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We study the conformal window of asymptotically free gauge theories containing Nf flavors of fermion
matter transforming to the vector and two-index representations of SOðNÞ; SUðNÞ and Spð2NÞ gauge
groups. For SOðNÞ we also consider the spinorial representation. We determine the critical number of
flavors Ncr

f , corresponding to the lower end of the conformal window, by using the conjectured critical

condition on the anomalous dimension of the fermion bilinear at an infrared fixed point, γψ̄ψ ;IR ¼ 1

or equivalently γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ ¼ 1. To compute γψ̄ψ ;IR we employ the (scheme-independent)

Banks-Zaks conformal expansion up to the 4th order in ΔNf
¼ NAF

f − Nf with NAF
f corresponding to

the onset of the loss of asymptotic freedom, where we show that the latter critical condition provides a
better performance along with this conformal expansion. To quantify the uncertainties in our analysis,
which potentially originate from nonperturbative effects, we propose two distinct approaches by
assuming the large order behavior of the conformal expansion separately, either convergent or divergent
asymptotic. In the former case, we take the difference in the Padé approximants to the two definitions of
the critical condition, whereas in the latter case the truncation error associated with the singularity in the
Borel plane is taken into account. Our results are further compared to other analytical methods as well as
lattice results available in the literature. In particular, we find that SUð2Þ with six and SUð3Þ with ten
fundamental flavors are likely on the lower edge of the conformal window, which are consistent with the
recent lattice results. We also predict that Spð4Þ theories with fundamental and antisymmetric fermions
have the critical numbers of flavors, approximately ten and five, respectively.

DOI: 10.1103/PhysRevD.103.076006

I. INTRODUCTION

Since it was discovered that SUðNÞ gauge theories with
Nf flavors of fundamental fermions could exhibit an
interacting conformal phase at an infrared (IR) fixed point
with a nonzero coupling constant [1,2], a substantial amount
of work has been devoted to investigate its properties as well
as near-conformal behavior in the vicinity of the phase
boundary. Besides its own theoretical interests, there has also
been considerable interest in its applications to phenomeno-
logical model building for physics beyond the standard
model. (For instance, see the recent review paper in Ref. [3].)
In order to access the whole range of the IR conformal phase
(conformal window), we typically assume that the number of
flavors Nf varies continuously. One end of the conformal
window is identical to the critical point at which the theory
loses asymptotic freedom. The corresponding number of

flavors NAF
f can exactly be determined by investigating the

renormalization group (RG) beta function in the usual
perturbative expansion with respect to the coupling constant.
At the same time we know that there should be the other end
of the conformal window at Ncr

f with 0 < Ncr
f < NAF

f ,
because the theories with a sufficiently small number of
flavors, including Nf ¼ 0 pure Yang-Mills, are in the
confining phase, and the dynamically generated confinement
scale breaks the conformal symmetry. In contrast to the
upper bound of the conformal window, however, it is a
highly nontrivial task to identify its lower end since we may
be in the large coupling regime in general and have to deal
with nonperturbative effects.
Recently, our understanding of the phase structure

of non-Abelian gauge theories with fermionic matter has
been further extended to asymptotically unfree theories for
Nf > NAF

f [4,5]. Just above NAF
f the perturbative beta

function yields that the theory possesses a Landau pole, and
thus it is not well defined in the ultraviolet (UV) while it is
trivial in the IR. If Nf further increases and becomes larger
thanNsafe

f , however, the theory develops an ultraviolet fixed
point with a nonzero value of the coupling, which has been
discussed in the context of asymptotic safety [4].
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The conjectured phase diagram of non-Abelian gauge
theories with fermionic matter fields at zero temperature
and chemical potential can then be drawn as in Fig. 1. For
illustration purposes we consider that fermions are in the
fundamental representation and take the large N limit while
keeping the ratio xf ¼ Nf=N is fixed, i.e., the Veneziano
limit. However, we note that without losing generosity the
discussion below can be applied to all the theories with a
gauge group G and Nf fermions in the representation R
considered in this work. There are two different phases in
which the theory is asymptotically free, chirally broken and
IR conformal. In the asymptotically unfree regime, two
other phases are expected to exist, QED-like and UV safe.
Analytical understanding of the chirally broken phase at
small xf is highly limited because the standard perturbation
technique is not applicable due to the absence of a small
expansion parameter. One should instead rely on fully
nonperturbative methods such as the lattice Monte-Carlo
calculations.
In the vicinity of xAFf ¼ 11=2, onset of the loss of

asymptotic freedom, the coupling expansion of the beta
function finds an IR fixed point in the weak coupling
regime for xf < xAFf , i.e., IR conformal, but it does not for
xf > xAFf except the Gaussian fixed point at the origin, i.e.,
non-Abelian QED in the IR. In this perturbative regime one
may also consider an alternative series expansion by taking
the difference, Δxf ≡ xAFf − xf, as a small parameter. Such
an expansion, so-called the Banks-Zaks conformal expan-
sion, has been shown to be a useful tool for the inves-
tigation of the IR conformal phase [2]. In particular, the
scheme-independent conformal expansions of physical
quantities at an infra-red fixed point, such as the anomalous
dimension of a fermion bilinear operator γψ̄ψ ;IR and the
derivative of the beta function β0IR, have been extensively
studied in a series of papers [6–12].1 For xf ≫ xAFf the
coupling or conformal expansion is no longer reliable, but

one can still analytically explore the phase diagram by
means of the large Nf expansion [19,20] which in turns has
proven its worth by discovering the aforementioned UV
safe phases [4,5].
The purpose of this work is to estimate the critical

number of flavors Ncr
f , corresponding to the phase boun-

dary between the chirally broken and the IR conformal, in
G ¼ SUðNÞ, Spð2NÞ and SOðNÞ gauge theories with
fermion matter content in a single representation R. In
particular, we consider the fundamental (F), adjoint (Adj),
two-index symmetric (S2) and antisymmetric (AS), and
spinorial (S) representations. To do this we follow the
approach discussed in Ref. [21] (see also Ref. [22] for an
earlier work along this direction): Ncr

f is determined by
using the conjectured critical condition to the anomalous
dimension of a fermion bilinear operator at an IR fixed
point, γψ̄ψ ;IR ¼ 1 or equivalently γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ ¼ 1,
which characterizes the chiral phase transition through the
annihilation of infrared and ultraviolet fixed points [23]2

and Schwinger-Dyson analysis in the ladder approximation
[22,25,26]. To make our analysis scheme-independent, we
employ the conformal expansion for the computation of
γψ̄ψ ;IR [6]. At finite order in the conformal expansion the
two critical conditions lead to different results in general,
and the latter definition is often used because it does not
only show better convergence to the known orders [21]
but also reproduces the value of the critical coupling αcr

obtained from the Scwhinger-Dyson analysis in the
ladder approximation [22]. As we discuss in Sec. II A
in detail, the critical condition quadratic in γψ̄ψ ;IR is
further supported by the fact that j1 − γψ̄ψ ;IRj has a
square-root singularity with respect to Nf − Ncr

f if the
IR and UV fixed point merger is concerned. For the rest
of this paper we reluctantly use the simplified notation γIR
for γψ̄ψ ;IR.
In this work we also put one step forward by taking

account of the uncertainties associated with the truncation
of the conformal expansions at finite order. It is largely
unknown whether the conformal expansion is convergent

FIG. 1. Conjectured phase structure of largeN QCD in the Veneziano limit at zero temperature and chemical potential. The continuous
variable xf is defined as xf ¼ Nf=N with both Nf and N taken to be infinite.

1More work on the conformal expansions of the anomalous
dimensions of baryon operators and higher-spin operators, and of
γψ̄ψ ;IR and β0IR in the theories with multiple fermion representa-
tions can be found in Refs. [13–15]. See also Refs. [16–18] for
some earlier work on the conformal expansion of β0IR in QCD.

2Strictly speaking, the critical condition on γψ̄ψ ;IR only
manifests itself in the large N limit [24]. We will come back
to this issue in Sec. II A.
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or divergent asymptotic,3 and how far the expansion can
reliably be applicable. Since there has been much evidence
that the conformal expansion may reach the lower end of
the conformal window (e.g., see Refs. [7,8]), we first
assume that this is the case. We then treat the two
possibilities for the asymptotic behavior of conformal
expansion, separately. In case the expansion is convergent,
we employ the Padé approximation to approximate the
closed forms for the two definitions of the critical con-
dition. The difference in the resulting values of Ncr

f will be
taken as the uncertainty of our analysis. The best Padé
approximants are determined by comparing their asymp-
totic behaviors at sufficiently large values of Nf to the
large Nf expansion. If the conformal series is assumed
to be divergent asymptotic, on the other hand, we roughly
estimate the uncertainty, associated with the truncation at
the largest order available up to date, by approximating the
size of an ambiguity in the perturbative expansion which is
closely related to the singularity in the Borel plane.
The paper is organized as follows. In Sec. II Awe discuss

the generic infra-red properties of non-abelian gauge theory
coupled to fermionic matter at zero temperature and
chemical potential by focusing on the asymptotically free
regime. In particular, we recall that both the truncated
Schwinger-Dyson analysis and the mechanism of fixed-
point annihilation yield the same critical condition,
γψ̄ψ ;IR ¼ 1 or equivalently γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ ¼ 1, charac-
terizing the loss of conformality in the IR. In Sec. II B, we
briefly review the conformal expansion of γψ̄ψ ;IR defined at
an IR fixed point. We then describe our strategy to
determine the lower edge of the conformal window in a
scheme independent way in Sec. II C: we apply the critical
condition, which is responsible for the chiral phase tran-
sition, to γψ̄ψ ;IR computed from the conformal expansion at
finite order. Sec. II D is devoted to estimate the size of
systematic effects associated with the finite-order pertur-
bative calculations by assuming the different large-order

behaviors of the conformal expansion, convergent or
divergent asymptotic. We present our main results on the
conformal window of SOðNÞ; SUðNÞ and Spð2NÞ gauge
theories with Nf Dirac (or NWf Weyl) fermions in various
representations, in Sec. III A for the large N limit and in
Secs. III B, III C and III D for finite values of N, respec-
tively. We critically assess our results by comparing to other
analytical methods and the most recent nonperturbative
lattice results available in the literature. Finally, we con-
clude by summarizing our findings in Sec. IV.

