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Recognizing the potential of effective field theories to posit multiple beyond Standard Model (BSM)
scenarios in a similar footing with a possibility to compare them, we inspect the effects of 11 single
scalar-multiplet extensions of the SM on the combined set of electroweak precision observables and
Higgs signal strength data by systematically integrating out the heavy multiplets and computing the
resulting Standard Model effective field theory operators and Wilson coefficients (WCs) up to one-
loop level. Noting that multiple BSM models give rise to a degenerate set of WCs, we then perform
Bayesian statistical inference both directly on the BSM parameters and on the associated set of
independent WCs. Using the posteriors of the BSM parameters, we infer the respective (correlated) WC
distributions and compare both the model-independent and -dependent analyses by overlaying the 2D
marginal WC posteriors from both processes, thus laying the groundwork for a data-driven attempt to
compare diverse BSM theories of different origins, and hopefully, a possible way to approach the
intractable inverse problem. We also demonstrate, with an example model, the crucial role of theoretical
constraints to rule out large chunks of BSM parameter spaces. All numerical results are available on
GitHub.

DOI: 10.1103/PhysRevD.103.076007

I. INTRODUCTION

Despite the immense success of the Standard Model
(SM), it is still inadequate to explain a plethora of
phenomena in the high-energy physics spectrum. There
has been no direct evidence of any beyond Standard
Model (BSM) physics after the discovery of the Higgs
boson. We thus need to refer to indirect evidence hinting
toward BSM scenarios. Among the observables with the
potential to constrain BSM physics and thus to act as
indirect evidence for new physics (NP), electroweak
precision observables (EWPO) and those from Higgs
data play an important role. To effectively use these
observables to constrain BSM parameter space, we need
to bridge the gap between any BSM physics residing at a

high scale and the observables lying at low energy. The
Standard Model effective field theory (SMEFT) [1,2] links
the BSM theories to the low-energy observables using the
higher-dimension operators originating from integrating
out the heavy degrees of freedom (d.o.f.). The SMEFT
effective operators, for a given mass dimension and
defined using particle content and symmetry of the SM,
offer additional contributions to the SM predictions of the
low-energy observables. These modifications are recast in
terms of the Wilson coefficients (WCs) that carry the
footprints of the unknown NP.
There have been numerous works over the years to

constrain the SMEFT WCs of dimension-six operators in a
model-independent manner. The general strategy has been
to perform statistical inference on these WCs using the
available data, either taking one of them at a time or all of
the pertinent WCs (to which the data are sensitive) together.
The SMEFT operators are frequently discussed in the
Warsaw [2] and SILH [3–5] bases. The inferences are
drawn mostly in a frequentist framework [6–18], though
some Bayesian analyses have been done as well [19–22].
The main idea here is that once a BSM theory is matched to
SMEFT, the bounds on the WCs can be converted to that of
the BSM parameters.
A lot of work has been done to match various BSM

theories to the SMEFT (up to one-loop order) [23–32],
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enabling the community to express the SMEFT Wilson
coefficients, and in turn, the low-energy observables
(EWPO, Higgs signal strengths, etc.) in terms of the
BSM parameters. Some (model-dependent) global fits have
also been done to constrain specific BSM parameters from
these matching results [7,15,33–36]. The main caveats of
this yet-accepted process are twofold: First, not all WCs are
modified within the scope of a specific model and even for
those which are affected, the effects are not of the same
degree; i.e., not all WCs are similarly sensitive to all model
parameters. This set of pertinentWCs alsovarieswith chosen
BSM models. Second, though the model-independent infer-
ences performed onWCs can point to a conservative estimate
of the BSM parameter space, in reality, they are often highly
nonlinear functions of these parameters, and the actual
parameter space (obtained from a direct inference on the
parameters themselves) may differ a lot from the model-
independent estimates.
The motivation of this work is thus to probe the relative

capacity of these model-independent analyses to predict
the BSM parameter spaces, in comparison with direct
inference done on the parameters themselves. The main
challenge in this endeavor is to obtain the SMEFT WCs in
terms of the BSM parameters. We use the Mathematica
package CoDEx [37] to this end. Given the BSM
Lagrangian, CoDEx can provide a list of the different
dimension-six operators and their corresponding WCs at
one loop, in terms of different BSM model parameters.
For statistical inference, we choose the Bayesian frame-
work, and all required analyses are performed using the
Mathematica package OptEx [38].
In this article, we work with the Warsaw basis

(a complete basis) of dimension-six SMEFT operators,
18 of which affect the data (EWPO and Higgs signal
strength) considered in this analysis. The relevant 18 WCs
fit is performed in a model-independent manner in two
ways: taken all together and taken one at a time. We also
consider 11 BSM scenarios, which after matching up to one
loop,1 generate a subset of the dimension-six operators
along with the corresponding WCs expressed as nonlinear
functions of the respective BSM parameters. Out of the 18
relevant operators contributing to the observables, only ten
operators are collectively generated by these BSM models.
So, we show the ten WCs fit also.
While studying the allowed parameter space of a set of

specific WCs, we are interested in distinguishing the case
where they are independent from the ones where they are
correlated. These correlations are a result of their depend-
ence on the model parameters. Matching each of these
BSMs with SMEFT, we generate the effective operators
and their corresponding WCs in terms of the BSM
parameters. We perform a fit on the set of WCs generated

for each BSM scenario without including the relations of
WCs with the respective model parameters, i.e., by treating
WCs to be free parameters. Furthermore, using the match-
ing results, the WCs generated in a specific BSM scenario
and expressed in terms of the respective model parameters
lead to the direct statistical bounds on the BSM parameters
from the observables considered. Using the bounds on the
model parameters, the parameter space of the WCs is again
explored, which is obtained to be more constrained and
thus exhibits the model-dependent allowed parameter space
of the WCs. In this way, a comparison of the allowed WCs
space of the independent WCs and the correlated WCs is
shown for a given BSM.
The work is organized as follows: Sec. II introduces the

observables relevant to the present analysis. In Sec. III, we
discuss the SMEFT contributions to these observables and
perform a model-independent analysis using the relevant
WCs. In Sec. IV, we introduce 11 BSM scenarios with the
potential to affect the observables in this analysis and
obtain individual statistical inferences on each of them. In
Sec. V, we compare the model-independent and -dependent
results obtained in the previous two sections by inspecting
the WC space populated by these results. Numerical results
of the entire analysis (including those not included in the
draft) are available in the GitHub repository [39] associated
with this work.

II. THE OBSERVABLES (O0
is)

As mentioned before, the chosen set of observables for
both model-dependent and -independent analyses in the
present work are the EWPO and Higgs signal strengths. We
summarize both the experimental inputs and the SM
expressions of the observables in this section.

A. Electroweak precision observables

The EWPO under consideration for our analysis includes
the higher-order radiative corrections which are parame-
trized in terms of the five SM parameters: Z-boson mass
(mZ), Higgs mass (mH), top quark mass (mt), strong
coupling constant [αsðm2

ZÞ], and hadronic contributions

to the running of α [Δαð5Þhadðm2
ZÞ]. As experimental inputs,

we have used (i) EWPO measured at the Z-mass pole [14]
and their correlations [40] and (ii) mass and decay width of
W [41]. Some more details on these corrections to the
EWPO are listed below.

(i) sin2 θleff receives up to full two-loop electroweak,
partial three-loop and four-loop QCD corrections;
see Refs. [14,42]. The missing higher-order correc-
tion is estimated to be 4.7 × 10−5, included as
theoretical uncertainty in the computation.

(ii) Partial decay width ratios and hadronic peak cross
section of Z receives up to full two-loop fermionic
corrections; see Refs. [14,43].

1We consider one-loop processes for the heavy field propa-
gator in the loop (pure heavy loop) only.
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(iii) Z pole asymmetry observables estimated using
sin2 θfeff

2; see Refs. [14,44].
(iv) Mass of the W boson receives up to two-loop

complete and four-loop QCD corrections; see
Refs. [14,45].

(v) Decay width of theW boson receives up to one-loop
electroweak corrections; see Refs. [14,46].

