g → ∞Þ: ð39Þ
For N ¼ 3, we obtain

β�2ðgÞ¼
3.66667g2

ð1þ10.3399gÞ0.202218 ðN¼3Þ;

β�4ðgÞ¼
3.66667g2

ð1þ5.53502gÞ0.212617ð1þ16.526gÞ0.055311 ; ð40Þ

TABLE IV. Coefficients of weak-coupling expansion for the
Gell-Man-Low function of the N-component φ4 field theory, in
the six-loop approximation.

N 0 1 2 3 4

b0 2.66667 3.0 3.33333 3.66667 4.0
b1 −4.66667 −5.66667 −6.66667 −7.66667 −8.66667
b2 25.4571 32.5497 39.9478 47.6514 55.6606
b3 −200.926 −271.606 −350.515 −437.646 −532.991
b4 2003.98 2848.57 3844.51 4998.62 6317.66
b5 −23314.7 −34776.1 −48999.1 −66242.7 −86768.4
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giving the limit

β�2ðgÞ ≃ 2.286g1.798; β�4ðgÞ ≃ 2.182g1.732 ðN ¼ 3; g → ∞Þ: ð41Þ

And for the case of N ¼ 4, we get

β�2ðgÞ ¼
4g2

ð1þ 10.6781gÞ0.202908 ðN ¼ 4Þ;

β�4ðgÞ ¼
4g2

ð1þ 5.2767gÞ0.219241ð1þ 16.8661gÞ0.0598713 ; ð42Þ

with the strong-coupling limit

β�2ðgÞ ≃ 2.474g1.797; β�4ðgÞ ≃ 2.345g1.721 ðN ¼ 4; g → ∞Þ: ð43Þ

For N ¼ 1, we use the seven-loop expansion obtaining the functions

β�2ðgÞ ¼
3g2

ð1þ 9.59923gÞ0.196775 ðN ¼ 1Þ;

β�4ðgÞ ¼
3g2

ð1þ 6.01378gÞ0.200415ð1þ 15.9204gÞ0.0429409 ;

β�6ðgÞ ¼
3g2

ð1þ 5.35692gÞ0.186798ð1þ 13.7203gÞ0.0596501ð1þ 22.0958gÞ0.0031595 ; ð44Þ

whose strong-coupling behavior is

β�2ðgÞ ≃ 1.922g1.803; β�4ðgÞ ≃ 1.859g1.757;

β�6ðgÞ ≃ 1.857g1.750 ðN ¼ 1; g → ∞Þ: ð45Þ

Summarizing, we present in Table V the averaged results

B ¼ 1

k

Xk
n¼1

B2n; γ ¼ 1

k

Xk
n¼1

γ2n ð46Þ

for the amplitudes and exponents characterizing the strong-
coupling limit

βðγÞ ≃ Bgγ ðg → ∞Þ; ð47Þ

together with the dispersion between the subsequent
approximants.
The overall behavior of the Gell-Mann-Low function of

φ4 field theory for N ¼ 1 is shown in Fig. 1, where the
convergence of the approximants is evident. The behavior
of the Gell-Mann-Low functions for otherN is similar, only
slightly differing from that for N ¼ 1.

TABLE V. Strong-coupling amplitudes and exponents for the
N-component φ4 field theory, predicted by self-similar factor
approximants.

N B γ

0 1.723� 0.02 1.789� 0.02
1 1.879� 0.03 1.770� 0.03
2 2.061� 0.04 1.772� 0.03
3 2.235� 0.05 1.765� 0.03
4 2.410� 0.06 1.759� 0.04
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FIG. 1. Gell-Mann-Low function of φ4 Oð1Þ symmetric field
theory as a function of the coupling parameter g. The convergence
of the approximants of second, fourth, and sixth order is evident.
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In literature, it is possible to find the estimates for the
strong-coupling exponent γ in the case of N ¼ 1. Thus
Borel summation with conformal mapping gives γ ¼ 2 [65]
or γ ¼ 1.9 [66]. A variational estimate [67] yields γ ¼ 1.5.
Our result of γ ¼ 1.77 for N ¼ 1 is between those given by
the Borel summation and variational calculations.