II. BACKGROUND AND METHODS

A. Infrared conformal phase in asymptotically
free gauge theories

We consider a generic non-Abelian gauge theory con-
taining Nf flavors of massless fermionic matter in
distinct representations R of the gauge group G ¼ SOðNÞ,
SUðNÞ, and Spð2NÞ.4 The evolution of the gauge coupling
constant g is described by the renormalization group beta
function

βðgÞ ¼ dg
dt

; ð1Þ

where t ¼ lnμwith μ the renormalization scale. For a small
value of g the RG evolution can be studied by perturbation
technique in a reliable way, which is equivalent to the
Feynman loop expansion. After rewriting the coupling
constant as α ¼ g2=4π to be positive definite, one can write
the perturbative beta function as

βðαÞ ¼ −2α
X∞
l¼1

bl

�
α

4π

�
l
; ð2Þ

where the l-loop coefficient bl depends on the details of
the theory, such as the number of flavors Nf, the number of
colors N, the representation R, and the gauge group G.
The essential features of the perturbative theory are

encoded in the lowest two terms which are independent of
the renormalization scheme. Note that in general the series
expansions at finite order in α for l ≥ 3 are scheme-
dependent. With Nf Dirac fermions in the representation R
of the gauge group G the explicit expressions of b1 [31,32]
and b2 [1] are

b1 ¼
11

3
C2ðGÞ −

4

3
NfTðRÞ; ð3Þ

b2 ¼
34

3
C2ðGÞ2 −

4

3
ð5C2ðGÞ þ 3C2ðRÞÞNfTðRÞ; ð4Þ

3The conformal expansion is expected to be free of facto-
rially increasing coefficients due to renormalons which domi-
nate the large-order behavior of the coupling expansion in
QCD-like theories [27,28]. Such a fact results in the better-
behaved series expansions which have been explicitly shown
in the higher-order calculations of γψ̄ψ ;IR and β0IR [9,10]. For
instance, the convergence of the coupling expansion (in the
MS-scheme) is challenged from the fact that the 5-loop order
result for the SUð3Þ gauge theory coupled to Nf ¼ 12 funda-
mental fermions finds no IR fixed point in contrast to the results
at lower-loop orders [29], while the conformal expansion to the
highest order known to us shows no explicit evidence of any
divergent features [7]. Of course, the absence of renormalons is
not sufficient to conclude that the conformal series is con-
vergent, since other types of factorial growth such as the one
related to the multiplicity of diagrams could be involved. Also,
in Ref. [30] it has been argued that the conformal series would
be divergent asymptotic if the coupling expansion turns out to
be divergent.

4Throughout this section Nf denotes the dummy variable for
either the Dirac or Weyl flavors unless explicitly specified.

CONFORMAL WINDOW FROM CONFORMAL EXPANSION PHYS. REV. D 103, 076006 (2021)

076006-3



where TðRÞ is the trace normalization factor and C2ðRÞ is
the quadratic Casimir invariant with C2ðGÞ ¼ C2ðAdjÞ.5
The beta function in Eq. (2) has a trivial fixed point at
α ¼ 0, a Gaussian fixed point, for which the theory is
free. In the vicinity of this fixed point the coupling
constant can be arbitrarily small and the behavior of the
RG flow is governed by the slope of the beta function,
i.e., the sign of b1. Consider that we fix the gauge group,
the fermion representation, and the number of colors, but
continuously vary the number of flavors Nf for which
only non-negative integer values are physically mean-
ingful. For sufficiently small Nf the coefficient b1 has a
positive value and the coupling constant approaches
zero as the momentum scale flows from the IR to the
UV, indicating that the theory is asymptotically free at
high energy. If the number of flavors is larger than
NAF

f ¼ 11C2ðGÞ=4TðRÞ or equivalently b1 < 0, on the
other hand, the theory loses the asymptotic freedom in
the UV, while the IR theory is trivial. The focus of our
interest is in the asymptotically free theory and thus we
restrict our attention to Nf < NAF

f .
The 2-loop results further divide the asymptotically free

region into two nontrivial phases whose IR behaviors
are distinct from each other. If the number of flavors is
sufficiently small such that b2 > 0, including the extreme
case of the pure Yang-Mills (Nf ¼ 0), from the UV to the
IR the coupling runs to infinity and the theory is expected to
confine by developing a dynamical scale. In the presence of
fermionic matter the global (flavor) symmetry is also
expected to be broken due to the nonzero fermion con-
densate. From the fact that a negative value of b2 and an
arbitrarily small positive value of b1 are realized if Nf is
just below NAF

f , on the other hand, one finds a coupling
constant satisfying βðαBZÞ ¼ 0 at αBZ ¼ −4πb1=b2 ≪ 1 in
a reliable manner within the perturbation theory [1,2].
The corresponding BZ fixed point, named after Banks-
Zaks, suggests the existence of interacting IR conformal
theories (even beyond the weak coupling regime) with
certain numbers of flavors ranged over Ncr

f < Nf < NAF
f .

Such an interval in Nf is commonly called the conformal
window (CW). The conformal phase near the upper bound
can systematically be studied by the perturbative analysis

as discussed above. However, it is difficult to investigate
the phase near the lower bound, because in general αBZ
grows to a large value as Nf decreases and thus the
coupling expansion would be no longer reliable. In this
region, nonperturbative effects are also expected to be
sizable in the IR. It is even a nontrivial task to determine
the value of Ncr

f .
In Ref. [23], it has been argued that the underlying

mechanisms responsible for the loss of conformality could
generally be classified by the following three criteria from
the RG point of view: (a) the coupling at an IR fixed point,
αIR, goes to zero, (b) αIR runs off to infinity, or (c) an IR
fixed point merges with a counterpart UV fixed point.
(See also Ref. [24].) The transition between asymptoti-
cally free and unfree phases at NAF

f , the upper bound of
CW, belongs to scenario (a), where the BZ fixed point
annihilates with the Gaussian fixed point at zero cou-
pling. Similarly, the lower end of the conformal window
might be determined from scenario (b) using the 2-loop
results, i.e., b2 ¼ 0 such that αBZ → ∞. However, such a
naive estimation is limited by the breakdown of the
perturbative expansion in the first place. Nevertheless,
we note that mechanism (b) successfully describes the
conformal transition at the lower end of the conformal
window inN ¼ 1 supersymmetric QCD (SQCD) through
the electro-magnetic (Seiberg) duality [33,34], where the
loss of conformality in the dual magnetic theory is
described by scenario (a) in a weak coupling regime.
In other words, both the mechanisms of (a) and (b) are
equivalent to each other up to the reparametrization of the
coupling constant, and could be categorized by a more
generic scenario of that the fixed point merges with that
of a free field theory [24]. Since no chiral symmetry
breaking happens even outside the conformal window
in this scenario, it cannot describe the chiral phase
transition.
The last scenario was realized in the exemplified cases

of certain nonrelativistic and relativistic quantum theories,
and conjectured to explain the loss of conformality at the
lower end of the conformal window in four-dimensional
(4d) nonsupersymmetric gauge theories in the large N limit
[23].6,7 The UV (þ) and IR (−) fixed points correspond to
the solutions of the suggested RG equation, βðg; αÞ≡
−ðα − αcrÞ − ðg − gcrÞ2 ¼ 0 with ðαcr − αÞ > 0, i.e.,

5The group theoretical invariants are defined as Tr½Ta
RT

b
R� ¼

TðRÞδab and Ta
RT

a
R ¼ C2ðRÞI, where the summation runs over

a ¼ 1;…; dG with dG the dimension of the gauge group G.
Here, Ta

R are the generators in the representation R of G and the
group invariants are related by C2ðRÞdR ¼ TðRÞdG with dR
the dimension of the representation R. Our conventions for the
normalization of the generators TR are TðFÞ ¼ 1=2 for the
fundamental representations of SUðNÞ and Spð2NÞ, and
TðFÞ ¼ 1 for SOðNÞ, where the explicit values of other group
invariants relevant to this work can be found in the Appendix A
of Ref. [21].

6See also Ref. [35], where the merger of two fixed points, as
the resultant of the functional analysis, was suggested to explain
the chiral phase transition in QCD with many fundamental
flavors. The authors also estimated the critical number of flavors
Ncr

f including theoretical errors.
7Although mechanism (c) still remains a conjecture for the

chiral phase transition because no rigorous proof exist, it is
encouraging that UV complete 4d gauge models explicitly
realizing the scenario of merging two fixed points were found
in the weakly coupled regime [36].
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g� ¼ gcr � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αcr − α

p
.8 If we consider non-Abelian gauge

theories coupled to fermionic matter in d ¼ 4 space-time
dimension, the interpretation of the couplings is as follows:
g is the dimensionless running coupling associated with a
certain scalar operator Og which becomes marginal at the
chiral phase transition, α is the gauge coupling at an
approximate fixed point which is (almost) constant and
thus treated as an external parameter, and gcr and αcr are the
critical couplings in the onset of the loss of conformality.
The coupling α can be tuned by varying the number of
flavors Nf (or xf ¼ Nf=Nc in the Veneziano limit). We
note that the beta function βðg; αÞ only provides a good
approximation to the RG evolution near the chiral phase
transition, i.e., jα − αcrj ≪ 1 and jg − gcrj ≪ 1. At the UV
and IR fixed points the RG equation yields that ΔOg;� ≡
4þ β0ðg�Þ ¼ 4 ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αcr − α

p
with ΔOg

the scaling dimen-
sion of Og. Approaching the lower end of conformal
window the dimension ΔOg

, as well as the coupling g,
has a square-root singularity in the vicinity of αcr, i.e.,
jg − gcrj ∼ jΔOg

− 4j ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αcr − α

p
. In terms of the number of

flavors Nf (or xf), which basically controls how α
approaches αcr, one can find the analogous square-root
singularity of ΔOg