B. Higgs signal strengths

The Higgs signal strengths used in our analysis contain
the latest Run-I and -II LHC data. The details of the relevant
experimental inputs are tabulated in Table I.

III. MODEL-INDEPENDENT ANALYSIS

A. SMEFT contributions to the observables

The SMEFT induces corrections to the fit observables
capturing the new physics lying beyond the cutoff scale (Λ)
of the EFT. We consider the SMEFT contributions to these
observables from dimension-six effective operators (in the
Warsaw basis) [2]. The EWPO and the Higgs observables
can be expressed in terms of the associated WCs (Ci) as

ONP ¼ OSM þ
X
i

Ai

Λ2
Ci; ð3:1Þ

where ONP represents the expressions of observables
after including the SMEFT dimension-six operator correc-
tions, and OSM represents the SM expressions for the
observables discussed in Sec. II. The Ai’s are functions of
the five SM parameters (see Sec. II A), and i runs over the
number of dimension-six operators pertinent to the observ-
ables in question (18 in this work; see Table II). The WCs

encapsulate the effect of the NP on top of the SM estimates.
Contributions from the SMEFT operators to the observ-
ables are linear in order and discussed below.
The SM expressions of the EWPO are modified by the

effective operators: QH, QHD, QH□, QHWB, Q
ð1Þ
Hl , Q

ð3Þ
Hl ,

QHe, Q
ð1Þ
Hq, Q

ð3Þ
Hq, QHu, QHd, and Qll through the redefini-

tions of the fields and the couplings. These modifications to
the EWPO are captured through the corrections in α, mZ,
and GF [11,59]. Following the guidelines in Refs. [11,
59–61], the corrections to the EWPO in the presence of
these SMEFToperators are calculated. The modification of
the theoretical predictions of the Higgs boson production
and decay rates due to SMEFT operators (in the SILH-like
basis) are discussed in Ref. [62], which we rewrite in terms
of dimension-six operators in the Warsaw basis (for the
operator basis translation, see [60]). Following Ref. [62],
we only consider the contributions from the third gener-
ation of fermions for the operators QeH;QuH, and QdH.

B. Statistical inference

Adopting theBayesian framework, all inferences through-
out this work are obtained by sampling the unnormalized
posterior distribution using a Markov chain Monte Carlo
(MCMC). The algorithm used is Metropolis-Hastings [63],
and instead of using multiple walkers to assure convergence,
we depend on a single long chain. Ensuring that the random
variable samples are independent and identically distributed
(iid) and that the chain is converged to desired quantiles is
done by diagnostic checks and sequential runs, following the
prescriptions of Raftery and Lewis [64]. As sanity checks, all
corresponding frequentist maximum likelihood estimations
(MLEs) are also obtained for comparison of the best-fit
results, goodness-of-fit tests, and outlier estimation. Using
pulls and Cook’s distances [65–67], we have ensured that
none of the observables are simultaneously an outlier and a
point with disproportionately large influence in our analysis.

TABLE I. The Higgs signal strengths from both ATLAS and CMS.

Higgs signal strengths References

7 and 8 TeV Run-I data Combined ATLAS and CMS measurements Table 8 of Ref. [47]
Combined ATLAS and CMS measurement of μμμpp Table 13 of Ref. [47]
ATLAS measurement of μZγpp Figure 1 of Ref. [48]

13 TeV ATLAS Run-II data H → ZZ� at 139 fb−1 Table 8 of Ref. [49]
Measurement of μZγpp at 139 fb−1 Ref. [50]
Measurement of μμμpp at 139 fb−1 Ref. [51]
VH → H → bb̄ at 139 fb−1 Ref. [52]
Measurements for Higgs production through gluon
and vector boson fusions at 80 fb−1

Figure 5 of Ref. [53] (correlations
in Fig. 6)

Associated production of a Higgs boson with tt̄ Refs. [54,55]
VH → H → WW� at 36.1 fb−1 Ref. [56]

13 TeV CMS Run-II data Signal strengths data up to 35.9 fb−1 Table 3 of Ref. [57] (correlations
in auxiliary material)

Measurements of μccZH and μccWH Ref. [58]

2θfeff , the effective Weinberg mixing angle, receives the
corrections from fermions only.
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The MLE and parameter-uncertainty estimation using
Hessians enables us to quickly select the initial points and
proposal spreads of the MCMC chains as well.
For the first part of our analysis, we perform a

model-independent statistical inference from a total of
88 observables mentioned in Sec. II in terms of 18
SMEFT dimension-six WCs as free parameters and five
SM parameters mZ, mH, mt, αsðm2

ZÞ, and Δαð5Þhadðm2
ZÞ

as nuisance parameters. To obtain the nuisance priors,
we have performed a SM fit of the EWPO, the details of
which are given in Appendix A 1. The priors for the SM
parameters are introduced as a multinormal distribution,
following the result of the fit mentioned above. For the
SMEFT model-independent analysis, uniform, uninform-
ative priors are taken for all free parameters (WCs). We
have found that the range f−10; 10g is good enough for
all WCs except CHW and CuH, for which the range
f−50; 50g is chosen.
We perform two types of fits at this stage: taking all

relevant WCs together, and taking one WC at a time. It is
expected that the inferred parameter space of any one WC
will be smaller for the fit with only that WC, whereas, in the
presence of all other WCs, it may have a considerably
larger parameter space. The results of these fits are
tabulated for comparison in Table III. The first column
lists the WCs, the second column is the result of the fit with
all 18 WCs taken together, and in the third column, the
values in each row show the result of the fit with only the
correspondingWC. The fourth column lists the fit results of
the ten WCs, which are generated collectively by our 11
adopted BSM scenarios. The purpose of taking these ten
WCs is explained at the end of Sec. IVA. All fits are done
with the cutoff set asΛ ¼ 1 TeV. The correlations of the 18
WCs and ten WCs fits are tabulated in Tables XIV and XV
respectively in Appendix B.
A standard analysis comparable to ours can be found in

Ref. [34], and we compare the fit results mentioned in the
second and third columns of Table III with those of that
paper. The confidence intervals are consistent for most of
the WCs, and in the following we clarify the differences.
Significant dissimilarities in the parameter spaces arise due

to the different observable sets considered. Unlike
Ref. [34], we do not consider the differential LHC data
for diboson (WWandWZ) and the Higgstrahlung (WH and
ZH) at next-to-leading-order QCD, and LEP-2 diboson
data. On the other hand, we consider mt, mH, and mZ as
observables (with dependence on WCs) in our analysis,
whereas Ref. [34] considers them as auxiliary inputs. The
masses being very precise put stringent constraints on the
WCs that appear in their expressions. CHD appears in
the SMEFT corrections to mZ and mH and is thus more
constrained in our analysis. The same is true for CHWB,
CH□, and CuH, which appear in mZ, mH, and mt, respec-
tively. Other than these differences, we have considered the
corrections to the Higgs production and decay rates due to
SMEFT operators from Ref. [62], where the kinematic
differences between the production and decay channels and
impact of the different center-of-mass energies on the
production cross sections are neglected.

IV. MODEL-DEPENDENT ANALYSIS

A. Realizing BSMs in terms of SMEFT operators

We consider the BSM scenarios which are single-heavy-
multiplet extensions of the SM. Once the massive particle
(s) are integrated out, their impacts are captured through the
higher-dimensional effective operators made up of SM
d.o.f. Then the renormalizable BSM theories can be
realized as effective ones and are expressed as

Leff ¼ Ld≤4
SM þ LEFT

SM : ð4:1Þ

Here, LEFT
SM can be expressed in a compact form asP

d¼5;…

P
i ðCðdÞi =Λd−4ÞQðdÞ

i , where the CðdÞi ’s and QðdÞ
i ’s

are the WCs and the SM-invariant effective operators of
mass dimension d, respectively. Here, i runs over the
number of independent effective operators, i.e., the
dimension of the operator basis for a given mass dimension.
In this work, we restrict our study to dimension-six
effective operators in the Warsaw basis only. The SM
field convention is in Table IV. The SM Lagrangian is
defined as

TABLE II. These are the 18 dimension-six effective operators (Warsaw basis) and offer additional contributions to
the EWPO and Higgs signal strengths. Here, τI are normalized Pauli matrices; I ¼ 1, 2, 3.