VI. GELL-MANN-LOW FUNCTION IN
QUANTUM ELECTRODYNAMICS

In quantum electrodynamics, the Gell-Mann-Low func-
tion in the renormalized minimal subtraction scheme ðMSÞ
reads as

βðαÞ ¼ μ2
∂
∂μ2

�
α

π

�
; ð48Þ

where α is the renormalized ðMSÞ scheme coupling
parameter and μ is the ðMSÞ scale parameter. The weak-
coupling expansion in five-loop approximation, taking into
account the electron, but neglecting the contributions of
leptons with higher masses, that is, muons and tau leptons,
has the form [68]

βðαÞ ≃
�
α

π

�
2 Xk
n¼0

bn

�
α

π

�
n
; ð49Þ

with the coefficients

b0 ¼
1

3
¼ 0.333333; b1 ¼

1

4
; b2 ¼ −

31

288
¼ −0.107639;

b3 ¼ −
2785

31104
−
13

36
ζð3Þ ¼ −0.523614;

b4 ¼ −
195067

497664
−
25

96
ζð3Þ− 13

96
ζð4Þ þ 215

96
ζð5Þ ¼ 1.47072:

From here, we find the factor approximants

β�2ðαÞ ¼
1

3

�
α

π

�
2
�
1þ 1.61111

α

π

�
0.465517

;

β�4ðαÞ ¼
1

3

�
α

π

�
2
�
1þ A1

α

π

�
n1
�
1þ A2

α

π

�
n2
; ð50Þ

where

A1 ¼ 1.394295þ 2.70199797 i ¼ A�
2;

n1 ¼ 0.047762 − 0.11413974 i ¼ n�2:

Therefore, in the strong-coupling limit, we have

β�2ðαÞ ≃ 0.4162

�
α

π

�
2.4655

;

β�4ðαÞ ≃ 0.4759

�
α

π

�
2.0955

�
α

π
→ ∞

�
: ð51Þ

Defining average quantities, we see that the strong-
coupling behavior of the Gell-Mann-Low function

βðαÞ ≃ B

�
α

π

�
γ

�
α

π
→ ∞

�
ð52Þ

can be characterized by the amplitude and exponent

B ¼ 0.446� 0.03; γ ¼ 2.281� 0.19: ð53Þ

The dependence of the Gell-Mann-Low function for
quantum electrodynamics is presented in Fig. 2. Its overall
behavior only slightly depends on the chosen scheme.
Thus, accepting the coefficients of the weak-coupling
expansion found in the on-shell scheme or in the momen-
tum subtraction scheme [68] results in B ¼ 0.433, γ ¼
2.189 in the on-shell scheme and B ¼ 0.493, γ ¼ 2.309 in
the momentum subtraction scheme.
The running coupling defined by Eq. (48), with the beta

function represented by a factor approximant, increases
from zero to infinity. As the boundary condition, we can
take the value αðmZÞ ¼ 0.007815 at the Z-boson mass
mZ ¼ 91.1876 GeV. Then the logarithmic divergence
occurs at μ0 ¼ 8.584 × 10260 GeV, where

α ≃
2.743

ðlnðμ0=μÞÞ0.682
ðμ → μ0 − 0Þ:

The value of μ0 is much larger than the point of the simple
Landau pole that is of the order of 1030–1040 GeV [69].
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0

100

200

300

400

n
*

4
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* ( )

FIG. 2. Gell-Mann-Low function of quantum electrodynamics
as a function of the coupling parameter α.
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The value of μ0 is so large that it practically can be
considered as infinity.