, provided that the α is an analytic
function of Nf at Ncr

f , as

jΔOg
− 4j ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf − Ncr

f

q
: ð5Þ

Such a square-root behavior has been advocated and
emphasized in Ref. [37].
The most natural candidate for Og in the large N limit

would be the chirally symmetric four-fermion operators
of double-trace form whose mass dimension is 6, e.g.,
ðψ̄γμψÞ2 [38]. The large N factorization yields that the
dimension of the fermion bilinear is exactly half of that of
the double-trace four-fermion operator at infiniteN, and the
above discussion would lead to the critical condition to the
anomalous dimension, γψ̄ψ ¼ 1 [23]. At finite but large N,
of course, it is believed to receive finite N corrections as
γψ̄ψ ¼ 1þOð1=NÞ (for instance, see Sec. D of Ref. [24]).9

Again, in the vicinity of the chiral phase transition it is
expected that γψ̄ψ has a square-root singularity by
approaching the lower end of the conformal window from
above (up to 1=N corrections),

j1 − γψ̄ψ j ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αcr − α

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf − Ncr

f

q
: ð6Þ

As we discuss in Sec. II B, we compute γψ̄ψ at the IR fixed
point using the Banks-Zaks conformal expansion and thus
may not capture such a nonanalytic behavior properly. To
take the full advantage of the conformal expansion, we
therefore define an alternative form of the critical condition,

γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ ¼ 1; ð7Þ

which is equivalent to γψ̄ψ ;IR ¼ 1, but the left-hand side is a
linear function of Nf − Ncr

f away from the lower end of the
conformal window.
The critical condition on γψ̄ψ ;IR has also been discussed

when one studies the chiral phase transition by solving the
Schwinger-Dyson (SD) gap equation in the ladder approxi-
mation. In particular, the suggested form of the critical
condition was found in Ref. [25], γψ̄ψ ;IRð2−γψ̄ψ ;IRÞ¼
α=αcr¼1. Surprisingly, this critical condition is exactly
same with the one discussed above up to Oð1=NÞ correc-
tions, e.g., Eq. (7). As argued in Ref. [26], furthermore, this
critical condition is believed to persist beyond the ladder
approximation. In terms of the gauge coupling the trun-
cated SD equation yields the critical condition, αIR ¼ αcr

with αcr ¼ π=3C2ðRÞ. The naive and traditional way to
determineNcr

f using the SD analysis is to calculate αIR from
the 2-loop beta function and match it to αcr. However, if we
want to proceed the analysis beyond the 2-loop, we cannot
avoid renormalization-scheme dependence and the critical
condition becomes ambiguous. We therefore use the
anomalous dimension γψ̄ψ ;IR instead, which is physical
and thus scheme-independent, to estimate the critical
number of flavors Ncr

f by employing the aforementioned
critical condition. This condition satisfies the unitarity
condition by construction, γψ̄ψ ;IR ≤ 2 [39]. We note that
in the case of SQCD the unitarity condition is the samewith
the onset of the loss of conformality and has often been
used to determine the conformal window even for non-
supersymmetric theories. However, these two conditions
could largely be different in general, because the under-
lying mechanism for the loss of conformality is expected to
depend on the details of the theory as discussed above.

B. Conformal expansion for the anomalous
dimension γψ̄ψ;IR

One of the consequences of the perturbative BZ fixed
point is that the IR coupling can be expanded in terms of the
distance from NAF

f , ΔNf
≡ NAF

f − NIR
f , i.e., the Banks-Zaks

conformal expansion [2],

8For α > αcr the solutions become complex and the conformal
symmetry is expected to be broken. If jα − αcrj ≪ 1, the RG beta
function yields that the coupling g is walking, instead of running,
near g ¼ gIR, and the IR scale would be largely separated from the
UV scale, i.e., ΛIR=ΛUV ¼ e−π=

ffiffiffiffiffiffiffiffiffi
α−αcr

p
[23]. It has been suggested

that such theories, exhibiting walking behavior, could system-
atically be studied by complex conformal field theories (CFTs),
where the real RG flow goes through the pair of complex fixed
points having small imaginary parts [24].

9At finite N the marginal operator at Ncr
f could also take the

form of other than double-trace or a mixture. For instance, see
Ref. [36] for the discussion about the mixture of single- and
double-trace operators at finite N in the context of weakly
coupled and UV complete gauge models realizing the scenario
of fixed point merger.
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αIR
4π

¼
X∞
j¼1

ajðΔNf
Þj; ð8Þ

where the coefficients aj are independent of Nf. The
leading order term is solely determined from the two-loop
results as

αIR ¼ 4πa1ΔNf
þOðΔ2

Nf
Þ; ð9Þ

with

a1 ¼
1

b2

∂b1
∂Nf

����
Nf¼NAF

f

¼ 4TðRÞ
3C2ðGÞð7C2ðGÞ þ 11C2ðRÞÞ

:

ð10Þ

Similarly, the jth order coefficient aj can be determined
from a power series solution to βðαÞ ¼ 0 with βðαÞ in
Eq. (2) truncated at the (jþ 1)th order.
The most notable feature of the conformal expansion is

that the series coefficients of the expansion for a physical
observable are universal, in the sense that they are
independent on the renormalization scheme order by order
[6]. Such a fact can be understood on general grounds,
because the expansion parameter ΔNf

, defined through the
scheme-independent 2-loop beta function, is a well-defined
physical quantity. The conformal expansion relevant to us
is the one for the anomalous dimension of a fermion
bilinear operator

γψ̄ψ ;IRðΔNf
Þ ¼

X∞
j¼1

cjðΔNf
Þj: ð11Þ

The coefficients cj are determined by combining the results
of the coupling expansion of γψ̄ψ ;IRðαÞ at the jth order and
βðαÞ at the (jþ 1)th order, respectively. As mentioned
above, the conformal expansion is scheme-independent at a
given order and does not require any information from
higher-order terms. This is a somewhat distinctive feature
compared to other expansions, alternative to the coupling
expansion, such as the large-Nf expansion for which all
orders in α are necessary to compute the coefficient at
each order in 1=Nf. The recent computations of the
perturbative beta function at the 5th order in the gauge
coupling [40–43], along with the results for the anomalous
dimension at the 4th order [44,45], within the modified
minimal subtraction (MS) scheme enable to determine the
coefficients cl to the 4th order in ΔNf

, where the explicit
results in terms of group invariants for fermions trans-
forming according to the representation R of a generic
gauge group G are presented in Ref. [10].
In general, besides the scheme-independence, the con-

formal expansion of γψ̄ψ ;IR better behaves compared to the
coupling expansion. For instance, we refer the reader to the

results in Tables. 1–5 of Ref. [10], where the resulting
values of γψ̄ψ ;IR, computed using both the conformal and
coupling expansion up to 4th order for SUðNÞ gauge
theories coupled to Nf Dirac fermions in the fundamental,
adjoint, two-index symmetric and antisymmetric represen-
tations, are present. First of all, at fixed Nf, γψ̄ψ ;IR
monotonically increases with the order of ΔNf

for all the
theories considered, indicating that the coefficients are all
positive, while those in the coupling expansion are not.
Furthermore, the difference of γψ̄ψ ;IR between the adjacent

orders of Δj
Nf

and Δðjþ1Þ
Nf

typically decreases if j increases,

except for j ¼ 2 and 3 in a few theories with small values of
Nf (xf). Interestingly, these exceptional cases consistently
reside in the broken phase just outside the conformal
window estimated in this work. If the conformal expansion
turns out to be a convergent series, such an agreement
would indicate that the radius of convergence is closely
related with the phase boundary at which the loss of
conformality occurs. As we have no good understanding
of this interesting observation at the moment, however, it
should not be generalized to a generic feature of the chiral
phase transition in nonsupersymmetric theories without
further investigation. Last but not the least, γψ̄ψ ;IR at each
order in the conformal expansion also monotonically
increases with ΔNf

due to the positive coefficients.
Accordingly, with a few lowest coefficients the perturbative
calculations of γψ̄ψ ;IR are well stretched to the very small
Nf. However, we note that the results at smallNf should be
taken with some care, because the conformal expansion
only makes sense when an IR fixed point exists, where its
existence is not known a priori.

C. Determination of the lower edge
of the conformal window

Following the discussions we had in Sec. II A, we
assume that the chiral phase transition in nonsupersym-
metric gauge theories occurs through mechanism (c) rather
than (b), i.e., an IR fixed point disappears by annihilating a
UV fixed point. Furthermore, we borrow the large N
argument and assume that the chiral phase transition is
triggered by the four-fermion operators of double-trace
form. To determine the critical number of flavors Ncr

f ,
corresponding to the lower edge of conformal window, we
therefore adopt the following critical condition to the
anomalous dimension of a fermion bilinear,

γψ̄ψ ;IR ¼ 1 or equivalently γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ ¼ 1: ð12Þ

As discussed in Sec. II A, we expect to have finite N
corrections for the gauge theories apart from the infinite
N limit. We will discuss the implications of such finite N
effects on the resulting values of Ncr

f in Sec. III.
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In an earlier work along this direction [46], the
coupling expansion including higher order terms in the
MS scheme was used to compute γψ̄ψ ;IRðαIRÞ and αIR.
Furthermore, the authors employed the critical condition
γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ ¼ 1, not γψ̄ψ ;IR ¼ 1, because the 1-loop
result turned out to be identical to the critical condition on α
in the traditional Schwinger-Dyson analysis. In this work
we instead use the Banks-Zaks conformal expansion for the
computation of γψ̄ψ ;IR, because it shows better behavior as
discussed in the previous section. More importantly both
forms of the critical condition can be expanded order by
order in a scheme independent way, so be the conformal
window. Comparisons between the conformal and coupling
expansions for the determination of Ncr

f in SUð3Þ gauge
theories coupled to Nf fundamental Dirac fermions are
found in Ref. [21].
Two equivalent critical conditions in Eq. (12) should be

identical to each other if all orders of the conformal
expansion are considered. If the left-hand sides of those
equations are truncated at the finite order n, however, it
leads to two different critical conditions. Accordingly, the
resulting values of Ncr

f are different in general. To be
explicit, we first define the finite-order critical condition of
the former

