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Quantum vacuum fluctuations give rise to effective nonlinear interactions between electromagnetic
fields. A prominent signature of quantum vacuum nonlinearities driven by macroscopic fields are signal
photons differing in characteristic properties such as frequency, propagation direction and polarization
from the driving fields. We devise a strategy for the efficient tracing of the various vacuum-fluctuation-
mediated interaction processes in order to identify the most prospective signal photon channels. As an
example, we study the collision of up to four optical laser pulses and pay attention to sum and difference
frequency generation. We demonstrate how this information can be used to enhance the signal photon yield
in laser pulse collisions for a given total laser energy.
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I. INTRODUCTION

Although the vacuum is the state characterized by the
absence of real particles, it constitutes a portal to the
particle degrees of freedom of the underlying quantum field
theory due to the omnipresence of quantum fluctuations. In
quantum electrodynamics (QED), which governs the inter-
action of light and matter within the Standard Model of
particle physics, these fluctuations involve virtual electrons,
positrons and photons. Electromagnetic fields provide a
promising means to probe these quantum vacuum fluctua-
tions: as electromagnetic fields couple to charges, vacuum
fluctuations involving charged particles mediate effective
interactions between them [1–3]. The latter supplement
Maxwell’s classical theory of electrodynamics with non-
linear self-couplings of the electromagnetic field. Using
Heaviside-Lorentz units with c ¼ ℏ ¼ 1, the metric con-
vention gμν ¼ diagð−;þ;þ;þÞ, these quantum vacuum
nonlinearities are parametrically suppressed by inverse
powers of m2

e=e ≃ 1.3 × 1018 V
m ≃ 4.4 × 109 T. Here e is

the elementary charge andme the electron mass, setting the
reference scale the applied electromagnetic fields are
compared to. Due to the fact that the strongest macroscopic

fields available in the laboratory fulfill E ≃Oð1014Þ V
m and

B ≃Oð106Þ T, the induced interactions are generically
very small and elusive in experiment.
All-optical probes provide a prominent route toward

verifying QED vacuum nonlinearities in a controlled
laboratory experiment with macroscopic electromagnetic
fields. Various theoretical proposals studied in the literature
assume these electromagnetic fields to be delivered by
high-intensity lasers; see the reviews [4–11] and references
therein. The basic idea is to look for signal photons which
are induced in the effective interaction of several driving
laser fields and differ in key properties, such as polariza-
tion, frequency and propagation direction, from the photons
constituting the latter. However, separating the typically
small signal from the large background in general con-
stitutes a major challenge [12–15]. Aiming at a systematic
enhancement of photonic quantum vacuum signals, a
detailed knowledge about the microscopic origin of the
prospective signal photon channels is indispensable. In this
article, we demonstrate how their microscopic origin can be
efficiently traced. Moreover, using a particular scenario
envisioning the collision of several high-intensity laser
pulses as an example, we show how this information can be
used to enhance the signal photon yield for a given total
laser energy.
Our article is organized as follows: in Sec. II we briefly

recall the vacuum emission picture used in the present
article to study all-optical signatures of quantum vacuum
nonlinearity in macroscopic electromagnetic fields as
provided by high-intensity lasers. Moreover, we introduce
several definitions relevant for the subsequent discussion.
Thereafter, in Sec. III we apply the formalism outlined in
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Sec. II to an exemplary experimental scenario based on the
collision of several high-intensity laser pulses. Following
more general considerations about a prospective collision
geometry involving beams of several colors, we analyze
and outline the frequency and directional characteristics of
the attainable signals and assess the possibility of their
measurement against the background of the driving laser
photons. In Sec. IV we demonstrate in detail how such
studies can be substantially enhanced and simplified. In
particular, interpretations in terms of elastic and inelastic
scattering processes turn out to be useful. These consid-
erations highlight an aspect of the vacuum emission
approach which was not yet fully exploited in previous
all-optical quantum vacuum studies. Namely, we show how
the microscopic origin of the signal can be efficiently traced
and analyzed. Moreover, we sketch how the information
extracted along these lines can be employed to enhance
prospective signals. Finally, we end with conclusions and a
short outlook in Sec. V.

II. FORMALISM

All-optical signatures of quantum vacuum nonlinearity
can be efficiently analyzed in terms of vacuum emission
processes [16,17]: in the interaction region where the
strong driving laser fields overlap, signal photons are
generated. These signal photons are to be detected far
outside the interaction region and constitute the signature
of quantum vacuum nonlinearity in experiment. For
state-of-the-art high-intensity laser fields of optical and
near-infrared frequencies ω ≪ me reaching electric and
magnetic peak field strengths fE;Bg ≪ e

m2
e
, such a study

can be based on the leading contribution to the one-loop
Heisenberg-Euler effective Lagrangian LHE [1–3,18–24].
The latter is a function of the two scalar invariants of the
electromagnetic field,

F ¼ 1

4
FμνFμν ¼

1

2
ðB2 −E2Þ;

G ¼ 1

4
F̃μνFμν ¼ −B ·E; ð1Þ

with the metric convention gμν ¼ diagð−;þ;þ;þÞ, and
can be decomposed as LHE ¼ LMW þ Lint. Here, LMW ¼
−F is the classical Maxwell Lagrangian and

Lint

m4
e
¼ 1

360π2

�
e
m2

e

�
4

ð4F 2 þ 7G2Þ þO
��

eF
m2

e

�
6
�

ð2Þ

encodes the effective nonlinear interactions of the electro-
magnetic field induced by QED vacuum fluctuations. As
detailed in Refs. [10,17,25], the differential number of
signal photons d3NðpÞ of polarization p which have an
energy k ¼ jkj in the differential energy interval dk and
are emitted into the solid angle dΩ around k̂ follows

from the zero-to-single signal photon transition amplitude
SðpÞðkÞ as

d3NðpÞ ¼
k2dkdΩ
ð2πÞ3 jSðpÞðkÞj2: ð3Þ

The signal photon amplitude can be determined from
Γint½âðxÞ� ¼

R
d4xLintjF→Fþf̂ upon splitting the electromag-

netic field as Fμν → Fμν þ f̂μν into a classical background
field Fμν and a operator-valued signal photon field âμ, with
field-strength tensor f̂μν ¼ ∂μâν − ∂νâμ. It is given by

SðpÞðkÞ ¼ hγðpÞðkÞjΓint½âðxÞ�j0i

¼ i
ϵ�μðpÞðk̂Þffiffiffiffiffiffiffi

2k0
p

Z
d4xeikαx

α

×

�
kνFνμ

∂Lint

∂F þ kνF̃νμ
∂Lint

∂G
�����

k0¼k
; ð4Þ

where ϵμðpÞðk̂Þ ¼ ð0; eðpÞÞ is the polarization vector of the

induced signal photon; � denotes complex conjugation. We
span the signal photon polarizations by two transverse
vectors eðpÞ with p ∈ f1; 2g, fulfilling k̂ × eðpÞ ¼ eðpþ1Þ
and eð3Þ ¼ −eð1Þ. The derivatives for F and G entering
Eq. (4) follow straightforwardly from Eq. (2):

(∂Lint∂F
∂Lint∂G

)
¼ 1

45

e2

4π2

�
e
m2

e

�
2
�
4F ðxÞ
7GðxÞ

�
þO

��
eF̄
m2

e

�
4
�
: ð5Þ

Upon plugging these quantities into Eq. (4) and limiting
ourselves to the terms written out explicitly, we obtain