VII. GELL-MANN-LOW FUNCTION IN
QUANTUM CHROMODYNAMICS

The Gell-Mann-Low function in quantum chromody-
namics is defined by the equation

βðαsÞ ¼ μ2
∂as
∂μ2

�
as ≡ αs

π

�
; ð54Þ

where αs is the quark-gluon coupling and μ is the
normalization scale. We keep in mind the realistic case
of three colors ðNc ¼ 3Þ. In the five-loop approximation,
the weak-coupling expansion is

βðαsÞ ≃ −a2s
Xk
n¼0

bnans ðas → 0Þ: ð55Þ

Within the minimal subtraction scheme ðMSÞ, the coef-
ficients are [70–72]

b0 ¼ 2.75 − 0.166667 nf; b1 ¼ 6.375 − 0.791667 nf;

b2 ¼ 22.3203 − 4.36892 nf þ 0.0940394 n2f;

b3 ¼ 114.23 − 27.1339 nf þ 1.58238 n2f þ 0.0058567 n3f;

b4 ¼ 524.56 − 181.8 nf þ 17.16 n2f − 0.22586 n3f

− 0.0017993 n4f;

with nf being the number of quark flavors.
It turns out that factor approximants as real functions do

not exist for all nf, but they do exist for the physically
realistic number of flavors nf ¼ 6. For this case, the
available factor approximants are

β�2ðαsÞ ¼ −1.75a2sð1þ 1.5536asÞ0.597706;
β�3ðαsÞ ¼ −1.75a2sð1þ asÞ0.91227ð1þ 32.5316asÞ0.0005011:

ð56Þ

This gives the strong-coupling limit

β�2ðαsÞ ≃ −2.2772a2.5977s ;

β�3ðαsÞ ≃ −1.7531a2.9128s ðas → ∞Þ: ð57Þ

In that way, the strong-coupling limit of the Gell-Mann-
Low function

βðαsÞ ≃ −Baγs ðas → ∞Þ ð58Þ

is characterized by the amplitude and exponent

B ¼ −2.015� 0.26; γ ¼ 2.755� 0.16: ð59Þ

We are not aware of other reliable estimates of these
characteristics that could be compared with our result
for the physically interesting case of the flavor number
nf ¼ 6. The behavior of the Gell-Mann-Low function of
quantum chromodynamics for this flavor number, as a
function of the coupling parameter, is shown in Fig. 3. For
varying nf, the Banks-Zaks [73] fixed point exists in the
region 8.05 ≤ nf ≤ 16.5.
The running coupling, defined by Eq. (54), with the

boundary condition αsðmZÞ ¼ 0.1181 logarithmically
grows when μ tends to μc ¼ 0.1 GeV from above,

αs ≃
0.907

ðlnðμ=μcÞÞ0.626
ðμ → μc þ 0Þ:

The appearance of a pole at μc characterizes the scale at
which perturbative QCD breaks down, so that the series (55)
as such, and hence their extrapolation, become invalid. The
value of μc can be associated with the confinement scale or,
equivalently, the hadronic mass scale and nonperturbative
effects, such as the arising bound states [69]. The smaller the
value of μc, i.e., the smaller themomentum scale at which the
divergence occurs, the slower the increase of αsðμÞ as μ
decreases. This would imply the effective extrapolation of
perturbative expressions to smaller momentum scales [69].
The value of μc is really much smaller than the point of the
Landau pole, which in the ðMSÞ scheme for nf ¼ 6 happens
at the point 0.9 GeV [74].

VIII. DISCUSSION

In the above examples, we have considered the cases
where the large-variable behavior is of power law. As is
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FIG. 3. Gell-Mann-Low function of quantum chromodynamics
for the flavor number nf ¼ 6 as a function of the coupling
parameter αs.
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demonstrated, for these cases, self-similar factor approxi-
mants can provide good extrapolation of small-variable
Taylor-type asymptotic expansions to the range of finite
variables and even for the large-variable limit. Moreover, in
some cases, these approximants, using only a small-
variable expansion, are able to reconstruct the sought
function exactly, as in the case of the Gell-Mann-Low
function for the supersymmetric pure Yang-Mills theory
and in some other cases to be considered below.
Two related natural questions arise: how well could

the self-similar factor approximants extrapolate the func-
tions with the large-variable behavior different from the
power-law, such as exponential and logarithmic behavior,
and what would be other examples of the exact func-
tion reconstruction by means of self-similar factor
approximants?