γðnÞIR ðΔNf
Þ ¼

Xn
j¼1

kjðΔNf
Þj ≡ 1; ð13Þ

where the coefficients kj are known to the 4th order [10].
Similarly, the latter critical condition at each order n can be
written as

½γIRð2 − γIRÞ�ðnÞðΔNf
Þ ¼

Xn
j¼1

κjðΔNf
Þj ≡ 1: ð14Þ

The coefficients κj are related to kj as

κ1 ¼ 2k1; κ2 ¼ 2k2 − k21;

κ3 ¼ 2k3 − k1k2; κ4 ¼ 2k4 − 2k1k3 − k22; � � � : ð15Þ

To illustrate the typical behavior of the left-hand
sides of Eq. (13) and Eq. (14), we consider SUðNÞ gauge
theories coupled to Nf fundamental Dirac fermions
in the Veneziano limit, i.e., N → ∞ and Nf → ∞ with
the ratio xf ¼ Nf=N fixed. We define Δxf ¼ xAFf − xf with
xAFf ¼ 11=2. In Fig. 2, we show the results for xf ≤ xAFf . As

discussed in the previous section, γðnÞIR ðΔxfÞ monotonically
increases as we go to the higher order in Δxf over the whole

range of xf considered, so does ½γIRð2 − γIRÞ�ðnÞðΔxfÞ. We
also observe that the latter receives smaller corrections from
higher order terms along the black dotted line, correspond-
ing to the critical condition, which can be understood as

follows. First of all, the monotonic increment of γIR with n
implies the positiveness of the coefficients ci, which in turn
results in κ2=κ1 < k2=k1 as seen in Eq. (15), i.e., for a given
value of Δxf the ratio between the second and first terms of
γIRð2 − γIRÞ is smaller than that of γIR. We note that such an
inequality cannot always be true for higher order coeffi-
cients. Secondly, the leading-order result of γIRð2 − γIRÞ
starts by twice larger than that of γIR. Combined with the
positive coefficients, it leads us to find higher-order results
at smallerΔxf , which allows us to be in the better controlled
regime of the perturbative series expansion.
As we approach the unity, therefore, we find that the

conformal expansion of γIRð2 − γIRÞ provides better per-
formance to estimate xcrf . As shown in the left panel of
Fig. 3, in particular, the differences in the resulting values
of Δxf (or equivalently x

cr
f ) among n ¼ 2, 3, and 4th orders

(red circle) are within 10% level, while those obtained from
the conformal expansion of γIR ¼ 1 (blue circle) are about
20–40%. Nevertheless, we find that red and blue circles
approach to each other as we go to the higher order in Δxf ,
which is consistent with our expectation. Similar conclu-
sions are drawn for the other theories considered in this
work. Therefore, we use the critical number of flavors Ncr

f

determined from the finite-order critical condition defined
in Eq. (14) with n ¼ 4 as our best estimate for the lower end
of the conformal window.
We want to close this section by commenting on

the different behaviors of γψ̄ψ ;IR and γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ in
the vicinity of the chiral phase transition envisioned by the
mechanism of fixed point annihilation discussed in Sec. II B.

FIG. 2. Conformal expansions of γψ̄ψ ;IR (dashed lines) and
γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ (solid lines) at finite order in Δxf ¼ 11=2 − xf
for SUðNÞ gauge theories coupled to the Nf Dirac flavors of
fundamental fermions in the Veneziano large N limit with fixed
xf ¼ Nf=N. Purple, green, blue, and red colors denote the results
obtained by truncating the series expansions at n ¼ 1, 2, 3 and 4,
respectively. The black dotted line corresponds to the critical
condition for the loss of conformality.
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As indicated by Eqs. (6) and (7), γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ would
linearly approach the unity as we decreases xf within the
conformal window, while γψ̄ψ ;IR would approach it with a
square-root singularity. Although it is not possible to
correctly describe the expected singular behavior of γψ̄ψ ;IR
with the series expansion, the results obtained by the first few
low-lying terms are indeed consistent with the qualitative
picture as shown in Fig. 2. Such a fact further supports our
conclusion that the finite-order critical condition in Eq. (14)
is more appropriate to determine the lower end of the
conformal window with a better accuracy.

D. Error estimates

Aside from higher order corrections to the critical
condition, our approach discussed in the previous section
could suffer from various unknown systematic effects like
as in other analytical methods. Let us first discuss the
nonperturbative effects implied by a certain type of
divergence of perturbative expansions. The best known
example might be the IR renormalon in QCD-like theories
which are asymptotically free in the UV but confining in
the IR. (See Ref. [47] for a classical review.) The conformal
expansion of the mass anomalous dimension, defined at an
IR fixed point, is expected to have no IR renormalons by
construction [28]. Other types of divergence, for instance,
sourced by instanton anti-instanton configurations, may
appear in the expansion, but we expect that these are not as
severe as that of renormalons. Below, we account for such
nonperturbative effects, if exist, by investigating the coef-
ficients of the conformal expansion and estimate the errors
from there.
We start by assuming that the conformal expansion is a

divergent asymptotic series. If this is the case, the pertur-
bative series expansion only provides an approximate
description at best, and we expect to have the best
accuracy to the approximant when it is truncated at a

certain optimal order kopt. To see this, we consider a
divergent series which is asymptotic to fðzÞ in a domain
C in a complex z plane

XJ
j¼0

cjzj: ð16Þ

Then, for all z in C there exist numbers AJ such that the
error is bounded as

����fðzÞ −
XJ−1
j¼0

cjzj
���� < AJjzjJ: ð17Þ

If it is assumed that the coefficients factorially increase for
j ≫ 1, cj ∼ j!t−j0 , one might find that AJ ∼ A0J!t−J0 with a
constant A0. The bound will decrease in the beginning, but
will eventually diverge as J → ∞. The minimum value of
this bound could be identified by the optimal order of
joptðzÞ ≃ jt0j=z for which the best accuracy is achieved.
Roughly speaking, this is the same order at which the
subsequent higher-order term becomes larger. For this
optimal truncation one can find the truncation error of order

δðzÞ ∼ e−
jt0 j
z ∼ e−jopt : ð18Þ

It might also be instructive to understand the ambiguity
of the asymptotically divergent series using the standard
Borel summation technique. The Borel transformation of
fðzÞ is defined as

BfðtÞ ¼
X∞
j¼0

cj
j!
tj; ð19Þ

and its inverse is

FIG. 3. In the left panel, we present the resulting values of Δxf ¼ xAFf − xcrf obtained from the finite-order critical conditions in
Eqs. (13) and (14) truncated at nth order, denoted by blue and red dots, respectively. In the same figure, we also present the results
obtained by using the ½0=3� Padé approximants for the critical conditions in Eq. (12). In the right panel, we show the results of the
anomalous dimension of a fermion bilinear at the BZ fixed point in the vicinity of which asymptotic freedom is lost, xAFf ¼ 5.5. Red
dashed line represents for the conformal expansion truncated at the 4th order, black solid line for the leading-order large Nf expansion,
and purple, blue and green dashed lines for ½2=1�, ½1=2� and ½0=3� Padé approximants.
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fBðzÞ ¼
Z

∞

0

dte−tBfðtzÞ: ð20Þ

With the factorally growing coefficients cj, as before, one
finds that BfðtÞ has a pole at t ¼ jt0j=z on the positive real
axis. According to the inverse Borel transformation, this
singularity in the Borel plane yields the same result
in Eq. (18).
Currently, the coefficients of the conformal expansion

for γIR are known to the 4th order in ΔNf
. With this limited

number of coefficients the search for the optimal truncation
discussed above should only be understood in a practical
sense. To demonstrate this, again, consider the Veneziano
limit of SUðNÞ gauge theories with Nf fundamental
fermions. Since we determine the best estimate of xcrf
using the critical condition as in Eq. (14), we focus on the
conformal series of γIRð2 − γIRÞðΔxfÞ. We first assume that
the coefficients κj exponentially grows in j as for cj in
Eq. (17) and determine t0 at a given order j by
t0 ¼ jκðj−1Þ=κj. We obtain t0 ≃ 13, 32 and 6 for j ¼ 2, 3
and 4, respectively. As expected, t0 largely varies for these
small integer values of j. Assuming that the highest order
result well approximates the large order behavior, we read
off that jopt ≃ t0=Δcr

xf ∼ 3 near the lower end of the
conformal window with Δcr

xf ∼ 2 as shown in Fig. 2.
This result indicates that the 4th order truncation used
for the determination of xcrf is roughly the optimal one. And
we find that the truncation error to γIRð2 − γIRÞðΔxcrf

Þ is

simply given by e−jopt, which might be translated into the
critical condition in Eq. (14) as

½γIRð2 − γIRÞ�ðn¼4ÞðΔcr
Nf
Þ ¼ 1 ∓ exp½−jopt�: ð21Þ

By solving this equation, one could estimate the uncertainty
in Ncr

f .
In general, however, we find that jopt is substantially

dependent on G, N, and R. In particular, in the SUðNÞ and
Spð2NÞ theories coupled to fundamental fermions with any
values of N, as well as some other theories at small N, the
typical values of jopt are smaller than the truncation order of
n ¼ 3 at the lower end of the conformal window with
Δcr

Nf
¼ NAF

f − Ncr
f
10: we can still use Eq. (21) to estimate

the uncertainty to Ncr
f . In the other theories considered in

this work, on the other hand, we find that jopt is much larger
than 3, indicating that the optimal truncation is expected to
be at far beyond the currently available highest order of the
conformal expansion, and are not able to use the jopt to
estimate the truncation error. In these cases, practically, we

might instead consider the actual truncation order to
estimate the truncation error ∼e−3. To take account of
such a large variance in jopt we therefore estimate the
uncertainty to our determination of Ncr

f in a conservative
and practical way, by generalizing the discussion near
Eq. (21), as

δ�1 ¼ Ncr;�
f − Ncr

f ; ð22Þ

where Ncr;�
f are solutions to

½γIRð2 − γIRÞ�ðn¼4ÞðΔcr
Nf
Þ ¼ 1 ∓ exp½−jmin�; ð23Þ

with jmin ¼ Min½3; t0=Δcr
Nf
� and t0 ¼ 4κ3=κ4.

