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Available laser technology is opening the possibility of testing QED experimentally in the so-called
strong-field regime. This calls for developing theoretical tools to investigate strong-field QED processes in
electromagnetic fields of complex spacetime structure. Here, we propose a scheme to compute electron
wave functions in tightly focused laser beams by taking into account exactly the complex spacetime
structure of the fields. The scheme is solely based on the validity of the Wentzel-Kramers-Brillouin (WKB)
approximation and the resulting wave functions, unlike previously proposed ones [Phys. Rev. Lett. 113,
040402 (2014)], do not rely on approximations on the classical electron trajectory. Moreover, a consistent
procedure is indicated to take into account higher-order quantum effects within the WKB approach
depending on higher-and-higher powers of the Planck constant. In the case of a plane-wave background
field the found wave functions exactly reduce to the Volkov states, which are then written in a new and fully
quasiclassical form. Finally, by using the leading-order WKB wave functions to compute the probabilities
of nonlinear Compton scattering and nonlinear Breit-Wheeler pair production, it is explicitly shown that, if
additionally the energies of the charges are sufficiently large that the latter are not significantly deflected by
the field, the corresponding Baier’s formulas are exactly reproduced for an otherwise arbitrary classical
electron/positron trajectory.
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I. INTRODUCTION

Shortly after the invention of the laser theoreticians
started investigating how QED processes can be affected
or even primed by coherent light [1–4]. The theoretical
framework employed in these pioneering works was the so-
called Furry picture [5,6], where the electromagnetic field
of the laser is treated as a given, classical background field
and the electron-positron spinor field is quantized in the
presence of that background field. In this way the effects of
the laser field could have been included self-consistently
in the calculations. A fundamental requirement to work
within the Furry picture is the possibility of solving the
Dirac equation analytically in the presence of the back-
ground electromagnetic field. In the laser case this is clearly
an impossible task if the corresponding field features both
spatial and temporal focusing due to the complexity of
the spacetime structure of the field. However, if the
spatial focusing of the laser field can be ignored, i.e., if
the laser field can be approximated as a plane wave,
the Dirac equation admits an exact, analytical solution,

and the corresponding electron states are known as
Volkov states [6,7].
The computation of the probabilities of the two basic

QED processes in a laser field, the emission of a single
photon by an electron (nonlinear Compton scattering) and
the electron-positron pair production by a photon (non-
linear Breit-Wheeler pair production), by employing the
Volkov states to describe electrons and positrons [1–4],
indicated that the total probabilities of these processes were
controlled by the two Lorentz- and gauge-invariant param-

eters ξ ¼ jejF0=mω0 and χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðF0;μνqνÞ2

q
=mFcr (see

also the reviews [8–13] and the monographs [6,14–16]).
Here, we have introduced the electron mass m, the electron
charge e < 0, and the critical field of QED Fcr ¼ m2=ℏjej,
and units with ϵ0 ¼ c ¼ 1 together with the metric tensor
ημν ¼ diagðþ1;−1;−1;−1Þ are employed throughout.
Moreover, the background laser field is characterized by
the amplitude Fμν

0 ¼ ðE0;B0Þ of the electromagnetic field
tensor, with jE0j; jB0j ∼ F0, and by the typical angular
frequency ω0. Finally, the four-vector qμ indicates the four-
momentum of the incoming particle (q2 ¼ m2 for elec-
trons/positrons and q2 ¼ 0 for photons). The so-called
strong-field QED regime is characterized by both param-
eters ξ and χ being of the order of or larger than unity.
The parameter ξ, known as classical nonlinearity parameter,
is a classical parameter and in general controls the
importance of relativistic effects and of nonlinear effects
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in the laser-field amplitude. The parameter χ, known as
quantum nonlinearity parameter, instead controls pure
quantum effects like the importance of photon recoil in
nonlinear Compton scattering and, in the case of electrons
and positrons, it corresponds to the amplitude of the laser
field in the rest frame of the particle in units of Fcr. The first
experimental results on the two mentioned basic strong-
field QED processes have been obtained by employing an
optical laser beam of intensity of the order of 1018 −
1019 W=cm2 (ξ ∼ 0.1–1), colliding with an electron beam
of energy of about 45 GeV (χ ∼ 0.1–1) in the well-known
E-144 SLAC experimental campaign [17,18].
The rapid advancement of laser technology is opening

the possibility of investigating strong-field QED phenom-
ena in the highly nonlinear regime where ξ ≫ 1 whereas
χ ≳ 1. Laser intensities exceeding 1022 W=cm2 have
already achieved experimentally [19] and several multi-
petawatt facilities are under construction or planned
[20–24], which can overcome the present record by
one–two orders of magnitude. In addition, ultrarelativistic
electron beams can nowadays be produced not only in
conventional accelerators but also via laser wakefield
acceleration [25]. Indeed, experiments about radiation
reaction at the edge between the classical and the quantum
regime have been already carried out by employing laser-
accelerated electron beams [26,27] (see Refs. [28,29]
for correspondingly recent experimental results on quan-
tum radiation reaction in crystalline fields). Moreover, two
experimental campaigns at DESY [30] and at SLAC [31]
are in preparation, which aim at accurate experimental
results on strong-field QED by employing multiterawatt-
class lasers and high-quality electron beams from conven-
tional accelerators.
On the theory side numerous studies have been pub-

lished on nonlinear Compton scattering [32–59] and non-
linear Breit-Wheeler pair production [11,32,56,58,60–70]
(see also the reviews [8–10,12,71]). Recently, also higher-
order processes like nonlinear double Compton scattering
[72–76] and trident pair production [54,77–82] have been
investigated in the presence of a plane wave by employing
the Volkov states and the corresponding Volkov propagator.
The availability of an exact solution of the Dirac

equation in a plane-wave field has certainly provided an
enormous insight into processes in intense laser fields.
Moreover, the early experiments reported in Refs. [17,18]
employed picosecond optical laser pulses focused on an
area of the order of 60 μm2. This explains why the
experimental results could have been reproduced by start-
ing from the probability of the corresponding processes in a
plane wave. The more recent experiments reported in
Refs. [26,27] are carried out employing femtosecond pulses
focused down to an area of few square wavelengths, and
future experiments aiming at even higher intensities will
possibly employ shorter and more tightly focused laser
pulses. There are already theoretical tools which enable one

to study processes in the presence of laser fields of complex
spacetime structure, for which no exact analytical solution
of the Dirac equation is available. We mention here the so-
called locally constant field approximation (LCFA), which
allows one to write the probabilities of a strong-field QED
process in the presence of an arbitrary background laser
field as an average over the corresponding result in a
constant crossed field [1,9,12,16]. However, generally
speaking, the LCFA applies only for laser pulses charac-
terized by ξ ≫ 1 (see the studies [47,53,55–57,83–91] for
investigations about the limitations of the LCFA), whereas
some of the upcoming experimental campaigns [30,31]
may also aim at least initially at investigating more
moderate intensity regimes, not to mention the fact that
the condition ξ ≫ 1 cannot be fulfilled for all electron-laser
interaction points. Another widely used tool is represented
by Baier’s formulas of nonlinear Compton scattering and
nonlinear Breit-Wheeler pair production, which express the
corresponding probabilities as integrals over the classical
trajectories of the charged particles [16,92–94] (see also the
book [95]). Baier’s formulas are based on the quasiclassical
operator technique, allow one to obtain results at the
leading order in the quasiclassical, ultrarelativistic limit,
when the energies of the charges are sufficiently large that
the latter are only barely deflected by the background field,
and they are especially useful for numerical calculations.
However, the employed operator technique does not
provide a general prescription on how to calculate neither
the amplitude of a generic QED process nor higher-order
corrections.
Apart from these general approaches, we also mention

that effects of the laser spatial focusing in nonlinear
Compton and Thomson scattering (the latter process
corresponding to the classical emission of radiation, where
QED effects like recoil can be neglected) have been
investigated numerically in Refs. [96,97], respectively.
Also, analytical expressions of scalar Wentzel-Kramers-
Brillouin (WKB) wave functions have been found in
Ref. [98] for a specific class of background fields depend-
ing on the spacetime coordinates via the quantity ðfxÞ like
a plane wave but with fμ not being necessarily lightlike as
in a plane wave. The classical and quantum dynamics of a
scalar particle in the background field of two counter-
propagating plane waves has been studied in Ref. [99].
Moreover, in Ref. [100] Poincaré symmetry and super-
integrability were exploited to construct the exact solution
of the Dirac equation for an external field approximating
the transverse structure of a radially polarized laser field
close to the focus (see also Ref. [101]). Finally, we also
mention Refs. [102,103], where the author develops an
eikonal perturbation theory especially suitable for applica-
tion to hadron dynamics.
In Refs. [104–107] approximated expressions of the

electron states and of the electron propagator in a tightly
focused laser beam have been found by starting from the
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WKB approximation and applied to investigate nonlinear
Compton scattering and nonlinear Breit-Wheeler pair
production (we will see below that the condition on p⊥
is actually more restrictive). The findings in Refs. [104–
107] are based on the physical assumption that the energies
of the charges are so large that they are only barely
deflected by the focused laser field. Mathematically this
is the case in the customarily considered (almost) counter-
propagating setup for an incoming electron energy ε much
larger than maxðm;mξÞ, an approximation scheme which is
particularly useful in the ultrarelativistic regime for mod-
erate laser intensities but also at those high intensities to be
reached in the near future. It is worth stressing, in fact, that
the quantity η ¼ maxðm;mξÞ=ε is automatically much
smaller than unity for present and upcoming experimental
conditions, provided one aims at investigating the strong-
field regime of QED. Indeed, for an ultrarelativistic electron
initially counterpropagating with respect to the laser beam,
in order to enter the strong-field QED regime (say at
χ > 1), by assuming the laser to be a Ti:sapphire laser
(ω0 ¼ 1.55 eV) and to have a soon feasible intensity of
I0 ∼ 1023 W=cm2 [20,21] (corresponding to ξ ¼ 150), it is
necessary that ε≳ 500 MeV such that it is ε=m ≈ 103.
Now, in Ref. [104] the explicit classical trajectory of an
electron in a generic background field was found at the
next-to-leading order in the parameter η having in mind the
case of a tightly focused laser beam. This, in turn, allowed
us to determine the classical action of the electron in the
field analytically under the same approximation and to
write the electron states explicitly in terms of the back-
ground electromagnetic field in a form similar to that of
Volkov states [105] (these states reduce to the correspond-
ing ones presented in Refs. [108,109] in the case of a
background time-independent scalar potential). Those
states are particularly useful to carry out analytical calcu-
lations because the electron trajectory is explicitly
expressed in terms of the background field.
In the present paper, we continue the investigation of

nonlinear Compton scattering and nonlinear Breit-Wheeler
pair production in the presence of a tightly focused
laser beam by elaborating on the method presented in
Refs. [104–107]. First, we explicitly find the electron
states at the leading order in the WKB approximation
but without approximating the classical electron trajectory
as in Refs. [104–107]. In this way, the validity of the
presented states is not limited by particular features of the
classical electron trajectory but only by quantum condi-
tions, which are derived below. Moreover, we show that for
a background plane wave the obtained wave functions
exactly reduce to the Volkov states. As a by-product, then,
we derive a new form of the Volkov states, where their
quasiclassical structure is manifest also in the spinor struc-
ture. In addition, we use the found electron and positron
states to write the amplitudes of nonlinear Compton
scattering and nonlinear Breit-Wheeler pair production,

which are then more accurate than those obtained before
but which are more suitable for a numerical computation
based on the charged particles classical trajectory. By still
making no approximations about the classical trajectory but
by computing the probabilities of nonlinear Compton
scattering and nonlinear Breit-Wheeler pair production
up to leading order in η [110], we exactly reproduce
Baier’s formulas based on the particles classical trajectory
in the given electromagnetic field (this was verified in
Refs. [106,107] only for the approximated trajectory found
in Ref. [104]). This already casts Baier’s method into a self-
consistent approach, which can be in principle extended to
higher-order processes and whose validity conditions are
under control. Moreover, the initial amplitudes obtained
here beyond the leading-order expansion in η are more
general than Baier’s formulas as only effects proportional to
ℏ are neglected (limitations of the Baier’s formulas as
compared with the WKB approach were already noticed in
Ref. [111] in the case of radiation by an electron in a
rotating electric field). Finally, a prescription is provided to
compute higher-order quantum corrections of the found
electron states within the WKB approach, which may be
useful if, for example, more accurate results are required in
a specific problem.

II. NOTATION

In the present section we introduce the notation employed
in the paper. For the sake of definiteness, we assume that the
laser field main propagation direction corresponds to the
negative z axis of the coordinate system. Thus, it is
convenient to introduce the light-cone coordinates

T ¼ tþ z
2

; x⊥ ¼ ðx; yÞ; ϕ ¼ t − z ð1Þ

for a spacetime point with coordinates xμ ¼ ðt; xÞ ¼
ðt; x; y; zÞ. The light-cone coordinates of an arbitrary four-
vector vμ ¼ ðv0; vÞ are defined as vþ¼ðv0þvzÞ=2,
v⊥ ¼ ðvx; vyÞ, and v− ¼ v0 − vz. The same definition is
extended to the Dirac gamma matrices γμ ¼ ðγ0; γÞ:
γþ ¼ ðγ0 þ γ3Þ=2, γ⊥ ¼ ðγ1; γ2Þ, and γ− ¼ γ0 − γ3.
Moreover, the derivatives

∂
∂T ¼ ∂

∂tþ
∂
∂z ;

∂
∂ϕ ¼ 1

2

� ∂
∂t −

∂
∂z
�

ð2Þ

with respect to the light-cone coordinates T and ϕ can be
derived from the relations

∂
∂t ¼

1

2

∂
∂T þ ∂

∂ϕ ;
∂
∂z ¼

1

2

∂
∂T −

∂
∂ϕ ; ð3Þ

whereas the derivatives with respect to the transverse coor-
dinates form the two-dimensional vector ∇⊥ ¼ ∂=∂x⊥.
Also, the scalar product between two four-vectors uμ and
vμ can be written as
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ðuvÞ ¼ uþv− þ u−vþ − u⊥ · v⊥ ð4Þ

and the four-divergence of a vector field GμðxÞ as

∂μGμ ¼ ∂Gþ
∂T þ ∂G−

∂ϕ þ ∇⊥ · G⊥: ð5Þ

It is convenient to introduce the four-dimensional quantities:
nμ ¼ ð1; nÞ and ñμ ¼ ð1;−nÞ=2, with n ¼ ð0; 0; 1Þ being
the unit vector along the z direction, and aμj ¼ ð0; ajÞ, where
j ¼ 1, 2, with a1 and a2 being the unit vectors along the x
and the y direction, respectively. It is clear that the four-
dimensional quantities nμ, ñμ, and aμj fulfill the completeness
relation: ημν ¼ nμñν þ ñμnν − aμ1a