QH ðH†HÞ3 QHG ðH†HÞGμν
aGa;μν QHe ðH†iD

↔

μHÞðēγμeÞ
QH□ ðH†HÞ□ðH†HÞ Qð1Þ

Hl ðH†iD
↔

μHÞðl̄γμlÞ QHu ðH†iD
↔

μHiÞðūγμuÞ
QHD ðH†DμHÞ�ðH†DμHÞ Qð3Þ

Hl ðH†iτID
↔

μHÞðl̄τIγμlÞ QHd ðH†iD
↔

μHÞðd̄γμdÞ
QHB ðH†HÞBμνBμν

Qð1Þ
Hq ðH†iD

↔

μHÞðq̄γμqÞ QeH ðH†HÞðl̄eHÞ þ H:c:

QHW ðH†HÞWμν
IWI;μν

Qð3Þ
Hq ðH†iτID

↔

μHÞðq̄τIγμqÞ QuH ðH†HÞðq̄uH̃Þ þ H:c:

QHWB ðH†τIHÞWμν
IBμν Qll ðl̄γμlÞðl̄γμlÞ QdH ðH†HÞðq̄dHÞ þ H:c:
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5
Þ×

1
0
−
2

✗
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Ld≤4
SM ¼ −

1

4
Ga

μνGa;μν −
1

4
WI

μνWI;μν −
1

4
BμνBμν þ jDμHj2 − μ2HjHj2 − λHjHj4

þ l̄LiDlL þ q̄LiDqL þ ēRiDeR þ ūRiDuR þ d̄RiDdR

− fYðeÞ
SMH

†ēRlL þ YðuÞ
SMH̃

†ūRqL þ YðdÞ
SMH

†d̄RqL þ H:c:g; ð4:2Þ

where Bμν;WI
μν, andGa

μν are the field strength tensors of the
SM gauge groups Uð1ÞY , SUð2ÞL, and SUð3ÞC, respec-
tively, with a ¼ 1;…; 8. The D’s are the covariant deriv-
atives, the YSM’s are the SM Yukawa couplings, and
H̃ ¼ iσ2H�.
In the present analysis, we consider 11 BSM scenarios

which are single heavy field extensions of the SM. We
choose these models carefully to encompass the variety of
phenomenological features. To proceed further, we inte-
grate out the heavy fields belonging to the adopted BSMs
and compute the effective operators and their respective
WCs. It is important to note here, that the WCs are the
functions of BSM parameters and are thus not entirely
independent.3 Here, we present the analytical structures
of the WCs which are computed up to one-loop level,
considering only heavy field propagators in the loop (pure
heavy loop4) using the Mathematica package CoDEx [37].
We summarize the characteristics of the to-be integrated out
BSM fields corresponding to our adopted scenarios and
encapsulate the respective effective operators in Table V.
In principle, though one must write down the most

general gauge-invariant theories involving these heavy
fields and integrate them out to compute all possible
effective operators, our present analysis is driven by a
set of chosen observables that encompass a very specific set
of effective operators. Any other operator that does not
belong to that set remains unconstrained in our analysis and
is irrelevant for the purpose of this work. This is why we
only note down those interactions involving the BSM
fields, which can lead to the desired operators. As an
example, Yukawa-type interaction terms are viable in the
case of certain BSM scenarios (with the scalar as the
only heavy field), and these terms generate WCs of four-
fermionic effective operators that do not contribute to our
set of observables. These types of interactions are ignored
here, without any loss of generality. To check the complete
list of WCs and their expressions in terms of BSM
parameters, please go to the GitHub repository [39], where
we make the full workflow and results (BSM theory
implementation and the resulting effective operators and
their WCs) available inMathematica notebook files. In this
work, we have ignored the renormalization group (RG)

evolution of the effective operators, which are computed
up to one-loop level.5 Thus, the WCs computed at the
matching scale are assumed to be unaltered at the electro-
weak scale.
Considering the points made above, we further note

that out of the 18 relevant WCs for the present set of
observables, a maximum of ten operators can be exhausted
(Table V) in the presence of one or more BSM scenarios of
the 11 considered here. This justifies the absence of Qð1Þ

Hl ,

Qð3Þ
Hl , Q

ð1Þ
Hq, Q

ð3Þ
Hq, QHe, QHu, QHd, and Qll operators in the

model-dependent part of our analysis.
In the following subsections, we first introduce the

relevant part of the BSM interactions and then tabulate
the effective operators and respective WCs as functions of
BSM parameters. Here, we consider the mass of the heavy
fields to be the same as the cutoff scale. Thus, all the
dimension-six operators are suppressed by mass-squared
terms of the integrated out heavy fields.

B. Real singlet scalar

This is the first of three BSM scenarios with a unique
WCs space. The SM is extended by a real singlet heavy
scalar (S) and the relevant part of interactions involving S
is given as6 [28,68–70]

LS ⊃
1

2
DμSDμS −

1

2
m2

SS
2 − cS;ajHj2S −

κS
2
jHj2S2

−
μS
3!

S3 −
λS
4!

S4; ð4:3Þ

whereDμ is the covariant derivative,
7 andmS is the mass of

the heavy scalar. We list the effective operators and the
respective WCs generated after S is integrated out in
Table VI. Note that the WCs are functions of the BSM
parameters depicted in Eq. (4.3). The tree-level generated
WCs agree with that shown in Refs. [32,68]. We tabulate
one-loop order WCs for pure heavy-loop processes only.

3It is worth mentioning that this is very much unlike the usual
SMEFT approach where all the WCs are assumed to be
independent and free parameters.

4We have ignored the contributions from heavy-light mixing in
the loop.

5As we have checked for some of the cases, the incorporation
of RG evolution of the operators from the NP to electroweak scale
does not alter our conclusion significantly and hence, is of less
practical relevance.

6As the SM Lagrangian is always there for all BSMs, we are
not quoting that part of the Lagrangian explicitly for each model.

7In this case, Dμ ¼ ∂μ for a real singlet scalar, but for the rest
of the scenarios,Dμ possesses nontrivial structures. As its explicit
form is not required for this discussion, we will not mention it
further in detail.
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C. Complex singlet scalar

In the next BSM scenario with a unique choice of WCs,
the SM is extended by a complex singlet heavy scalar (S2)
with hypercharge Y ¼ 2. The relevant part of the inter-
actions involving S2 is noted as [71,72]

LS2
⊃ ðDμS2Þ†ðDμS2Þ −m2

S2
S†
2S2

−
ηS2

2
jHj2jS2j2 − λS2

jS2j4; ð4:4Þ
where mS2

is the mass of heavy scalar (S2), which gets
integrated out, leading to the effective operators and their
respective WCs depicted in Table VII. The WCs are
functions of BSM parameters; see Eq. (4.4).

D. Isospin-triplet real scalar

In the third and the final BSM scenario with a unique
choice of WCs, the SM is extended with a color-singlet,

isospin-triplet heavy scalar (Δ) with hypercharge Y ¼ 0.
We write the relevant interactions involving Δ as
[23,29]

LΔ ⊃
1

2
ðDμΔÞIðDμΔÞI − 1

2
m2

ΔΔIΔI þ 2κΔH†τIHΔa

− ηΔjHj2ΔIΔI −
λΔ
4
ðΔIΔIÞ2; ð4:5Þ

where mΔ is the mass of Δ. In Table VIII we list the
effective operators and WCs generated after Δ is integrated
out. The WCs are functions of the BSM parameters
mentioned in Eq. (4.5).