As discussed in Sec. II C, the finite-order critical con-
ditions in Eqs. (13) and (14) generally result in two
different values of Ncr

f , and the difference could be taken
for the systematic error of our analysis. If it is assumed that
the corresponding conformal series expansions are con-
vergent, one might do a better job by first approximating
the closed forms of γIR and γIRð2 − γIRÞ. To do this, we
employ the Padé approximation method (for a review see
Ref. [48]). The underlying assumption is that γIR is an
analytic function of ΔNf

and its Taylor series expansion at
ΔNf

¼ 0 is convergent with a finite radius in the complex
plane. Provided that the series coefficients are calculated to
the maximum order n as in Eq. (13), the ½p=q� Padé
approximant can be given as

γIR;½p=q� ¼ c1ΔNf

�
1þPp

j¼1 bjΔ
j
Nf

1þPq
k¼1 dkΔk

Nf

�
; ð24Þ

with pþ qþ 1 ¼ n. The coefficients are uniquely deter-
mined by matching the terms with those in Eq. (13) after
expanding γIR;½p=q� aroundΔNf

¼ 0. The differences among

½p=q� Padé approximants are at OðΔðnþ1Þ
Nf

Þ. With n ¼ 4,

there are four possibilities: ½3=0�, ½2=1�, ½1=2�, and ½0=3�
Padé approximants, where ½3=0� is nothing but the original

conformal expansion γðn¼4Þ
IR ðΔNf

Þ.
The ½p=q� Padé approximant in Eq. (24) is a meromor-

phic function by construction, which is defined in a certain
domain of the complex plane including the origin, with q
poles. To make it useful to our analysis, the Padé approx-
imant should not have a pole in Ncr

f ≤ Nf ≤ NAF
f such that

it is well defined in the whole region of the conformal
window.11 In Ref. [12] it was suggested that the Padé
approximant must have no poles within the bound

10Note that for the comparison to jopt either n ¼ 3 or 4 could
be used since we determined jopt from the ratio of κ3 and κ4. To
make our estimation of the truncation error to be conservative, we
take n ¼ 3.

11We note that the Padé approximant for γIR will still miss the
expected squre-root singularity at Ncr

f by construction. In con-
trast, we expect that the Padé approximant for γIRð2 − γIRÞ well
approximates the closed form if exists.
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estimated by which 2-loop beta function loses an IR fixed
point. There, several exemplified SUðNÞ theories coupled
to Nf fermions in the representation R for some small
integer values of N and the large N limit were extensively
investigated, where the suggested condition has been used
to find the valid Padé approximants. However, the 2-loop
analysis is too naive to estimate Ncr

f and thus this criteria
might be insufficient to find the valid Padé approximants.
In this work, we determine the best Padé approximant by

exploiting the large-Nf technique [19,20] as follows. For
illustration purposes we consider the Veneziano limit of
SUðNÞ gauge theories coupled to Nf fundamental fermion
matter as in Sec. II C. We first find all the four possible
Padé approximants defined in Eq. (24). These approxim-
ants are supposed to extend the perturbative results beyond
the perturbative regime near xAFf ¼ 11=2. Note that for
xf > xAFf the perturbative BZ fixed points are found in the
nonunitary regime with αBZ < 0. In the mean time, we
compute the anomalous dimension γIRðλf;IRÞ using the
leading-order result of the large-Nf expansion in the MS
scheme [49,50], where the (large-Nf) IR coupling λf;IR is
determined from the two lowest terms of the large Nf beta

function [19,20], i.e., βðλfÞ ≃ 4TF
3
λ2f þ βð1ÞðλfÞ

Nf
¼ 0 with

λf ¼ Nfα=4π.
12 In the Veneziano limit, the coupling λf

is replaced by xfα=4π, where the large Nf means the large
xf limit. Similar to the coupling expansion, the large-Nf

analysis also finds a fixed point at the negative value of α
for xf > xAFf .13 If the Padé approximant well approximates
the anomalous dimension at the fixed point, we then expect
that it should be in agreement with the large-Nf result for a
sufficiently large value of xf. To be specific, as suggested in
Ref. [20], the large-Nf expansion is supposed to be valid
for xf ≳ 10 provided that jxfα=4πj ∼ 3=2. For xf > xAFf we
have a fixed point at the negative value of the large-Nf

coupling, where its magnitude increases from 0 to 3=2 as xf
monotonically varies from xAFf ¼ 11=2 to∼15. Beyond this
we find an oscillatory behavior of the large-Nf expansion,
which is hardly captured by the Padé approximants.
We therefore find a limited window in xf, 10≲ xf ≲ 15,

for which the large-Nf expansion is under control and the
resulting values of the anomalous dimension at the fixed
point can be compared to the Padé approximants. In the
right panel of Fig. 3, we show the results of γBZ: the black
solid line is for the large Nf expansion, while the red, blue,
and green dashed lines are for ½3=0�, ½1=2�, and ½0=3� Padé

approximants, respectively. As seen in the figure, ½0=3�
Padé approximant is in good agreement with the large Nf

result over the aforementioned range. Although we do not
present the results here, this qualitative picture holds for all
the other finite and infinite N theories considered in the
next section. Therefore, we use ½0=3� Padé approximant for
our best estimate of γIR;½p=q� throughout this work.

14

We carry out the same analysis for γIRð2 − γIRÞ and
find that ½0=3� Padé approximants also provide the
best results as they qualitatively agree with the large Nf

results over the range in xf mentioned before. Furthermore,
as shown in the left panel in Fig. 3, it turns out that ½0=3�
Padé approximants obtained from both critical conditions
result in better agreement than those at finite order. We

therefore determine the critical number of flavors Ncr1;½0=3�
f

andNcr2;½0=3�
f from both critical conditions, γIR;½0=3�ðΔNf

Þ¼1

and ½γIRð2 − γIRÞ�½0=3�ðΔNf
Þ ¼ 1, respectively, and take the

difference to Ncr
f as our estimate for the uncertainty related

to the limitation of the finite-order critical condition:

δþ2 ¼ Ncr2;½0=3�
f − Ncr

f and δ−2 ¼ Ncr1;½0=3�
f − Ncr

f ; ð25Þ

where we recall that Ncr
f is obtained from the critical

condition defined in Eq. (14) with n ¼ 4.

III. CONFORMAL WINDOW IN
NONSUPERSYMMETRIC GAUGE THEORIES

In this section, we present our main results for the
conformal window in nonsupersymmetric gauge theories
coupled to fermionic matter using the strategies discussed
in the previous section. In particular, we consider non-
Abelian gauge theories with SUðNÞ, Spð2NÞ, and SOðNÞ
gauge groups and fermionic matter fields in the funda-
mental (F), adjoint (Adj), two-index symmetric (S2) and
antisymmetric (AS) representations. In the case of SOðNÞ,
we also consider the spinorial (S) representation. The group
invariants necessary for the computation of k1;…;4 in the
conformal expansion of γIR in Eq. (13) are basically the
samewith the ones used for calculations of βðαÞ and γðαÞ at
the 4th order in the coupling expansion [44,45,51]. The
results have further been generalized to two-index and
spinorial representations using the general fourth-order
Casimir invariants for simple Lie groups [52,53], where
the detailed discussions and notations are found in the

12We refer the reader to the Appendix B of Ref. [30] for
comprehensive results of γψ̄ψ and β at OðN−1

f Þ in the large Nf
expansion.

13This fixed point should be distinguished from the UV fixed
point at the positive value of α, yielded by the singularity in
βð1ÞðλfÞ at λf ¼ 3=2, in the context of asymptotic safety [4].

14In most theories considered in this work ½0=3� Padé approx-
imant also satisfied the condition suggested in Ref. [12]. There
are a few cases, however, that it has a pole slightly within the
conformal boundary estimated by the 2-loop beta function
analysis. Nevertheless, we believe that our conclusion does not
conflict with the restriction of which the Padé approximant must
not have a pole in the conformal window, because in general the
would-be conformal window is expected to be narrower than the
one determined from that the 2-loop IR coupling runs to infinity.
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Appendixes of Refs. [11,54] and [55], respectively. (See
also Tables in the Appendix A of Ref. [21] for the summary
of the resulting expressions relevant to this work.)
The lower end of the conformal window has been

estimated by a number of different analytical methods.
Among those known in the literature, we consider the
following three scheme-independent analytical approaches
for a comparison:

(i) The 2-loop beta function loses the BZ fixed point
when αBZ ¼ −4πb1=b2 runs to infinity, which yields
that

Ncr;2-loop
f ¼ 17C2ðGÞ2

TðRÞ½10C2ðGÞ þ 6C2ðRÞ�
: ð26Þ

(ii) The SD analysis in the ladder approximation sug-
gests that the loss of the conformality happens if the
IR coupling satisfies the condition, αIR ¼ αcr with
αcr ¼ π=3C2ðRÞ. Conventionally the IR coupling is
approximated by αBZ and one finds

Ncr;SD
f ¼ C2ðGÞð17C2ðGÞ þ 66C2ðRÞÞ

TðRÞð10C2ðGÞ þ 30C2ðRÞÞ
: ð27Þ

(iii) A closed form of the beta function was proposed in
Ref. [56], which is scheme-independent in the sense
that it involves the first two universal coefficients of
βðαÞ, the first universal coefficient of γψ̄ψ ðαÞ, and a
physical input for γψ̄ψ ;IR.

15 To be consistent with the
critical condition used for this work, we set
γψ̄ψ ;IR ¼ 1. It leads to a simple expression for the
critical number of flavors

Ncr;BF
f ¼ 11

6

C2ðGÞ
TðRÞ : ð28Þ

For some theories at finite N we also compare our results
with recent lattice results.

