
 

Affine quantization of ðφ4Þ4 succeeds while canonical quantization fails
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Covariant scalar field quantization, nicknamed ðφrÞn, where r denotes the power of the interaction term
and n ¼ sþ 1 where s is the spatial dimension and 1 adds time. Models such that r < 2n=ðn − 2Þ can be
treated by canonical quantization, while models such that r > 2n=ðn − 2Þ are nonrenormalizable, leading
to perturbative infinities, or, if treated as a unit, emerge as ‘free theories’. Models such as r ¼ 2n=ðn − 2Þ,
e.g., r ¼ n ¼ 4, again using canonical quantization also become ‘free theories’, which must be considered
quantum failures. However, there exists a different approach called affine quantization that promotes a
different set of classical variables to become the basic quantum operators and it offers different results, such
as models for which r > 2n=ðn − 2Þ, which has recently correctly quantized ðφ12Þ3. In the present paper we
show, with the aid of a Monte Carlo analysis, that one of the special cases where r ¼ 2n=ðn − 2Þ,
specifically the case r ¼ n ¼ 4, can be acceptably quantized using affine quantization.
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I. INTRODUCTION

The family of covariant scalar field theories under
consideration have classical Hamiltonians given by

Hðπ;φÞ ¼
Z �

1

2
½πðxÞ2 þ ð∇⃗φÞðxÞ2 þm2φðxÞ2�

þ gφðxÞr
�
dsx; ð1Þ

where the massm > 0, the coupling constant g ≥ 0, r is the
power of the interaction term, and s is the number of spatial
dimensions. As classical elements they lead to suitable
equations of motion and these solutions automatically
guarantee that, for T > 0, all such solutions obey the rule
that

R
T
0

R
Hðπðx; tÞ;φðx; tÞÞdsxdt < ∞.

However, acceptable classical solutions do not tell the
whole story. The domain of the example in (1) includes the
complete set of arbitrary continuous paths, πðx; tÞ and
φðx; tÞ, that determine the domain

Dðπ;φÞ ¼
�Z

T

0

Z
Hðπðx; tÞ;φðx:tÞÞdsxdt < ∞

�
: ð2Þ

This expression for the domain is unchanged if the
interaction term is excluded, while, on the other hand,
the given domain will be dramatically reduced from the true
free theory domain if the interaction term is sufficiently
strong and has been introduced. These questions can be
answered if we show the domains may be studied.

A. Review of principal domains

The term πðx; tÞ2 is equal to _φðx; tÞ2, and if we include t
as just another spatial variable the classical Hamiltonian
becomes

HðφÞ¼
Z �

1

2
½ð∇⃗φÞðxÞ2þm2φðxÞ2�þgφðxÞr

�
dsx; ð3Þ

where now x ¼ ðx0; x1; x2…; xsÞ, where x0 ¼ ct and
n ¼ sþ 1. The contribution of the separate terms can be
captured if we observe that the three following cases must
be treated separately and constitute unitarily inequivalent
quantizations,

�Z
φðxÞrdnx

�
2=r

<or¼or>
Z n

ð∇⃗φÞðxÞ2þm2φðxÞ2
o
dnx:

ð4Þ

The domain of this expression consists of all fϕðxÞg for
whichHðϕÞ < ∞. For a given finite spacetime dimension n
and power r, it is of considerable interest to learn if the
domain changes when the interaction coupling constant
changes from g ¼ 0 to g > 0. The study of that issue for all
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fϕðxÞg involves an explicit expression in which t becomes
an additional “spatial variable”

�Z
ϕðxÞrdnx

�
2=r

¼ C
Z

½ð∇⃗ϕÞðxÞ2 þm2ϕðxÞ2�dnx: ð5Þ

If C is bounded above for all ϕ, then the domain of H is the
samewith g ¼ 0 or g > 0. IfC ¼ ∞ then the domain ofH is
larger when g ¼ 0 than it is when g > 0. It follows [1,2] that
the domain does not change provided that r < 2n=ðn − 2Þ.
If, on the other hand, r > 2n=ðn − 2Þ, then the domain ofH
drops as soon as g > 0, and thus when one seeks the domain
in the limit that g → 0, continuity forces the resultant domain
to be the smaller domain.
The focus hereafter, in this paper, is on the case r ¼