ν
1 − aμ2a

ν
2 [note that

ðnñÞ ¼ 1 and ða1a1Þ ¼ ða2a2Þ ¼ −1, whereas all other
possible scalar products among nμ, ñμ, and aμj vanish]. By
using the quantities nμ, ñμ, and aμj one can express the light-
cone coordinates as T ¼ ðñxÞ, x⊥ ¼ −ððxa1Þ; ðxa2ÞÞ, and
ϕ ¼ ðnxÞ. Analogously, the light-cone coordinates of an
arbitrary four-vector vμ ¼ ðv0; vÞ are given by vþ ¼ ðñvÞ,
v⊥ ¼ −ððva1Þ; ðva2ÞÞ, andv− ¼ ðnvÞ,whereas, byusing the
“hat” notation for the contraction of a four-vector and the four
Dirac gammamatrices, one obtains γþ ¼ ˆ̃n, γ⊥ ¼ −ðâ1; â2Þ,
and γ− ¼ n̂. Concerning the derivatives with respect to the
coordinates, the following relations hold: ∂=∂T ¼ ∂T ¼
ðn∂Þ, ∇⊥ ¼ ðða1∂Þ; ða2∂ÞÞ, and ∂=∂ϕ ¼ ∂ϕ ¼ ðñ∂Þ.
Having in mind physical situations in which the incom-

ing particle initially (almost) counterpropagates with
respect to the laser field, it is natural to use/interpret the
light-cone variable T as the light-cone time and the other
three coordinates xlc ¼ ðx⊥;ϕÞ as the light-cone spatial
coordinates. Correspondingly, in the case of an on-shell
electron four-momentum pμ ¼ ðε; pÞ, with ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
,

we consider plc ¼ ðp⊥; pþÞ as the three spatial light-
cone components of the four-momentum and p− ¼ ðm2 þ
p2⊥Þ=2pþ as the remaining time light-cone component. The
components of the three-dimensional quantity xlc (plc) are
indicated by means of Latin indexes running from 1 to 3,
with xlc;1 ¼ x, xlc;2 ¼ y, and xlc;3 ¼ ϕ (plc;1 ¼ px,
xlc;2 ¼ py, and plc;3 ¼ pþ). Analogous considerations hold
for a generic photon four-momentum.
Concerning the background electromagnetic field, we

assume it to be described by the four-vector potential
AμðxÞ ¼ ðVðxÞ;AðxÞÞ satisfying the Lorenz-gauge condi-
tion ∂μAμðxÞ ¼ 0 together with the additional constraint
A−ðxÞ ¼ 0, i.e., AzðxÞ ¼ VðxÞ and the asymptotic condi-
tions limT→�∞ AμðT; xlcÞ ¼ 0. For the sake of convenience,
a fixed value T0 of the light-cone time T is chosen below
to assign asymptotic conditions of the electron classical
trajectory. We assume that the absolute value of T0 is
sufficiently large that we can ignore the field there,
i.e., AμðT0; xlcÞ ¼ 0.
Note that the considerations based on the incoming

particle being initially almost counterpropagating with

respect to the laser field can be easily reformulated if this
is not the case, by appropriately adapting the light-cone
coordinates in such a way that they are (almost) aligned
with respect to the initial velocity of the particle.

III. CLASSICAL ACTION, HAMILTON-JACOBI
EQUATION, AND THE VAN VLECK

DETERMINANT

As it is well known [112], in the WKB method the
classical action plays a fundamental role. Therefore, it is
convenient here to report some known results about the
classical action, which have been appropriately adapted to
the use of light-cone coordinates.
The action is originally defined as the generator of the

canonical transformation from the coordinates and con-
jugated momenta of a dynamical system at a generic time to
the corresponding quantities at the initial time, which also
explains why knowing the action corresponds to solving
the equations of motion of the system [113]. In particular,
the action is a generator of type two, i.e., it depends on the
old coordinated (those at the generic time) and on the new
constant momenta (those at the initial time). In this respect,
we recall that in the relativistic domain the classical
action SðxÞ of an electron in the presence of an electro-
magnetic field described by the four-potential AμðxÞ is
computed as a complete solution of the relativistic
Hamilton-Jacobi equation [114],

ð∂μSþ eAμÞð∂μSþ eAμÞ −m2 ¼ 0; ð6Þ

which in light-cone coordinates and in the Lorenz gauge
with A−ðxÞ ¼ 0 reads

∂TS ¼ m2 þ ð∇⊥S − eA⊥Þ2
2ð∂ϕSþ eVÞ : ð7Þ

A complete solution of a first-order differential equation is
a solution containing as many independent integration
constants as the number of variables and the meaning of
the word “independent” in this context will be clarified
below [113]. Since the Hamilton-Jacobi equation only
contains derivatives of the action, an integration constant
is always an additive constant, which we assume to be
determined by the initial condition on the action. Indeed,
we are interested in the solution Spðx;T0Þ of the Hamilton-
Jacobi equation, which fulfills the initial condition
SpðT0; xlc;T0Þ ¼ −ðpþϕþ p−T0 − p⊥ · x⊥Þ [recall that
AμðT0; xlcÞ ¼ 0]. As we have mentioned already, since
the four-momentum is assumed to be on shell and
p0 ¼ ε ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, the three remaining independent

integration constants are chosen to be the components
plc ¼ ðp⊥; pþÞ of the four-momentum, with pþ > 0 and
p− ¼ ðm2 þ p2⊥Þ=2pþ. The independence of these con-
stants means that the (absolute value of the) determinant
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����det
� ∂2Sp
∂plc;i∂xlc;j

����� ð8Þ

never vanishes and we will show below that this is indeed
the case here. Once the initial condition is given, it is clear,
for example, how to integrate numerically the Hamilton-
Jacobi equation (7). It is worth stressing here that, by
rewriting the Hamilton-Jacobi equation [see Eq. (6)] as

ð∂tSþ eVÞ2 − ð∂zS − eVÞ2 ¼ m2 þ ð∇⊥S − eA⊥Þ2; ð9Þ

one sees that the quantity Pe;0ðxÞ ¼ −∂tSðxÞ − eVðxÞ is
either always strictly larger than jPe;zðxÞj, with Pe;zðxÞ ¼∂zSðxÞ − eAzðxÞ ¼ ∂zSðxÞ − eVðxÞ (this notation will be
clear below), and then it is positive or always strictly
smaller than the quantity −jPe;zðxÞj and then it is negative.
Correspondingly, the two quantities Pe;−ðxÞ ¼ Pe;0ðxÞ −
Pe;zðxÞ ¼ −½∂tSðxÞ þ eVðxÞ� − ½∂zSðxÞ − eVðxÞ� ¼ −∂TS
and Pe;þðxÞ¼½Pe;0ðxÞþPe;zðxÞ�=2¼f−½∂tSðxÞþeVðxÞ�þ
½∂zSðxÞ−eVðxÞ�g=2¼−∂ϕSðxÞ−eVðxÞ are always either
both positive or both negative [see also Eq. (7)]. As we will
see below in the determination of the electron states,
the first (second) case corresponds to positive-energy
(negative-energy) electron states. These cases are charac-
terized by different initial conditions on the action and the
above one corresponds to the case of positive-energy states,
which also corresponds to the standard choice in classical
electrodynamics.
Once the action Spðx;T0Þ is known, the corresponding

classical trajectory can be determined. In fact, by using
the theory of canonical transformations, the independent
components Pe;lcðx;T0Þ ¼ ðPe;⊥ðx;T0Þ; Pe;þðx;T0ÞÞ of the
kinetic momentum of the electron at the light-cone time T
are given by Pe;⊥ðx;T0Þ ¼ ∇⊥Spðx;T0Þ − eA⊥ðxÞ and
Pe;þðx;T0Þ ¼ −∂ϕSpðx;T0Þ − eAþðxÞ, which can be writ-
ten in a manifestly covariant form as Pμ

eðx;T0Þ¼
ðEeðx;T0Þ;Peðx;T0ÞÞ¼−∂μSpðx;T0Þ−eAμðxÞ [113,114].
Also, the initial electron coordinates x0;lc ¼ ðx0;⊥;ϕ0Þ
at T ¼ T0 are given as functions of xμ and plc via
the relations x0;⊥ − ðp⊥=pþÞT0 ¼ ∇p⊥Spðx;T0Þ and −ϕ0þ
ðp−=pþÞT0 ¼ ∂pþSpðx;T0Þ, with p− ¼ ðm2 þ p2⊥Þ=
2pþ [113]. Note that the initial condition above corre-
sponds to the electron asymptotically moving along the
straight line x⊥ ¼ x⊥ðT;T0Þ ¼ x0;⊥ þ ðp⊥=pþÞðT − T0Þ
and ϕ ¼ ϕðT;T0Þ ¼ ϕ0 þ ðp−=pþÞðT − T0Þ. Now, the
determinant in Eq. (8) can be written as����det

�∂xlc;0;i
∂xlc;j

�����: ð10Þ

This expression shows that the requirement that this
determinant never vanishes allows one to invert the
relations x0;⊥ − ðp⊥=pþÞT0 ¼ ∇p⊥Spðx;T0Þ and −ϕ0 þ
ðp−=pþÞT0 ¼ ∂pþSpðx;T0Þ and to obtain the trajectory

xlc ¼ xlcðT;T0; x0;lc; plcÞ. Then, by replacing these quan-
tities in the relations Pe;⊥ðx;T0Þ ¼ ∇⊥Spðx;T0Þ − eA⊥ðxÞ
and Pe;þðx;T0Þ ¼ −∂ϕSpðx;T0Þ − eAþðxÞ, one also
obtains the independent light-cone components of the
kinetic four-momentum as functions of T, T0, x0;lc, and plc.
It is useful to report here another alternative form of the

determinant in Eqs. (8) and (10). In fact, from the general
relation Pμ

eðx;T0Þ ¼ −∂μSPðx;T0Þ − eAμðxÞ between the
kinetic four-momentum of the electron at the light-cone
time T and the spacetime derivatives of the action, one can
also rewrite the determinant in Eq. (8) as���� det

�∂Pe;lc;j

∂plc;i

�����; ð11Þ

showing that if it is different from zero the initial light-cone
kinetic momenta of the electron can also be expressed in
terms of the corresponding quantities at the light-cone timeT.
A customary way of solving the Hamilton-Jacobi equa-

tion, which transparently relates this equation with the
Newtonian equations of motion, is the method of character-
istics [115]. In general, the basic idea is to imagine that the
spacetime hypersurface S ¼ Spðx;T0Þ can be constructed
as the union of an infinite number of characteristic curves,
in such a way that instead of solving a partial derivatives
differential equation, one solves the ordinary differential
equations fulfilled by the characteristic curves. Indeed,
the latter are parametrized by the proper time τ as
xμ ¼ xμðτ;T0Þ and satisfy the equations

m
dxμ

dτ
¼ Πμ

e; ð12Þ

where Πμ
eðτ;T0Þ ¼ Pμ

eðxðτ;T0Þ;T0Þ. Together with the
definition Pμ

eðx;T0Þ ¼ −∂μSpðx;T0Þ − eAμðxÞ and with
the fact that the action Spðx;T0Þ satisfies the Hamilton-
Jacobi equation, Eq. (12) implies that

m
d2xμ

dτ2
¼ dΠμ

e

dτ
¼ ð∂νPμ

eÞ dxν
dτ

¼ ð∂νPμ
e − ∂μPν

eÞ
dxν
dτ

¼ eFμν dxν
dτ

; ð13Þ

which is nothing but the Lorentz equation in the external
electromagnetic field FμνðxÞ¼∂μAνðxÞ−∂νAμðxÞ. In order
to solve the system of equations (12) and (13), we have to
provide initial conditions. By assuming to fix the initial
conditions at τ ¼ 0, we have xμð0;T0Þ ¼ ðT0; x0;lcÞ and
Πμ

eð0;T0Þ ¼ −∂μSpðx0;T0Þ ¼ pμ. Note that, although the
initial conditions x0;lc on the positions are arbitrarily
chosen (within the manifold T ¼ T0), the ones on the
four-momentum components Πe;lcðτ;T0Þ have to be com-
patible with the original Hamilton-Jacobi equation, i.e.,
Π2

eð0;T0Þ ¼ ð∂SpðT0; x0;lc;T0ÞÞ2 ¼ p2 ¼ m2 and with the
initial conditions on the action, which is automatically the
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case here because SpðT0;xlc;T0Þ¼−ðpþϕþp−T0−p⊥ ·x⊥Þ.
These initial conditions are said to be admissible and the
corresponding Cauchy problem is well posed [115]. Note
that the initial on-shell condition on the four-momentum
and the Lorentz equation guarantee that the Hamilton-
Jacobi equation Π2

eðτ;T0Þ ¼ m2 is always fulfilled along
any characteristic curve.
The action along an arbitrary characteristic curve

can be constructed by introducing the function Σpðτ;T0Þ ¼
Spðxðτ;T0Þ;T0Þ, which fulfills the equation

dΣp

dτ
¼ ð∂μSpÞ

dxμ

dτ
¼ −m − e

ðΠeAÞ
m

: ð14Þ

Now, the procedure is to solve the equations of motion (12)
and (13) and Eq. (14) for the action by fixing generic initial
conditions x0;lc, plc, and Σpð0;T0Þ ¼ Spðxð0;T0Þ;T0Þ ¼
−ðpþϕ0 þ p−T0 − p⊥ · x0;⊥Þ. In this way, one obtains the
functions xμ ¼ xμðτ;T0; x0;lc; plcÞ, Πμ

eðτ;T0; x0;lc; plcÞ, and
Σpðτ;T0; x0;lc; plcÞ, where, for the sake of clarity, we have
explicitly indicated here the dependence on the initial light-
cone coordinates and momenta. Now, as we have already
discussed and as we will prove below, the four equations
xμ ¼ xμðτ;T0; x0;lc; plcÞ can be inverted to obtain the
functions τ¼ τðx;T0;plcÞ and x0;lc¼x0;lcðx;T0;plcÞ [115].
Then, the action is finally obtained as Spðx;T0Þ ¼
Σpðτðx;T0; plcÞ;T0; x0;lcðx;T0; plcÞ; plcÞ. As an illustrative
example, we report in the Appendix A the derivation of the
classical action of an electron in a plane wave by means of
the method of characteristics.
Note that, since dT=dτ ¼ Πe;þ=m > 0, an alternative

possibility is to parametrize the trajectory by using directly
the light-cone time T and to obtain the trajectories as
functions xlc ¼ xlcðT;T0; x0;lc; plcÞ. As we have already
observed, these relations can be inverted and one can write
x0;lc ¼ x0;lcðx;T0; plcÞ. In this case, the action is repre-
sented as Spðx;T0Þ ¼ ΣpðT;T0; x0;lcðx;T0; plcÞ; plcÞ,
where, for the sake of notational simplicity, we have used
the same symbol Σp for the function of the proper time and
of the light-cone time.