A. Large N limit

Before we present the results at finite N, let us first
consider an appropriate large N limit in which the fer-
mionic flavors are still relevant to the dynamics. As
discussed in Sec. II A, we note that the critical condition
to the anomalous dimension of the fermion bilinear in
Eq. (12) would be exact at infinite N. For the fundamental
flavors we take the Veneziano limit, i.e., both N and Nf are

infinite while keeping xf ¼ Nf=N finite. For SUðNÞ and
Spð2NÞ we find

½xcrf ; xAFf � ¼ ½3.39þ0.10
−0.09

þ0.08
−0.14 ; 5.5�: ð29Þ

Throughout this work we denote the errors to xcrf andNcr
f by

δþ
1

δ−
1

δþ
2

δ−
2
, where δ�1 and δ�2 are defined in Eqs. (22) and (25),

respectively. For SOðNÞ the conformal window is basically
the same as that of SUðNÞ except that now the Veneziano
limit is defined with Weyl fermions, xWf ¼ NWf=N,

½xcrWf; x
AF
Wf� ¼ ½3.39þ0.10

−0.09
þ0.08
−0.14 ; 5.5�: ð30Þ

For a comparison we also present the resulting values of xcrf
(xcrWf) defined in Eqs. (26), (27), and (28)

xcr;2-loopf ¼ 34

13
; xcr;SDf ¼ 4; and xcr;BFf ¼ 11

3
: ð31Þ

In the cases of the adjoint and two-index symmetric and
antisymmetric representations, we take the ’t Hooft large N
limit, i.e., N → ∞ with fixed Nf. For the adjoint repre-
sentation the results are same for all the three gauge groups,
which is also true for the other analytical methods men-
tioned above, and we find

½Ncr
f ; N

AF
f � ¼ ½1.90þ0.03

−0.03
<0.01
−0.11 ; 2.75�; ð32Þ

or equivalently,

½Ncr
Wf; N

AF
Wf� ¼ ½3.79þ0.07

−0.07
þ0.01
−0.23 ; 5.5�: ð33Þ

Using Eqs. (26), (27), and (28), we also find that

Ncr;2-loop
f ¼ 17

16
; Ncr;SD

f ¼ 83

40
; and Ncr;BF

f ¼ 11

6
: ð34Þ

For both two-index symmetric and antisymmetric rep-
resentations of SUðNÞ the conformal windows are exactly
twice larger than that for the adjoint representation

½Ncr
f ; N

AF
f � ¼ ½3.79þ0.07

−0.07
þ0.01
−0.23 ; 5.5�: ð35Þ

In the case of Spð2NÞ with fermions in the antisymmetric
representation, the conformal window is equivalent to that
for the adjoint representation. Similarly, for SOðNÞ the
conformal window for the symmetric representation is
same with that for the adjoint representation. Note that
in these theories the other two-index representations
are identical to the adjoint representation by construction.
Analogously, the other analytical calculations for the two-
index representations yield the same results of Eq. (34) up
to a factor of two.

15In Ref. [57] a modified version of the all-order beta function
was also proposed. By setting γψ̄ψ ;IR ¼ 1, even though we do not
present the results in this paper, we find that the resulting values
of Ncr

f are similar to Ncr;2-loop
f for the fundamental and spinorial

representations, while they are roughly lying in the middle
between Ncr;2-loop

f and our results for other representations.
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B. SUðNÞ gauge theory with Nf Dirac fermions
in various representations

In Fig. 4 we present our results for the lower edge of the
conformal window in SUðNÞ gauge theories coupled to Nf
Dirac fermions in the fundamental, adjoint, antisymmetric
and symmetric representations, where the resulting values
of Ncr

f are denoted by black solid lines. Note that we take
both N and Nf as continuous variables. In each figure, red
and blue bands denote the errors, δ1 and δ2, defined in
Eqs. (22) and (25), respectively. We recall that these errors
should not be taken simultaneously since the underlying
assumptions for the error estimates are incompatible to
each other as discussed in Sec. II D. For the integer values
of N ranged over 2 ≤ N ≤ 10we present the explicit values
of Ncr

f with errors in Table I, where the values of NAF
f are

also presented.
As shown in the figures, δ2 persists to be sizable for all

the values of N at ∼6% level at most. On the other hand,
δ1 is relatively large at small N, but comparable or smaller
than δ2 at large N. If we concern the truncation error δ1,
such a result implies that SUðNÞ theories at small N
receive significant nonperturbative corrections near the

lower end of the conformal window, which result in the
large ambiguity of the perturbative conformal series
expansion.
We compare our results to other analytical methods in

the figures: dotted lines are for the 2-loop beta function
analysis, dashed lines for the traditional SD method, and
dot-dashed lines for the all-order beta function with
γIR ¼ 1. We find that our results are in between
Ncr;2-loop

f and Ncr;SD
f , and more or less comparable to

Ncr;BF
f , except the fundamental representation at large N,

if the errors δ2 are concerned. Note that the adjoint and
symmetric representations are identical for N ¼ 2, while
the antisymmetric and fundamental representations are
identical for N ¼ 3.
Studying the infrared dynamics of an interacting (near)

conformal theory has also been a rich subject of lattice
gauge theories, because the corresponding IR coupling is
typically in the strong coupling regime and thus it requires
reliable nonperturbative techniques. However, it is a highly
nontrivial task to investigate the deep IR regime of the
would-be conformal theories using lattice simulations
due to the large finite-size effects as expected from the

FIG. 4. The boundary between conformal and chirally broken phases in SUðNÞ gauge theories with Nf Dirac flavors of fermion in
the fundamental (top-left), adjoint (top-right), two-index antisymmetric (bottom-left) and symmetric (bottom-right) representations.
The black solid line is estimated from the finite-order critical condition in Eq. (14) with n ¼ 4, where red and blue bands denote
the systematic errors computed according to Eqs. (22) and (25), respectively. Dotted, dashed, and dot-dashed lines are for the
analytical results estimated by the 2-loop beta function, the truncated Schwinger-Dyson, and the all-order beta function analyses in
Eqs. (26), (27), and (28).
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fact that the correlation length diverges at an IR fixed point.
Nevertheless, in recent years various numerical techniques
have been developed to tackle such a problem, and turned
out to be successful as they revealed various aspects of
the (near) conformal dynamics from first principles. (See
Sec. V in [58] for a brief summary of the recent develop-
ments and challenges along this direction).
In particular, SUð3Þ theories with many fundamental

flavors have been extensively studied, because they are not
only easily utilizing the state-of-the-art lattice techniques
justified by successfully simulating QCD, but also provide
useful benchmark studies for more interesting UV models
in the context of physics beyond the standard model.
Although it is not yet conclusive, the most recent lattice
results suggest that Nf ¼ 12 is conformal [59],16 8 is
chirally broken but nearly conformal [61], and 10 is likely
conformal but controversial [62–65]. In the case of SUð2Þ,
much evidence has been found that Nf ¼ 4 is chirally
broken while 6 is likely conformal, e.g., see [66] and
references therein. As shown in Table I, our results
are in excellent agreement with these lattice results for
both cases.17

Besides the fundamental representation, adjoint and two-
index representations have also been studied by the means
of nonperturbative lattice calculations. Lattice studies of
SUð2Þ with adjoint fermion matter find evidence for that
Nf ¼ 2; 3=2 are conformal, 1=2 is chirally broken, and 1 is
likely conformal (e.g., see [70] and references therein),
which is somewhat different to what we have found.

However, we note that the adjoint SUð2Þ seems to receive
significant nonperturbative corrections, as indicated by the
large truncation errors shown in the top-right panel of Fig. 4
and Table I. As we discussed in Sec. II A, it is also possible
that for N ¼ 2 the critical condition in Eq. (12) could
largely be modified by receiving a substantial amount of
finite N corrections. Furthermore, recently it was suggested
that SUð2Þ theories with Nf ¼ 1 and 3=2 adjoint fermions
might exhibit an exotic phase in the deep IR, confining but
no chiral symmetry breaking [71,72]. Hence, nothing is
conclusive for these specific theories yet and it would be
interesting to further investigate the nonperturbative effects

TABLE I. Conformal window of SUðNÞ gauge theories coupled to fermion matter in the fundamental (F), adjoint (Adj),
antisymmetric (AS), and symmetric (S2) representations. The lower and upper bounds, denoted by [Ncr

f , N
AF
f ], correspond to which

conformality and asymptotic freedom are lost, respectively. The first and second errors to Ncr
f are computed according to Eqs. (22)

and (25), respectively.