2n=ðn − 2Þ, and more explicitly, we choose r ¼ n ¼ 4.1

This model has been studied by applying canonical quan-
tization, and the universally accepted result [3–5] is that this
model becomes a “free model” despite the presence of the
interaction and g > 0. Such a result may be considered as a
quantum failure. Additional efforts has beenmade in Ref. [6]
to quantize ðϕ4Þ4 models using alternative procedures that,
regrettably, have also led only to a “free theory.”
Affine quantization can account for certain classical

models that experience two different classical domains,
one (free) without an interaction term, g ¼ 0, and one
(nonfree) with the interaction term, g > 0. If necessary,
such models automatically choose the smaller domain as
g → 0 by simple continuity.2 This feature can imply either
that the quantization leads only to the free theory, or the
quantization leads to the form of a nonfree theory. As an
example, canonical quantization of ðφ4Þ4 leads only to a
free theory [3–5], which, incidentally, may lead to unex-
pected difficulties in the Standard Model (SM). Our
quantization of ðφ4Þ4 by affine quantization is a procedure
that is just like canonical quantization, after choosing a
different pair of classical variables to promote to operators,
and can fit well with other quantization procedures, as is
implicit in our study.
Affine quantization [8] has offered positive results for

several models, one of which includes the nonrenormaliz-
able model ðφ12Þ3 [9]. In this paper we seek to find out
whether affine quantization will lead to a positive quanti-
zation of the model ðφ4Þ4, or, if not positive, what behavior
is actually found.

II. CANONICAL AND AFFINE QUANTIZATIONOF
THE SCALAR EUCLIDEAN FIELD THEORY

Canonical quantization has been the go to method of
quantization for many decades. Clearly, the reason for this
loyalty is because its use has been so successful. The simple

examples from quantum mechanics have led to similar
procedures when dealing with field quantization. The
formulations of continuous fields can also lead to unwanted
divergences. This behavior invites the use of a formal
analysis, which addresses selected equations as beacons
that regularization of the procedure enables preliminary
analysis to occur. This section is devoted to a formal
analysis of both canonical and affine quantization of fields
initially guided by elementary examples.
For a single classical degree of freedom, the favored

variables−∞ < p; q < ∞ and aPoisson bracket fq; pg ¼ 1
lead to the basic quantum operators P, Q, which obey
½Q;P� ¼ iℏ1. A similar story for classical scalar fields
−∞ < πðxÞ, φðxÞ < ∞ has a Poisson bracket fφðxÞ;
πðyÞg ¼ δsðx − yÞ which points toward basic quantum
operators π̂ðxÞ, ϕ̂ðxÞ, that obeys ½ϕ̂ðxÞ; π̂ðyÞ� ¼
iℏδsðx − yÞ. Ideally, the semiclassical action functional for
a field theory model is given by

SðcÞ½φ� ¼
Z �

1

2
½ð∇⃗φÞðxÞ2þm2φðxÞ2�þgφðxÞr

�
dnx: ð6Þ

The affine story introduces an important new structure.
To see that feature, we return to a single degree of freedom,
with p, q. Our analysis instead focuses on the case where
q > 0. This case implies that the operator P ≠ P†. We then
seek an operator that can be self adjoint. The new classical
variables are pq; lnðqÞ, which, with q > 0, permits each
variable to be self adjoint. However, we also need to admit
q < 0, which can be done when we select unusual classical
variables, namely, pq; q which permits −∞ < q ≠ 0 < ∞,
and joins together the cases where q > 0 and q < 0. Affine
quantization then involves pq→ ðP†QþQPÞ=2≡D¼D†

and q → Q ¼ Q†, which obeys ½Q;D� ¼ iℏQ, and already
offers a Lie algebra for the “affine group.” Thus, we are led
to the dilation operator −∞ < D < ∞ and the position
operator −∞ < Q ≠ 0 < ∞. This analysis will implicitly
be used in discussing the affine quantization of scalar fields.
For an affine field story we need πðxÞφðxÞ≡ κðxÞ and

φðxÞ, for which −∞ < φðxÞ ≠ 0 < ∞, and, as basic
operators, ½ϕ̂ðxÞ; κ̂ðyÞ� ¼ iℏδsðx − yÞϕ̂ðxÞ. Just like the
single degrees of freedom, we also have the classical
relation that πðxÞ2 ¼ κðxÞ2=φðxÞ2 as well. However, such
a relation does not hold when quantized. In particular, for a
single degree of freedomDQ−2D ¼ P2 þ ð3=4Þℏ2Q−2. For
the scalar field, the analogous story leads to the relation
that κ̂ðxÞφðxÞ−2κ̂ðxÞ ¼ π̂ðxÞ2 þ ð3=4Þℏ2δ2sð0Þϕ̂ðxÞ−2.
The new term involves a Dirac delta function, δð0Þ ¼ ∞,

raised to the power 2s. This new formal expression follows
the similarly formal expression πðxÞ2 ¼ −ℏ2½δ2=δφðxÞ2�,
wherein such formal terms require regularization, a pro-
cedure that we will introduce very soon. The latest relation
is featured as an all important semi-classical relation in the
following affine action