A. Class of exactly reproducible functions

First of all, let us notice that there exists a class of real-
valued functions exactly reproducible by factor approxi-
mants. These are the functions having the form

RkMðxÞ ¼
YM
i¼1

Pαi
miðxÞ ð60Þ

of the product of polynomials

Pmi
ðxÞ ¼ ci0 þ ci1xþ ci2x2 þ � � � þ cimi

xmi ;

wheremi are integers; the powers αi and coefficients cij can
be complex-valued numbers entering RkMðxÞ in complex
conjugate pairs so that RkMðxÞ is real, and

kM ¼
XM
i¼1

mi þM:

This follows from the fact that a polynomial Pmi
ðxÞ can be

represented as

Pmi
ðxÞ ¼ ci0

Ymi

j¼1

ð1þ bijxÞ;

with bij being expressed through cij. Then the function
RkMðxÞ can be reduced to the form

RkMðxÞ ¼
YM
i¼1

ci0
Ymi

j¼1

ð1þ bijxÞαi ; ð61Þ

which is nothing but a particular case of a factor approx-
imant possessing the same asymptotic expansion as the
given function (60).
If all powers αi were �1, then the function RkðxÞ would

reduce to a Padé approximant that is a rational function.

However, the powers αi are not necessarily integers; hence
factor approximants also include irrational functions that
can be reproduced exactly.

B. Exact reconstruction of exponential functions

Moreover, factor approximants can exactly reproduce
transcendental functions, such as the exponential function
expðxÞ, where x can take any complex value. Let us
consider the standard k-order expansion of the exponential
function

ekðxÞ ¼
Xk
n¼0

xn

n!
: ð62Þ

The second-order factor approximant is

e�2ðxÞ ¼ ð1þ AxÞn:

Expanding this in powers of x and comparing with ekðxÞ
yields the equations

An ¼ 1; A2nðn − 1Þ ¼ 1:

The sole solution to these equations is A ¼ 1=n with
n→∞. Therefore, already the second-order factor approxi-
mant gives exactly the exponential function

e�2ðxÞ ¼ lim
n→∞

�
1þ 1

n
x

�
n
¼ ex: ð63Þ

It is easy to check that all factor approximants of the order
k ≥ 2 reconstruct the exponential function exactly.

C. Exact solution of nonlinear equations

Some nonlinear differential equations can be solved
exactly by looking for solutions in the form of asymptotic
series and then constructing factor approximants. For
instance, let us consider the nonlinear singular problem

ðεyþ tÞ dy
dt

þ y − 1 ¼ 0 ð64Þ

with the initial condition yð0Þ ¼ 2. This kind of equation is
met in different applications [75,76]. It is called singular
since it does not allow for the use of perturbation theory in
powers of the parameter ε.
The parameter ε can be hidden in the renotation

t ¼ εx; y ¼ z − x;

resulting in the equation

z
dz
dt

− x − 1 ¼ 0;
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with the initial condition zð0Þ ¼ 2. Looking for the solution
at asymptotically small x implies the consideration of the
series

zkðxÞ ¼
Xk
n¼0

anxn;

whose coefficients can be found by substituting these series
into the equation. Thus a0 ¼ 2, a1 ¼ 1=2, a3 ¼ 3=16, and
so on. Constructing the fourth-order factor approximant
gives

z�4ðxÞ ¼ 2ð1þ A1xÞn1ð1þ A2xÞn2 ;

with the parameters

A1 ¼
1

4
ð1 − i

ffiffiffi
3

p
Þ ¼ A�

2; n1 ¼ n2 ¼
1

2
:

Returning to the initial variables yields the function

y�4ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2t

ε
þ t2

ε2

s
−
t
ε
; ð65Þ

which is the exact solution of the given equation. The same
exact solution results for any factor approximant of k ≥ 4.
Exact solutions of several other nonlinear differential

equations can also be found by employing the summation
of asymptotic series by means of the self-similar factor
approximants [77].