E. Color-singlet isospin-multiplet complex scalars

Next, we discuss the class of BSM theories, which are
extensions of the SM with SUð3ÞC singlet but isospin
nonsinglet complex heavy scalar multiplets (H2, Δ1, Σ).
SMþH2.—
The SM is extended by a heavy SUð2ÞL complex doublet

scalar (H2) with hypercharge Y ¼ − 1
2
of mass mH2

. The
relevant Z2 invariant interactions of H2 are noted as
[23,73–76]

TABLE V. SM gauge quantum numbers for the heavy BSM scalars are in the second column. Relevant effective
operators are in columns 3–12. Ticks (✓) and crosses (✗) represent whether that operator (columns) is generated
from the heavy fields (rows) or not. Six different classes with identical sets of operators are separated by triple lines.

Heavy BSM
fields

The SM gauge quantum no.
(color, isospin, hypercharge)

QH QH□ QHD QHB QHW QHWB QHG QeH QuH QdH

S (1,1,0) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
S2 (1,1,2) ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Δ (1,3,0) ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓
H2 (1,2,− 1

2
) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Δ1 (1,3,1) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
Σ (1,4,1

2
) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

φ1 (3,1,− 1
3
) ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

φ2 (3,1,− 4
3
) ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Θ1 (3,2,1
6
) ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗

Θ2 (3,2,7
6
) ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗

Ω (3,3,-1
3
) ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗

TABLE VI. The relevant effective operators (in the Warsaw
basis) and the associated WCs generated once the heavy real SM
singlet scalar (S) is integrated out up to one-loop level are
tabulated. The WCs are expressed as functions of BSM param-
eters; see Eq. (4.3).

Effective operator Wilson coefficient (SMþ S)

QH − c2S;aκSλS
32π2m4

S
þ c2S;aκSμ

2
S

32π2m6
S
− cS;aκ2SμS

64π2m4
S
þ c3S;aλSμS

48π2m6
S

−
c3S;aμ

3
S

96π2m8
S
þ c3S;aμS

6m6
S
− c2S;aκS

2m4
S
− κ3S

192π2m2
S

QH□ − 5cS;aκSμS
192π2m4

S
− c2S;aλS

32π2m4
S
þ 11c2S;aμ

2
S

384π2m6
S
− c2S;a

2m4
S
− κ2S

384π2m2
S

TABLE IV. The nomenclature and quantum numbers of the SM
“fields” relevant for this work. The BSM Lagrangians are defined
in terms of these SM and heavy fields (Table V).

SM fields Spin

SM quantum numbers

SUð3ÞC SUð2ÞL Uð1ÞY a

qL 1
2

3 2 1
6

lL 1
2

1 2 − 1
2

uR 1
2

3 1 2
3

dR 1
2

3 1 − 1
3

eR 1
2

1 1 −1
H 0 1 2 1

2

Bμν 1 1 1 0
Wμν 1 1 3 0
Gμν 1 8 1 0

aHypercharge convention: Qem ¼ T3 þ Y, where Qem, T3, and
Y are electromagnetic charge, third component of isospin
quantum number, and hypercharge, respectively.
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LH2
⊃ jDμH2j2−m2

H2
jH2j2−

λH2

4
jH2j4−λH2;1jH̃j2jH2j2

−λH2;2jH̃†H2j2−λH2;3½ðH̃†H2Þ2þðH2
†H̃Þ2�: ð4:6Þ

In Table IX, we list the effective operators and their
respective WC functions of the BSM parameters in
Eq. (4.6), which are generated after H2 is integrated out.
SMþ Δ1.—
Here, we choose the heavy field to be an isospin-

complex triplet scalar (Δ1) with hypercharge Y ¼ 1 of
massmΔ1

. The interactions involving Δ1 which are relevant
for us are given as [77]

LΔ1
⊃ Tr½ðDμΔ1Þ†ðDμΔ1Þ� −m2

Δ1
Tr½Δ†

1Δ1�
− fμΔ1

ðHTiσ2Δ†
1HÞ þ H:c:g

− λΔ1;1ðH†HÞTrðΔ†
1Δ1Þ − λΔ1;2½TrðΔ†

1Δ1Þ�2

− λΔ1;3Tr½ðΔ†
1Δ1Þ2� − λΔ1;4H

†Δ1Δ†
1H: ð4:7Þ

Once this field is integrated out, the same set of effective
operators as the previous case are generated; see Table IX.
However, the WCs are now functions of the BSM param-
eters given in Eq. (4.7).
SMþ Σ.—
The last BSM scenario considered in this class is the

extension of the SM by an isospin-complex quartet heavy

scalar (Σ) with hypercharge Y ¼ 1
2
of mass mΣ. The Z2

invariant relevant interactions of Σ are given as [69,78,79]

LΣ ⊃ ðDμΣÞ†ðDμΣÞ −m2
ΣΣ†Σ − μΣ½ðΣ†HÞ2 þ H:c:�

− ζ1ðH†HÞðΣ†ΣÞ − ζ2ðH†τIHÞðΣ†TI
4ΣÞ

− λΣ;1ðΣ†ΣÞ2 − λΣ;2ðΣ†TI
4ΣÞ2: ð4:8Þ

Once Σ is integrated out, the same set of effective operators
is generated, but the associated WCs have different func-
tional dependence on the BSM parameters depicted in
Eq. (4.8); see Table IX.

F. Color-triplet isospin-singlet complex scalars

Next, we will discuss the class of BSMs consisting of
two scenarios, where the SM is extended by color-triplet,
SUð2ÞL singlet heavy complex scalar fields (φ1 and φ2)
with different hypercharges.
SMþ φ1.—
Our first choice in this category is the heavy color-triplet,

isospin-singlet complex scalar (φ1) with hypercharge
Y ¼ − 1

3
of mass mφ1

. The interactions of our interest
involving φ1 are [80,81]

Lφ1
⊃ ðDμφ1Þ†ðDμφ1Þ −m2

φ1
φ†
1φ1

− ηφ1
H†Hφ†

1φ1 − λφ1
ðφ†

1φ1Þ2: ð4:9Þ

In Table X, we list the WCs along with the effective
operators that are generated after φ1 is integrated out. As
expected, these WCs are functions of the BSM parameters
noted in Eq. (4.9).
SMþ φ2.—
Another scenario belonging to the same class is found

when the SM is extended by a color-triplet, isospin-singlet
complex scalar (φ2) of hypercharge Y ¼ − 4

3
and of

mass mφ2
. The interactions of our interest involving φ2

are [82,83]

Lφ2
⊃ ðDμφ2Þ†ðDμφ2Þ −m2

φ2
φ†
2φ2

− ηφ2
H†Hφ†

2φ2 − λφ2
ðφ†

2φ2Þ2: ð4:10Þ

We find that the exact set of effective operators is generated
as φ1 once φ2 is integrated out. For this case, the WC
functions of the BSM parameters noted in Eq. (4.10) are
captured in Table X.

G. Color-triplet isospin-multiplet complex scalars

The last class of BSM scenarios are extensions of the SM
with heavy complex scalar fields Θ1, Θ2, and Ω charged
under both color and isospin symmetries.
SMþ Θ1.—
The first one is the extension of the SM with a

color-triplet, isospin-doublet complex scalar (Θ1) with

TABLE VII. WCs (similar to Table VI) after integrating out the
heavy complex SM singlet scalar (S2); see Eq. (4.4).

Effective operator Wilson coefficient (SMþ S2)

QH η3S2
96π2m2

S2

QHB − g2YηS2
48π2m2

S2

QH□ −
η2S2

192π2m2
S2

TABLE VIII. WCs (similar to Table VI) after integrating out the
heavy real triplet scalar (Δ); see Eq. (4.5).