A. The van Vleck determinant

The last step of the procedure described above to
compute the action relies on the possibility of expressing
the proper time τ and the initial light-cone coordinates x0;lc
at the light-cone time T0 as functions of the coordinates xμ

at the generic light-cone time T (the initial light-cone
components of the momentum are always plc). In order to
prove this possibility mathematically it is convenient to
introduce the so-called van Vleck determinant [116] (see
also Refs. [117,118]). Again, due to the use of light-cone
coordinates, we introduce here a slightly different defini-
tion of the van Vleck determinant than the one discussed in
the literature [116–118]. Anticipating that below we need
the van Vleck determinant both for an electron and for a

positron, we limit to the first case, we indicate the van
Vleck determinant for the electron as Deðx;T0Þ, and we
define it as [see also Eqs. (8) and (10)]

Deðx;T0Þ ¼
����det

� ∂2Sp
∂plc;i∂xlc;j

����� ¼
����det

�∂xlc;0;i
∂xlc;j

�����: ð15Þ

Recalling the discussion around Eq. (8), we conclude that if
Deðx;T0Þ ≠ 0, then the action Spðx;T0Þ represents a
complete solution of the Hamilton-Jacobi equation, which
allows one to construct the solution of the Lorentz equation
of motion. Alternatively, one can solve the Lorentz equa-
tion of motion and build the action.
Being obtained from the classical action Spðx;T0Þ, the

van Vleck determinant Deðx;T0Þ can also be computed by
means of the method of characteristics. By focusing on the
trajectory xμ ¼ xμðτ;T0Þ corresponding to the initial
conditions xμð0;T0Þ ¼ xμ0 on the position, we consider a
four-dimensional infinitesimally thin tube Ω along (and
containing) the trajectory between two proper times τ1 and
τ2 > τ1 [119]. By applying the Gauss theorem to the
quantity ∂μP

μ
eðx;T0Þ, we obtainZ

Ω
d4x∂μP

μ
eðx;T0Þ ¼

Z
ΣðΩÞ

dΣμP
μ
eðx;T0Þ; ð16Þ

where ΣðΩÞ is the three-dimensional surface enclosing the
four-dimensional tube Ω, with dΣμ pointing outwards.
Now, the integral over the infinitesimal four-volume on
the left-hand side of this equation can be written asZ
Ω
d4x∂μP

μ
eðx;T0Þ ¼

Z
τ2

τ1

dτ dVrðτÞ∂μP
μ
eðxðτ;T0Þ;T0Þ

¼
Z

τ2

τ1

dτ dVrðτÞ∂μΠ
μ
eðτ;T0Þ; ð17Þ

where, using the fact that the infinitesimal four-volume d4x
is a Lorentz scalar quantity, we have written it as the
product of the proper time dτ times the three-dimensional
volume dVrðτÞ in the instantaneous rest frame of the
electron at τ. Now, the side part of the three-dimensional
surface ΣðΩÞ is perpendicular to the four-momentum by
definition. By exploiting the fact that the quantity
dΣμP

μ
eðx;T0Þ is a Lorentz scalar quantity and by recalling

that the surface orientation is outward Ω, we can write the
right-hand side of Eq. (16) as

Z
ΣðΩÞ

dΣμP
μ
eðx;T0Þ ¼ m½dVrðτ2Þ − dVrðτ1Þ�: ð18Þ

By taking now τ2 to be larger than τ1 by an infinitesimal
amount dτ, we obtain the Lorentz-invariant equation

m
ddVrðτÞ

dτ
¼ dVrðτÞ∂μΠ

μ
eðτ;T0Þ; ð19Þ
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where, we recall, the spacetime point x corresponds to the
four-position of the electron at the proper time τ. In order to
express the infinitesimal volume dVrðτÞ in the instanta-
neous rest frame of the electron in terms of the correspond-
ing infinitesimal volume d3xlcðτ;T0Þ in the laboratory
frame, we notice that dτdVrðτÞ ¼ dTd3xlcðτ;T0Þ and we
obtain dVrðτÞ ¼ d3xlcðτ;T0ÞΠe;þðτ;T0Þ=m. Thus, by inte-
grating Eq. (19) between the initial proper time 0 and a
generic proper time τ, we obtain

d3xlcð0;T0Þ
d3xlcðτ;T0Þ

¼ Πe;þðτ;T0Þ
pþ

e−
1
m

R
τ

0
dτ0ð∂ΠeÞ: ð20Þ

Finally, by recalling that

d3xlcð0;T0Þ
d3xlcðτ;T0Þ

¼
����det

�∂xlc;0;i
∂xlc;j

�����; ð21Þ

we conclude that the van Vleck determinant Δeðτ;T0Þ ¼
Deðxðτ;T0Þ;T0Þ along that trajectory, can be expressed as

Δeðτ;T0Þ ¼
Πe;þðτ;T0Þ

pþ
e−

1
m

R
τ

0
dτ0ð∂ΠeÞ; ð22Þ

which shows that it indeed never vanishes.
Another interesting relation can be obtained by noticing

that the van Vleck determinant satisfies the equation

d
dτ

�
Δeðτ;T0Þ
Πe;þðτ;T0Þ

�
¼ ∂μ

�
Deðxðτ;T0Þ;T0Þ
Pe;þðxðτ;T0Þ;T0Þ

�
Pμ
eðxðτ;T0Þ;T0Þ

m

¼−
ð∂ΠeÞ
m

Δeðτ;T0Þ
Πe;þðτ;T0Þ

¼−
∂μP

μ
eðxðτ;T0Þ;T0Þ

m
Deðxðτ;T0Þ;T0Þ
Pe;þðxðτ;T0Þ;T0Þ

;

ð23Þ
where in the second equality we have used Eq. (22). This
equation, in fact, allows one to construct a conserved
quantity as it implies that the four-current

J μ
eðx;T0Þ ¼ Deðx;T0Þ

pþ
Pe;þðx;T0Þ

Pμ
eðx;T0Þ
m

; ð24Þ

computed at a generic spacetime point x is divergenceless,
i.e., ð∂J eðx;T0ÞÞ ¼ 0.
We conclude by observing, as in the previous paragraph,

that all the considerations done in terms of the proper time τ
can be also carried out directly in terms of the light-cone
time T, which is what we will ultimately use below. For
example, the expressions of the van Vleck determinant at
the spacetime point x and of the four-current in Eq. (24)
become

Deðx;T0Þ ¼
Pe;þðx;T0Þ

pþ
e
−
R

T

T0

dT0
Pe;þð∂PeÞ; ð25Þ

J μ
eðx;T0Þ ¼

Pμ
eðx;T0Þ
m

e
−
R

T

T0

dT0
Pe;þð∂PeÞ: ð26Þ

IV. ELECTRON STATES

In the present section we derive the electron states both
with positive and negative energies in the presence of an
arbitrary spacetime shaped laser beam within the WKB
approach.
The starting point is the Dirac equation

½γμðiℏ∂μ − eAμÞ −m�Ψ ¼ 0; ð27Þ
for the Dirac spinor field ΨðxÞ. Based on the general
argument that the de Broglie wavelength of an ultra-
relativistic particle is small, we apply the WKB method
[112] and we look for a solution of the Dirac equation of the
form [104,119,120]

ΨðxÞ ¼ e
i
ℏSðxÞΘðxÞ: ð28Þ

Thus, the spinor ΘðxÞ has to fulfill the equation

½γμð∂μSþ eAμÞ þm�Θ ¼ iℏγμ∂μΘ: ð29Þ
So far, the method is the same as that described in
Refs. [104,119,120]. Following those references one can
first neglect the term proportional to ℏ and obtain the
equation

½γμð∂μSþ eAμÞ þm�Θð0Þ ¼ 0 ð30Þ
for the zeroth-order spinor Θð0ÞðxÞ. This equation admits a
nontrivial solution only if det½γμð∂μSþ eAμÞ þm� ¼ 0,
which implies that the quantity SðxÞ has to satisfy the
Hamilton-Jacobi equation (6) and that it can be identified
with the classical action [114]. However, at this point it is
inconvenient to proceed and account for higher orders in ℏ
because thematrix on the left-hand side of Eq. (29) cannot be
inverted. Thus, starting from Eq. (29), we follow a different
procedure.
By recalling the general idea of conveniently trans-

forming the Dirac equation into a second-order differential
equation [6], we look for a solution of the form

ΘðxÞ ¼ 1

2m
fγμ½−∂μSðxÞ − eAμðxÞ þ iℏ∂μ� þmgΦðxÞ;

ð31Þ
such that the spinor ΦðxÞ fulfills the equation�
ð∂Sþ eAÞ2 −m2 − iℏ

�
2ð∂μSþ eAμÞ∂μ

þ ∂μð∂μSþ eAμÞ − ie
2
σμνFμν

�
− ℏ2

□

	
Φ ¼ 0; ð32Þ

where σμν ¼ ði=2Þ½γμ; γν� and □ ¼ ∂μ∂μ. This equation is
suitable for a perturbative expansion in ℏ and at the leading
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order in ℏ, i.e., by setting ℏ equal to zero, one recovers the
condition that SðxÞ corresponds to the classical action.
So far the method applies to both positive- and negative-

energy states. Below we consider separately these two
cases and we start from the positive-energy states.

A. Positive-energy states

The distinction between positive- and negative-energy
states takes place already at the leading order in ℏ. In fact,
the electron states with positive energies are identified by
choosing SðxÞ as the classical action Spðx;T0Þ, discussed in
the previous section, which fulfills the initial condition
SpðT0; xlc;T0Þ ¼ −ðpþϕþ p−T0 − p⊥ · x⊥Þ at the fixed
light-cone time T0 for a given on-shell four-momentum
pμ ¼ ðε; pÞ, with positive energy ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, or,

in light-cone components, p− ¼ ðm2 þ p2⊥Þ=2pþ, with
p� > 0.
Once we have identified the function SðxÞ with the

classical action Spðx;T0Þ, Eq. (32) is solved by an arbitrary
spinor ΦðxÞ for ℏ ¼ 0. This is expected because Eq. (29)
for ℏ ¼ 0 only implies that ½P̂eðx;T0Þ −m�Θð0ÞðxÞ ¼ 0

[see also Eq. (30) and recall that Pμ
eðx;T0Þ ¼

−∂μSpðx;T0Þ − eAμðxÞ], which is fulfilled for an arbitrary
choice of ΦðxÞ [see Eq. (31) for ℏ ¼ 0]. Thus, we proceed
further and we rewrite Eq. (32) taking into account that the
function SðxÞ has been chosen as the classical action
Spðx;T0Þ. By indicating the corresponding spinor as
Φpðx;T0Þ, the term independent of ℏ in Eq. (32) identically
vanishes and that equation becomes�

2Pe;μ∂μ þ ð∂PeÞ þ
ie
2
σμνFμν þ iℏ□

�
Φp ¼ 0: ð33Þ

At the leading order in ℏ, i.e., by imagining to expand the

spinor Φpðx;T0Þ in powers of ℏ starting from Φð0Þ
p ðx;T0Þ

and by setting ℏ ¼ 0 in Eq. (33), we obtain an equation for

Φð0Þ
p ðx;T0Þ:�

2Pe;μ∂μ þ ð∂PeÞ þ
ie
2
σμνFμν

�
Φð0Þ

p ¼ 0: ð34Þ

In order to solve this equation, we notice that the differ-

ential operator acting on Φð0Þ
p ðx;T0Þ commutes with the

matrix P̂eðx;T0Þ:�
2Pe;μ∂μ þ ð∂PeÞ þ

ie
2
σμνFμν; P̂e

�
¼ 2Pe;μγν∂μPν

e − i½σμν∂μPe;ν; P̂e�
¼ 2Pe;μγν∂μPν

e þ ½ðημν − γνγμÞ∂μPe;ν; P̂e�
¼ 2Pe;μγν∂μPν

e − 2γνPμ
e∂μPe;ν þ 2Pν

eγ
μ∂μPe;ν ¼ 0;

ð35Þ

where in the last step we have used the fact that

P2
eðx;T0Þ ¼ m2. In this way, we can choose Φð0Þ

p ðx;T0Þ
to be an eigenstate of the matrix P̂eðx;T0Þ and we require

that P̂eðx;T0ÞΦð0Þ
p ðx;T0Þ ¼ mΦð0Þ

p ðx;T0Þ. It is known
from the free theory that the solution of the equation

P̂eðx;T0ÞΦð0Þ
p ðx;T0Þ ¼ mΦð0Þ

p ðx;T0Þ can be written as [6]

Φð0Þ
p ðx;T0Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþV0

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðx;T0Þ þm

p
wpðx;T0Þ

Peðx;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðx;T0Þþm

p wpðx;T0Þ

1
CA

¼ P̂eðx;T0Þ þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþV0½Eeðx;T0Þ þm�p �

wpðx;T0Þ
0

�
;

ð36Þ

where σ are the Pauli matrices, wpðx;T0Þ is an arbitrary
two-dimensional spinor, and where the light-cone normali-
zation volume V0 along the perpendicular and the ϕ
directions has been introduced.