SðpÞðkÞ ¼
1

i
e
4π2

m2
e

45

ffiffiffi
k
2

r �
e
m2

e

�
3
Z

d4xeikðk̂−tÞ

× ð4½eðpÞ ·E − eðpþ1Þ ·B�F
þ 7½eðpÞ · Bþ eðpþ1Þ · E�GÞ: ð6Þ

In this article, we focus on the collision of nþ 1
linearly polarized paraxial laser fields characterized by
the electric and magnetic field vectors Ei ¼ EiðxÞÊi and
Bi ¼ EiðxÞB̂i, with i ∈ f0; 1;…; ng, fulfilling Êi · B̂i ¼ 0.
The associated unit wave vectors are κ̂i ¼ Êi × B̂i. In this
case, the photon transition amplitude (6) can be expressed
as SðpÞðkÞ ¼

P
i;j;l SðpÞ;ijlðkÞ, with

SðpÞ;ijlðkÞ ¼
1

i
e
4π2

m2
e

45

ffiffiffi
k
2

r �
e
m2

e

�
3

I ijlðkÞgðpÞ;ijlðk̂Þ: ð7Þ

Here, the entire dependence on the field profiles EiðxÞ is
encoded in the quantity
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I ijlðkÞ ¼
Z

d4xeikðk̂·x−tÞEiðxÞEjðxÞElðxÞ; ð8Þ

and the dependence on the polarization assignments of the
beams and the collision geometry in

gðpÞ;ijlðk̂Þ¼ 2ðeðpÞ · Êl−eðpþ1Þ · B̂lÞðB̂i · B̂j− Êi · ÊjÞ

−
7

2
ðeðpÞ · B̂lþeðpþ1Þ · ÊlÞðB̂i · Êjþ B̂j · ÊiÞ:

ð9Þ

In the following, we parameterize the emission directions
of the signal photons as k̂ ¼ ðcosφ sin ϑ; sinφ sin ϑ; cos ϑÞ,
such that d2Ω ¼ dφd cosϑ. We choose the vectors spanning
the polarization basis of the signal photons as eð1ÞðβÞ ¼
k̂jϑ→ϑþπ

2
cos β þ k̂jϑ¼π

2
;φ→φþπ

2
sin β and eð2ÞðβÞ ¼ eð1Þðβþ

π=2Þ, where β is an a priori arbitrary angle; its choice fixes
a specific polarization basis. Moreover, we introduce the
number density ρðpÞðφ; ϑjkmin; kmaxÞ of signal photons of
energies k constrained by kmin ≤ k ≤ kmax. The latter is
obtained from Eq. (3) upon integration over energy as

ρðpÞðφ; ϑjkmin; kmaxÞ ¼
1

ð2πÞ3
Z

kmax

kmin

dkk2jSðpÞðkÞj2: ð10Þ

In the present case, themodulus squared of the signal photon
amplitude entering Eq. (10) can be expressed as

jSðpÞðkÞj2 ¼
X
l;l0

RefSðpÞ;lðkÞS�ðpÞ;l0 ðkÞg; ð11Þ

where the sum runs over all sets l ¼ fi; j; lg and
l0 ¼ fi0; j0; l0g. From Eq. (10) the number of signal photons
of polarization p and energies kmin ≤ k ≤ kmax emitted into
the solid angle A follows as

NðpÞðAjkmin; kmaxÞ ¼
Z
A
dΩρðpÞðφ; ϑjkmin; kmaxÞ: ð12Þ

Also note that the signal photon density and number
accessible in a polarization-insensitive measurement follow
upon summation over the two transverse polarizations
p ∈ f1; 2g. They are given by ρðφ; ϑjkmin; kmaxÞ ¼P

2
p¼1 ρðpÞðφ; ϑjkmin; kmaxÞ and NðAjkmin; kmaxÞ ¼P
2
p¼1NðpÞðAjkmin; kmaxÞ, respectively. Obviously, the total

number of emitted signal photons is Ntot ¼ Nð4πj0;∞Þ.

III. EXAMPLE SCENARIO

Let us apply the approach devised in Sec. II to a specific,
experimentally viable scenario involving the collision of
several high-intensity laser pulses. Our main focus is on the
analysis and reconstruction of properties of the microscopic
scattering processes giving rise to the dominant signal

photon emission channels. Special attention is paid to
signal photon contributions which allow for a clear sig-
nal-to-background separation in experiment. Prominent
criteria facilitating such a separation are, e.g., a distinct
emission direction outside the forward cones of the driving
beams, or a frequency outside their spectra allowing for an
unobstructed detection of the signal.

A. Collision geometry and beam model

For definiteness, we use a collision geometry involving
nþ 1 driving laser pulses [26]: beam 0 collides with the
apex of the regular pyramid formed by the beam axes of n
additional laser beams; see Fig. 1 for an illustration. Here,
we focus on a scenario involving four driving laser fields,
i.e., n ¼ 3. These are envisioned to be generated by a
single high-intensity laser system of the ten petawatt class,
such as available at the Extreme Light Infrastructure
Nuclear Physics (ELI-NP) project [27,28], by employing
beam-splitting and frequency-doubling techniques. More
specifically, we assume the initial laser system to deliver
pulses of energy W ¼ 250 J and duration τ ¼ 25 fs at a
wavelength of λ ¼ 800 nm. While each of the four laser
fields generated in this way features exactly this pulse
duration, we assume them to have different frequencies:
beams 0 and 1 are fundamental frequency beams with
ω0 ¼ 2π

λ ≃ 1.55 eV, beam 2 is frequency doubled, and
beam 3 is frequency quadrupled.

FIG. 1. Illustration of the scenario considered in the main text:
three high-intensity pulses of unit wave vectors κ̂i, with
i ∈ f1; 2; 3g, are superposed to create a strongly peaked field
configuration in their overlap region; each pair of these beams
encloses the same angle θ. An additional high-intensity laser
pulse with κ̂0 collides with the apex of the pyramid formed by
beams 1–3 under an angle of α. The wave vector of the signal
photons is denoted by k. It encodes the signal frequency in its
length (radius of the red sphere), and the emission direction in its
orientation parameterized by the angles ϑ and φ. The possible
polarizations of the signal are parameterized by the angle β
spanning a plane tangential to the sphere.
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Moreover, we assume that each pair of the beams 1–3
encloses the same angle θ, such that

κ̂i · κ̂j ¼ ð1 − cos θÞδij þ cos θ ð13Þ

for i; j ∈ f1; 2; 3g with Kronecker delta δij. Accordingly
we choose these unit wave vectors as

κ̂i ¼

0
B@

−a cosð2π i−1
3
Þ

−a sinð2π i−1
3
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p

1
CA; ð14Þ

with a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − cos θÞ=3p

. On the other hand, the wave
vector of the beam 0 colliding with the apex of the pyramid
formed by beams 1–3 is κ̂0 ¼ −êz. The angle between this
and any other beam is α ¼ π − arctanða=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ. In the

remainder of this work, we set θ ¼ π
2
¼ 90°, such

that α ¼ π − arctan
ffiffiffi
2

p
≈ 125.26°.