Effective operator Wilson coefficient (SMþ Δ)

QH − 5ηΔκ
2
ΔλΔ

8π2m4
Δ
− ηΔκ

2
Δ

m4
Δ
− η3Δ

8π2m2
Δ
þ 5λHκ

2
ΔλΔ

2π2m4
Δ
þ 4λHκ

2
Δ

m4
Δ

QH□ − η2Δ
32π2m2

Δ
þ 5κ2ΔλΔ

8π2m4
Δ
þ κ2Δ

m4
Δ

QHD − 5κ2ΔλΔ
4π2m4

Δ
− 2κ2Δ

m4
Δ

QHW ηΔg2W
96π2m2

Δ

QeH 5YðeÞ
SMκ

2
ΔλΔ

8π2m4
Δ

þ YðeÞ
SMκ

2
Δ

m4
Δ

QuH 5YðuÞ
SMκ

2
ΔλΔ

8π2m4
Δ

þ YðuÞ
SMκ

2
Δ

m4
Δ

QdH 5YðdÞ
SMκ

2
ΔλΔ

8π2m4
Δ

þ YðdÞ
SMκ

2
Δ

m4
Δ
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hypercharge Y ¼ 1
6
of mass mΘ1

. The relevant part of the
interactions involving Θ1 is [83,84]

LΘ1
⊃ ðDμΘ1Þ†ðDμΘ1Þ −m2

Θ1
Θ†

1Θ1

− ηΘ1
H†HΘ†

1Θ1 − λΘ1
ðΘ†

1Θ1Þ2: ð4:11Þ

The effective operators and the associated WCs that are
generated after integrating out Θ1 are depicted in Table XI.

The WCs are expressed in terms of the BSM parameters
mentioned in Eq. (4.11).
SMþ Θ2.—
In the second instance, the heavy field (Θ2) with mass

mΘ2
is a color-triplet, isospin-doublet complex scalar with

hypercharge Y ¼ 7
6
. The interactions of Θ2 that are relevant

to our analysis are [82–84]

LΘ2
⊃ ðDμΘ2Þ†ðDμΘ2Þ −m2

Θ2
Θ†

2Θ2

− ηΘ2
H†HΘ†

2Θ2 − λΘ2
ðΘ†

2Θ2Þ2: ð4:12Þ

Similar to the previous case, the same operators are
generated once Θ2 is integrated out. The WC functions
of the BSM parameters [Eq. (4.12)] are listed in Table XI.
SMþΩ.—
In the last example model under this class, we choose the

heavy field to be a color-triplet, isospin-triplet scalar (Ω)
with hypercharge Y ¼ − 1

3
and mass mΩ. The interactions

involving Ω that are relevant for this work are [83,84]

LΩ⊃ ðDμΩÞ†ðDμΩÞ−m2
ΩΩ†Ω−ηΩH†HΩ†Ω−λΩðΩ†ΩÞ2:

ð4:13Þ

TABLE IX. WCs (similar to Table VI) after integrating out the heavy complex scalars H2, Δ1, and Σ; see
Eqs. (4.6)–(4.8).

Effective operators

Wilson coefficients

SMþH2 SMþ Δ1 SMþ Σ

QH λHðλH2 ;2
Þ2

48π2mH2
2 þ λHðλH2 ;3

Þ2
12π2mH2

2

8λHμ
2
Δ1

mΔ1 4
−

4ðλΔ1 ;1Þμ2Δ1
mΔ1 4

− 5ζ1ζ
2
2

128π2mΣ
2 −

5ζ1μ
2
Σ

36π2mΣ
2

− ðλH2 ;1
Þ3

48π2mH2
2 −

ðλH2 ;1
Þ2λH2 ;2

32π2mH2
2 −

12ðλΔ1 ;1ÞðλΔ1 ;3Þμ2Δ1
π2mΔ1 4

−
4ðλΔ1 ;4Þμ2Δ1

mΔ1 4 − ζ3
1

24π2mΣ
2 −

5ζ2μ
2
Σ

144π2mΣ
2

− λH2 ;1
ðλH2 ;2

Þ2
32π2mH2

2 − λH2 ;1
ðλH2 ;3

Þ2
8π2mH2

2 þ λHðλΔ1 ;4Þ2
12π2mΔ1 2

− ðλΔ1 ;1Þ3
4π2mΔ1 2

þ 5λHζ
2
2

96π2mΣ
2 þ 5λHμ

2
Σ

54π2mΣ
2

− ðλH2 ;2
Þ3

96π2mH2
2 −

λH2 ;2
ðλH2 ;3

Þ2
8π2mH2

2
− 5ðλΔ1 ;1ÞðλΔ1 ;4Þ2

16π2mΔ1 2
− 3ðλΔ1 ;4Þ3

32π2mΔ1 2

−
16ðλΔ1 ;1ÞðλΔ1 ;2Þμ2Δ1

π2mΔ1 4
− 3ðλΔ1 ;1Þ2ðλΔ1 ;4Þ

8π2mΔ1 2

QH□ − ðλH2 ;1
Þ2

96π2mH2
2 −

λH2 ;1
λH2 ;2

96π2mH2
2

μ2Δ1
mΔ1 4

− ðλΔ1 ;1Þ2
16π2mΔ1 2

− ζ2
1

48π2mΣ
2 þ 5ζ2

2

384π2mΣ
2

þ ðλH2 ;2
Þ2

384π2mH2
2 þ ðλH2 ;3

Þ2
96π2mH2

2
− ðλΔ1 ;1ÞðλΔ1 ;4Þ

16π2mΔ1 2
þ ðλΔ1 ;4Þ2

192π2mΔ1 2 þ 5μ2Σ
432π2mΣ

2

QHD ðλH2 ;3
Þ2

24π2mH2
2 −

ðλH2 ;2
Þ2

96π2mH2
2

4μ2Δ1
mΔ1 4

− ðλΔ1 ;4Þ2
24π2mΔ1 2

5μ2Σ
108π2mΣ

2 −
5ζ2

2

192π2mΣ
2

QHW λH2 ;1
g2W

384π2mH2
2 þ λH2 ;2

g2W
768π2mH2

2

ðλΔ1 ;1Þg2W
48π2mΔ1 2

þ ðλΔ1 ;4Þg2W
96π2mΔ1 2

5ζ1g2W
192π2mΣ

2

QHB λH2 ;1
g2Y

384π2mH2
2 þ λH2 ;2

g2Y
768π2mH2

2

ðλΔ1 ;1Þg2Y
32π2mΔ1 2

þ ðλΔ1 ;4Þg2Y
64π2mΔ1 2

ζ1g2Y
192π2mΣ

2

QHWB
λH2 ;2

gWgY
192π2mH2

2
− ðλΔ1 ;4ÞgWgY

24π2mΔ1 2
5ζ2gWgY
192π2mΣ

2

QeH ðλH2 ;2
Þ2YðeÞ

SM

192π2mH2
2 þ ðλH2 ;3

Þ2YðeÞ
SM

48π2mH2
2

2YðeÞ
SMμ

2
Δ1

mΔ1 4
þ ðλΔ1 ;4Þ2Y

ðeÞ
SM

48π2mΔ1 2

5YðeÞ
SMζ

2
2

384π2mΣ
2 þ 5YðeÞ

SMμ
2
Σ

216π2mΣ
2

QuH ðλH2 ;2
Þ2YðuÞ

SM

192π2mH2
2 þ ðλH2 ;3

Þ2YðuÞ
SM

48π2mH2
2

2YðuÞ
SMμ

2
Δ1

mΔ1 4
þ ðλΔ1 ;4Þ2Y

ðuÞ
SM

48π2mΔ1 2

5YðuÞ
SMζ

2
2

384π2mΣ
2 þ 5YðuÞ

SMμ
2
Σ

216π2mΣ
2

QdH ðλH2 ;2
Þ2YðdÞ

SM

192π2mH2
2 þ ðλH2 ;3

Þ2YðdÞ
SM

48π2mH2
2

2YðdÞ
SMμ

2
Δ1

mΔ1 4
þ ðλΔ1 ;4Þ2Y

ðdÞ
SM

48π2mΔ1 2

5YðdÞ
SMζ

2
2

384π2mΣ
2 þ 5YðdÞ

SMμ
2
Σ

216π2mΣ
2

TABLE X. WCs (similar to Table VI) after integrating out the
heavy scalars φ1 and φ2; see Eqs. (4.9) and (4.10).