Now, it can be shown that, if Φð0Þ
p ðx;T0Þ satisfies the

equation P̂eðx;T0ÞΦð0Þ
p ðx;T0Þ¼mΦð0Þ

p ðx;T0Þ, then Eq. (34)
can be written as ½P̂eðx;T0Þ þm�γμ∂μΦ

ð0Þ
p ¼ 0 [which

coincides with Eq. (9) of the Supplemental Material

of Ref. [104]]. Moreover, if Φð0Þ
p ðx;T0Þ has the form in

Eq. (36), then Eq. (34) becomes

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþV0

p
0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee þm

p h
2Pμ

e∂μ þ ð∂μP
μ
eÞ − ieσ ·



B − Pe×E

Eeþm

�i
wp

Pe·σffiffiffiffiffiffiffiffiffi
Eeþm

p
h
2Pμ

e∂μ þ ð∂μP
μ
eÞ − ieσ ·



B − Pe×E

Eeþm

�i
wp

1
CCA ¼ 0; ð37Þ

which is satisfied if the two-dimensional spinor wpðx;T0Þ
satisfies the equation

Pμ
e∂μwp¼−

1

2
ð∂μP

μ
eÞwpþ

ie
2
σ ·

�
B−

Pe×E
Eeþm

�
wp; ð38Þ

where EðxÞ and BðxÞ are the background electric and
magnetic field, respectively. This equation can be solved
by means of the method of characteristics by introducing
the electron’s proper time τ according to the equation
dxμ=dτ ¼ Πμ

e=m as explained in the previous section (see
also Ref. [121] for an alternative method to solve the Dirac

A. DI PIAZZA PHYS. REV. D 103, 076011 (2021)

076011-8



equation based on the introduction of the particle proper
time). By setting

wpðx;T0Þ ¼ e−
1
2m

R
τ

0
dτ0ð∂PeÞrpðx;T0Þ

¼ e
−1
2

R
T

T0

dT0
Pe;þð∂PeÞrpðx;T0Þ; ð39Þ

we conclude that the two-component spinor rpðx;T0Þ
satisfies the equation [see Eq. (38)]

Pμ
e∂μrp ¼ ie

2
σ ·

�
B −

Pe × E
Ee þm

�
rp: ð40Þ

By using again the method of characteristics, one first
defines the function ρp;sðτ;T0Þ ¼ rp;sðxðτ;T0Þ;T0Þ along a
generic trajectory and then, by determining the
actual trajectories xμ ¼ xμðτ;T0; x0;lc; plcÞ depending on
the initial conditions as xμð0;T0; x0;lc; plcÞ ¼ xμ0, one finds
the solution ρp;sðτ;T0Þ ¼ ρp;sðτ;T0; x0;lc; plcÞ of Eq. (40)
along the generic trajectory and then obtains rp;sðx;T0Þ ¼
ρp;sðτðx;T0; plcÞ;T0; x0;lcðx;T0; plcÞ; plcÞ. In this way, one
can easily show from this equation that the two-component
spinor rpðx;T0Þ has constant norm r†pðx;T0Þrpðx;T0Þ,
which can then be set equal to unity. Moreover, the
average vector spðx;T0Þ ¼ r†pðx;T0Þσrpðx;T0Þ satisfies
the equation

Pμ
e∂μsp ¼ esp ×

�
B −

Pe × E
Ee þm

�
; ð41Þ

which is equivalent to the Bargmann-Michel-Telegdi
(BMT) equation mdsμp=dτ ¼ eFμνsp;ν for the electron
polarization four-vector [6]

sμpðx;T0Þ ¼
�
spðx;T0Þ · Peðx;T0Þ

m
; spðx;T0Þ

þ spðx;T0Þ · Peðx;T0Þ
m½Eeðx;T0Þ þm� Peðx;T0Þ

�
; ð42Þ

computed along the electron trajectory. In order to identify
the two-component spinor rpðx;T0Þ uniquely, initial con-
ditions have to be assigned. By choosing for the sake of
definiteness the direction of the momentum p as spin-
quantization direction at T0, we are led to introduce the
discrete spin quantum number s ¼ �1, depending on the
two possible orientations of the vector spðT0; xlc;T0Þ, and
we correspondingly indicate the spinor Φpðx;T0Þ as
Φp;sðx;T0Þ and analogously Φð0Þ

p ðx;T0Þ as Φð0Þ
p;sðx;T0Þ

(as for the initial four-momentum pμ, all characteristic
curves are characterized by the same spin quantum number
s). In this way, we conclude that ignoring the term linear in
ℏ in Eq. (33) amounts to determine the dynamics of the
electron spin or, more precisely, to the electron magnetic
moment associated with its spin according to the classical
BMT equation (with the electron gyromagnetic equal to 2).

Indeed, we have seen that the resulting equation (34) turns
out to be independent of ℏ. Consequently the spinor
Φð0Þ

p;sðx;T0Þ does not depend on ℏ either and this is why
we continue to indicate it with the upper index (0), i.e.,

Φð0Þ
p;sðx;T0Þ¼

e
−1
2

R
T

T0

dT̃
Pe;þð∂PeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðx;T0Þþm

p
rp;sðx;T0Þ

Peðx;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðx;T0Þþm

p rp;sðx;T0Þ

1
CA:

ð43Þ

As we have already mentioned, Eq. (34) corresponds
to the next-to-leading order approximation of the original
Eq. (33). This explains why the exponential function in
Eq. (43) has to be interpreted as the leading-order (imagi-
nary) quantum correction to the phase of the electron wave
function, whose WKB leading order is Spðx;T0Þ=ℏ, i.e., it
is Oðℏ−1Þ [see Eq. (28)].
At this point, the higher-order corrections in ℏ of the

solution of Eq. (33) can be written in a formal way by
introducing the proper-time evolution operator Ueðτ; τ0Þ,
which solves the equation

2m
dUe

dτ
¼ −

�
ð∂PeÞ þ

ie
2
σμνFμν

�
Ue; ð44Þ

with the initial condition Ueðτ; τÞ ¼ 1. In general, one may
need the operator Ueðτ; τ0Þ for arbitrary proper times τ and
τ0. Therefore, by employing both the time ordering operator
T > and the time antiordering operator T <, the operator
Ueðτ; τ0Þ can be written as

Ueðτ; τ0Þ ¼ e−
1
2m

R
τ

τ0 dτ̃ð∂PeÞ
h
θðτ − τ0ÞT >



e−

ie
4m

R
τ

τ0 dτ̃σ
μνFμν

�
þ θðτ0 − τÞT <



e−

ie
4m

R
τ

τ0 dτ̃σ
μνFμν

�i
; ð45Þ

where θð·Þ is the step function. By using this expression,
one can formally write the exact solution of Eq. (33) in the
form

Φp;sðx;T0Þ ¼ Φð0Þ
p;sðx;T0Þ −

iℏ
2

Z
T

T0

dT 0

Pe;þ
UeðT; T 0Þ□Φp;s;

ð46Þ

where

UeðT; T 0Þ ¼ e−
1
2

R
T

T0
dT̃

Pe;þð∂PeÞ
�
θðT − T 0ÞT >



e−

ie
4

R
T

T0
dT̃

Pe;þσ
μνFμν

�

þ θðT 0 − TÞT <



e−

ie
4

R
T

T0
dT̃

Pe;þσ
μνFμν

�i
; ð47Þ

which is particularly suitable for an expansion in ℏ [with an
abuse of notation we have replaced in Ueðτ; τ0Þ the
dependence on τ and τ0 with the dependence on T and
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T 0]. Once the spinor Φp;sðx;T0Þ is obtained, one can use
the definitions in Eqs. (31) and (28) to obtain the corre-
sponding positive-energy solution of the Dirac equation,
which can be denoted as Up;sðx;T0Þ. In general, in order to
apply the Furry picture for computing transition probabil-
ities one needs so-called in- and out-states, which reduce to
free states at asymptotic early and late times, respectively.
By using the upper index (in) [(out)] to denote the
quantities which reduce to the corresponding free ones

in the asymptotic past [future], we have that UðinÞ
p;s ðxÞ ¼

limT0→−∞ Up;sðx;T0Þ [UðoutÞ
p;s ðxÞ ¼ limT0→∞Up;sðx;T0Þ].

Now, we focus onto the zeroth-order solution, in the
sense explained above, and notice from Eq. (31) that at the

leading order in ℏ it is Θð0Þ
p;sðx;T0Þ ¼ Φð0Þ

p;sðx;T0Þ, because
in the preexponential spinor corrections proportional to ℏ
can be neglected. In this way, we conclude that the positive-

energy electron state Uð0Þ
p;sðx;T0Þ including terms up to

Oðℏ0Þ is given by

Uð0Þ
p;sðx;T0Þ ¼ e

i
ℏSpðx;T0Þ e

−1
2

R
T

T0

dT̃
Pe;þð∂PeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p

×

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðx;T0Þ þm

p
rp;sðx;T0Þ

Peðx;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðx;T0Þþm

p rp;sðx;T0Þ

1
CA: ð48Þ

We first discuss the normalization of the state Uð0Þ
p;sðx;T0Þ

by computing the four-current Jð0Þμe;p;sðx;T0Þ¼ Ūð0Þ
p;sðx;T0Þγμ

Uð0Þ
p;sðx;T0Þ. By recalling the properties of the free states [6],

one easily obtains

Jð0Þμe;p;sðx;T0Þ ¼
Pμ
eðx;T0Þ
pþV0

e
−
R

T

T0

dT̃
Pe;þð∂PeÞ

¼ Pμ
eðx;T0Þ

Pe;þðx;T0Þ
Deðx;T0Þ

V0

; ð49Þ

where in the second equality we have used the expression
of the van Vleck determinant in Eq. (25). This four-current

has the desired properties that it corresponds to the standard
normalization of one particle in the light-cone volume V0

at the initial light-cone time T0 and that, due to Eq. (26), is

conserved: ð∂Jð0Þe;p;sÞ ¼ 0. Indeed, this shows the impor-
tance of including the corrections proportional to ℏ0 in the
quasiclassical wave functions, which was the original
motivation of the work [116] by van Vleck. Also, the
expression in Eq. (49) of the electron four-current suggests
to interpret the light-cone volume V0 as [see also the
discussions below Eqs. (100) and (108)]

V0 ¼
Z
V0

d3x0;lc ¼
Z
VT

d3xlcDeðx;T0Þ

¼
Z
VT

d3xlc
Pe;þðx;T0Þ

pþ
e
−
R

T

T0

dT̃
Pe;þð∂PeÞ; ð50Þ

where VT is the transformed light-cone volume of V0, such
that the wave function (48) can be cast in the form

Uð0Þ
p;sðx;T0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Deðx;T0Þ

V0

s
e

i
ℏSpðx;T0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pe;þðx;T0Þ
p

×

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðx;T0Þ þm

p
rp;sðx;T0Þ

Peðx;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeðx;T0Þþm

p rp;sðx;T0Þ

1
CA; ð51Þ

which precisely corresponds to the nonrelativistic form
derived by van Vleck in Ref. [116]. Finally, we note that the
same normalization as above is customarily employed also
in the case of a plane wave (see below).
The state in Eq. (48) can be written in an alternative and

physically suggestive form by recalling that all the quan-
tities are assumed to be computed by means of the method
of characteristics, which only relies on the classical electron
trajectory obtained by solving the Lorentz equation [and on
the solutions of the equations for the action Spðx;T0Þ and
for the two-dimensional spinor rp;sðx;T0Þ]. By recalling
the expression of the van Vleck determinant and the
identity (20), we obtain

Uð0Þ
p;sðx;T0Þ ¼

Z
V0

d3x0;lc
ΔeðT;T0Þ

δ3ðxlc − xlcðT;T0; x0;lc; plcÞÞei
ℏΣpðT;T0Þ e

−1
2

R
T

T0

dT̃
Πe;þð∂ΠeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Πe;0ðT;T0Þ þm

p
ρp;sðT;T0Þ

ΠeðT;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Πe;0ðT;T0Þþm

p ρp;sðT;T0Þ

1
CA

¼
Z
V0

d3x0;lcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔeðT;T0Þ

p δ3ðxlc − xlcðT;T0; x0;lc; plcÞÞ
e

i
ℏΣpðT;T0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Πe;þðT;T0ÞV0

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Πe;0ðT;T0Þ þm

p
ρp;sðT;T0Þ

ΠeðT;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Πe;0ðT;T0Þþm

p ρp;sðT;T0Þ

1
CA;

ð52Þ
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where the electron trajectory xlc ¼ xlcðT;T0; x0;lc; plcÞ is
the one corresponding to the initial condition xlcð0Þ ¼ x0;lc
on the light-cone position, parametrized with respect to the
light-cone T and where, as in the case of the evolution
operator UeðT; T 0Þ, we used the same symbol for the
functions along the trajectory for either the proper time
or the light-cone time being used to parametrize it. In this
way, the state Uð0Þ

p;sðx;T0Þ with the given on-shell four-
momentum pμ and spin quantum number s is represented
as an infinite linear combination of “freelike” states with
the free action, four-momentum, and spin four-vector
replaced with the corresponding quantities evaluated along
all possible classical electron trajectories in the external
field corresponding to arbitrary initial positions, each
contribution being weighted via the inverse square root
of the van Vleck determinant.
Starting from Eq. (48), the positive-energy electron in-

states and out-states including terms up to Oðℏ0Þ are
given by

Uð0;inÞ
p;s ðxÞ ¼ e

i
ℏS

ðinÞ
p ðxÞ e

−
R

T

−∞
dT̃ð∂PðinÞ

e Þ=2PðinÞ
e;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p uð0;inÞp;s ðxÞ; ð53Þ

Uð0;outÞ
p;s ðxÞ ¼ e

i
ℏS

ðoutÞ
p ðxÞ e

−
R

T

∞
dT̃ð∂PðoutÞ

e Þ=2PðoutÞ
e;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p uð0;outÞp;s ðxÞ; ð54Þ

where

uð0;inÞp;s ðxÞ ¼

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðinÞ
e ðxÞ þm

q
rðinÞp;s ðxÞ

PðinÞ
e ðxÞ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðinÞe ðxÞþm

p rðinÞp;s ðxÞ

1
CCA; ð55Þ

uð0;outÞp;s ðxÞ ¼

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðoutÞ
e ðxÞ þm

q
rðoutÞp;s ðxÞ

PðoutÞ
e ðxÞ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðoutÞe ðxÞþm

p rðoutÞp;s ðxÞ

1
CCA: ð56Þ

As we have discussed in Ref. [105], by approximating the
electron trajectory and the spin evolution up to the leading
order in the parameter η for the electron trajectory, it is
possible to put the above states in a form, which is
reminiscent of the Volkov states, for computing the
probabilities of strong-field QED processes.
In the next two paragraphs we discuss a new expression of

the Volkov states and the conditions of validity of approx-
imations used to obtain the states in Eqs. (53) and (54).

1. A fully quasiclassical form of the Volkov states

It is often stated that Volkov states have the unique
feature of having a quasiclassical structure although they
are an exact solution of the Dirac equation [9,12]. It is

certainly true that Volkov states feature the typical expo-
nential of the classical action divided by ℏ, which is typical,
as we have also seen above, of quasiclassical wave
functions. However, it is not correspondingly evident that
the spinor structure of the Volkov states, in the form in
which they have been written (see, e.g., [6]), is also
quasiclassical, as it does not resemble, for example,
Eq. (48). Here, we show that our method allows one to
write the Volkov states in a new, closed form, whose
spinor structure is also manifestly quasiclassical. This also
explicitly implies that the present method provides the
exact Volkov wave functions in the case of a background
plane wave.
According to the above notation, we assume that the

background field only depends on the coordinate T, i.e., it
is of the form AμðTÞ. By assuming the same structure of the
states until Eq. (33), we notice that one can choose the
spinor Φpðx;T0Þ to depend only on T in this case. Indeed,
from the results in Appendix A, one obtains that the four-
momentum Pμ

eðx;T0Þ only depends on the coordinate T
and it formally coincides with the solution Πμ

eðT;T0Þ of the
Lorentz equation reported in Appendix A. For this reason,
we indicate the four-momentum Pμ

eðx;T0Þ as Pμ
eðT;T0Þ. As

a result, the last term proportional to ℏ in Eq. (33)
identically vanishes and Eq. (34) is exact in this case.
Moreover, since the plus component of the four-momentum
is a constant of motion, the term ð∂PeÞ also vanishes (see
Appendix A). By writing again the spinor ΦpðT;T0Þ as in
Eq. (36) but with all quantities only depending only on T,
we obtain

ΦpðT;T0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EeðT;T0Þ þm

p
rpðT;T0Þ

PeðT;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EeðT;T0Þþm

p rpðT;T0Þ

1
CA

¼ P̂eðT;T0Þ þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþV0½EeðT;T0Þ þm�p �

rpðT;T0Þ
0

�
;