1The only other similar model is r ¼ 6, n ¼ 3.
2The paper [7] using ultralocal field models clearly illustrates

how the smaller domain wins.
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SðaÞ½φ� ¼
Z �

1

2
½ð∇⃗φÞðxÞ2 þm2φðxÞ2�

þ gφðxÞr þ 3

8
ℏ2

δ2sð0Þ
φðxÞ2 þ ϵ

�
dnx; ð7Þ

where ϵ is a regularization parameter.

A. Lattice formulation of the field theory

We used a lattice formulation of the field theory. The
theory considers a real scalar field φ taking the value φðxÞ
on each site of a periodic, hypercubic, n-dimensional lattice
of lattice spacing a and periodicityNa. The affine action for
the field, Eq. (7), is then approximated by

SðaÞ½φ�=an≈ 1

2

�X
x;μ

a−2ðφðxÞ−φðxþ eμÞÞ2þm2
X
x

φðxÞ2
�

þ
X
x

gφðxÞrþ 3

8

X
x

ℏ2
a−2s

φðxÞ2þ ϵ
; ð8Þ

where eμ is a vector of length a in the þμ direction.
In this paper we are interested in reaching the continuum

limit by taking Na fixed and letting N → ∞.

III. MONTE CARLO SIMULATION

Our Monte Carlo (MC) simulations use the Metropolis
algorithm [10,11] to calculate the vacuum expectation of a
functional observable O½φ�

hOi ≈
R
O½φ� expð−S½φ�ÞQx dφðxÞR

expð−S½φ�ÞQx dφðxÞ
; ð9Þ

where S ¼ R
Hdx0 is the action. This is a Nn multidimen-

sional integral. The simulation is started from the initial
condition φ ¼ 0. One MC step consisted in a random
displacement of each one of the Nn components of φ as
φ → φþ ðη − 1=2Þδ where η is a uniform pseudo random
number in [0, 1] and δ is the amplitude of the displacement.
Each one of these Nn moves is accepted if expð−ΔSÞ > η
whereΔS is the change in the action due to the move (it can
be efficiently calculated considering how the kinetic part
and the potential part change by the displacement of a
single component of φ) and rejected otherwise. The
amplitude δ is chosen in such a way to have acceptance
ratios as close as possible to 1=2 and is kept constant during
the evolution of the simulation. One simulation consisted of
M ¼ 106 steps. The statistical error on the average hOiwill
then depend on the correlation time necessary to decorre-
late the property O, τO, and will be determined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τOσ

2
O=ðMNnÞ

q
, where σ2O is the intrinsic variance for O.

From the real field φðxÞ we extract the Fourier transform

φ̃ðpÞ ¼
Z

dnxeip·xφðxÞ; ð10Þ

with φ̃�ðpÞ ¼ φ̃ð−pÞ. We then find the ensemble
averages hφ̃ð0Þ2i and hφ̃ð0Þ4i and construct the following
observable (a renormalized unitless coupling constant at
zero momentum),

gR ¼ 3hφ̃ð0Þ2i2 − hφ̃ð0Þ4i
hφ̃ð0Þ2i2 ; ð11Þ

so that clearly, using path integrals in the Fourier transform
of the field, we immediately find for the canonical version
of the theory,

gR !g→0
0: ð12Þ

This remains true even for the calculation on a discrete
lattice.
We then choose the momentum p with one component

equal to 2π=Na and all other components zero and
calculate the ensemble average hjφ̃ðpÞj2i. We then con-
struct the renormalized mass

m2
R ¼ p2hjφ̃ðpÞj2i

hφ̃ð0Þ2i − hjφ̃ðpÞj2i : ð13Þ

When g ¼ 0 the canonical version of the theory can be
solved exactly yielding

mR !g→0½π=N sinðπ=NÞ�m: ð14Þ

Following Freedman et al. [3] we will call gR a
dimensionless renormalized coupling constant and we will
use it to test the “freedomness” of our field theories in the
continuum limit. Note that the sum rules of Eqs. (12) and
(14) do not hold for the affine version (7) of the field theory
due to the additional ð3=8Þℏ2δ2sð0Þ=½φðxÞ2 þ ϵ� interac-
tion term.