D. Exponential behavior: Bose-Einstein
distribution

As is shown above, the purely exponential behavior is
reproduced by factor approximants exactly. Then we
should expect that a behavior close to the purely expo-
nential could be well approximated by these approximants.
Let us consider the well-known Bose-Einstein distribution

fBðxÞ ¼
1

ex − 1
: ð66Þ

Suppose only the expansion at small x,

fBðxÞ ≃
1

x
−
1

2
þ x
12

−
x3

720
þ x5

30240
−

x7

1209600

þ � � � ðx → 0Þ; ð67Þ

is available for us, and we do not know what function it
represents.
In the standard way, we construct factor approximants

f�kðxÞ that extrapolate expansion (67) from asymptotically
small x to finite values of the latter. Our major interest is in
the approximants providing the extrapolation to the large-

variable behavior with respect to x → ∞. By their structure,
the factor approximants give the power-law behavior at
infinity, for instance,

f�4ðxÞ ≃ 2.94 ·
10−3

x3
; f�8ðxÞ ≃ 1.1 ·

10−7

x5
;

f�12ðxÞ ≃ 2.97 ·
10−14

x7
ðx → ∞Þ:

As we see, these values quickly diminish, telling us that the
real behavior at large x is faster than that of power law,
probably, of exponential type. If we expect that the large-
variable behavior is exponential, we can employ another
variant of self-similar approximants, i.e., the self-similar
exponential approximants [78]. However, since, as is
proved above, the factor approximants well approximate
the exponential behavior, they should provide rather good
accuracy for the extrapolation of the distribution (45),
which is demonstrated in Fig. 4. The exact Bose-Einstein
distribution (66) and its factor approximants practically
coincide in a large range of x, because of which in Fig. 4 we
show their difference.

E. Exponential behavior: Fermi-Dirac distribution

Similarly, we can consider the Fermi-Dirac distribution

fFðxÞ ¼
1

ex þ 1
: ð68Þ

Again, assume that we possess only the small-variable
expansion

fFðxÞ ≃
1

2
−
x
4
þ x3

48
−

x5

480
þ 17x7

80640
−

31x9

1451520

þ � � � ðx → 0Þ ð69Þ

and are not aware of the function it corresponds to. Factor
approximants f�kðxÞ that extrapolate the series (69) to the
large-variable range again quickly diminish, for instance,

f�4ðxÞ ≃ 6.7 ·
10−2

x2
; f�8ðxÞ ≃ 3.4 ·

10−5

x4

f�12ðxÞ ≃ 1.05 ·
10−10

x6
ðx → ∞Þ:

This hints that the large-variable behavior should be
faster than that of power law. Nevertheless, since factor
approximants well approximate the purely exponential
behavior, they should provide quite accurate approximation
for the considered distribution. Again, the exact distribution
(68) and its factor approximants practically coincide in a
large region of x, because of which in Fig. 5 the related
differences are shown.
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F. Logarithmic behavior: No additional information

Now let us turn to functions with logarithmic asymptotic
behavior at large values of a variable. Let us take the
function

fðxÞ ¼ 1þ ln

�
1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p

2

�
; ð70Þ

with the logarithmic asymptotic behavior at large x,

fðxÞ ≃ 1

2
ln x ðx → ∞Þ: ð71Þ

Let us pretend that we know neither the function itself
nor its behavior at large x, but what is available is only the
asymptotic expansion at small x,

fðxÞ ≃ 1þ 1

4
x −

3

32
x2 þ 5

96
x3 −

35

1024
x4 þ 63

2560
x5 −

77

4096
x6 þ � � � ðx → 0Þ: ð72Þ

Constructing factor approximants from these series, we find that their large-variable behavior demonstrates not so fast
variation of the amplitude and power,

f�2ðxÞ ≃ x0.25; f�4ðxÞ ≃ 1.195x0.182; f�6ðxÞ ≃ 1.137x0.197;