We assume the driving laser fields to be well described as
paraxial Gaussian beams. In order to facilitate a concise
analytical analysis of the expected signals, we resort to an
infinite Rayleigh range approximation. This approximation
neglects the widening of the laser pulses as a function of the
longitudinal coordinate x · κ̂i measured from the beam
focus at x ¼ 0, where the temporal pulse envelope reaches
its maximum at t ¼ 0. This is a reasonable approximation
of the driving laser fields in the vicinity of their beam
foci. We thus expect our predictions for the attainable
signal photon numbers to be quantitatively accurate in the
specific collision scenario considered here, where the
collision angles between each pair of laser beams θi;j ¼
∡ðκ̂i; κ̂jÞ fulfill 0° ≤ ∡ðκ̂i; κ̂jÞ ≤ 130° [25]. Note that, in
principle, this analysis could also be performed directly
with paraxial Gaussian beams [25] or even generic laser
fields fulfilling Maxwell’s equations in vacuo exactly [29]
even though this is technically or numerically more
demanding. Since all driving laser pulses are assumed
to have the same pulse duration τ, the field profile of
the ith laser beam can be approximated in the interaction
region as [25]

EiðxÞ ¼ Eie
−ðx·κ̂i−tτ=2 Þ2e

−x2−ðx·κ̂iÞ2
w2
i cosðωiðx · κ̂i − tÞÞ; ð15Þ

where Ei, wi and ωi are the peak field amplitude, beam
waist and oscillation frequency, respectively. Throughout
this work, we consider only optimal laser pulse collisions;
i.e., all laser beams are focused on the same spot and reach
their peak field values at the same time.
Besides, we fix the linear polarizations of the laser fields,

by choosing Ê0 ¼ ey and ey · Êi ¼ 0 for i ∈ f1; 2; 3g. This
choice is motivated by the observation that the total number
of signal photons attainable in a polarization insensitive
measurement is maximized for counterpropagating beams

with a relative polarization difference of π=2 [30]. We have
explicitly checked that this is also the case for our setup,
where beam 0 can be considered as effectively counter-
propagating the combined field of beams 1–3. Together
with the transversality condition κ̂i · Êi ¼ 0, the above
choice determines the polarization vectors of all laser fields
up to a sign. Ensuring a positive sign for the x component,
the polarization vectors of beams i ∈ f1; 2; 3g read

Êi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2 sin2ð2π i−1
3
Þ

q
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p

0

a cosð2π i−1
3
Þ

1
CA: ð16Þ

The unit vectors for the associated magnetic fields are
B̂i ¼ κ̂i × Êi.

B. Beam splitting and losses

The peak field amplitude of a laser beam of pulse
energy W and duration τ focused to a waist spot size of
w0 is [10,31]

E⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

ffiffiffi
2

π

r
W

πw2
0τ

s
: ð17Þ

For a diffraction-limited Gaussian beam of wavelength λ,
we have w0 ≃ λ. Throughout this work, we assume all the
individual laser fields to be focused to the same waist spot
size wi ¼ w0 ¼ λ and measure their peak field amplitudes
in units of the peak field E⋆ which could be achieved by
focusing the initial laser pulse of energy W ¼ 250 J to its
diffraction limit. In turn, we have Ei ¼ AiE⋆, where Ai
denote dimensionless amplitudes, also accounting for
potential losses. Analogously, we measure the oscillation
frequencies of the beams in units of ω0, such that
ωi ¼ νiω0, with dimensionless amplitude νi. In the present
case, here we have ν0 ¼ ν1 ¼ 1, ν2 ¼ 2 and ν3 ¼ 4.
Each frequency-doubling process comes with a loss: we

conservatively estimate the energy loss for the conversion
process preserving the pulse duration as 50% [32].
Correspondingly, the energies Wi ¼ A2

i W of all beams
do not add up to W but to Weff ¼ P

3
i¼0Wi < W. Only, for

vanishing losses we would have Weff ¼ W. Here, we
assume the beam splitting and higher harmonic generation
to proceed in several steps. First, the original laser pulse
of energy W is split into two parts: the part with energy
W0 ¼ ð1 − q0ÞW constitutes beam 0, and the remainder
of energy q0W is to be subdivided further; the factor 0 <
q0 < 1 controls the partitioning ratio. Second, the remain-
ing energy q0W is again partitioned into a fundamental
frequency part of energy W1 ¼ q0ð1 − q1ÞW constituting
beam 1 and another one of energy q0q1W which undergoes
frequency doubling; as above 0 < q1 < 1. Accounting for
the loss of 50% associated with the frequency-doubling
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process, the latter contribution results in a frequency-
doubled pulse of energy 1

2
q0q1W. In the last step, the

procedure is repeated for the frequency-doubled pulse
with a partitioning factor of 0 < q2 < 1. This results in an
energy of W2 ¼ 1

2
q0q1ð1 − q2ÞW for the frequency-

doubled beam 2 and an energy of W3 ¼ 1
4
q0q1q2W for

the frequency-quadrupled beam 3. Hence, in the present
scenario we have A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q0

p
, A1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0ð1 − q1Þ

p
,

A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0q1ð1 − q2Þ=2

p
and A3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q0q1q2
p

=2. Figure 2
illustrates this procedure for a specific choice of the
partition factors; see Fig. 3 below for the influence of
different choices of the partition factors on the signal
photon numbers.
So far, we did not specify a particular choice of the

dimensionless field amplitudes Ai of the driving laser
beams. As detailed above, in an experiment these ampli-
tudes can be adjusted by choosing the partition factors q0,
q1 and q2 accordingly. For definiteness, we choose q0 ¼ 5

6

in the following. In this way, a substantial fraction of the
total laser energy is put into the beam that collides with the
apex of the pyramid formed by the other beams.

We limit our discussion to three example distributions of
the pulse energies of beams 1–3 forming the pyramid:
either the pulse energy of each higher-frequency compo-
nent is doubled (such that W1∶W2∶W3 ¼ 1∶2∶4), bisected
(W1∶W2∶W3 ¼ 4∶2∶1), or quartered (W1∶W2∶W3 ¼
16∶4∶1). The explicit values of the required partition
factors q1 and q2 are listed in Table I, together with the
respective effective energy Weff put into the interaction
region by all four driving laser pulses. Correspondingly, the
associated energy loss is given by Wloss ¼ W −Weff.
Equation (12) allows one to determine the number

of signal photons Nð4πjkmin; kmaxÞ for each distribution.
In the present scenario, we find substantial signal
photon contributions in the three distinct frequency
regimes 1.04 eV≲ k≲ 2.06 eV, 2.59 eV≲ k≲ 3.61 eV
and 5.69 eV≲ k≲ 6.71 eV, centered at the frequencies
of the driving laser beams ω0, 2ω0 and 4ω0, respectively.
The width of each of these regimes is 1.02 eVand has been
chosen such as to cover the full signal; cf. also the

FIG. 2. Schematic of the beam splitting and higher harmonic
generation processes invoked to create four beams i ∈ f0; 1; 2; 3g
of pulse energy Wi from a single high-intensity laser system
delivering pulses of energyW¼250 J and frequencyω0¼1.55 eV.
The partitioning proceeds in three stages, with the associated
partition factors given by q0, q1 and q2. Beams 2 and 3 are
frequency doubled and quadrupled, respectively. Each frequency
doubling comes with a loss of 50%. We depict the scenario
with q0 ¼ 5=6. The values of q1 and q2 are chosen such that
W1 ¼ 2W2 ¼ 4W3.