A. MC results

In our MC simulation, following Freedman et al. [3], for
each N and g, we adjusted the bare massm in such a way to
maintain the renormalized mass approximately constant
mR ≈ 3 to within a few percent (in all cases less than 15%),
and we measured the renormalized coupling constant gR of
Eq. (11) for various values of the bare coupling constant g
at a given small value of the lattice spacing a ¼ 1=N. In
order to keep the renormalized mass constant at large g, it
was necessary to choose a negative m2 giving rise to a
double well interaction density. So that, with Na and mR
fixed, as a was made smaller, whatever change we found in
gRmn

R as a function of g could only be due to the change in
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a. We generally found that a depression in mR produced an
elevation in the corresponding value of gR and viceversa.
The results are shown in Fig. 1 for the affine version with
ℏ ¼ 1 and ϵ ¼ 10−10, where, following Freedman et al. [3]
we decided to compress the range of g for display, by
choosing the horizontal axis to be g=ð50þ gÞ. As we can
see from the top panel of the figure the renormalized mass
was made to stay around the chosen value of 3, even if this
constraint was not easy to implement since for eachN and g
we had to run the simulation several (5–10) times with
different values of the bare mass m.
These results should be compared with the results of

Fig. 1 of Freedman et al. [3] where the same calculation
was done for the canonical version of the field theory. As
we can see from Fig. 1, contrary to the figure of Freedman,
the renormalized coupling constant of the affine version
remains far from zero in the continuum limit (Na ¼ 1 and

N → ∞) for all values of the bare coupling constant. Here,
unlike in the canonical version used by Freedman, the
diminishing space between higher N curves is a pointer
toward a nonfree ultimate behavior as N → ∞. Moreover
going from N ¼ 10 to N ¼ 12 we actually observe a
growth in the renormalized coupling constant.
In order to test our calculations we repeated the

Freedman calculation for the canonical version of the
ðφ4Þ4 theory, by keeping as before mR ≈ 3 (to within a
10%) for all cases. Our results, shown in Fig. 2, compare
favorably with the ones of Freedman Fig. 1.

IV. CONCLUSIONS

The model on which this paper has focused is ðφ4Þ4 and
normally uses canonical quantization that was the only
procedure, or other procedures designed to get equivalent
results. For our model, canonical quantization leads to a

FIG. 1. We show the renormalized mass mR of Eq. (13) (top
panel) and the renormalized coupling constant gRmn

R of Eq. (11)
(bottom panel) as calculated from Eq. (10) formR ≈ 3 and various
values of the bare coupling constant g at decreasing values of the
lattice spacing a ¼ 1=N (N → ∞ continuum limit) for the affine
ðφ4Þ4 Euclidean scalar field theory described by the action in
Eq. (7). The lines connecting the simulation points are just a
guide for the eye.

FIG. 2. We show the renormalized mass mR of Eq. (13) (top
panel) and the renormalized coupling constant gRmn

R of Eq. (11)
(bottom panel) as calculated from Eq. (10) formR ≈ 3 and various
values of the bare coupling constant g at decreasing values of
the lattice spacing a ¼ 1=N (N → ∞ continuum limit) for the
canonical ðφ4Þ4 Euclidean scalar field theory described by the
action in Eq. (6). The lines connecting the simulation points are
just a guide for the eye.
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free theory, as if the interaction term was missing. Affine
quantization is a newer procedure that is qualitatively
different than canonical quantization. The difference is
such that favored Cartesian classical variables [12] choose
the basic quantum operators, while for affine quantization,
the favored classical variables arise from a constant
negative curvature. This is different from the constant zero
curvature, i.e., a flat surface suitable for canonical quan-
tization. Indeed, it leads to affine quantization becoming a
partner procedure and not a substitute for canonical
quantization, with each procedure appropriate for distinct

sets of problems for them to treat. This distinction of
procedures offered by affine quantization has already
clarified the analysis of half-harmonic oscillators [13], a
favorable quantization of the nonrenormalizable model
ðφ12Þ3 [9], and now the strongest test yet for affine
quantization, specifically, quantizing the ðφ4Þ4 model.
It is expected that additional quantum examples may lead

to problems when canonical quantization is used. Such
examples deserve to consider affine quantization, which
might be the answer to those problems.
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