ð57Þ

then the two-dimensional spinor rpðT;T0Þ has to fulfill the
equation [see also the discussion below Eq. (40)]

pþ
drp
dT

¼ ie
2
σ ·

�
B −

Pe × E
Ee þm

�
rp: ð58Þ

Since in the present case of a background plane wave and
within the chosen gauge, it is BðTÞ ¼ −n × EðTÞ (recall
that the propagation direction of the wave is −n), with
EðTÞ ¼ −ð1=2ÞdAðTÞ=dT, Eq. (58) can be solved analyti-
cally and in closed form. By introducing the spin quantum
number s as above and fixing the initial condition as
rp;sðT0;T0Þ ¼ r0;p;s, the solution reads
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rp;sðT;T0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EeðT;T0Þ þm

εþm

r �
1þ e

4pþ
σ ·

�
nþ PeðT;T0Þ

EeðT;T0Þ þm

�
σ · AðTÞ

	
r0;p;s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EeðT;T0Þ þm

εþm

r �
1þ e

4pþ

PeðT;T0Þ · AðTÞ
EeðT;T0Þ þm

þ ie
4pþ

σ ·

�
n × AðTÞ þ PeðT;T0Þ × AðTÞ

EeðT;T0Þ þm

�	
r0;p;s; ð59Þ

as it can be easily checked by substituting this expression in Eq. (58).
The resulting wave function in Eqs. (57) and (59) has to be compared with the traditional form of the corresponding

Volkov wave function UV;p;sðx;T0Þ, which in our notation can be written as UV;p;sðx;T0Þ ¼ e
i
ℏSpðx;T0ÞΦV;p;sðT;T0Þ, where

Spðx;T0Þ is given by Eq. (A6) and where [6]

ΦV;p;sðT;T0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p �
1þ e

ˆ̃nÂðTÞ
2pþ

�� ffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p
r0;p;s

p·σffiffiffiffiffiffiffi
εþm

p r0;p;s

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþV0

p �
1þ e

ˆ̃nÂðTÞ
2pþ

�
p̂þmffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p
�
r0;p;s
0

�

¼ P̂eðT;T0Þ þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþV0ðεþmÞp �

1þ e
ˆ̃nÂðTÞ
2pþ

��
r0;p;s
0

�
: ð60Þ

Indeed, after some algebra and, in particular, by using the
third equality in Eq. (60), it can be shown that
Φp;sðT;T0Þ ¼ ΦV;p;sðT;T0Þ, where

Φp;sðT;T0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EeðT;T0Þ þm

p
rp;sðT;T0Þ

PeðT;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EeðT;T0Þþm

p rp;sðT;T0Þ

1
CA;

ð61Þ

with rp;sðT;T0Þ given by Eq. (59). Finally, by replacing the
spinor Φp;sðT;T0Þ into Eq. (31), one sees that the term
proportional to ℏ identically vanishes because ˆ̃n2 ¼ 0.
Thus, we obtain that Θp;sðT;T0Þ ¼ Φp;sðT;T0Þ and then
that the positive-energy Volkov state UV;p;sðx;T0Þ can be
written in the fully quasiclassical form,

UV;p;sðx;T0Þ ¼
e

i
ℏSpðx;T0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþV0

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EeðT;T0Þ þm

p
rp;sðT;T0Þ

PeðT;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EeðT;T0Þþm

p rp;sðT;T0Þ

1
CA;

ð62Þ

with rp;sðT;T0Þ given by Eq. (59). Note that the corre-
sponding four-current JμV;p;sðx;T0Þ ¼ ŪV;p;sðx;T0Þγμ ×
UV;p;sðx;T0Þ ¼ Pμ

eðT;T0Þ=pþV0 is automatically con-
served because the plus component of the four-momentum
is a constant of motion in the case of the plane wave AμðTÞ.

2. Conditions of validity of the WKB approach

Concerning the conditions of validity of the approxima-
tions used to obtain the states in Eqs. (53) and (54), we

stress that the only employed approximation is that
quantum corrections proportional to ℏ in Eqs. (31) and
(46) have been neglected. Due to the fact that in general the
WKB expansion is asymptotic (see, e.g., [122]) and due to
the complex, multicomponent structure of the electron
states, a complete and quantitative analysis of the con-
ditions under which higher-order corrections in ℏ can be
neglected must also rely on numerical analyses. However,
general conditions can be derived, which are based on the
following arguments and considerations starting from
Eq. (33). As we have seen, if the background field were
a plane wave, i.e., in the present context, if it depends only
on T, then one can directly seek for a solution of Eq. (33)
depending only on T and the last term containing iℏ□
would vanish [as we have noticed, the quantity ð∂PeÞ
vanishes in this case because the plus component of the
four-momentum is a constant of motion]. Thus, one
concludes that the corrections brought about by the term
containing iℏ□ arise due to the spatial focusing of the
background field or, in general, to its spacetime
features beyond the plane wave. If we consider the typical
example of a Gaussian beam with electromagnetic field
amplitude F0, central angular frequency ω0 (central wave-
length λ0 ¼ 2π=ω0), and spatial focusing radius σ0
(Rayleigh length lR¼πσ20=λ0), we can estimate j∂T j∼ω0,
j∂ϕj ∼ 1=lR ¼ 2=ω0σ

2
0, and j∇⊥j ∼ 1=σ0, such that

j□j ∼ 1=σ20. In order to ascertain the conditions of validity
of the approximations used, it is first sufficient to compare
the quantity ℏ=σ20 with two of the first three terms in
Eq. (33). By choosing the first one and the third one, we
obtain the conditions ℏ=σ20 ≪ ω0pþ and ℏ=σ20 ≪ jejF0,
which, apart from numerical factors which can be
ignored at the present level of accuracy, can be written
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as λ2C=σ
2
0 ≪ χ=ξ and λ0λC=σ20 ≪ ξ, where λC ¼ ℏ=m≈

3.9 × 10−11 cm is the Compton wavelength.
In addition to these conditions, we recall that in

obtaining the states in Eqs. (53) and (54), we have
also neglected the term proportional to ℏ in Eq. (31). If
we kept that term, we would obtain in general that
Θð0ÞðxÞ ¼ ð1þ iℏγμ∂μ=2mÞΦð0ÞðxÞ. At this point, one
would conclude that, since the largest derivative is the
one with respect to T and it is of the order of ω0, the
condition here is ℏω0 ≪ m. However, this condition is
certainly too restrictive because we already know, for
example, that in the plane-wave case the WKB solution
is exact independently of the frequency of the field. Indeed,
as we have seen in the case of a plane wave, this
contribution does actually vanish identically due to the
matrix structure. Thus, based on this, we again expect
physically that the condition depends on the fact that the
background field is spatially focused and then that it is of
the form ℏ=σ0 ≪ m, i.e., λC=σ0 ≪ 1 (the corresponding
condition on the Rayleigh length is less restrictive).
In all cases, as we concluded in Ref. [104], these

conditions are less restrictive than the one η ≪ 1, which
then would allow one to obtain explicit analytical expres-
sions of the classical action/trajectory and then of the
electron states in terms of the background electromagnetic
field. In conclusion, the states in Eqs. (53) and (54)
have more general validity than those finally obtained in
Refs. [104,105] but require numerical methods to be
efficiently employed.

B. Negative-energy states

The derivation of the negative-energy states proceeds
analogously to the positive-energy states. The main differ-
ence is in the choice of the initial condition for the classical
action. Now, in fact, we indicate the action as S−pðx;T0Þ
as we determine it by imposing the initial condition
S−pðT0; xlc;T0Þ ¼ pþϕþ p−T0 − p⊥ · x⊥ again for the
on-shell four-momentum pμ [p− ¼ ðm2 þ p2⊥Þ=2pþ, with
p� > 0]. In the present case, the kinetic four-momentum
is defined as Pμ

pðx;T0Þ ¼ ðEpðx;T0Þ;Ppðx;T0ÞÞ ¼
∂μS−pðx;T0Þ þ eAμðxÞ, with the index p standing for
“positron” (as in the previous paragraph the index “e”
stood for “electron”). In fact, as we will see below,
Pμ
pðx;T0Þ represents the kinetic four-momentum of a

positron in the background field and one can already
see that, recalling the Hamilton-Jacobi equation (6),
P2
pðx;T0Þ ¼ m2. As before, the initial conditions are

such that the positron asymptotically moves along the
straight line x⊥ðTÞ¼x0;⊥þðp⊥=pþÞðT−T0Þ and ϕðTÞ ¼
ϕ0 þ ðp−=pþÞðT − T0Þ, with the general definitions x0;⊥ −
ðp⊥=pþÞT0 ¼ −∇p⊥S−pðx;T0Þ and −ϕ0 þ ðp−=pþÞT0 ¼
−∂pþS−pðx;T0Þ.
After using the same definitions for the spinors

Θ−pðx;T0Þ and Φ−pðx;T0Þ as in Eqs. (28) and (31),

respectively, the original Dirac equation is equivalent to
the equation

�
2Pp;μ∂μ þ ð∂PpÞ −

ie
2
σμνFμν − iℏ□

�
Φ−p ¼ 0 ð63Þ

for the spinor Φ−pðx;T0Þ. In order to determine the zeroth-

order spinor Φð0Þ
−pðx;T0Þ, we set ℏ ¼ 0 in Eq. (63) and we

obtain

�
2Pp;μ∂μ þ ð∂PpÞ −

ie
2
σμνFμν

�
Φð0Þ

−p ¼ 0: ð64Þ

This equation corresponds to Eq. (34) for the spinor

Φð0Þ
p ðx;T0Þ but with the replacements Pμ

eðx;T0Þ →
Pμ
pðx;T0Þ and e → −e. Analogously as in the positive-

energy case, the operator acting on Φð0Þ
−pðx;T0Þ commutes

with the matrix P̂pðx;T0Þ and we can choose the

spinor Φð0Þ
−pðx;T0Þ to satisfy the eigenvalue equation

P̂pðx;T0ÞΦð0Þ
−pðx;T0Þ ¼ −mΦð0Þ

−pðx;T0Þ. Thus, according

to the free theory [6], the spinor Φð0Þ
−pðx;T0Þ can be

written as

Φð0Þ
−pðx;T0Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþV0

p
0
B@

Ppðx;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Epðx;T0Þþm

p w−pðx;T0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Epðx;T0Þ þm

p
w−pðx;T0Þ

1
CA;

ð65Þ

where w−pðx;T0Þ is an arbitrary two-dimensional spinor.
Analogously as for the positive-energy states, by replacing
the expression in Eq. (65) of the zeroth-order spinor

Φð0Þ
−pðx;T0Þ in Eq. (64), we obtain that it is satisfied

if the two-dimensional spinor w−pðx;T0Þ satisfies the
equation

Pμ
p∂μw−p ¼ −

1

2
ð∂μP

μ
pÞw−p −

ie
2
σ ·

�
B −

Pp × E

Ep þm

�
w−p;

ð66Þ

which, again, corresponds to Eq. (38) but with Pμ
eðx;T0Þ →

Pμ
pðx;T0Þ and e → −e. Also this equation can be solved

by applying the method of characteristics. In this case,
we introduce the positron proper time τ according to the
equation

m
dxμ

dτ
¼ Πμ

p; ð67Þ

where Πμ
pðτ;T0Þ ¼ Pμ

pðxðτ;T0Þ;T0Þ, with xμ ¼ xμðτ;T0Þ
being a generic positron trajectory. This equation implies
that
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m
d2xμ

dτ2
¼ dΠμ

p

dτ
¼ −eFμν dxν

dτ
; ð68Þ

which is the Lorentz equation for a positron in the external
field. Analogously as before, one can also introduce the
action function Σ−pðτ;T0Þ ¼ S−pðxðτ;T0Þ;T0Þ computed
along the positron trajectory at hand and the procedure is
now to solve the equations of motion (67) and (68) and the
equation

dΣ−p

dτ
¼ ð∂μS−pÞ

dxμ

dτ
¼ m − e

ðΠpAÞ
m

ð69Þ

for the action Σ−pðτ;T0Þ computed along the positron
trajectory for generic initial conditions x0;lc, plc, and
Σ−pð0;T0Þ ¼ S−pðxð0;T0Þ;T0Þ ¼pþϕ0þp−T0−p⊥ ·x0;⊥.
In this way, one obtains the functions xμ ¼ xμðτ;T0;
x0;lc; plcÞ, Πμ

pðτ;T0; x0;lc; plcÞ, and Σ−pðτ;T0; x0;lc; plcÞ.
The four equations xμ ¼ xμðτ;T0; x0;lc; plcÞ can be inverted
to obtain the functions τ ¼ τðx;T0; plcÞ and x0;lc ¼
x0;lcðx;T0; plcÞ [115]. Indeed, one can also in this case
show that the (positron) van Vleck determinant is given by

Dpðx;T0Þ ¼
Pp;þðx;T0Þ

pþ
e
−1
2

R
T

T0

dT̃
Pp;þð∂PpÞ ð70Þ

and it never vanishes. Finally, the action S−pðx;T0Þ is
obtained in the usual way as S−pðx;T0Þ ¼ Σ−pðτðx;T0;
plcÞ;T0; x0;lcðx;T0; plcÞ; plcÞ.
Going back to Eq. (66) and by setting

w−pðx;T0Þ ¼ e−
1
2m

R
τ

0
dτ0ð∂PpÞr−pðx;T0Þ

¼ e
−1
2

R
T

T0

dT0
Pp;þð∂PpÞr−pðx;T0Þ; ð71Þ

we conclude that the two-component spinor r−pðx;T0Þ
satisfies the equation

Pμ
p∂μr−p ¼ −

ie
2
σ ·

�
B −

Pp × E

Ep þm

�
r−p: ð72Þ

As before, this equation implies that the two-component
spinor r−pðx;T0Þ has constant norm r†−pðx;T0Þr−pðx;T0Þ,
which can be set equal to unity. Moreover, the average
vector s−pðx;T0Þ ¼ r†−pðx;T0Þσr−pðx;T0Þ satisfies the
equation

Pμ
p∂μs−p ¼ −es−p ×

�
B −

Pp × E

Ep þm

�
; ð73Þ

which is equivalent to the BMT equation mdsμ−p=dτ ¼
−eFμνs−p;ν along the positron trajectory for the positron
polarization four-vector [6]

sμ−pðx;T0Þ ¼
�
s−pðx;T0Þ · Ppðx;T0Þ

m
; s−pðx;T0Þ

þ s−pðx;T0Þ · Ppðx;T0Þ
m½Epðx;T0Þ þm� Ppðx;T0Þ

�
: ð74Þ

Also in this case we choose the direction of the momentum
p as spin-quantization direction at T0 and we introduce the
discrete spin quantum number s ¼ �1, depending on the
two possible orientations of the vector s−pðT0; xlc;T0Þ.
Correspondingly we indicate Φ−pðx;T0Þ rather as
Φ−p;−sðx;T0Þ, following the notation in Ref. [6] and

analogously Φð0Þ
−pðx;T0Þ rather as Φð0Þ

−p;−sðx;T0Þ.
Concerning higher-order corrections in ℏ, we observe

that the proper-time evolution operator Upðτ; τ0Þ solves
here the equation [see Eq. (63)]