FIG. 3. Signal photon spectra associated with the three different
pulse-energy distributions of the driving laser fields (a)–(c)
(top to bottom) listed in Table I. For each distribution we provide
the values of Nð4πjkmin; kmaxÞ for the frequency regimes
1.04 eV ≲ k≲ 2.06 eV (red), 2.59 eV≲ k≲ 3.61 eV (green)
and 5.69 eV≲ k ≲ 6.71 eV (blue). The respective signal photon
number is written inside the particular bar.
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discussion in Sec. III C below. See Fig. 2 for the signal
photon numbers associated with these frequency regimes
for the different pulse-energy distributions considered in
Table I: in the first approach we double the pulse energy put
into each higher harmonic. This leads to a relatively high
number of signal photons with k ≃ 4ω0 as compared to the
other regimes. Interestingly, even when bisecting the pulse
energy put into each higher harmonic, the number of signal
photons with k ≃ 4ω0 slightly surpasses that for k ≃ 2ω0.
However, most signal photons are induced at k ≃ ω0. When
quartering the energy put into each higher harmonic most
signal photons are again found at k ≃ ω0, but this time the
amount of signal photons with k ≃ 4ω0 is smaller than that
for k ≃ 2ω0. As is obvious from Table I, higher pulse
energies of the frequency-doubled and -quartered beams
imply larger losses.
Apart from these signals, it is noteworthy that we find a

clear signal in the frequency regime 7.24 eV≲ k≲
8.26 eV peaked at a frequency of 5ω0. However, due to
the substantially smaller amount of signal photons asso-
ciated with this frequency regime, we do not display this
signal in Fig. 3. For the pulse-energy distribution (a) we
count 1.07, for (b) 2.81, and for (c) 1.64 signal photons per
shot in this frequency regime. On the other hand, the fact
that this signal lies outside the frequencies of the driving
laser fields implies the possibility of an essentially back-
ground-free detection.
The fact that the clearly discernible signal at 5ω0

becomes maximum for the pulse-energy distribution
(b) with q1 ¼ 2=3 and q2 ¼ 1=2 motivates us to focus
on this choice in the remainder of this article. For
completeness, we note that the relative amplitudes asso-
ciated with this choice are A0 ¼ 1=

ffiffiffi
6

p
, A1 ¼

ffiffiffiffiffiffiffiffi
5=2

p
=3,

A2 ¼
ffiffiffi
5

p
=6 and A3 ¼

ffiffiffiffiffiffiffiffi
5=2

p
=6.

C. Frequency and directional characteristics
of the signal

First, we aim at resolving the frequency spectrum
of the full signal in detail. The full signal is obtained
upon integration of Eq. (12) over all emission directions,
such that A ¼ 4π, and summing over both transverse

polarizations p. To this end, we sample the signal photon
numberNð4πjk;kþΔkÞwith a bin range ofΔk¼ 0.02 eV.
The results of this analysis are presented as histograms in
Fig. 4. The signal spectrum exhibits four pronounced
maxima; the positions of three maxima match the oscil-
lation frequencies of the driving laser fields. The additional
maximum is centered around k ≃ 5ω0. Adding the con-
tributions of all bins we obtain a total number of Ntot ≃
5600 signal photons.
In the present scenario, the positions of all the peaks can

be understood in terms of elastic [12,33–40] and manifestly
inelastic [41–54] sum or difference frequency generation
processes involving only the oscillation frequencies of the
driving laser fields; cf. in particular also [25,55]. The reason
is that the pulse duration τ is much larger than the cycle
durations 1=ðνiω0Þ. It is straightforward to verify that
signal photon emission in the formal limit of τ → ∞ is
indeed restricted to sharp delta peaks at the frequencies of
the driving beams and combinations thereof; in this limit
the Fourier integral (8) over time results in Dirac delta
functions [25]. The finite width of the peaks in frequency
space is a consequence of the finiteness of τ and implies
that the frequency selection rules associated with the limit
of τ → ∞ are fulfilled only approximately.
While this is obvious for the quasielastic signal photon

channels at ωi, the signal with frequency k ≃ 5ω0 outside
the frequency spectra of the driving beams highlighted in
the inlay of Fig. 4 can be attributed to a sum and difference
frequency generation process.
Besides the number of signal photons per bin, Fig. 4

shows the differential number of signal photons dN=dk
extracted from these histograms: upon dividing the signal
photon numbers in a given bin by the bin range Δk, we
assume their distribution in a given frequency range to be
well described by a Gaussian function. In all cases, the
fitted peak values of the Gaussians are close the frequencies
νiω0. We find the peak values at ð1.556� 4.8 × 10−5Þ,
ð3.11�2.8×10−5Þ, ð6.20�4.9×10−6Þ, and ð7.74� 4.0 ×
10−5Þ eV. The Gaussian standard deviations σG are
ð84.47�0.19Þ×10−3 eV for theω0 signal, ð87.01�0.11Þ×
10−3 eV for 2ω0, ð86.97� 0.02Þ × 10−3 eV for 4ω0, and
ð92.62� 0.18Þ × 10−3 eV for 5ω0. In the interval ωi �
3σG 99% of the Gaussian distributed signal is located.
The values for σG extracted here are about an order
of magnitude smaller than the width of 1.02 eV
employed to cover the full signal in the previous section.
Correspondingly, the above choice should indeed reliably
cover the full signal, while being still small enough to
prevent an overlap of the signals associated with other
frequencies. Besides, the bin size Δk should be sufficiently
small to resolve potential deviations from Gaussian dis-
tributions in the spectral domain.
The directional distribution of the signal photons

of energies kmin ≤ k ≤ kmax attainable in a polarization-
insensitive measurement is encoded in the number density

TABLE I. Examples of different pulse-energy distributions for
beams 1–3. For each choice, we provide the values of the partition
factors q1 and q2 required to ensure a given distribution for fixed
q0 ¼ 5=6. Weff is the effective energy put into the interaction
region by all four beams. The initially available total laser energy
is W ¼ 250 J, such that the associated energy loss is
Wloss ¼ W −Weff .

W1∶W2∶W3 q1 q2 Weff ½J� Wloss½J�
(a) 1∶2∶4 20=21 4=5 111.11 138.89
(b) 4∶2∶1 2=3 1=2 163.19 86.81
(c) 16∶4∶1 3=7 1=3 197.92 52.08
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ρðφ; ϑjkmin; kmaxÞ. Figure 5 shows the Mollweide projec-
tion of the signal photon density as a function of the
azimuthal and polar angles φ and ϑ, accounting for four
different frequency regimes. This projection maps the
surface of a sphere onto a flat two-dimensional chart
conserving areas. Obviously, it is not conformal.

The four different frequency regimes are highlighted in
different colors. We adopt linear color scales which are
normalized to the maximum value in a given frequency
regime. The brightest areas of a given color mark the
dominant emission directions of the signal photons. As to
be expected, the signal photons of frequencies close to ω0,

FIG. 4. Histogram of Nð4πjk; kþ ΔkÞ in the frequency regime 1 eV≲ k≲ 8.3 eV; the bin range is Δk ¼ 0.02 eV and the signal
photon number per bin is given on the right axis. The left axis gives the differential number of signal photons dN determined by
performing Gaussian fits to the histogram data (solid lines). The integrals of these curves reproduce the signal photon numbers counted
in the histograms reasonably well. In the spectral regime highlighted here, the signal photons are predominantly induced at frequencies
k ≃ nω0 with n ∈ f1; 2; 4g (dashed vertical lines) matching those of the driving laser beams. In addition, we encounter a signal peaked
around 5ω0.

FIG. 5. Mollweide plot (longitude φ, latitude ϑ) of the signal photon density ρðφ; ϑjkmin; kmaxÞ highlighting four distinct frequency
regimes kmin ≤ k ≤ kmax in different colors, namely 1.04 eV ≤ k ≤ 2.06 eV (red), 2.59 eV ≤ k ≤ 3.61 eV (green), 5.69 eV ≤ k ≤
6.71 eV (blue), and 7.24 eV ≤ k ≤ 8.26 eV (violet). All four color scales are linear and are normalized to the maximum value in the
respective frequency interval.
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3ω0 and 4ω0, respectively, are predominantly emitted in the
forward cones of the driving laser pulses featuring the same
frequencies: apart from a frequency-ω0 (red) peak at
ϑ ¼ 180°, we observe three distinct maxima at ϑ ≈ 54.74°
which are separated by≈120°. These agree with the forward
directions of the additional—from left to right—4ω0 (blue),
ω0 (red) and 2ω0 (green) beams. Additionally, we encounter
a 5ω0 (violet) signal at φ ≈ 23.26° and ϑ ≈ 50.85°.
Upon plugging these signal densities into Eq. (12) and

integrating over the full solid angle, we obtain the signal
photon numbers in the respective frequency regimes. This
yields Nð4πj1.04 eV; 2.06 eVÞ ≃ 3018.9 signal photons in
the regime around ω0, Nð4πj2.59 eV; 3.61 eVÞ ≃ 1240.8
around 2ω0,Nð4πj5.69 eV; 6.71 eVÞ ≃ 1337.6 around 4ω0

and Nð4πj7.24 eV; 8.26 eVÞ ≃ 2.81 in the vicinity of 5ω0;
cf. also Fig. 3.
We conclude this section by emphasizing that we have

mainly focused on the total numbers of signal photons
induced in specific frequency intervals so far and did not
address the question of their measurability. This is particu-
larly unclear for the signals at ω0, 2ω0 and 4ω0 which have
been shown to be predominantly emitted into the forward
directions of the associated driving beams. In the next
section we will address this question and assess carefully
which signal photon contributions could be isolated or
distinguished from the large background of the driving laser
photons in experiment.