Effective operator

Wilson coefficients

SMþ φ1 SMþ φ2

QH − η3φ1
32π2m2

φ1

− η3φ2
32π2m2

φ2

QH□ − η2φ1
64π2m2

φ1

− η2φ2
64π2m2

φ2

QHB g2Yηφ1
576π2m2

φ1

g2Yηφ2
36π2m2

φ2

QHG g2Sηφ1
384π2m2

φ1

g2Sηφ2
384π2m2

φ2
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OnceΩ is integrated out, the same set of effective operators
similar to the previous two scenarios emerge. In Table XI,
we capture the WCs which are functions of the model
parameters given in Eq. (4.13).

H. Statistical inference

To obtain the bounds on the model parameters, first the
low-energy observables are written in terms of dimension-
six SMEFT WCs and the SM parameters and then they are
mapped to the effective theory by expressing the WCs as
functions of the BSM couplings and the cutoff scale Λ8

following Secs. IV B–IVG.
The statistical methodology is similar to that described in

Sec. III B, with the exception that the free fit parameters
here are those of the BSM models. In general, we choose
uniform priors of f−4π; 4πg for BSM quartic couplings
due to perturbativity and f−Λ;Λg for couplings with mass
dimension one (since the cutoff scale Λ ¼ 1 TeV). In
certain scenarios, the Bayesian fit is insensitive to certain
model parameters, and in most cases, these insensitive
parameters are BSM self-quartic couplings.
In the following, we discuss the fits of the model

parameter space of different SM extensions. We first
discuss the models with multiple parameters followed by
single parameter models.

1. Models with multiple parameters

SMþ S.—
In this model, we find a set of two WCs CH and CH□ that

depend upon the model parameters cS;a, κS, μS, and λS (see
column 2 of Table VI). We perform the fit assuming the
uniform priors of f−Λ;Λg for cS;a and μS , and f−4π; 4πg
for κS and λS. We find that the observables used in this
analysis are insensitive to μS and λS; i.e., these have
negligible effects on the posterior distributions of the other

parameters. Therefore, without loss of generality, these are
set to be zero, and the fit results of cS;a and λS are obtained
along with five SM parameters. The one-dimensional
(showing individual parameter space) and two-dimensional
(showing correlations) marginal posterior distributions
encapsulating the correlations between them are shown
in Fig. 1(a).
SMþ Δ.—
The seven WCs in the effective theory resulting from

extending the SM with a heavy real SUð2ÞL triplet scalar
(Δ) constrain three model parameters ηΔ, κΔ, and λΔ (see
the second column of Table VII). The ranges f−4π; 4πg for
ηΔ and λΔ, and f−Λ;Λg for κΔ are set as uniform priors.
The marginal posteriors are shown in Fig. 1(b).
SMþ Δ1.—
For the complex SUð2ÞL triplet scalar (Δ1) extension, a

set of nine WCs is related to the five model parameters μΔ1
,

λΔ1;f1;2;3;4g (third column of Table IX). The fit is performed
taking uniform priors within the range of f−4π; 4πg for the
scalar quartic couplings λΔ1;f1;2;3;4g and f−Λ;Λg for μΔ1

along with the SM parameters. Just like the model above,
the fit is insensitive to λΔ1;2, and λΔ1;3, and hence, they are
set to zero. The marginal posteriors of λΔ1;1, λΔ1;4, and μΔ1

are shown in Fig. 1(c).
SMþH2.—
We explore the model parameter space of the H2

extended BSM scenario utilizing the nine WCs written
as functions of three model parameters listed in the second
column of Table IX. The BSM quartic couplings λH2;1,
λH2;2, and λH2;3 are fitted along with the SM parameters
assuming uniform priors of f−4π; 4πg. The one- and two-
dimensional marginal posterior for the BSM parameters
λH2;1, λH2;2, and λH2;3 are presented in the Fig. 1(d).
SMþ Σ.—
An analysis similar to those described above for different

BSMextensions is done for themodel parameters of SMþ Σ
using the one-loop matching results. In this SUð2ÞL quartet
scalar extension of Σ, a list of nine WCs are expressed as
functions of three model parameters ζ1, ζ2, and μΣ (see the
fourth column of Table IX). The posterior distributions of
these model parameters, along with SM parameters, are
sampled assuming uniform priors of f−4π; 4πg for ζ1, ζ2,
and μΣ. The one-dimensional marginal posteriors of ζ1, ζ2,
and μΣ, along with their two-dimensional counterparts, are
shown in Fig. 1(e).

2. Models with one parameter

In the rest of the BSM scenarios containing heavy scalars
S2;φ1;φ2;Ω;Θ1;Θ2, the WCs are functions of only one
BSM parameter for each model. The fit results are shown
in Table XII. We refrain from showing their posteriors,
as these are quite imprecise with a large, equiprobable
parameter space while being consistent with zero.

TABLE XI. WCs (similar to Table VI) after integrating out the
heavy scalars Θ1, Θ2, and Ω; see Eqs. (4.11)–(4.13).

Effective operator

Wilson coefficients

SMþ Θ1 SMþ Θ2 SMþΩ

QH −
η3Θ1

16π2m2
Θ1

−
η3Θ2

16π2m2
Θ2

− 3η3Ω
32π2m2

Ω

QH□ −
η2Θ1

32π2m2
Θ1

−
η2Θ2

32π2m2
Θ2

− 3η2Ω
64π2m2

Ω

QHB g2YηΘ1
1152π2m2

Θ1

49g2YηΘ2
1152π2m2

Θ2

g2YηΩ
192π2m2

Ω

QHG g2WηΘ1
128π2m2

Θ1

g2WηΘ2
128π2m2

Θ2

g2WηΩ
32π2m2

Ω

QHW g2SηΘ1
192π2m2

Θ1

g2SηΘ2
192π2m2

Θ2

g2SηΩ
128π2m2

Ω

8The masses of the heavy scalars are equivalent to the cutoff
scale Λ, which is chosen to be 1 TeV for the entirety of the
analysis.
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V. MODEL-INDEPENDENT VS MODEL-
DEPENDENT ANALYSES

Comparing the span of the WCs for the fit with all
effective operators present and fits with one WC at a time
(second and third columns of Table III) shows us how the
allowed space of each WC increases in the presence of
other independent WCs. This non-negligible variation of
theWC space is the reason for our including the tenWCs fit
result in the fourth column of the said table. This enunciates
the fact that for a meaningful comparison of parameter
spaces between model-independent and model-dependent
studies, we need to consider only those subsets of the WCs
which come from some BSM model considered here. As
can be seen from Table V, some of the BSM scenarios
considered in this analysis give rise to the same set of

effective operators. This observation motivates us to
categorize these 11 scenarios into six different classes of
BSM theories.
Our rule of thumb is if two or more BSM scenarios lead

to the same set of effective operators, they are declared
degenerate and are categorized into a single class. It is
important to remark that though the degenerate models
possess the same operators, their respective WCs, which
depend on model parameters, are entirely different, reflect-
ing the intrinsic nonidentical nature of those BSMs. This
strategy of categorizing multiple models together in a class,
using the power of EFT, enables us to bring down some of
the BSMs in the same footing to be adjudged simulta-
neously, and thus to allow further comparative remarks.
This methodology is illustrated by the flowchart in Fig. 2.

FIG. 1. The one- and two-dimensional marginalized posteriors for different SM extensions (a) SMþ S, (b) SMþ Δ, (c) SMþ Δ1,
(d) SMþH2, and (e) SMþP

showing the correlations among them. Only the BSM parameters are shown. For full tri-plots like these,
including the SM-parameters, please check our GitHub repository [39]. Here, the fitted values of cS;a; κΔ, and μΔ1

are expressed in GeV.

TABLE XII. Bayesian fit results of BSM theories with a single parameter.