2m
dUp

dτ
¼ −

�
ð∂PpÞ −

ie
2
σμνFμν

�
Up; ð75Þ

with the initial condition Upðτ; τÞ ¼ 1, and then

Upðτ; τ0Þ ¼ e−
1
2m

R
τ

τ0 dτ̃ð∂PpÞ
h
θðτ − τ0ÞT >



e

ie
4m

R
τ

τ0 dτ̃σ
μνFμν

�
þ θðτ0 − τÞT <



e

ie
4m

R
τ

τ0 dτ̃σ
μνFμν

�i
: ð76Þ

In this way, we can write the equation for the spinor
Φ−p;−sðx;T0Þ as the integral equation

Φ−p;−sðx;T0Þ ¼ Φð0Þ
−p;−sðx;T0Þ

þ iℏ
2

Z
T

T0

dT 0

Pp;þ
UpðT; T 0Þ□Φ−p;−s; ð77Þ

where

UpðT; T 0Þ ¼ e−
1
2

R
T

T0
dT̃

Pp;þð∂PpÞ
h
θðT − T 0ÞT >



e
ie
4

R
T

T0
dT̃

Pp;þσ
μνFμν

�
þ θðT 0 − TÞT <



e
ie
4

R
T

T0
dT̃

Pp;þσ
μνFμν

�i
: ð78Þ

Also in the present case, once the spinor Φ−p;−sðx;T0Þ is
obtained, one can use the definitions in Eqs. (31) and (28)
to obtain the corresponding negative-energy solution of
the Dirac equation, which we indicate as Vp;sðx;T0Þ. As
before, the in- and out-states are defined as VðinÞ

p;s ðxÞ ¼
limT0→−∞ Vp;sðx;T0Þ and VðoutÞ

p;s ðxÞ ¼ limT0→∞ Vp;sðx;T0Þ,
respectively.
Finally, as in the previous paragraph, we focus on the

zeroth-order solution and we observe that at this order it is

Θð0Þ
−p;−sðx;T0Þ ¼ Φð0Þ

−p;−sðx;T0Þ [see also Eq. (31)]. Thus,

the leading-order state Vð0Þ
p;sðx;T0Þ, which includes terms up

to Oðℏ0Þ, reads
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Vð0Þ
p;sðx;T0Þ ¼ e

i
ℏS−pðx;T0Þ e

−1
2

R
T

T0

dT̃
Pp;þð∂PpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p

×

0
B@

Ppðx;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Epðx;T0Þþm

p r−p;−sðx;T0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Epðx;T0Þ þm

p
r−p;−sðx;T0Þ

1
CA: ð79Þ

The corresponding four-current Jð0Þμp;p;sðx;T0Þ ¼
V̄ð0Þ
p;sðx;T0ÞγμVð0Þ

p;sðx;T0Þ is given by

Jð0Þμp;p;sðx;T0Þ ¼
Pμ
pðx;T0Þ
pþV0

e
−
R

T

T0

dT̃
Pp;þð∂PpÞ: ð80Þ

As in the positive-energy case, the four-current Jð0Þμp;p;sðx;T0Þ
has the desired properties that it corresponds to the standard
normalization of one particle in the light-cone volume V0 at

the initial time T0 and that it is conserved: ð∂Jð0Þp;p;sÞ ¼ 0.

It is useful to mention that the state Vð0Þ
p;sðx;T0Þ can be

equivalently written as

Vð0Þ
p;sðx;T0Þ ¼

Z
V0

d3x0;lcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔpðT;T0Þ

p δ3ðxlc − xlcðT;T0; x0;lc; plcÞÞ

×
e

i
ℏΣ−pðT;T0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Πp;þðT;T0ÞV0

p

×

0
B@

ΠpðT;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Πp;0ðT;T0Þþm

p ρ−p;−sðT;T0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Πp;0ðT;T0Þ þm

p
ρ−p;−sðT;T0Þ

1
CA;

ð81Þ

where, analogously to the positive-energy case, the func-
tions ρ−p;−sðT;T0Þ and ΔpðT;T0Þ are the functions
ρ−p;−sðτ;T0Þ ¼ r−p;−sðxðτ;T0Þ;T0Þ and Δpðτ;T0Þ ¼
Dpðxðτ;T0Þ;T0Þ computed along the positron trajectory
xlc ¼ xlcðT;T0; x0;lc; plcÞ corresponding to the initial

condition xlcðT0Þ ¼ x0;lc on the light-cone position and
parametrized with respect to the light-cone time T.
Then, one obtains the negative-energy electron in-states

and out-states, which include terms up to Oðℏ0Þ, as

Vð0;inÞ
p;s ðxÞ ¼ e

i
ℏS

ðinÞ
−p ðxÞ e

−1
2

R
T

−∞
dT̃ð∂PðinÞ

p Þ=PðinÞ
p;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p vð0;inÞp;s ðxÞ; ð82Þ

Vð0;outÞ
p;s ðxÞ ¼ e

i
ℏS

ðoutÞ
−p ðxÞ e

−1
2

R
T

∞
dT̃ð∂PðoutÞ

p Þ=PðoutÞ
p;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþV0

p vð0;outÞp;s ðxÞ; ð83Þ

where

vð0;inÞp;s ðxÞ ¼

0
BB@

PðinÞ
p ðxÞ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðinÞp ðxÞþm

p rðinÞ−p;−sðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðinÞ
p ðxÞ þm

q
rðinÞ−p;−sðxÞ

1
CCA; ð84Þ

vð0;outÞp;s ðxÞ ¼

0
BB@

PðoutÞ
p ðxÞ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðoutÞp ðxÞþm

p rðoutÞ−p;−sðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðoutÞ
p ðxÞ þm

q
rðoutÞ−p;−sðxÞ

1
CCA: ð85Þ

Finally, for the sake of completeness, we also report the
negative-energy Volkov state VV;p;sðx;T0Þ in the full
quasiclassical form

VV;p;sðx;T0Þ

¼ e
i
ℏS−pðx;T0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pþV0

p
0
B@

PpðT;T0Þ·σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpðT;T0Þþm

p r−p;−sðT;T0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpðT;T0Þ þm

p
r−p;−sðT;T0Þ

1
CA; ð86Þ

where the action S−pðx;T0Þ is given by Eq. (A6) with the
substitution pμ → −pμ, where the four-momentum
Pμ
pðT;T0Þ ¼ ðEpðT;T0Þ;PpðT;T0ÞÞ is given by Eq. (A1)

with the replacement e → −e, and where [see Eq. (59)]

r−p;−sðT;T0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpðT;T0Þ þm

εþm

s �
1 −

e
4pþ

σ ·

�
nþ PpðT;T0Þ

EpðT;T0Þ þm

�
σ · AðTÞ

	
r0;−p;−s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpðT;T0Þ þm

εþm

s �
1 −

e
4pþ

PpðT;T0Þ · AðTÞ
EpðT;T0Þ þm

−
ie
4pþ

σ ·

�
n × AðTÞ þ PpðT;T0Þ × AðTÞ

EpðT;T0Þ þm

�	
r0;−p;−s; ð87Þ

with r0;−p;−s ¼ r−p;−sðT0;T0Þ.

V. NONLINEAR SINGLE COMPTON
SCATTERING

In this section we use the positive-energy electron states
in Eqs. (53)–(56), to compute the emission spectrum of

nonlinear Compton scattering and, for the sake of nota-
tional simplicity, we remove the upper index (0) as there is
no possibility of confusion. For the same reason, the
constant ℏ will be set equal to unity.
We indicate as pμ ¼ ðε; pÞ (p0μ ¼ ðε0; p0Þ), with

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
(ε0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p02

p
), and s (s0) the
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four-momentum and the spin quantum number of the incoming (outgoing) electron, respectively, and as kμ ¼ ðω; kÞ, with
ω ¼ jkj, and l the four-momentum and the polarization index of the emitted photon, respectively. The S-matrix transition
element Sðe−→e−γÞ is given by

Sðe−→e−γÞ ¼ −ie
Z

dT
Z
V0

d3xlcŪ
ðoutÞ
p0;s0 ðxÞ

ê�k;le
iðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffi

2kþV0

p UðinÞ
p;s ðxÞ; ð88Þ

where eμ;�k;l indicates the polarization four-vector of the emitted photon. The differential emission probability with respect to
the photon light-cone three-momentum klc and averaged (summed) over the initial (final) discrete quantum numbers, is
given by

dPðe−→e−γÞ

d3klc
¼ lim

V0→∞

e2

2
V2
0

X
s;s0;l

Z
d3p0

lc

ð2πÞ6
Z

dTdT 0
Z
V0

d3xlcd3x0lcŪ
ðoutÞ
p0;s0 ðxÞ

ê�k;le
iðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffi

2kþV0

p UðinÞ
p;s ðxÞŪðinÞ

p;s ðx0Þ êk;le
−iðkx0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

2kþV0

p UðoutÞ
p0;s0 ðx0Þ

¼ lim
V0→∞

e2

2

X
s;s0;l

Z
d3p0

lc

ð2πÞ6V0

Z
dTdT 0

Z
V0

d3xlcd3x0lc
8p0þkþpþ

ūðoutÞp0;s0 ðxÞê�k;luðinÞp;s ðxÞūðinÞp;s ðx0Þêk;luðoutÞp0;s0 ðx0Þ

e−
R

T

∞
dT̃ð∂P0ðoutÞ

e Þ=2P0ðoutÞ
e;þ −

R
T

−∞
dT̃ð∂PðinÞ

e Þ=2PðinÞ
e;þ−
R

T0
∞

dT̃ð∂P0ðoutÞ
e Þ=2P0ðoutÞ

e;þ −
R

T0
−∞

dT̃ð∂PðinÞ
e Þ=2PðinÞ

e;þ

e
i½−SðoutÞ

p0 ðxÞþðkxÞþSðinÞp ðxÞþSðoutÞ
p0 ðx0Þ−ðkx0Þ−SðinÞp ðx0Þ�

: ð89Þ

Now, we will systematically approximate this expression
by assuming that the electron is ultrarelativistic, it is
initially (almost) counterpropagating with respect to the
laser field, and its energy is the largest dynamical energy in
the problem, i.e., the classical light-cone components of the
electron four-momenta satisfy the hierarchy Πe;þðT;T0Þ ≫
maxðm; jΠe;⊥ðT;T0ÞjÞ ≫ Πe;−ðT;T0Þ (see Appendix B).
By referring to the initial electron energy and to the laser
classical nonlinearity parameter ξ, we can formulate the
above conditions in a more transparent form requiring that
ε ≫ maxðm;mξÞ and we will keep only leading-order

terms in the ratio η ¼ maxðm;mξÞ=ε. Otherwise we do
not make additional assumptions on the electron trajectory.
Analogous conditions and approximations are assumed for
the final electron energy. In Appendix B, we report some
considerations on this regime of interaction, based on the
general structure of the equations of motion and not on
approximating the solution of the equations of motion, i.e.,
the electron trajectory. One can see, for example, that at the
leading order in η one can ignore the real exponential
functions corresponding to the van Vleck determinants in
Eq. (89) as [see Eq. (25)]

ΔeðT;T0Þ ¼
Πe;þðT;T0Þ

pþ
e
−
R

T

T0

dT0
Πe;þð∂ΠeÞ ¼ Πe;þðT;T0Þ

pþ
e
−
R

T

T0

dT0
Πe;þð∂T0Πe;þþ∂ϕΠe;−þ∇⊥·Πe;⊥Þ

¼ e
−
R

T

T0

dT0
Πe;þð∂ϕΠe;−þ∇⊥·Πe;⊥Þ ¼ 1þOðηÞ: ð90Þ

Recalling the concept of formation length [16,123,124], it is convenient to pass to the average and relative spacetime
variables xμþ ¼ ðxμ þ x0μÞ=2 and xμ− ¼ xμ − x0μ, respectively (see also Refs. [125,126]). Indeed, under the above conditions,
one can easily ascertain that the formation lengths in the variables xlc can be neglected at the leading order in η [125,126]
(see also the Appendix B). Thus, one can set x−;lc ¼ 0 everywhere in Eq. (89) except in the actions, where a first-order
expansion on those variables has to be carried out (the reason will be clear below):

dPðe−→e−γÞ

d3klc
≈ lim

V0→∞

e2

2

X
s;s0;l

Z
d3p0

lc

ð2πÞ6V0

Z
dTþdT−

Z
V0

d3xþ;lcd3x−;lc
8p0þkþpþ

ūðoutÞp0;s0 ðxTÞê�k;luðinÞp;s ðxTÞūðinÞp;s ðxT 0 Þêk;luðoutÞp0;s0 ðxT 0 Þ

e
i½−SðoutÞ

p0 ðxT Þ−∇⊥S
ðoutÞ
p0 ðxTÞ·x−;⊥2 −∂ϕSðoutÞp0 ðxTÞϕ−2 þðkxÞþSðinÞp ðxTÞþ∇⊥S

ðinÞ
p ðxTÞ·x−;⊥2 þ∂ϕSðinÞp ðxT Þϕ−2 �

e
i½SðoutÞ

p0 ðxT0 Þ−∇⊥S
ðoutÞ
p0 ðxT0 Þ·

x−;⊥
2

−∂ϕSðoutÞp0 ðxT0 Þϕ−2 −ðkx0Þ−SðinÞp ðxT0 Þþ∇⊥S
ðinÞ
p ðxT0 Þ·

x−;⊥
2

þ∂ϕSðinÞp ðxT0 Þϕ−2 �; ð91Þ
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where xT ¼ ðT; xþ;lcÞ, xT 0 ¼ ðT 0; xþ;lcÞ, and where all the derivatives are assumed to be with respect to the plus variables
(note that we have ignored complications due to the shape of the light-cone volume V0 as we will ultimately perform the
limit V0 → ∞). Now, the integrals over the variables x−;lc can be taken and, by using the relation between the derivatives
of the action and the kinetic momentum of the electron in the field, enforce the corresponding conservation laws in the
limit V0 → ∞:

dPðe−→e−γÞ

d3klc
≈ lim

V0→∞

e2

2

X
s;s0;l

Z
d3p0

lc

ð2πÞ6V0

Z
dTþdT−

Z
V0

d3xþ;lc

8p0þkþpþ

× ūðoutÞp0;s0 ðxTÞê�k;luðinÞp;s ðxTÞūðinÞp;s ðxT 0 Þêk;luðoutÞp0;s0 ðxT 0 Þei
R

T

T0 dT̃½P
0ðoutÞ
e;− ðxT̃Þþk−−P

ðinÞ
e;− ðxT̃Þ�

× ð2πÞ2δð2Þ½P0ðoutÞ
e;⊥ ðxþÞ þ k⊥ − PðinÞ

e;⊥ðxþÞ�ð2πÞδ½P0ðoutÞ
e;þ ðxþÞ þ kþ − PðinÞ

e;þðxþÞ�; ð92Þ

where we have used the identities SðoutÞp0 ðxT 0 Þ − SðoutÞp0 ðxTÞ ¼ −
R
T
T 0 dT̃∂ T̃S