D. Discernible signal photons

To assess if a specific signal can be discerned from the
background of the driving laser photons or not, we first
have a look at the angular distribution of the latter. Here we
have modeled the driving lasers as Gaussian beams. The
far-field angular decay of a Gaussian beam made up of N i
photons can be expressed as [10]

d2N iðφ; ϑÞ ¼ d2Ω
N i

2π
ðωiwiÞ2e−ðωiwiÞ2Θ2

i ðφ;ϑÞ=2; ð18Þ

where the angle Θiðφ; ϑÞ parameterizes the angular
decay of the laser photons measured from the forward
beam axis κ̂i. As we consider Gaussian beams which
feature a rotational symmetry around the beam axis, a
single angle parameter is sufficient. In the present scenario,
we have Θ0 ¼ ϑ − π and Θi ¼ − arccosfcosϑ½cos αþ
cosðφ − 2π 4−i

3
Þ sin α�g for beams i ∈ f1; 2; 3g. Moreover,

recall that we have N i ¼ WA2
i =ðνiω0Þ and ωiwi ¼ 2πνi;

cf. Sec. III B. In the following, we use the notation
d2N ðφ; ϑÞ ¼ P

3
i¼0 d

2N iðφ; ϑÞ for the differential number
of photons N ¼ P

3
i¼1N i constituting all laser beams.

Since we have assumed that all laser beams are focused
to the same waist wi ¼ λ, the far-field angular divergences
of the beams scale as ∼1=νi. This implies that the beam
with the largest value of νi features the smallest far-field
divergence. At the same time, the effective extent of the
interaction region determining the far-field divergences of
the quasielastically scattered signal photons should be
similar for all individual beams. The steeper decay of
the laser photons constituting the 4ω0 background suggests
that the signal photons arising from the 4ω0 beam should be
more easily detectable than the analogous contributions for
the other beams.
To illustrate the major challenge of signal-to-background

separation we emphasize the huge background provided by
the photons constituting the driving laser pulses. Their total
number per shot is as large as N ≃ 5.3 × 1020 to be
contrasted with the number of Oð103Þ signal photons
achievable in this setup; cf. Sec. III B above.
Figure 6 depicts the directional characteristics of both the

signal and driving laser photons on a logarithmic scale.
While the background of the laser photons indeed dominates

FIG. 6. Directional characteristics (longitude φ, latitude ϑ) of the differential number of driving laser photons d2N ðφ; ϑÞ constituting
the background and the associated signal photon density ρðφ; ϑj0;∞Þ. Angular regions where the signal dominates over the background
are colored in green; regions where the background dominates in red. In each color regime we adopt a logarithmic color scale normalized
to the maximum value.
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in most directions, the signal surpasses the background in
certain angular regions. This already hints at the principle
possibility of measuring the signal over the background in
certain directions—though it is unclear at this point whether
there are enough discernible signal photons yielding a
sufficient statistics in a concrete experiment.
The answer of this question requires a more detailed

study. For this, we proceed to a frequency-resolved analysis.
More specifically, we search for discernible signal photons
in the four distinct frequency regimes around ω0, 2ω0, 4ω0

and 5ω0 introduced above.

1. ω0 regime

Isolating the ω0 signal from the background seems
particularly challenging: the signal photon density
ρðφ; ϑjkmin; kmaxÞ features just two peaks in the frequency
regime delimited by kmin ¼ 1.02 eV and kmax ¼ 1.05 eV,
both of which are coinciding with the forward directions of
the two driving laser beams of frequency ω0. At the same
time, exactly these beams come with the largest far-field
divergences. Besides, particularly due to the large energy put
into beam 0, the number of background photons is maximal
in this frequency regime. Though it might be an option to
discern at least parts of the signal from the background by
advanced detection techniques, based on analyses of the
decay behavior or polarization details of both the back-
ground and the signal photons, here we proceed to the other
frequency regimes suggesting more easily accessible sig-
nals; cf. below.

2. 2ω0 regime

Next, we focus on the frequency regime centered
around 2ω0 ≃ 3.1 eV and constrained by kmin ¼ 2.59 eV
and kmax ¼ 3.61 eV. As is clearly visible in Fig. 7, using

the numerical Newton method we identify a local maxi-
mum of the signal photon density ρðφ; ϑjkmin; kmaxÞ at
ðφ;ϑÞ ≃ ð317.65°; 101.77°Þ. By comparison with Fig. 5,
this particular maximum is clearly separated from the
forward beam axis of the driving 2ω0 beam constituting
the main background in this specific frequency regime. For
an estimate of the quantitative number of signal photons,
we limit ourselves to the angular region Að2ω0Þ ¼
fðφ; ϑÞjφ ∈ ½314°; 324°�; ϑ ∈ ½96°; 106°�g marked by the
blue frame in Fig. 7. An integration over this angular
region results in NðAð2ω0Þj2.59 eV; 3.61 eVÞ ≃ 62 signal
photons per shot. For completeness, we note that this value
essentially constitutes the full number NðAð2ω0Þj0;∞Þ of
signal photons emitted into this angular regime.
Upon numerically integrating Eq. (18) for the 2ω0 beam

i ¼ 2 over the same angular interval, we find N ðAð2ω0ÞÞ ≃
0.01 background photons per shot. Of course, the other
driving beams do not induce a background in this frequency
regime. This analysis implies that essentially all ≃62
photons with the considered directional characteristics
are signal photons, which can thus be clearly distinguished
from the background.

3. 4ω0 regime

Further, we turn to 4ω0 frequency regime constrained by
kmin ¼ 5.69 eV and kmax ¼ 6.71 eV. Also in this regime
we search for a local maximum of the signal photon density
besides the dominant one in the forward cone of driving
4ω0 laser beam i ¼ 3. A numerical analysis of the signal
photon density ρðφ; ϑjkmin; kmaxÞ utilizing the Newton
method allows us to identify a local maximum with the
desired properties at ðφ; ϑÞ ≃ ð49.43°; 79.44°Þ. See Fig. 8
for a graphical illustration of the signal photon density in
the relevant angular regime.

FIG. 7. Mollweide plot (longitude φ, latitude ϑ) of the signal photon density ρðφ;ϑjkmin; kmaxÞ. We highlight the relevant angular
domain (marked by a red frame) for signal photon energies in the regime constrained by 2.59 eV ≤ k ≤ 3.61 eV; the linear green color
scale is normalized to its maximum in its frame. The blue frame marks the angular region for which the number of discernible signal
photons quoted in the main text is determined.
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An integration of the signal density over the area
Að4ω0Þ ¼ fðφ;ϑÞjφ ∈ ½40°;56°�;ϑ ∈ ½76°;86°�g highlighted
in Fig. 8 results inNðAð4ω0ÞÞ ≈ 129 signal photons per shot.
We have explicitly checked that this is the full number of
signal photons emitted into this angular regime; there
are no signal photons of other frequencies. For comparison,
in the same angular regime we find N ðAð4ω0ÞÞ ≃ 0.006
driving laser photons of frequency 4ω0 per shot constituting
the background.