Model SMþ S2 SMþ φ1 SMþ φ2 SMþ Ω SMþ Θ1 SMþ Θ2

Model ηS2
¼ ηφ1

¼ ηφ2
¼ ηΩ ¼ ηΘ1

¼ ηΘ2
¼

Parameter 0.067� 1.141 0.076� 0.794 0.016� 0.793 0.093� 0.533 0.095� 0.619 0.032� 0.622
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For each of these six classes, we first want to constrain
the WCs from the data in a model-independent manner. To
this end, we obtain the Bayesian inference on these classes
of WCs without any model information and by varying
them as free and independent parameters in each case. The
operators that are not generated in a given model are taken
to be zero. These results from now on will be considered to
be the “model-independent” results. The remaining col-
umns of Table III list the best-fit values and uncertainties
for each class. As can be seen from the second row (from
top) in that table, the last three columns are the results for
classes with WCs, which can be connected to multiple
BSM scenarios. The results clearly show the necessity of
considering these individual classes, as the parameter space
of each WC varies largely from both the fit with all WCs
present and the fit with only that WC, as well as fits for
other classes. As an example, one can follow the row of
CH□ in Table III and see how even the model-independent
results vary.
In the next step, using the data-driven BSM parameter

posteriors of each model of a given class (Sec. IV H) and
the matching the results relating the WCs to the BSM
parameters obtained using CoDEx (Tables VII–IX), we
proceed to constrain the same set of WCs again. In this
case, we expect to obtain a different result for each BSM
model, as the WCs are functions of the BSM parameters
and thus related to each other. We use the large samples

generated in the MCMC processes for each model fit to
obtain the multivariate distributions of corresponding WCs.
Where the model-independent results for each class do
not contain any model information, the WC distributions
generated in this way are naturally highly constrained by
the structure of the specific BSM models. Comparing the
WC distributions obtained in these two ways is effectively
one definitive way of comparing the model-independent
and -dependent results.
To visualize these distributions, we use marginal poste-

riors for the WC distributions taken two at a time. For a
specific class, the model-independent two-dimensional mar-
ginal posterior is the same, while those generated directly
from several BSM scenarios from the same class are differ-
ent. Whenever possible, we compare them together.
Figure 3 showcases these results for the class of models

SMþ φ1 and SMþ φ2 with four associated effective
SMEFT operators. The large gray regions correspond to
the model-independent 68% and 95% credible intervals
(darker to lighter) of corresponding WCs. Similarly, the
red-dashed-bounded and blue regions correspond to the
WC regions obtained from models SMþ φ1 and SMþ φ2,
respectively. As the latter ones occupy comparatively
tiny regions in the main figure, we show their enlarged
versions in the inset. As we are mainly interested in the
allowed parameter spaces for individual WCs from model-
dependent or -independent analyses, we show only the

FIG. 2. This flowchart encapsulates the “model-independent” vs “model-dependent” analysis discussed in Sec. V.
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smallest subset of possible two-dimensional marginal
distributions here onward containing all the WC regions.
These, among all other possible figures not shown here, are
organized in the GitHub repository associated with this
work [39].
For the sake of clarity, let us discuss Fig. 3 in detail here.

We have seen from Sec. IV F that the two BSM models
with extra color-triplet, isospin-singlet complex scalars
with different hypercharges give rise to the same set of
four effective operators (QH,QH□,QHB, andQHG) relevant
to our observables. Thus, we put them in the same class of
models following the prescription at the beginning of this
section. Each model in this class has only one BSM para-
meter, whose parameter spaces are quoted in Table XII.

From a model-independent point of view, if we just keep
the four WCs (CH, CH□, CHB, and CHG) as independent
parameters in the fit and vary them simultaneously, the
obtained parameter space is the one we get in the penulti-
mate column of Table III. This, in our result, constitutes a
four-dimensional posterior in the WC space. If we margin-
alize to just two WCs CH and CH□ (not by setting the
other WCs to their best-fit value, but rather taking a two-
dimensional projection of the whole posterior), we get the
large gray elliptical shape in Fig. 3(a), the darker (lighter)
region of which is the 2D 68% (95%) credible region. The
tilt of the ellipse shows a positive correlation between the
WCs, which can be found to be 0.995. To show the optimal
amount of information in a minimum number of figures, we

FIG. 3. Comparison of the two-dimensional posteriors of model-independent WCs (gray; 68% (darker) and 95% (lighter) credible
intervals) with those generated from the class of degenerate leptoquark singlet scenarios. The red-dashed-bounded and blue regions
correspond to the similar regions obtained from the SMþ φ1 and SMþ φ2 respectively. Enlarged spaces are shown in the inset. Figs. 3
(a)–3(c) show the two-dimensional posteriors for CH − CH□, CH − CHB, and CH − CHG respectively.
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have kept the x axis of the other two plots of Fig. 3 fixed to
CH and varied the y axis. To compare this model-indepen-
dent parameter space with individual models, we then have
propagated the posteriors of the individual model parameters
and found the WC space for them as well. For example, the
model-dependent WC space for the BSMmodel SMþ φ2 is
the blue region in all plots of Fig. 3. As can be seen, these
WC spaces are found to be orders of magnitude smaller than
the model-independent ones, and hence, we have enlarged
them in the inset. Sometimes, one round of magnification is
not enough, as is evident from Fig. 3(b), which shows that
the WC space corresponding to SMþ φ1 is orders of
magnitude smaller than even that of SMþ φ2, thus neces-
sitating two rounds of magnification in the second inset.
Similar figures are obtained for the rest of the

classes with multiple models. The WC spaces for models

SMþ Θ1, SMþ Θ2, and SMþ Ω with five effective
SMEFT operators are shown in Fig. 4, whereas Figs. 5
and 6 show those regions for the class of models involving
SUð2ÞL doublet, triplet, and quartet scalars with nine
mapped SMEFT operators.
The WC spaces for classes with a single model in each,

namely, SMþΔ, SMþS, and SMþS2 are shown in Figs. 7
and 8, respectively. There is a single connecting theme
throughout all these figures: the minuscule size of the
model-constrained WC regions compared to their model-
independent counterparts. Though all model-independent
WC regions are consistent with the SM, looking only at the
model-independent WC spaces, one erroneously concludes
that any model giving rise to these WCs would probably
havequite a largeparameter spaceallowed,whereas, in reality,
the allowedWC space strictly coming from a single model is

FIG. 4. Figs. 4(a)–4(d) similar to Fig. 3 corresponding to the class of leptoquark-multiplet scenarios, namely, SMþ Θ1, SMþ Θ2,
and SMþ Ω.
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constrained in a tiny region around zero (SM). Instead of this
beingaquirkof oneor a fewmodels,we find this fact tobe true
for all BSM scenarios considered in this work.
The situation turns even worse if we consider the fact that

we are only using a partial set of WCs relevant to the models
in question for the model-independent results. As is the norm
in the community, model-independent inferences are gen-
erally obtained with all WCs present simultaneously. As we
have seen from the first column of Table III, the WC spaces
become considerably larger in that case. Using such results
makes our model-independent inferences overwhelmingly
conservative and in essence, inaccurate.
This points us to the ominous realization that depending

solely on the model-independent SMEFT fit results to infer
parameter spaces of individual BSM scenarios, is in fact,
far from ideal. The results of this analysis motivate us to

propose that during any consequential data-driven analysis
of BSM theories in view of the low-energy observables, the
bottom-up approach of expressing the observables in terms
of SMEFTWCs should go hand in hand with the top-down
way of calculating those WCs in terms of the BSM model
parameters to avoid erroneous, conservative, and in effect,
too hopeful statistical inferences.

VI. ROLE OF THEORETICAL CONSTRAINTS

In this section, we will show how the theoretical
constraints can affect the model parameters derived in
Sec. IV H. For the sake of demonstration, we consider
the SM extension with Δ1 as an example model. We have
noted the vacuum stability and unitarity bounds (see
Refs. [77,85,86]) as

FIG. 5. Figs. 5(a)–5(d) similar to Fig. 3 corresponding to the class of electroweak multiplet scalar scenarios, namely, SMþ Δ1,
SMþH2, and SMþ Σ. Continued in Fig. 6.
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i. vacuum stability constraints

λΔ1;2 þ λΔ1;3 ≥ 0; λΔ1;2 þ
λΔ1;3

2
≥ 0; λΔ1;1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHðλΔ1;2 þ λΔ1;3Þ

q
≥ 0;

λΔ1;1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λH

�
λΔ1;2 þ

λΔ1;3

2

�s
≥ 0; λΔ1;1 þ λΔ1;4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHðλΔ1;2 þ λΔ1;3Þ

q
≥ 0;

λΔ1;1 þ λΔ1;4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λH

�
λΔ1;2 þ

λΔ1;3

2

�s
≥ 0; ð6:1Þ

FIG. 6. Figs. 6(a)–6(d) continued from Fig. 5.
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FIG. 7. Figs. 7(a)–7(f) show the comparison of the two-dimensional posteriors of model-independent WCs [gray 68% (darker) and
95% (lighter) credible intervals] with those generated from the class of isospin-triplet real scalar (SMþ Δ). The blue region corresponds
to the similar region obtained from the SMþ Δ. Enlarged spaces are shown in the inset.