N F Adj AS S2

2 ½6.22þ1.32
−1.01

þ0.31
−0.12 ; 11.0� ½1.92þ0.55

−0.36
þ0.03
−0.07 ; 2.75� N/A ½1.92þ0.55

−0.36
þ0.03
−0.07 ; 2.75�

3 ½9.79þ0.94
−0.82

þ0.31
−0.36 ; 16.5� ½1.91þ0.07

−0.06
þ0.02
−0.09 ; 2.75� ½9.79þ0.94

−0.82
þ0.31
−0.36 ; 16.5� ½2.31þ0.04

−0.04
þ0.01
−0.11 ; 3.3�

4 ½13.29þ0.77
−0.71

þ0.37
−0.53 ; 22.0� ½1.90þ0.03

−0.03
þ0.01
−0.10 ; 2.75� ½7.18þ0.13

−0.13
þ0.07
−0.38 ; 11.0� ½2.57þ0.04

−0.04
þ0.01
−0.13 ; 3.67�

5 ½16.74þ0.75
−0.70

þ0.44
−0.68 ; 27.5� ½1.90þ0.03

−0.03
þ0.01
−0.10 ; 2.75� ½6.06þ0.11

−0.11
þ0.02
−0.38 ; 9.17� ½2.75þ0.05

−0.04
þ0.01
−0.15 ; 3.93�

6 ½20.18þ0.79
−0.74

þ0.51
−0.83 ; 33.0� ½1.90þ0.03

−0.03
þ0.01
−0.11 ; 2.75� ½5.50þ0.10

−0.10
þ0.01
−0.36 ; 8.25� ½2.89þ0.05

−0.05
þ0.01
−0.16 ; 4.13�

7 ½23.60þ0.84
−0.80

þ0.59
−0.97 ; 38.5� ½1.90þ0.03

−0.03
þ0.01
−0.11 ; 2.75� ½5.16þ0.10

−0.09
þ0.01
−0.34 ; 7.7� ½2.99þ0.05

−0.05
þ0.01
−0.16 ; 4.28�

8 ½27.01þ0.91
−0.87

þ0.66
−1.12 ; 44.0� ½1.90þ0.03

−0.03
<0.01
−0.11 ; 2.75� ½4.94þ0.09

−0.09
þ0.01
−0.32 ; 7.33� ½3.07þ0.05

−0.05
þ0.01
−0.17 ; 4.4�

9 ½30.42þ0.99
−0.94

þ0.74
−1.26 ; 49.5� ½1.90þ0.03

−0.03
<0.01
−0.11 ; 2.75� ½4.78þ0.09

−0.09
<0.01
−0.31 ; 7.07� ½3.14þ0.05

−0.05
þ0.01
−0.17 ; 4.5�

10 ½33.83þ1.07
−1.02

þ0.82
−1.40 ; 55.0� ½1.90þ0.01

−0.03
<0.01
−0.11 ; 2.75� ½4.65þ0.09

−0.08
<0.01
−0.30 ; 8.88� ½3.17þ0.05

−0.05
þ0.01
−0.18 ; 4.58�

FIG. 5. Conformal window of SUðNÞ gauge theory with Nf
Dirac flavors of fermion in the fundamental (blue), adjoint (red),
antisymmetric (green), and symmetric (brown) representations.
The upper bound is determined by the perturbative beta function
in the onset of the loss of an asymptotic freedom, while the lower
bound is estimated from the finite-order critical condition
truncated at the 4th order of the conformal expansion defined
in Eq. (14).

16See also, e.g., [60] for a different point of view.
17For SUð3Þ more analytical results, besides the ones used

for a comparison in Sec. III, are available in the literature. In
particular, our findings are consistent with the results in
Refs. [35,67], but different with those in Refs. [68,69].
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in detail by improving the error analyses. SUð3Þ theory
with 2 symmetric (sextet) Dirac fermions has also been
studied extensively by lattice techniques, as it has been
shown to exhibit near conformal behaviors like as in the 8
fundamental-flavor SUð3Þ theories (for the most recent
progress see Ref. [73] and references therein). Our results
strongly support such lattice results.
We summarize our findings on the conformal window of

SUðNÞ gauge theories with Nf flavors of fermion in the

fundamental, adjoint, two-index symmetric and antisym-
metric representations in Fig. 5.

C. Spð2NÞ gauge theory with Nf Dirac fermions
in various representations

In the case of Spð2NÞ we consider the fundamental,
adjoint (¼ two-index symmetric) and two-index anti-
symmetric representations. We present our results with

FIG. 6. The boundary between conformal and chirally broken phases in Spð2NÞ gauge theories withNf Dirac flavors of fermion in the
fundamental (top-left), adjoint (top-right) and two-index antisymmetric (bottom) representations. The black solid line is estimated from
the finite-order critical condition in Eq. (14) with n ¼ 4, where red and blue bands denote the systematic errors computed according to
Eqs. (22) and (25), respectively. Dotted, dashed, and dot-dashed lines are for the analytical results estimated by the 2-loop beta function,
the truncated Schwinger-Dyson, and the all-order beta function analyses in Eqs. (26), (27), and (28).

TABLE II. Conformal window of Spð2NÞ gauge theories with fermion matter in the fundamental (F), adjoint
(Adj), and antisymmetric (AS) representations. The lower and upper bounds, denoted by [Ncr

f , N
AF
f ], correspond to

which conformality and asymptotic freedom are lost, respectively. The first and second errors to Ncr
f are computed

according to Eqs. (22) and (25), respectively.

N F Adj AS

2 ½9.68þ1.92
−1.46

þ0.42
−0.21 ; 16.5� ½1.91þ0.08

−0.08
þ0.02
−0.09 ; 2.75� ½5.46þ0.10

−0.09
þ0.05
−0.28 ; 8.25�

3 ½13.09þ1.93
−1.56

þ0.50
−0.34 ; 22.0� ½1.90þ0.03

−0.03
þ0.01
−0.10 ; 2.75� ½3.66þ0.07

−0.07
þ0.01
−0.23 ; 5.5�

4 ½16.50þ1.90
−1.61

þ0.58
−0.49 ; 27.5� ½1.90þ0.03

−0.03
þ0.01
−0.10 ; 2.75� ½3.07þ0.06

−0.06
þ0.01
−0.19 ; 4.58�

5 ½19.90þ1.90
−1.65

þ0.66
−0.63 ; 33.0� ½1.90þ0.03

−0.03
þ0.01
−0.10 ; 2.75� ½2.77þ0.05

−0.05
þ0.01
−0.18 ; 4.13�

6 ½23.30þ1.92
−1.70

þ0.74
−0.77 ; 38.5� ½1.90þ0.03

−0.03
þ0.01
−0.11 ; 2.75� ½2.60þ0.05

−0.05
<0.01
−0.16 ; 3.85�
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black solid lines in Fig. 6, where the red and blue bands
denote the errors, δ1 and δ2, defined in Eqs. (22) and
(25), respectively. Again, we take N and Nf as con-
tinuous variables to obtain the results in the figure. For
several small integer values of N ¼ 2;…; 6, we present
the resulting values of Ncr

f with errors and NAF
f in

Table II. Note that Spð2Þ ¼ SUð2Þ. For a comparison,
we also present the results of other analytical approaches
defined in Eqs. (26), (27), and (28). The generic trend is
similar to what we found for SUðNÞ, except that the
truncation errors δ1 are much larger than δ2 and those of
SUðNÞ in the fundamental representation at the same
values of N.
Nonperturbative lattice studies of Spð2NÞ gauge

groups are barely found in the literature. Only recently
has a research program for Spð4Þ lattice theories with
fermions in the fundamental and antisymmetric repre-
sentations begun by aiming to explore the composite
dynamics of the electroweak symmetry breaking and
composite dark matter [74–76]. Our results suggest that
Spð4Þ theory would exhibit near conformal behavior
if it couples to 8–9 fundamental or 4–5 antisymmetric
flavors of fermion.18 Since the lattice studies of Spð2NÞ

at large N are also being pursued by the same research
group [78], we should note that Spð6Þ and Spð8Þ with 3
antisymmetric fermions would be good candidates for
near conformal theories.
We summarize our findings on the conformal window of

Spð2NÞ gauge theories coupled to Nf flavors of fermion
in the fundamental, adjoint and two-index antisymmetric
representations in Fig. 7.

D. SOðNÞ gauge theory with NWf Weyl fermions
in various representations

For SOðNÞ gauge theories we consider NWf Weyl
fermions in the spinorial representation in addition
to the fundamental, adjoint(¼ antisymmetric) and sym-
metric representations. We also restrict our attention to
N ≥ 6 since the results for the smaller values of N
could be deduced from SUð2Þ and Spð4Þ gauge theories
using the fact that SOð3Þ ∼ SUð2Þ, SOð4Þ ∼ SUð2Þ ×
SUð2Þ and SOð5Þ ∼ Spð4Þ for which only even
numbers of NWf are allowed to avoid a Witten
anomaly [79].
We present our results for the lower edge of the

conformal window by black solid lines in Fig. 8. The blue
and red bands denote the errors, δ1 and δ2, defined in
Eqs. (22) and (25), respectively. Again, the results in the
figures are obtained by treating N and Nf as continuous
variables, but the physical system should take the integer
values of N. In particular, the results for the spinorial
representation displayed in the right-middle and the bottom
panels of Fig. 8 are physical only at odd and even integer
values of N, respectively.
Our results are further compared to other analytical

approaches, where the dotted lines are the results
obtained from the loss of IR fixed point in 2-loop beta
function, the dashed lines from the traditional
Schwinger-Dyson analysis, and the dot-dashed lines
from the all-order beta function with γIR ¼ 1. Similar
to SUðNÞ and Spð2NÞ, our results are comparable to
Ncr;BF

f , but smaller than Ncr;SD
f and larger than Ncr;2-loop

f ,
respectively. For several integer values of N over the
region, 6 ≤ N ≤ 12, we report our results in Table III.
Except in the case of the spinorial representation for
SOð6Þ, δ2 is larger than δ1 for all the considered theories.
For the adjoint representation the conformal windows
are identical to those of SUðNÞ gauge theories. In
the case of SOð6Þ, the result of the spinorial represen-
tation is identical to that of the fundamental representa-
tion of SUð4Þ up to a factor of 2, as expected from
SOð6Þ ∼ SUð4Þ.
We summarize our findings on the conformal window of

SOðNÞ gauge theories coupled toNWf flavors of fermion in
the fundamental, adjoint, two-index symmetric and spino-
rial representations in Fig. 9.

FIG. 7. Conformal window of Spð2NÞ gauge theory with Nf
Dirac flavors of fermion in the fundamental (blue), adjoint (red),
and antisymmetric (green) representations. The upper bound is
determined by the perturbative beta function in the onset of the
loss of an asymptotic freedom, while the lower bound is
estimated from the finite-order critical condition truncated at
the 4th order of the conformal expansion defined in Eq. (14).