4. 5ω0 regime

As noted in Sec. III C, apart from the signals just
discussed, we also identify a signal outside the frequencies
of the driving laser beams in the energy regime of

7.24 eV ≤ k ≤ 8.26 eV, featuring a peak at about 5ω0 ≃
7.75 eV. A numerical analysis of the signal photon density
ρðφ; ϑjkmin; kmaxÞ in this frequency regime unveils the
existence of two pronounced maxima signalizing two differ-
ent main signal photon emission directions at (A): ðφ; ϑÞ≃
ð23.26°; 50.85°Þ and (B): ðφ; ϑÞ ≃ ð31.32°; 31.01°Þ,
respectively.
In Fig. 9 we illustrate the signal photon density in the

relevant angular areas. The two maxima are located in
the two angular areas marked by blue frames. Maximum
(A) is located in the upper blue frame delimiting the
area Að5ω0;AÞ ¼ fðφ;ϑÞjφ ∈ ½14°;35°�;ϑ ∈ ½42°;60°�g, and
maximum (B) in the lower frame the area Að5ω0;BÞ ¼
fðφ; ϑÞjφ ∈ ½21°; 42°�; ϑ ∈ ½25°; 38°�g.

FIG. 8. Mollweide plot (longitude φ, latitude ϑ) of the signal photon density ρðφ;ϑjkmin; kmaxÞ. We highlight the relevant angular
domain (marked by a blue frame) for signal photon energies in the regime constrained by 5.69 eV ≤ k ≤ 6.71 eV; the linear blue color
scale is normalized to its maximum in its frame. The blue frame marks the angular region for which the number of discernible signal
photons quoted in the main text is determined.

FIG. 9. Mollweide plot (longitude φ, latitude ϑ) of the signal photon density ρðφ;ϑjkmin; kmaxÞ. We highlight the relevant angular
domain (marked by a red frame) for signal photon energies in the regime constrained by 7.24 eV ≤ k ≤ 8.26 eV; the linear violet color
scale is normalized to its maximum in its frame. The two blue frames mark the angular regions for which the number of discernible
signal photons quoted in the main text is determined.
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Upon integration of the signal photon density over
the two angular regimes Að5ω0;AÞ and Að5ω0;BÞ, we obtain
NðAð5ω0;AÞÞ ≈ 2.3 and NðAð5ω0;BÞÞ≈ 0.5 signal photons per
shot. These values essentially agree with the frequency-
unresolved numbers of signal photons emitted into the same
angular regions, signaling the presence of 5ω0 photons only.
We emphasize once again that there is no genuine laser
photon background in the 5ω0 frequency regime since the
driving laser fields only contain frequencies in the vicinity of
ω0, 2ω0 and 4ω0. By contrast, we do not find any significant
signal at higher harmonic frequencies.
We summarize the quantitative findings from the pre-

ceding sections in Table II. This table features the pro-
spective signal photon numbers and numbers of driving
laser photons constituting the background for various
frequencies and emission directions.

IV. CHANNEL ANALYSIS

In Sec. III we have identified several promising signals
and demonstrated that they are, in principle, discernible
against the background of the photons of the driving laser
beams. To obtain these results we have relied on a rather
time-consuming and brute-force numerical evaluation of
the signal photon density ρðpÞðφ; ϑjkmin; kmaxÞ. This quan-
tity encodes information about all possible single-photon
emission processes mediated by quantum vacuum fluctua-
tions in the macroscopic field driving the effect. In order to
resolve different frequency regimes within this approach,
we have evaluated ρðpÞðφ; ϑjkmin; kmaxÞ for various values
of kmin and kmax.
Subsequently, we demonstrate how these results can be

obtained with considerably less computational efforts,
using the findings of the previous section III as benchmarks
for the new analysis carried out here. A channel analysis
for various three-pulse setups has been performed in
Refs. [53,55].

A. Tracing the microscopic origin of the signal

Our starting point is the expression for the signal photon
density in Eq. (10), with the modulus squared of the zero-
to-single signal transition amplitude given by Eq. (11).
Interchanging the integration over energy and the summa-
tion over l and l0, the signal photon density can be
expressed as

ρðpÞðφ; ϑjkmin; kmaxÞ ¼
X
l;l0

ρðpÞ;l;l0 ðφ; ϑjkmin; kmaxÞ; ð19Þ

where the sum runs over all sets l ¼ fi; j; lg, l0 ¼
fi0; j0; l0g and we have defined

ρðpÞ;l;l0 ðφ; ϑjkmin; kmaxÞ

¼ 1

ð2πÞ3
Z

kmax

kmin

dkk2RefSðpÞ;lðkÞS�ðpÞ;l0 ðkÞg: ð20Þ

Accordingly, we introduce the signal photon number
NðpÞ;l;l0 ðAjkmin; kmaxÞ following from Eq. (20) upon inte-
gration over the solid angle interval A. Obviously,
NðpÞ ¼

P
l;l0 NðpÞ;l;l0 ; cf. Eq. (12).

While only the sum over all sets l and l0 constitutes the
physical density—off-diagonal terms with l ≠ l0 may even
be negative—this representation provides us with a con-
venient means to assess the importance of individual
contributions constituting the full density. As demonstrated
below, it allows us to straightforwardly identify the single
interaction processes inducing a given vacuum emission
channel. This information can then be utilized to optimize
the signal photon yield in this channel, e.g., by changing
the partitioning of the total available laser energy into the
different driving beams.
A closer look at the structure of SðpÞ;ijl in Eqs. (7)–(9)

unveils certain symmetries which can be employed to
reduce the number of contributions to be evaluated
explicitly. Most obviously, the Fourier integral (8) is
completely symmetric under permutations of the indices
i, j, l. At the same time, the function (9) which encodes the
directional characteristics of the interacting fields only
exhibits a reduced symmetry: it is symmetric under
exchange of the first two indices, i.e., gðpÞ;ijlðk̂Þ ¼
gðpÞ;jilðk̂Þ, and vanishes if these two indices agree,

gðpÞ;iilðk̂Þ ¼ 0. Correspondingly, we have SðpÞ;ijl ¼ SðpÞ;jil
and SðpÞ;iil ¼ 0. This implies that the only nonvanishing
contributions with exactly two identical indices can be
expressed in terms of SðpÞ;iji, where i ≠ j. On the other
hand, given that all indices are different, i.e., i ≠ j ≠ l, the
only independent contributions arise from SðpÞ;ijl.
Recall that when studying a collision scenario involving

nþ 1 driving laser fields each of the indices runs from 0 to
n. In this case the above considerations result in nðnþ 1Þ
independent nonvanishing contributions to

P
l SðpÞ;l due

TABLE II. Prospective numbers of signal photons N and
driving laser photons N in different energy regimes and angular
emission areasA. See the main text for the definitions of the areas
as well as further details.

2.59 eV ≤
k ≤ 3.61 eV
cf. Fig. 7

5.69 eV ≤
k ≤ 6.71 eV
cf. Fig. 8

7.24 eV ≤
k ≤ 8.26 eV
cf. Fig. 9

Nð4πÞ 1240.80 1337.67 2.81
N ð4πÞ 6.98 × 1019 1.75 × 1019 0.00
NðAð2ω0ÞÞ 62.02 0.00 0.00

N ðAð2ω0ÞÞ 10.13 × 10−3 0.00 0.00
NðAð4ω0ÞÞ 0.00 129.40 0.00
N ðAð4ω0ÞÞ 0.00 5.91 × 10−3 0.00
NðAð5ω0;AÞÞ 0.00 8.19 × 10−5 2.31

NðAð5ω0;BÞÞ 0.00 0.00 0.46
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to terms for which all three indices disagree and another
nðnþ 1Þ ones from terms with two identical indices. Terms
with three indices identical vanish completely. Of course,
the very same considerations apply to

P
l0 S

�
ðpÞ;l0 .