FIG. 8. Figs. 8(a)–8(c) similar to Fig. 7 corresponding to the classes of SMþ S and SMþ S2 with two and three mapped effective
operators, respectively.
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ii. unitarity constraints

λΔ1;2 þ 2λΔ1;3 ≤ 4π; 4λΔ1;2 þ 3λΔ1;3 ≤ 4π; 2λΔ1;2 − λΔ1;3 ≤ 8π;

jλΔ1;1 þ λΔ1;4j ≤ 8π; jλΔ1;1j ≤ 8π; j2λΔ1;1 þ 3λΔ1;4j ≤ 16π;

j2λΔ1;1 − λΔ1;4j ≤ 8π; jλΔ1;4j ≤ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4λH � 16πÞðλΔ1;2 þ 2λΔ1;3 � 4πÞ

q
;

j2λΔ1;1 þ λΔ1;4j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
4λH −

16

3
π

�
ð4λΔ1;2 þ 3λΔ1;3 − 4πÞ

s
: ð6:2Þ

Here, λH ¼ m2
H

2v2 is the SM Higgs self-quartic coupling.

The marginalized two-dimensional posterior distribu-
tion from the Bayesian fit for parameters λΔ1;1 and λΔ1;4
enclosing the 68% and 95% probability regions is shown in
Fig. 9. The unitary and vacuum stability bounds stated in
Eqs. (6.1) and (6.2) are also shown in the figure. The
crosshatched region denotes the parameter space disal-
lowed by the theoretical bounds with λΔ1;2 ¼ λΔ1;3 ¼ 0.
This shows that the allowed parameter space consistent
with experimental data may not be compatible with the
theoretical constraints for any arbitrary choice of other
parameters of the model. Thus, before performing the
phenomenological analysis while choosing the benchmark
values for the parameters, the inferred parameter space
must be checked against the theoretical constraints.

VII. CONCLUSION AND REMARKS

For long, experimental observations have persuaded us
to propose numerous theoretically consistent BSMs with
widely varying underlying symmetries and particle content.
The unsettling aspect of the phenomenological landscape is
that, on one hand, this diverse group of BSM scenarios,
often proposed to address similar queries, is not viable for
scrutiny under the same microscope. On the other hand, to
understand the correct nature of new physics, it is necessary
to find a common ground for multiple BSM scenarios, from
where we can start making comparative remarks about
them. The resolution of this apparent conflict has been our
chief motivation for the present work.
To achieve this, we proceed in this work to rerealize the

minimal extensions of the SM with the help of EFT. As the
experimental touchstone, we define our set of observables
using the EWPOs and the Higgs signal strengths from Run-
I and -II CMS and ATLAS data. Noting that the complete
set of our adopted observables can be recast in terms of 18
SMEFT dimension-six operators, we first estimate the
Bayesian posteriors of the respective 18 WCs (both taken
together and individually), assuming them to be indepen-
dent. To estimate the WC spaces and their correlations, we
use the marginalized one- and two-dimensional posteriors
of those WCs.
On the model side, we consider 11 BSM scenarios, each

of them an extension of the SM by a single heavy scalar
multiplet. We integrate out these heavy fields and compute
the effective operators and associated WCs up to one-loop
level, thus making the WCs correlated through the BSM
parameters. While computing the WCs, we ignore the
heavy-light mixing in the loop.
Further noticing that only ten of the 18 operators can be

generated from the said BSM scenarios, we recreate the
statistical analysis considering the relevant ten WCs inde-
pendent. Comparing the marginal posteriors of each WC
present in both ten and 18 WCs fits, we observe that
simultaneous fits of a larger number of independent WCs
nontrivially increase the allowed parameter space of each
WC. Based on this variation of the allowed WC space,
together with the observation that some of the scenarios

FIG. 9. The marginalized 2D posterior for the λΔ1;1 and λΔ1;4 for
the SMþ Δ1 extension. The crosshatched region denotes the
parameter space disallowed by the theoretical bounds for
λΔ1;2 ¼ λΔ1;3 ¼ 0.
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lead to the same set of effective dimension-six operators,
we categorize such BSMs to form six classes encapsulating
11 models, with each class containing a distinct set of WCs.
The estimates of these groups of WCs constitute the model-
independent part of our analysis.
Next, we perform a Bayesian analysis to estimate the

ranges of the parameters appearing in the Lagrangians of all
11 BSM scenarios. Using samples from these posteriors,
we then reconstruct the WCs of the class to which those
models belong. This enables us to display and compare the
ranges and correlations of the WCs coming from different
models of the same class to their respective model-
independent estimates through two-dimensional marginal
distributions in the WC space. We also show, with an
example model, how the theoretical constraints, e.g.,
vacuum stability and unitarity, can play a further crucial
role to rule out some of the BSM parameter space which
is consistent with the experimental data. The numerical
results of the entire analysis, along with all figures
(including those not added in the draft) are available in
the GitHub repository [39] associated with this work.
This method of employing EFT and using the common

WC spaces shared by BSM scenarios provides a platform to
compare apparently disconnected UV theories described by
the same IR d.o.f. respecting the same symmetry, and paves
the way toward a complete data-driven way of addressing
the intractable inverse problem. Though EFT cannot
replace the full theoretical computation, it can help us
sniff out the correct nature of NP. It can be further used to
understand the underlying degeneracy in model space, with
a clue to break the same degeneracy including more
observables. This approach can be replicated even in the
event of the discovery of a new BSM particle. In that case,
we need to compute the complete set of effective operators
for the new theory (BSMEFT [87,88]) and recast the full
observable set in terms of these new operators. With the

help of GrIP [89], CoDEx [37], and an increasing number of
observables from different sectors, a suitable statistical
inference process could, hopefully, unveil the correct nature
of new theories.
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APPENDIX A: SM FIT OF ELECTROWEAK
PRECISION OBSERVABLES

Using the experimental inputs and theoretical predictions
of the electroweak precision observables mentioned in
Sec. II A, we perform the SM electroweak fit in terms of
five parameters using the Bayesian framework. The uni-
form priors are chosen with ranges of f90; 92g, f120; 130g,
f170; 180g, f0; 0.2g, and f0.02; 0.03g for the SM param-
eters mass of the Z boson (mZ), mass of the Higgs boson
(mH), mass of the top quark (mt), strong coupling constant
[αsðm2

ZÞ], and the hadronic contribution to the running of α
[Δαð5Þhadðm2

ZÞ], respectively. The central tendencies and
dispersions of the parameters obtained after performing a
Bayesian fit in terms of 19 observables are given in the
second and third columns of Table XIII.
The obtained results are cross-checked and found to

agree with the global electroweak fit performed by the
Gfitter group [90]. These fitted SM parameters are consid-
ered as nuisance parameters in the main part of our
analysis, and these results are fed into the SMEFT fits
as multinormal priors.

TABLE XIII. Results of the SM fit of EWPO.

Parameters Fit values Correlations

mZ (GeV) 91.188� 0.002 1 0.002 −0.097 −0.007 0.040
mH (GeV) 125.1� 0.2 1 0.002 −0.001 −0.001
mt (GeV) 173.554� 0.843 1 0.045 0.098
αs 0.118� 0.003 1 0.010

Δαð5Þhadðm2
ZÞ 0.0276� 0.0001 1
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TABLE XIV. Correlations among the 18 WCs with the fit results shown in column 2 of Table III.
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