ðoutÞ
p0 ðxT̃Þ and SðinÞp ðxT 0 Þ − SðinÞp ðxTÞ ¼

−
R
T
T 0 dT̃∂T̃S

ðinÞ
p ðxT̃Þ, and the corresponding relation between the derivative of the action with respect to the variable T

with the minus component of the kinetic momentum.
At this point we observe that the mathematical meaning of the van Vleck determinant (see Sec. III A) and the fact that up

to the leading order in η we could have set the real exponential functions corresponding to the van Vleck determinants in
Eq. (89) equal to unity allow us to change the integrals over d3p0

lc into the integrals over the corresponding local momenta of
the outgoing electron in the field [see Eq. (12)] as well as the integrals over d3xlc into the integrals over the corresponding
initial coordinates of the incoming electron [see Eq. (10)]. By exploiting the delta functions to take the integrals over the
corresponding local momenta of the outgoing electron, we obtain

dPðe−→e−γÞ

d3klc
≈ lim

V0→∞

Z
V0

d3x0;lc
V0

α

16π2
1

2p0þkþpþ

X
s;s0;l

Z
dTdT 0ūðoutÞp0;s0 ðxTÞê�k;luðinÞp;s ðxTÞūðinÞp;s ðxT 0 Þêk;luðoutÞp0;s0 ðxT 0 Þ

exp

�
i
Z

T

T 0
dT̃

�
m2 þΠ0ðoutÞ2

e;⊥ ðT̃Þ
2p0þ

þ k2⊥
2kþ

−
m2 þΠðinÞ2

e;⊥ ðT̃Þ
2pþ

�	
; ð93Þ

where α ¼ e2=4π ≈ 1=137 is the fine-structure constant, where Π0ðoutÞ
e;⊥ ðTÞ ¼ ΠðinÞ

e;⊥ðTÞ − k⊥ and p0þ ¼ pþ − kþ, and where
the coordinates xlc in the spinors have to be expressed in terms of the initial coordinates x0;lc following the corresponding
classical electron trajectory (see Appendix B). The fact that three components of the (on-shell) four-momentum of the final
electron in the field can be written in terms of the corresponding initial ones already indicates that in order to compute the
probability in Eq. (93) only the classical trajectory of the incoming electron is necessary, with the probability being obtained
by averaging over the initial electron trajectories identified by the initial position of the electron.
Now, we show that the above expression of the differential probability of nonlinear Compton scattering is identical to the

corresponding Baier’s formula [16]. Actually, in order to obtain Baier’s formula the remaining task is to manipulate the
spinor matrix elements. In fact, concerning the phase, it is easily shown that, by using the conservation laws, it can be cast in
the form

Z
T

T 0
dT̃

�
m2 þΠ0ðoutÞ2

e;⊥ ðT̃Þ
2p0þ

þ k2⊥
2kþ

−
m2 þΠðinÞ2

e;⊥ ðT̃Þ
2pþ

�
¼ 1

p0þ

Z
T

T 0
dT̃ðkΠðinÞ

e ðT̃ÞÞ; ð94Þ

as in Baier’s formula [16]. The manipulation of the spinor matrix elements is also straightforward. With the help of the
definitions in Eqs. (55) and (56) and by assuming that eμk;l ¼ ð0; ek;lÞ, we obtain

ūðoutÞp0;s0 ðxTÞê�k;luðinÞp;s ðxTÞ ≈ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0þ þm
pþ þm

s
ρðoutÞ†p0;s0 ðTÞðσ · e�k;lÞ½σ ·ΠðinÞ

e ðTÞ�ρðinÞp;s ðTÞ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ þm
p0þ þm

s
ρðoutÞ†p0;s0 ðTÞ½σ ·Π0ðoutÞ

e ðTÞ�ðσ · e�k;lÞρðinÞp;s ðTÞ: ð95Þ
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Now, by evaluating Eq. (40) along the characteristics parametrized via the light-cone time T, the two-dimensional spinors

ρðinÞp;s ðTÞ and ρðoutÞp0;s0 ðTÞ, one sees that at the leading order in η, one can ignore the evolution of these spinors and use their
initial expressions, which we indicate as ρ0;p;s and ρ00;p0;s0 , respectively. In this way, after using the well-known properties of
the Pauli matrices, one obtains

ūðoutÞp0;s0 ðxTÞê�k;luðinÞp;s ðxTÞ ≈ −

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0þ þm
pþ þm

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ þm
p0þ þm

s !
ΠðinÞ

e ðTÞ · e�k;lρ0†0;p0;s0ρ0;p;s

− iρ0†
0;p0;s0σρ0;p;s ·

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0þ þm
pþ þm

s
e�k;l ×ΠðinÞ

e ðTÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ þm
p0þ þm

s
e�k;l ×Π0ðoutÞ

e ðTÞ
#
: ð96Þ

By applying this expression for both spinor matrix elements in Eq. (93) and by indicating as s [s0] the initial [final] spin of
the incoming [outgoing] electron, with ρ0;p;sρ

†
0;p;s ¼ ð1þ σ · sÞ=2 [ρ0

0;p0;s0ρ
0†
0;p0;s0 ¼ ð1þ σ · s0Þ=2], we have that the

differential emission probability dPðe−→e−γÞ=d3klc can be written as

dPðe−→e−γÞ

d3klc
¼ 1

2

X
s;s0;l

dPðe−→e−γÞ
s;s0;l

d3klc
; ð97Þ

where

dPðe−→e−γÞ
s;s0;l

d3klc
≈ lim

V0→∞

Z
V0

d3x0;lc
V0

α

16π2
1

p0þkþpþ

Z
dTdT 0 exp

�
i
1

p0þ

Z
T

T 0
dT̃ðkΠðinÞ

e ðT̃ÞÞ
�

× tr

�
1þ σ · s

2
½RCðT 0Þ − iσ · QCðT 0Þ� 1þ σ · s0

2
½R�

CðTÞ þ iσ · Q�
CðTÞ�

	
; ð98Þ

with

RCðTÞ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p0þ þm
pþ þm

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ þm
p0þ þm

s !
ΠðinÞ

e ðTÞ · ek;l; ð99Þ

QCðTÞ ¼ ek;l ×

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0þ þm
pþ þm

s
ΠðinÞ

e ðTÞ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ þm
p0þ þm

s
Π0ðoutÞ

e ðTÞ
#
: ð100Þ

Equations (97) and (98) indeed coincide with Baier’s
formula in Ref. [16] apart from the averaging over the
initial coordinates that is not automatically obtained via
Baier’s method but has to be implemented by hand [16,95].
Finally, we note that the average limV0→∞

R
V0
d3x0;lc=V0

over the initial positions within the light-cone volume V0

can be in practice taken as an average N−1PN
n¼1 over a

large number N trajectories all with the same incoming
electron momentum (and spin quantum number).

VI. NONLINEAR BREIT-WHEELER PAIR
PRODUCTION

Analogous considerations as those in the previous
section can be presented in the case of nonlinear Breit-
Wheeler pair production. In order to keep the notation
similar to that in the previous section, we indicate as pμ

(p0μ), and s (s0) the four-momentum and the spin quantum
number of the outgoing positron (electron), respectively,
and as kμ and l the four-momentum and the polarization
index of the incoming photon, respectively. The S-matrix
transition element Sðγ→e−eþÞ is given by

Sðγ→e−eþÞ ¼−ie
Z

dT
Z
V0

d3xlcŪ
ðoutÞ
p0;s0 ðxÞ

êk;le−iðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþV0

p VðoutÞ
p;s ðxÞ;

ð101Þ

where the positive-energy states in Eqs. (53)–(56) and the
negative-energy states in Eqs. (82)–(85) are employed.
Again, the upper index (0) has been omitted and ℏ has been
set equal to unity for the sake of notational simplicity.
The differential pair-production probability with respect

to the positron light-cone three-momentum plc and aver-
aged (summed) over the initial (final) discrete quantum
numbers, is given by [see also Eqs. (82)–(85) for the
negative-energy states]
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dPðγ→e−eþÞ

d3plc
¼ lim

V0→∞

e2

2
V2
0

X
s;s0;l

Z
d3p0

lc

ð2πÞ6
Z

dTdT 0
Z
V0

d3xlcd3x0lcŪ
ðoutÞ
p0;s0 ðxÞ

êk;le−iðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþV0

p VðoutÞ
p;s ðxÞV̄ðoutÞ

p;s ðx0Þ ê
�
k;le

iðkx0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþV0

p UðoutÞ
p0;s0 ðx0Þ

¼ lim
V0→∞

e2

2

X
s;s0;l

Z
d3p0

lc

ð2πÞ6V0

Z
dTdT 0

Z
V0

d3xlcd3x0lc
8p0þkþpþ

ūðoutÞp0;s0 ðxÞê�k;lvðoutÞp;s ðxÞv̄ðoutÞp;s ðx0Þêk;luðoutÞp0;s0 ðx0Þ

e−
R

T

∞
dT̃ð∂P0ðoutÞ

e Þ=2P0ðoutÞ
e;þ −

R
T

∞
dT̃ð∂PðoutÞ

p Þ=2PðoutÞ
p;þ −
R

T0
∞

dT̃ð∂P0ðoutÞ
e Þ=2P0ðoutÞ

e;þ −
R

T0
∞

dT̃ð∂PðoutÞ
p Þ=2PðoutÞ

p;þ

e
i½−SðoutÞ

p0 ðxÞ−ðkxÞþSðoutÞ−p ðxÞþSðoutÞ
p0 ðx0Þþðkx0Þ−SðoutÞ−p ðx0Þ�

: ð102Þ

By applying exactly the same reasoning as in the previous section, one passes to the average and relative coordinates,
expands the actions with respect to x−;lc up to the first order while setting x−;lc ¼ 0 in all other quantities, enforces energy-
momentum conservation relations, neglects the real exponential functions corresponding to the van Vleck determinants, and
arrives at

dPðγ→e−eþÞ

d3plc
≈ lim

V0→∞

Z
d3x0;lc
V0

α

16π2
1

2p0þkþpþ

X
s;s0;l

Z
dTdT 0ūðoutÞp0;s0 ðxTÞêk;lvðoutÞp;s ðxTÞv̄ðoutÞp;s ðxT 0 Þê�k;luðoutÞp0;s0 ðxT 0 Þ

exp

�
i
Z

T

T 0
dT̃

�
m2 þΠ0ðoutÞ2

e;⊥ ðT̃Þ
2p0þ

−
k2⊥
2kþ

þm2 þΠðoutÞ2
p;⊥ ðT̃Þ

2pþ

�	
; ð103Þ

where Π0ðoutÞ
e;⊥ ðTÞ ¼ k⊥ −ΠðoutÞ

p;⊥ ðTÞ and p0þ ¼ kþ − pþ, and where all coordinates xlc in the spinor have to be expressed in
terms of the final coordinates x0;lc following the corresponding positron classical trajectory in the external field. The
interpretation of x0;lc as the final coordinates of the positron follows from the interpretation of the van Vleck determinants
originally included in the expression of the probability because the three integrals over the asymptotic electron momenta
have to be transformed into integrals over the local electron momenta and therefore the coordinates x0;lc pertain to the
positron.
Now, by noticing that

Z
T

T 0
dT̃

�
m2 þΠ0ðoutÞ2

e;⊥ ðT̃Þ
2p0þ

−
k2⊥
2kþ

þm2 þΠðoutÞ2
p;⊥ ðT̃Þ

2pþ

�
¼ 1

p0þ

Z
T

T 0
dT̃ðkΠðoutÞ

p ðT̃ÞÞ; ð104Þ

and by manipulating the spinor matrix elements analogously as in the previous section, we finally obtain that the differential
pair-production probability dPðγ→e−eþÞ=d3plc can be written as

dPðγ→e−eþÞ

d3plc
¼ 1

2

X
s;s0;l

dPðγ→e−eþÞ
s;s0;l

d3plc
; ð105Þ

where

dPðγ→e−eþÞ
s;s0;l

d3plc
≈ lim

V0→∞

Z
V0

d3x0;lc
V0

α

16π2
1

p0þkþpþ

Z
dTdT 0 exp

�
i
1

p0þ

Z
T

T 0
dT̃ðkΠðoutÞ

p ðT̃ÞÞ
�

× tr

�
1þ σ · s

2
½R�

BWðT 0Þ þ iσ · Q�
BWðT 0Þ� 1þ σ · s0

2
½RBWðTÞ − iσ · QBWðTÞ�

	
; ð106Þ

with s (s0) being the asymptotic spin of the outgoing positron (electron) and with

RBWðTÞ ¼
ek;l · ½ΠðoutÞ

p ðTÞ ×Π0ðoutÞ
e ðTÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ þmÞðp0þ þmÞp ; ð107Þ
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QBWðTÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpþ þmÞðp0þ þmÞ
q

−
Π0ðoutÞ

e ðTÞ ·ΠðoutÞ
p ðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ þmÞðp0þ þmÞp �

ek;l þ
½Π0ðoutÞ

e ðTÞ −ΠðoutÞ
p ðTÞ� · ek;l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ þmÞðp0þ þmÞp ½ΠðoutÞ

p ðTÞ −Π0ðoutÞ
e ðTÞ�:

ð108Þ

It is easily seen that Eqs. (105) and (106) also coincide with
the corresponding Baier’s formula in Ref. [16] again apart
from the averaging, this time, over the final coordinates of
the positron. Also in this case, the average can be taken
over a large number of positron trajectories all with the
same asymptotic final momentum (and spin quantum
number).