In the next step, we focus on an individual contribution
with fixed l ¼ fi; j; lg, in order to identify the signal
photon frequency associated with this channel. To this end
it is helpful to consider the formal limit of τ → ∞
corresponding to the collision of monochromatic laser
beams with constant temporal envelope; cf. also [25]. As
noted in Sec. III C, in this limit the temporal integration in
I ijl results in a delta function ensuring the signal photon
energy k to be fully determined by the oscillation frequen-
cies ωi ¼ νiω0 of the driving laser beams,

k → j�ωi � ωj � ωlj; ð21Þ

where each sign can occur separately. A positive (negative)
sign corresponds to the emission (absorption) of a photon
from the respective driving laser beam. For instance, the
contribution with l ¼ f0; 3; 0g triggers signal photon
frequencies of 2ω0, 4ω0 and 6ω0. We emphasize that, in
order to obtain a sizable signal photon contribution of
Eq. (20) at a given frequency, both factors SðpÞ;l and S�

ðpÞ;l0
in Eq. (20) need to support this frequency. For finite pulse
durations τ, the selection rules in Eq. (21) hold only
approximately. Nevertheless, this approximation is accurate
as long as the propagation directions of the driving beams
are sufficiently different and τω0 ≫ 1; cf. Sec. III C. This is
rather generic for scenarios envisioning the collision of
several quasimonochromatic high-intensity laser pulses. In
this case the finite pulse envelopes blur the selection rules
(21), and the sharp delta peaks resulting from the temporal
integration in I ijl for τ → ∞ are replaced by Gaussian
peaks of a finite spectral width scaling as ∼1=τ.
In the scenario considered here we have ω0τ ≃ 59 ≫ 1,

or equivalently 1=τ ≃ ω0=59 ≪ ω0, which clearly hints at
the fact that the spectral width of these Gaussian peaks is
much smaller than the spectral separation of any two
oscillation frequencies ωi of the driving laser fields. This
is in line with the findings of Sec. III C: here Gaussian fits
to the various peaks encountered in the differential number
of signal photons dN=dk resulted in Gaussian standard
deviations of the same magnitude. For the largest extracted
frequency width (σ ¼ 0.0926 eV), the associated full peak
width measured at 1% of the peak maximum is given
by Δω ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 100

p
σ ≃ 0.513ω0.

Hence, instead of analyzing the signal photon spectrum
by explicitly segmenting the signal photon density in the
spectral domain as done in Sec. III C, we can resolve its
frequency spectrum by limiting the sum in Eq. (19) to the
relevant channels which induce nonvanishing contributions
in the vicinity of a given frequency.
If in addition the projections of the oscillation-period-

averaged intensity profiles on the beam axes of all other

beams vary on scales much larger than the wavelengths of
the beams, also the wave vector of the signal photon k
should—to a good approximation—be determined by the
wave vectors of the photons comprising the beams in the
plane-wave limit fτ; wig → ∞ where focusing effects can
be neglected. In this case, we have

k ≃ kpw ¼ �ωiκ̂i � ωjκ̂j � ωkκ̂k; ð22Þ

where kpw denotes the corresponding wave vector in the
plane-wave limit. Under these conditions, only contribu-
tions with i ≠ j ≠ l, i.e., manifestly inelastic signal photon
contributions arising from the mixing of three different
driving waves, may result in clearly discernible signals.
To demonstrate this we first focus on the complementary

case where two indices agree. If, e.g., i ¼ l and i ≠ j,
Eq. (21) predicts signals either at k ≃ ωj or at k ≃ ωj � 2ωi.
However, at the same time, Eq. (22) implies k ≃�ωjκ̂j or
k ≃�ωjκ̂j � 2ωiκ̂i. From these findings it is obvious that
only the conditions k ¼ jkj ¼ ωj are compatible with each
other for generic values of ωi and ωj as well as noncollinear
κ̂i and κ̂j as considered here. On the other hand, signal
photons fulfilling k ¼ jkj ¼ ωj are expected to be pre-
dominantly emitted in the forward direction κ̂j of the
driving laser beam of frequency ωj, rendering their exper-
imental detection very challenging. For completeness, note
the principle possibility of a quantum reflection signal
in the opposite direction, which is completely negligible for
the present scenario where focusing effects are found to be
subleading [56].
As an illustrative examplewe determine the signal photon

number associated with the channel l ¼ l0 ¼ f0; 3; 0g,
yielding N030;030ð4πj5.69 eV; 6.71 eVÞ ≃ 463.46 photons
per shot in the frequency regime around 4ω0. This
signal is peaked at κ̂3. On the other hand, we find
N030;030ð4πj0;∞Þ ∼ 463.46, such that—as expected, and
in linewith the arguments given above—obviously no signal
photons at other frequencies contribute to this channel.
In the remainder of this section our focus is on the

manifestly inelastic signal photon contributions associated
with the 12 independent combinations to the signal photon
amplitude characterized by i ≠ j ≠ l. In particular, we aim
at verifying the signals arising in the angular regionsAð2ω0Þ,
Að4ω0Þ and Að5ω0;A=BÞ introduced in Sec. III D. This allows
us to explicitly restrict our analysis to channels giving rise
to signal photons of the desired energy and wave vectors
pointing in the respective directions.
Tracking the 2ω0 signal in Að2ω0Þ, we analyze all

permutations of the indices 0, 1 and 2. Microscopically,
we expect this signal to arise from a process involving the
merging of two laser photons from beams 0 and 2,
respectively, and the absorption of a laser photon of
frequency ω1 from beam 1. Resorting to the plane-wave
approximation, this results in a signal photon wave vector
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of modulus jkpwj≈ 2.201ω0 pointing at ðφ;ϑÞ¼ ð319.107°;
101.07°Þ. Obviously this value is compatible with the
condition jk − jkpwjj < Δω and k ≃ 2ω0. It thus allows
for a nonvanishing signal in this parameter regime. A
comparison with the dominant emission direction deter-
mined numerically in Sec. III D unveils an excellent
agreement; the relative differences in the longitude and

latitude are below 1%. The signal associated with this
channel is found to be peaked around k ≃ 2.015ω0.
Restricting the sums over l and l0 in Eq. (19) to all

possible permutations of the indices 0, 1 and 2 and
integrating over the full solid angle,we obtainNð4πj0;∞Þ ≃
78 signal photons per shot, while an explicit restriction to the
angular region Að2ω0Þ results in NðAð2ω0Þj0;∞Þ ≃ 62. To
study the importance of the individual contributions to this
sum, in Table III(a) we explicitly list the contributions of all
nine terms constituting the signal photon number in this
parameter regime. This also allows us to assess the relative
importance of off-diagonal terms with l ≠ l0. Exactly the
same number is obtained when the frequency regime is in
addition restricted to 2.59 eV ≤ k ≤ 3.61 eV. A compari-
son with the analogous number extracted in Sec. III D
establishes that all signal photons scattered into this param-
eter regime are indeed emerging from the microscopic
process ω0 − ω1 þ ω2 → k.
The other signals can be analyzed along the same

lines. For identifying the microscopic process giving rise
to the inelastic signal of frequency 4ω0, the channels
associated with permutations of the indices 0, 1 and 3
need to be analyzed. The process responsible for this
signal is ω0 − ω1 þ ω3 → k. The corresponding signal
photon wave vector fulfills jkpwj ≈ 3.813ω0 and is
pointing at ðφ; ϑÞ ≃ ð49.11°; 78.93°Þ. This channel gives
rise to NðAð4ω0Þj0;∞Þ ≃ 129 signal photons per shot. For
the individual contributions constituting this number,
see Table III(b). Finally, we turn to the two distinct
signals with frequencies around 5ω0. These are triggered
by the microscopic processes −ω1 þ ω2 þ ω3 → k and
−ω0 þ ω2 þ ω3 → k, respectively. We summarize the
detailed properties of these signals in Table IV; this table
also includes the parameters characterizing the 2ω0 and
4ω0 signals just discussed. See Tables III(c) and III(d) for
the individual contributions constituting the signal photon
numbers in these channels.