18A phenomenologically interesting minimal Spð4Þ composite
Higgs model requires to contain 2 fundamental and 3 antisym-
metric fermions [77]. In this case, analytical studies using the
same strategy used for this work, but truncated at the 3rd order in
the conformal expansion of γIR for multiple representations,
suggest that the model resides slightly outside the conformal
window [21].
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IV. CONCLUSION

We have investigated the conformal window of asymp-
totically free SUðNÞ, Spð2NÞ and SOðNÞ gauge theories
coupled to Nf flavors of fermion in various representations,
where their appropriate large N limits are also considered.
The upper end of the conformal window is identical to
which asymptotic freedom is lost, and the corresponding
number of flavors NAF

f is determined by the perturbative

RG beta function as usual. To find the lower end of the
conformal window, in this work we have adopted the
conjectured critical condition on the anomalous dimension
of a fermion bilinear at an IR fixed point, γψ̄ψ ;IR, in which
the theory is expected to lose the conformality due to the
dynamically generated scale (walking scaling) and fall into
a chirally broken phase. This critical condition is expected
to work well in the infinite N limit, but could receive

FIG. 8. The boundary between conformal and chirally broken phases in SOðNÞ gauge theories with NWf Weyl flavors of fermion in
the fundamental (top-left), adjoint (top-right), two-index symmetric (middle-left) representations. In the case of the spinorial
representation, we show the results for odd (middle-right) and even (bottom) integer values of N, separately. The black solid line
is estimated from the finite-order critical condition in Eq. (14) with n ¼ 4, where red and blue bands denote the systematic errors
computed according to Eqs. (22) and (25), respectively. Dotted, dashed, and dot-dashed lines are for the analytical results estimated by
the 2-loop beta function, the truncated Schwinger-Dyson, and the all-order beta function analyses in Eqs. (26), (27), and (28).
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sizable corrections at finite N. We calculate γψ̄ψ ;IR by
employing the Banks-Zaks conformal expansion whose
expansion parameter ΔNf

¼ NAF
f − Nf, as well as the

coefficient at each order, is free from the renormalization
scheme. Following the strategy proposed in Ref. [21], we
have used the finite-order definition of the critical condition
in Eq. (14) up to the 4th order, the highest order available
up to date, to determine the critical number of flavors, Ncr

f ,
which corresponds to the onset of the conformality lost. In
particular, in Secs. II A and II C we discussed and empha-
sized why the latter definition of the critical condition in
Eq. (12) works better than the former by providing both
theoretical and empirical reasons.
The highlight of this work lies in the estimation of the

uncertainties in the resulting values of Ncr
f by treating the

following two scenarios separately: the conformal series

expansion is either convergent or divergent asymptotic. For
the latter we have searched for the optimal truncation by
assuming the factorial growth of the coefficients at larger
order. Such divergent asymptotic behavior is related to the
singularity in the Borel plane. We find that the truncation
order used for the determination of Ncr

f was roughly the
optimal one for the fundamental SUðNÞ theories in the
Veneziano limit. However, it turns out that the optimal
truncation order estimated from the coefficients of the two
largest orders was highly dependent on the details of the
theories considered in this work. We therefore estimate the
truncation error δ1 only in a practical sense, as defined in
Eqs. (22) and (23), but to be conservative enough to
account for potentially severe nonperturbative effects
implied by the ambiguity associated with the singularity
in the Borel plane. In the former case, on the other hand,

TABLE III. Conformal window of SOðNÞ gauge theories with fermion matter in the fundamental (F), adjoint (Adj), two-index
symmetric (S2), and spinorial (S) representations. The lower and upper bounds, denoted by [Ncr

f , N
AF
f ], correspond to which

conformality and asymptotic freedom are lost, respectively. The first and second errors to Ncr
f are computed according to Eqs. (22)

and (25), respectively.

N F Adj S2 S

6 ½14.36þ0.26
−0.26

þ0.14
−0.76 ; 22.0� ½3.80þ0.07

−0.06
þ0.01
−0.21 ; 5.5� ½1.99þ0.03

−0.03
<0.01
−0.10 ; 2.75� ½13.29þ0.77

−0.71
þ0.37
−0.53 ; 22.0�

7 ½17.78þ0.33
−0.33

þ0.20
−0.94 ; 27.5� ½3.80þ0.07

−0.06
þ0.01
−0.22 ; 5.5� ½2.20þ0.03

−0.03
<0.01
−0.11 ; 3.06� ½8.52þ0.18

−0.18
þ0.14
−0.46 ; 13.75�

8 ½21.19þ0.41
−0.40

þ0.26
−1.11 ; 33.0� ½3.79þ0.07

−0.06
þ0.01
−0.22 ; 5.5� ½2.36þ0.04

−0.04
<0.01
−0.12 ; 3.3� ½10.44þ0.22

−0.21
þ0.09
−0.65 ; 16.5�

9 ½24.59þ0.48
−0.47

þ0.32
−1.27 ; 38.5� ½3.79þ0.07

−0.06
þ0.01
−0.22 ; 5.5� ½2.49þ0.04

−0.04
<0.01
−0.13 ; 3.5� ½6.21þ0.13

−0.12
þ0.03
−0.41 ; 9.63�

10 ½27.99þ0.55
−0.54

þ0.39
−1.43 ; 44.0� ½3.79þ0.07

−0.06
þ0.01
−0.22 ; 5.5� ½2.60þ0.04

−0.04
<0.01
−0.14 ; 3.67� ½7.21þ0.14

−0.14
þ0.02
−0.48 ; 11.0�

11 ½31.39þ0.62
−0.60

þ0.47
−1.58 ; 49.5� ½3.79þ0.07

−0.06
þ0.01
−0.22 ; 5.5� ½2.70þ0.04

−0.04
<0.01
−0.15 ; 3.81� ½4.11þ0.08

−0.08
þ0.01
−0.27 ; 6.19�

12 ½34.79þ0.69
−0.67

þ0.54
−1.74 ; 55.0� ½3.79þ0.07

−0.06
þ0.01
−0.22 ; 5.5� ½2.78þ0.04

−0.04
<0.01
−0.15 ; 3.93� ½4.62þ0.09

−0.08
<0.01
−0.30 ; 6.88�

FIG. 9. Conformal window of SOðNÞ gauge theory with NWf Weyl flavors of fermion in the fundamental (blue), adjoint (red),
symmetric (brown), spinorial (purple and green are for odd and even integer values of N, respectively) representations. The upper bound
is determined by the perturbative beta function in the onset of the loss of an asymptotic freedom, while the lower bound is estimated from
the finite-order critical condition truncated at the 4th order of the conformal expansion defined in Eq. (14).
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we first approximate the closed forms of γψ̄ψ ;IR and
γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ using the Padé approximation. The best
approximant has been determined by comparing its quali-
tative behavior to the large Nf expansion in a certain range
of Nf for which both calculations are supposed to be under
control. The two definitions of the critical condition
approximated by the best Padé approximants generally
lead to different values of Ncr

f and we take the difference as
the uncertainty of our analysis which was denoted by δ2.
In the large N limit we basically found two different

results for the conformal window, up to an overall factor of
two, thanks to the large N universality: one for the
fundamental representation in the Veneziano limit, and
the other for the adjoint and two-index representations in
the ’t Hooft limit. Our results show that for the former the
two distinct errors, δ1 and δ2, are comparable to each other,
but for the latter δ2 is about three times larger than δ1. At
finite, but not too small N, we find that δ2 is much smaller
than δ1 except for the fundamental SUðNÞ and Spð2NÞ
theories. For certain cases with small integer values of N
the truncation error δ1 turned out to be much larger than δ2
and prevented us from narrowing down the location of the
lower edge of the conformal window. In these small N
theories, more dedicated studies with improved error
analysis techniques and a better understanding of the
critical condition will be helpful to further discriminate
their IR nature near the phase boundary.
Among various analytical methods found in the liter-

ature, we have considered three widely used ones to be
compared with our results. For all the theories considered in
Sec. III, we find that our values of Ncr

f are typically larger
than those estimated by the 2-loop beta function, but
smaller than those by the conventional Schwinger-Dyson
analysis. Within the uncertainties estimated in this work,
our results are in good agreement with those determined by
the all-order beta function analysis with γψ̄ψ ;IR ¼ 1. Note
that both approaches adopt the same critical condition
defined in Eq. (12). Nevertheless, such an agreement is
somewhat surprising since the ways to determine Ncr are
totally different: the all-order beta function analysis finds
the IR fixed point using a relatively simple closed form of
βðαÞ, while our approach explicitly computes the anoma-
lous dimension γψ̄ψ ;IR using the conformal expansion.
Although nothing is yet conclusive, this result might in
turn indicate that both the conjectured all-order beta
function and the conformal expansion for γψ̄ψ ;IR well
describe the conformal theory at the IR fixed point within
the conformal window. Compared with recent lattice
results, we find that our results of Ncr

f are in excellent
agreement for SUð3Þ with fermions in the fundamental and
symmetric representations, and for SUð2Þ with fermions in
the fundamental representation. In the case of the adjoint

SUð2Þ our estimation for Ncr
f is somewhat larger than what

has been found in lattice studies. Although further con-
firmation is required, such a discrepancy may reflect the
limitation of our approach due to significant finite N
correction to the critical condition and/or sizable non-
perturbative corrections to the conformal expansion at near
the lower end of the conformal window in the small-N
theories. For Spð4Þ theories coupled to fundamental and
antisymmetric fermions, which have received considerable
attention in recent years, we predict that Ncr

f ¼ 9–11 and
5–6, respectively. Besides the lattice methods, it would be
also interesting to compare our results to bootstrap tech-
niques, as the recent calculation of γψ̄ψ ;IR for the Nf ¼ 12

fundamental SUð3Þ theory showed a promising result
comparable to various lattice and analytical methods [80].
In this work we have continued our journey to the end of

conformal window in nonsupersymmetric and asymptoti-
cally free gauge theories. To reach there we assume that the
loss of conformality in the onset of chiral phase transition is
featured by the critical condition to γψ̄ψ in Eq. (12). We also
assume that γψ̄ψ ;IR can perturbatively be calculated by the
scheme-independent conformal expansion over the whole
range of the conformal window. The determination of Ncr

f

based on these assumptions, however, is challenged by our
limited understanding on the nature of chiral phase tran-
sition and the potentially sizable nonperturbative effects. To
address these issues, we have tried to estimate the errors in
Ncr

f in two folds, as discussed in details in Sec. II D, and
argue that part of such systematic effects are well captured
by our error estimates. In several finite N theories, we also
find that our values of Ncr

f are in good agreement with the
recent lattice results. In this respect, we believe that our
approach to the determination of the conformal window,
along with the error analyses, would provide a useful
analytical supplement and a guidance to more rigorous and
better controlled nonperturbative calculations of (near)
conformal theories.
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