f�8ðxÞ ≃ 1.237x0.1747; f�10ðxÞ ≃ 1.235x0.1749; f�12ðxÞ ≃ 1.310x0.162 ðx → ∞Þ:
Although, as is typical of the factor approximants, the large-variable dependence is of power law, the factor approximants
provide reasonable accuracy in a wide region of the variable x, as is seen in Fig. 6(a).
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FIG. 4. Difference between the Bose-Einstein distribution (66) and its self-similar factor approximants: (a) fBðxÞ − f�4ðxÞ,
(b) fBðxÞ − f�8ðxÞ, (c) fBðxÞ − f�12ðxÞ.
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FIG. 5. Difference between the Fermi-Dirac distribution (68) and its self-similar factor approximants: (a) fFðxÞ − f�4ðxÞ,
(b) fFðxÞ − f�8ðxÞ, (c) fFðxÞ − f�12ðxÞ.
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FIG. 6. (a) Function (70) (solid line) and its self-similar factor approximants obtained from the direct series (72): f�4ðxÞ (dotted line),
f�8ðxÞ (dash-dotted line), and f�12ðxÞ (dashed line). (b) Function (70) (solid line) and its self-similar factor approximants obtained from
expansion (74): F�

4ðxÞ (dotted line), F�
8ðxÞ (dash-dotted line), and F�

12ðxÞ (dashed line).
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G. Logarithmic behavior: Known character
of large-variable limit

A different situation develops when, although the
function itself is not known, there is information that the
large-variable behavior is expected to be logarithmic. Then
it is reasonable to deal not with series (72), but with the
exponential of it. This implies that a finite series fkðxÞ,

corresponding to the truncated series (72), is exponentiated
considering

gkðxÞ ¼ expffkðxÞg ð73Þ

and then expanding the latter up to the kth order. In the case
of series (72), we have

gðxÞ ≃ e

�
1þ 1

4
x −

1

16
x2 þ 1

32
x3 −

5

256
x4 þ 7

512
x5 −

21

2048
x6 þ � � �

�
ðx → 0Þ: ð74Þ

The latter series is used for constructing the factor approximants g�kðxÞ, after which, inverting transformation (73), we return
to the expression

F�
kðxÞ ¼ ln g�kðxÞ ð75Þ

approximating the sought function. Here we denote the final approximants as F�
kðxÞ to distinguish them from the

approximants f�kðxÞ obtained directly from series (72).
The large-variable behavior of the approximants F�

kðxÞ is of correct logarithmic form, for example,

F�
2ðxÞ ≃ 0.333 ln x; F�

4ðxÞ ≃ 0.4 ln x; F�
6ðxÞ ≃ 0.429 ln x;

F�
8ðxÞ ≃ 0.444 ln x; F�

10ðxÞ ≃ 0.456 ln x; F�
12ðxÞ ≃ 0.462 ln x ðx → ∞Þ:

The coefficient at the logarithm converges to the exact
value 0.5, in agreement with limit (71). The overall
behavior of the approximants F�

kðxÞ is shown in
Fig. 6(b). As it should be expected, the additional infor-
mation on the behavior of the function essentially improves
the accuracy of the approximation.

IX. CONCLUSION

We have suggested a method, based on self-similar
approximation theory, allowing for the extrapolation of
expressions from weak-coupling asymptotic expansions to
the region of arbitrary values of coupling parameters,
including their asymptotically large values. The region
of large-coupling parameters is of special interest because
of its physical importance and because mathematically this
region is the most difficult for the extrapolation that uses
only the coefficients of weak-coupling expansions.
In those cases, where a number of terms in the small-

variable expansion are available, the method is shown to
posses numerical convergence. Good accuracy can be
obtained even for the expansions with a few terms. The
extrapolation of perturbative series for the Gell-Mann-Low

functions of the OðNÞ symmetric φ4 field theory, qua-
ntum electrodynamics, and quantum chromodynamics is
demonstrated.
In some cases, the method can transform perturbative

series to the exact expression valid for arbitrary values of
the variable. Such an exact reconstruction is illustrated for
the Gell-Mann-Low function of a supersymmetric pure
Yang-Mills theory and for several other examples.
By their construction, self-similar factor approxi-

mants, for the variable tending to infinity, give a
power-law behavior. The possibility is discussed of
extrapolating functions with different types of the
large-variable limits, including not only power-law
behavior, but also logarithmic and exponential behavior.
The purely exponential function is shown to be recon-
structed exactly by the factor approximants of any order
starting from second. More complicated functions with
exponential or logarithmic large-variable behavior can
be well approximated in a wide range of the variable. If
the additional information on the character of the large-
variable limit is available, the accuracy of the approxi-
mants can be essentially improved.
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