B. Implications of the channel analysis

In the preceding section, we have worked out a strategy
allowing us to trace all-optical signatures of quantum
vacuum nonlinearity back to the underlying four-wave
mixing processes and thus infer information about their
microscopic origin. To enable a clear measurement of a

TABLE III. Comparison of various contributions Nl;l0 ðAðnω0Þj0;
∞Þ to the signal photon number. Here, we highlight
several photon emission channels resulting in manifestly inelas-
tically scattered signal photons of frequency k ≃ nω0 with
n ∈ f2; 4; 5g.

(a) k ≃ 2ω0

l0

l 012 120 021

012 1.557 0.327 6.516
120 0.327 2.143 5.122
021 6.516 5.122 34.394

(b) k ≃ 4ω0

l0

l 013 130 031

013 0.437 0.754 4.917
130 0.754 12.814 18.851
031 4.917 18.851 67.105

(c) k ≃ 5ω0

l0

l 123 231 312

123 0.052 −0.018 −0.206
231 −0.018 2.218 −0.242
312 −0.206 −0.242 0.973

(d) k ≃ 5ω0

l0

l 023 230 302

023 0.228 −0.957 0.449
230 −0.957 5.464 −2.625
302 0.449 −2.625 3.034

TABLE IV. Overview of the properties of the manifestly inelastic signal photon channels detailed in Sec. IVA. For each signal photon
frequency k ≃ nω0 with n ∈ f2; 4; 5gwe provide the longitude φ and latitude ϑ characterizing the main emission direction as well as the
number of signal photons per shot emitted into the solid angle Aðnω0Þ.

k 2ω0 4ω0 5ω0, A 5ω0, B

Origin ω0 − ω1 þ ω2 ω0 − ω1 þ ω3 −ω1 þ ω2 þ ω3 −ω0 þ ω2 þ ω3

φ 319.11° 49.11° 23.41° 30.90°
ϑ 101.07° 78.93° 50.95° 32.36°
NðAðnω0Þj0;∞Þ 62.02 129.40 2.31 0.46
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photonic signature of quantum vacuum nonlinearity it is
desirable to maximize the signal at a given frequency and
emission direction such as to achieve the best possible
signal-to-background separation. A complete assessment of
the question which signal channel amounts to the most
prospective one for an experimental verification, of course,
requires one to account for many more details of a concrete
experimental set up, including, e.g., the sensitivity and
efficiency of the few photon detectors.
As the simultaneous measurement in several well-

separated directions and at several frequencies is, however,
highly unlikely with state-of-the-art technology, the typical
challenge is to maximize the signal at a certain frequency
and emission direction. In this section, we sketch how the
insights obtained in Sec. IVA can be used to enhance a
given signal photon channel. Selecting a particularly
promising signal, the channel analysis allows us to trace
the microscopic origin of this signal and to modify the
driving laser fields such as to enhance the signal in this
channel, e.g., by redistributing the total available laser pulse
energy into the individual beams.
This is especially obvious for the manifestly inelastic

signals analyzed in detail in Sec. IVA: while originating
from the effective interaction of different subsets of beams,
each of these four signals (cf. Table IV) arises from the
mixing of precisely three different driving laser fields.
Hence, in order to increase the signal photon yield in any of
these channels individually, the driving laser beam which
acts as a pure spectator can be switched off and its energy
instead be redistributed into the other beams participating
in the interaction.
Here, we illustrate this point using the example of a

manifestly inelastic k ≃ 4ω0 signal originating in the
microscopic process ω0 − ω1 þ ω3 → k, where ω1 ¼ ω0

and ω3 ¼ 4ω0, respectively. Obviously, only beams 0, 1
and 3 are involved in this particular process. Let us now
remove the spectator beam 2 and redistribute its energy into
the other beams. Our choice for the new beam energies is
W̃0 ¼ W̃1 ¼ W̃3 ≈ 41.67 J, maximizing the Fourier inte-
gral Ĩ013 ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W̃0W̃1W̃3

p
; the other Fourier integrals do not

support an inelastic channel or vanish for W̃2 ¼ 0. The
partition factors associated with this choice are q̃0 ¼ 5=6,
q̃1 ¼ 4=5 and q̃2 ¼ 1, resulting in W̃eff ¼ W̃loss ¼ 1=2W;
cf. Sec. III B. The new result for the number of signal
photons in the manifestly inelastic 4ω0 channel emitted into
the angular area Að4ω0Þ can straightforwardly be obtained
from the corresponding signal photon number NðAð4ω0ÞÞ ≃
129 determined in Sec. IVA. It follows upon rescaling this
number with an overall factor of W̃0W̃1W̃3=ðW0W1W3Þ ¼
36=25, resulting in ÑðAð4ω0ÞÞ ¼ 36=25NðAð4ω0ÞÞ ≃ 186
signal photons per shot in this specific channel.

V. CONCLUSIONS AND OUTLOOK

We have studied all-optical signatures of QED vacuum
nonlinearity in the collision of several high-intensity laser
beams differing in frequency, polarization and propagation
direction. More specifically, we have focused on an
example scenario envisioning the collision of four laser
pulses, all originating from a single driving laser pulse,
utilizing beam-splitting and sum-difference frequency gen-
eration techniques. Such a scenario requires the availability
of a high-intensity laser system of the multipetawatt class
and, thus, will become possible at various state-of-the-art
and upcoming high-intensity laser facilities such as ELI-
NP. While we base our considerations on the availability of
a single high-intensity laser of the ten petawatt class with
specific parameters, our results can straightforwardly be
rescaled to other laser parameters.
One of the goals of our study is to identify prospective

signal channels allowing for an efficient signal-to-background
separation.To this end,wepay special attention to the question
of how to efficiently infer information about the microscopic
origin of prospective signatures of vacuum nonlinearity by
means of a channel analysis. This allows us to answer relevant
questions, such as which laser beams participate in the
formation of a given signal, andwhat is the specific interaction
process inducing the latter. In addition, we have explicitly
demonstrated how this information can be used to enhance the
signal photon number in a given signal photon channel.
For completeness, note however the difficulty of an

absolutely background-free measurement in a real exper-
imental set up. Any practical imperfection such as a
nonideal vacuum in the vacuum chamber coming along
with residual atoms and molecules in the interaction region
may give rise to higher-harmonic backgrounds. Still, these
backgrounds can, in principle, be monitored (e.g., by rest-
gas measurements or geometric adjustments) and thus
parametrically controlled to a large degree. The full
quantitative incorporation of such effects is outside the
scope of the present idealized analysis.
We are confident that the concepts outlined and applied in

the present study will prove very useful in future attempts at
optimizing photonic signatures of quantum vacuum non-
linearity for given experimental parameters and constraints.
Our formalism can also provide for an efficient basis to study
recent alternative suggestions [57,58] for corresponding
discovery experiments beyond the optical regime.
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