VII. CONCLUSIONS AND OUTLOOK

We have computed WKB wave functions for electrons in
the presence of electromagnetic fields of arbitrary space-
time structure having in mind the case of tightly focused
laser beams. The present expressions of the wave functions
generalize those found in Refs. [104,105] because they
only rely on the validity of the WKB approximation. In
fact, we have found the three ℏ-dependent conditions
λ2C=σ

2
0 ≪ χ=ξ, λ0λC=σ20 ≪ ξ, and λC=σ0 ≪ 1 for the validity

of the obtained states in the case of a tightly focused
Gaussian with the above-discussed parameters. The addi-
tional approximation on the electron trajectory inside the
laser field gave the possibility in Refs. [104,105] to obtain
explicit expressions of the wave functions in terms of the
external field, which in turn allowed us analytical compu-
tations. The present wave functions are instead more
suitable for numerical approaches and can be obtained
starting from the classical equations of motion for the
electron trajectory (Lorentz equation) and its spin (equation
for the two-dimensional spinor leading to the BMT
equation for the average spin/magnetic moment).
In addition, we have shown that in the case of a plane-

wave background field the found WKB wave functions
exactly reduce to the Volkov states, which have been
written in a new form, where also the spinor structure
has a manifest quasiclassical form.
Finally, by computing the probabilities of nonlinear

Compton scattering and nonlinear Breit-Wheeler pair
production, we have been able to reproduce Baier’s for-
mulas for generic electron trajectories.
Among others, we plan to use the present wave functions

to further investigate the effects of the transverse formation
length on the photon emission spectrum in order to obtain
more quantitative results than the analytical estimations
presented in Ref. [126] concerning nonlinear Compton
scattering in a flying focus beam [127–131].
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APPENDIX A: DETERMINATION OF THE
ACTION IN A PLANE WAVE VIA THE METHOD

OF CHARACTERISTICS

In this Appendix we report, as an application of the
method of characteristics, the determination of the classical
action of an electron in a plane wave and we use the same
notation as in the main text. Since the plane wave is
assumed to propagate along the negative z direction,
it can be described by the four-vector potential AμðTÞ ¼
ð0;A⊥ðTÞ; 0Þ, which follows from the choice A−ðTÞ ¼ 0
within the Lorenz gauge [ð∂AÞ ¼ dAþðTÞ=dT ¼ 0] and
from the initial condition AμðT0Þ ¼ 0.
In this case it is convenient to use directly the coordinate

T to parametrize the electron trajectory xlc ¼ xlcðT;T0Þ for
T ≥ T0. As in the main text, the on-shell electron four-
momentumΠμ

eðT;T0Þ is set equal to pμ at T ¼ T0, whereas
its initial light-cone coordinates are xlcðT0;T0Þ ¼ x0;lc. By
using the three conservation laws of the plus and the
perpendicular components of the canonical four-momentum
together with the on-shell condition Π2

eðT;T0Þ ¼
2Πe;þðT;T0ÞΠe;−ðT;T0Þ −Π2

e;⊥ðT;T0Þ ¼ m2, one can
directly write the four-momentum Πμ

eðT;T0Þ at an arbitrary
T in a covariant form as

Πμ
eðT;T0Þ ¼ pμ − eAμðTÞ þ e

ðpAðTÞÞ
pþ

ñμ − e2
A2ðTÞ
2pþ

ñμ

ðA1Þ

in terms of the initial four-momentum pμ. Correspondingly,
the T-dependent electron coordinates xlcðT;T0Þ can be
derived from the equation pþdxμ=dT ¼ Πμ

e and the result is

x⊥ðT;T0Þ ¼ x0;⊥ þ 1

pþ

Z
T

T0

dT 0½p⊥ − eA⊥ðT 0Þ�; ðA2Þ

ϕðT;T0Þ¼ϕ0þ
1

pþ

Z
T

T0

dT 0
�
p−þe

ðpAðT 0ÞÞ
pþ

−e2
A2ðT 0Þ
2pþ

�

¼ϕ0þ
Z

T

T0

dT 0m
2þ½p⊥−eA⊥ðT 0Þ�2

2p2þ
: ðA3Þ
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At this point the action ΣpðT;T0Þ along the electron trajectory at hand can be found from the equation [see Eq. (14)]

dΣp

dT
¼ −

m2

pþ
þ e

Πe;⊥ · A⊥
pþ

ðA4Þ

with the initial condition ΣpðT0;T0Þ ¼ −ðpþϕ0 þ p−T0 − p⊥ · x0;⊥Þ. In this way, we obtain the action ΣpðT; x0Þ along the
specific trajectory with initial conditions x0;lc:

ΣpðT; x0Þ ¼ ΣpðT0;T0Þ −
m2

pþ
ðT − T0Þ þ

e
pþ

Z
T

T0

dT 0Πe;⊥ðT 0Þ · A⊥ðT 0Þ

¼ −ðpþϕ0 þ p−T0 − p⊥ · x0;⊥Þ −
m2

pþ
ðT − T0Þ þ

e
pþ

Z
T

T0

dT 0½p⊥ − eA⊥ðT 0Þ� · A⊥ðT 0Þ: ðA5Þ

Finally, in order to obtain the action Spðx;T0Þ we have to express the initial coordinates x0;lc of the electron in terms
of the generic coordinates xlc by inverting the functions xlc ¼ xlcðT;T0; x0;lc; plcÞ via Eqs. (A2) and (A3). The resulting action
[see Eq. (A5)],

Spðx;T0Þ ¼ −
�
pþϕ −

Z
T

T0

dT 0 m
2 þ ½p⊥ − eA⊥ðT 0Þ�2

2pþ
þm2 þ p2⊥

2pþ
T0 − p⊥ · x⊥ þ 1

pþ

Z
T

T0

dT 0p⊥ · ½p⊥ − eA⊥ðT 0Þ�
	

−
m2

pþ
ðT − T0Þ þ

e
pþ

Z
T

T0

dT 0½p⊥ − eA⊥ðT 0Þ� · A⊥ðT 0Þ

¼ −ðpþϕþ p−T − p⊥ · x⊥Þ þ
Z

T

T0

dT 0
�
e
p⊥ · A⊥ðT 0Þ

pþ
− e2

A2⊥ðT 0Þ
2pþ

�

¼ −ðpþϕþ p−T − p⊥ · x⊥Þ −
Z

T

T0

dT 0
�
e
ðpAðT 0ÞÞ

pþ
− e2

A2ðT 0Þ
2pþ

�
; ðA6Þ

coincides with the result in, e.g., Ref. [114]. Finally,
it can be easily verified that the general relations x0;⊥ −
ðp⊥=pþÞT0 ¼ ∇p⊥Spðx; T0Þ and −ϕ0þðp−=pþÞT0¼∂pþSpðx;T0Þ, with p− ¼ ðm2 þ p2⊥Þ=2pþ hold in this case
[see the discussion above Eq. (10)].

APPENDIX B: ULTRARELATIVISTIC
ELECTRON TRAJECTORY IN AN

ARBITRARILY FOCUSED LASER BEAM

In this Appendix we report some general considerations
on the Lorentz equation of an ultrarelativistic electron in
the presence of an arbitrary background electromagnetic
field described by the four-vector potential AμðxÞ intro-
duced in the main text and having in mind the case of a
tightly focused laser beam. In the first part we draw
conclusions solely based on the structure of the equations
and in the last part we report an approximated analytical
expression of the trajectory of the electron, pointing out
the requirements on the field for the approximations to
be valid.
We choose the light-cone coordinates introduced in the

main text and we describe the electron light-cone position
xlcðT;T0Þ and kinetic momentum Πe;lcðT;T0Þ as functions

of the light-cone time T. The remaining light-cone com-
ponent Πe;−ðT;T0Þ of the four-momentum Πμ

eðT;T0Þ is
obtained from the on-shell condition as Πe;−ðT;T0Þ ¼
½m2 þΠ2

e;⊥ðT;T0Þ�=2Πe;þðT;T0Þ. The trajectory is
determined by solving the Lorentz equation, which can
be written as

Πe;þ
dΠμ

e

dT
¼ eFμνΠe;ν: ðB1Þ

The initial conditions are fixed at T ¼ T0 as xlcðT0;T0Þ ¼
x0;lc and Πe;lcðT0;T0Þ ¼ plc [p− ¼ ðm2 þ p2⊥Þ=2pþ],
where the four-vector potential is assumed to vanish for
all xlc.
We assume that the electron is ultrarelativistic and almost

counterpropagating with respect to the laser field, i.e.,
that the hierarchy Πe;þðT;T0Þ≫maxðm; jΠe;⊥ðT;T0ÞjÞ≫
Πe;−ðT;T0Þ among the light-cone components of the
electron four-momentum is verified at all light-cone times
T ≥ T0. For the sake of definiteness, by referring to the
standard situation of an electron in a plane-wave field,
we can estimate jΠe;⊥ðT;T0Þj as jΠe;⊥ðT;T0Þj≲mξ and
Πe;þðT;T0Þ as Πe;þðT;T0Þ ∼ ε, and we arrive to the more
transparent condition η ¼ maxðm;mξÞ=ε ≪ 1.
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By expressing the Lorentz equation (B1) in light-cone
coordinates, one obtains

dΠe;⊥
dT

¼ −
dA⊥
dT

þ 2Πe;⊥
2Πe;þ þ Πe;−

· ∇⊥A⊥

þ ðΠe ×BzÞ⊥
Πe;þ

−
m2 þΠ2

e;⊥
2Π2

e;þ
∇⊥Aþ; ðB2Þ

dΠe;þ
dT

¼ −
dAþ
dT

−
Πe;⊥
Πe;þ

·
∂A⊥
∂ϕ

þm2 þΠ2
e;⊥

2Π2
e;þ

�∂Aþ
∂ϕ −

Πe;⊥
2Πe;þ þ Πe;−

· ∇⊥Aþ

�
;

ðB3Þ

where AμðxÞ ¼ eAμðxÞ, where BzðxÞ ¼ ½ð∇ ×AðxÞÞ · z�z,
and where, unlike in Ref. [104], we preferred to express the
trajectory in terms of the componentsAþðxÞ andA⊥ðxÞ of
the four-vector potential [recall that A−ðxÞ ¼ 0]. In addi-
tion, the equations for the coordinates x⊥ðT;T0Þ and
ϕðT;T0Þ are

dx⊥
dT

¼ Πe;⊥
Πe;þ

; ðB4Þ

dϕ
dT

¼ m2 þΠ2
e;⊥

2Π2
e;þ

: ðB5Þ

Since we implicitly assume that the light-cone components
of the external field are such that jAþðxÞj; jA⊥ðxÞj≲mξ,
the equations (B2) and (B3) for the four-momentum
components indicate that the variation of the plus compo-
nent due to the external field is typically much smaller than
Πe;þðT;T0Þ. On the contrary, the external field can sub-
stantially change the transverse momenta, which is already
known in the analytically solvable plane-wave case.
Finally, the equations (B4) and (B5) for the variations in
T of the coordinates instead show that these are always
suppressed for ultrarelativistic electrons, with the variation
in jx⊥ðT;T0Þj [ϕðT;T0Þ] scaling as 1=Πe;þðT;T0Þ
[1=Π2

e;þðT;T0Þ]. These features are also exploited to
estimate the formation region on these coordinates in
strong-field QED processes like nonlinear Compton scat-
tering and nonlinear Breit-Wheeler pair production.
We would like to conclude by making a step further

and determine an approximated analytical solution of
Eqs. (B2)–(B5). Unlike in Ref. [104], we allow for the
initial transverse momentum of the electron not to vanish:
p⊥ ≠ 0. We only rely on an expansion in powers of 1=pþ
and we compute for each quantity only the leading-order
correction (which is slightly different from what we did in
Ref. [104]). We comment on the conditions allowing for
such an expansion afterwards.
Concerning the independent light-cone components of

the four-momentum, we obtain

Πe;⊥ðT;T0Þ ¼ p⊥ −A⊥ þ 1

pþ

Z
T

T0

dT 0fΠe;⊥ · ∇⊥A⊥ þ ðΠe ×BzÞ⊥g þO

�
1

p2þ

�

¼ p⊥ −A⊥ þ 1

pþ

Z
T

T0

dT 0fðp⊥ −A⊥Þ · ∇⊥A⊥ þ ½ðp⊥ −A⊥Þ ×Bz�⊥g þO

�
1

p2þ

�
; ðB6Þ

Πe;þðT;T0Þ ¼ pþ −Aþ þO

�
1

pþ

�
; ðB7Þ

where all the fields are still computed along the electron
trajectory. Analogously, starting from Eqs. (B4) and (B5),
we can write the approximated expressions of the coor-
dinates as

x⊥ðT;T0Þ ¼ x0;⊥ þ 1

pþ

Z
T

T0

dT 0ðp⊥ −A⊥Þ þO

�
1

p2þ

�
;

ðB8Þ

ϕðT;T0Þ ¼ ϕ0 þO

�
1

p2þ

�
: ðB9Þ

We can use these expressions to expand the fields,
which are still computed along the electron trajectory.

By introducing the quantities Að0Þ
lc ðTÞ ¼ A lcðT; x0;lcÞ and

Bð0Þ
z ðTÞ ¼ BzðT; x0;lcÞ, we can write

x⊥ðT;T0Þ ¼ x0;⊥ þ 1

pþ

Z
T

T0

dT 0½p⊥ −Að0Þ
⊥ ðT 0Þ� þO

�
1

p2þ

�
;

ðB10Þ

ϕðT;T0Þ ¼ ϕ0 þO

�
1

p2þ

�
ðB11Þ

and
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Πe;⊥ðT;T0Þ ¼ p⊥ −Að0Þ
⊥ ðTÞ − 1

pþ

Z
T

T0

dT 0½p⊥ −Að0Þ
⊥ ðT 0Þ� · ∇⊥A

ð0Þ
⊥ ðTÞ þ 1

pþ

Z
T

T0

dT 0f½p⊥ −Að0Þ
⊥ ðT 0Þ� · ∇⊥A

ð0Þ
⊥ ðT 0Þ

þ ½½p⊥ −Að0Þ
⊥ ðT 0Þ� ×Bð0Þ

z ðT 0Þ�⊥g þO
�

1

p2þ

�
;

Πe;þðT;T0Þ ¼ pþ −Að0Þ
þ ðTÞ þO

�
1

pþ

�
: ðB12Þ

These expressions of the independent light-cone coordi-
nates and momenta of the electron are an explicit approxi-
mated solution of the equation of motion in the
ultrarelativistic regime as they are expressed in terms of
the external field.
Some additional remarks are in order, concerning the

validity of the used approximation and it is convenient to
consider the definite example of an electron initially almost
counterpropagating with a tightly focused Gaussian optical
beam, characterized by a central angular frequency ω0

(central wavelength λ0 ¼ 2π=ω0), transverse spot radius σ0
(Rayleigh length lR ¼ πσ20=λ0), pulse duration τ, and
electromagnetic field amplitude F0. By saying that the
electron is initially “almost” counterpropagating with
respect to the laser field, we mean that the initial transverse
momentum is less than or of the order of the transverse
momentum that the laser field can impart to the electron,
i.e., jp⊥j≲mξ. Even though in a Gaussian beam the field
decreases along the longitudinal direction only as the
inverse of the distance from the focal area, for the sake
of definiteness, we estimate as τi ¼ maxð2lR; τÞ the maxi-
mum time that the electron spends inside the strong field

(interaction time). Thus, it is reasonable to require that the
above approximated expressions for the trajectory and the
four-momentum components are valid for 0 ≤ T − T0 ≲ τi.
First, notice that the constant initial transverse momentum
p⊥ induces a drift term in the transverse position which
increases linearly with T. By imposing that the electron
does not exit sideways the laser pulse, we obtain the
condition jp⊥jτi=pþ ≲ σ0. This condition is fulfilled
because it is equivalent to the condition η≲ λ0=σ0, which
is fulfilled because η ≪ 1 and because for a tightly focused
laser beam it is λ0 ∼ σ0. Correspondingly, the terms propor-
tional to 1=pþ in Eq. (B10) are less than or of the order of
ηðσ0=λ0Þσ0 and then, assuming that jx0;⊥j ≲ σ0, we see that
they do not alter the hierarchy determined by the large
momentum scale pþ. The condition η≲ λ0=σ0 also ensures
that the external field can be expanded around x0;⊥. Finally,
we observe that accumulation effects arising in Eq. (B12)
due to the terms quadratic in the fields and integrated over
T 0 might affect the discussed hierarchy. However, under the
above conditions, one can estimate that these terms are in
order of magnitude about ηðσ0=λ0Þ smaller than the
leading-order terms in agreement with the hierarchy.
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