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Double covering of the modular A5 group and lepton flavor mixing
in the minimal seesaw model
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In this paper, we investigate the double covering of the modular I's ~ A5 group and derive all the modular
forms of weight one for the first time. The modular forms of higher weights are also explicitly given by
decomposing the direct products of weight-one forms. For the double-covering group I'y ~ A%, there exist
two inequivalent two-dimensional irreducible representations, into which we can assign two right-handed
neutrino singlets in the minimal seesaw model. Two concrete models with such a salient feature have been
constructed to successfully explain lepton mass spectra and flavor mixing pattern. The allowed parameter
space for these two minimal scenarios has been numerically explored and analytically studied with some

reasonable assumptions.
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I. INTRODUCTION

The discovery of neutrino oscillations calls for new
physics beyond the standard model (SM) to dynamically
generate tiny neutrino masses and significant lepton flavor
mixing [1-3]. In order to account for tiny neutrino masses,
one can extend the SM with three right-handed neutrino
singlets Nz (for i =1, 2, 3) such that the gauge-invariant
Lagrangian for lepton masses and flavor mixing is given by

_ — . 1—
_'Clepton - fLYlHER + fLYI/HNR + ENEMRNR + H.C.,
(1.1)

where ¢ = (v, E.)T and H = (H", H°)T stand, respec-
tively, for the left-handed lepton doublet and the Higgs
doublet, H = io,H* and N§ = CNR " with C = iy*y° being
the charge-conjugation matrix defined, Y; and Y, are the
charged-lepton and Dirac neutrino Yukawa coupling matri-
ces, respectively, and My is the Majorana mass matrix of
right-handed neutrinos. After the spontaneous symmetry
breaking, the charged-lepton and Dirac neutrino mass

matrices are given by M, = Y,v/\/2 and Mp =Y, v/V/2,
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respectively, with v =~ 246 GeV being the vacuum expect-
ation value (VEV) of the SM Higgs field. Given O(Mp) =
100 GeV and O(My) ~ 10'* GeV, the effective Majorana
mass matrix of three light neutrinos is determined by the
seesaw formula M, ~ —MpMgz'MT [4-8] and turns out to
be on the right order, i.e., O(M,) ~ 0.1 eV.

Although the smallness of light Majorana neutrino
masses can naturally be ascribed to the heaviness of
right-handed neutrino singlets in the canonical seesaw
model [4-8], the observed pattern of lepton flavor mixing
remains completely unexplained [2]. According to the
latest global-fit analysis of all neutrino oscillation data
[3], from which the current knowledge on neutrino mass-
squared differences Amlzj =m? — m% (forij = 21, 31, 32),
three mixing angles {6,,, 0,3, 053}, and the Dirac-type CP-
violating phase 6 has been summarized in Table I, we can
observe that the flavor mixing angles 6, ~ 33°, 653 ~ 8.6°,
and 6,3 ~ 49° in the lepton sector are dramatically different
from those in the quark sector [9]. An attractive way to
understand the lepton flavor mixing is to impose discrete
flavor symmetries on the seesaw model that is further
extended with a number of scalar fields, which may
transform nontrivially under the flavor symmetry group.
See, e.g., Refs. [10—13] for recent reviews on discrete flavor
symmetries and their applications to lepton flavor mixing
and CP violation.

Apart from the discrete flavor symmetries, the finite
modular symmetries have been recently implemented to
account for lepton flavor mixing [14-16]. In the frame-
works of string theories and supersymmetric field theories,
the modular invariance and its connection to discrete flavor
symmetries have been excellently elaborated in Ref. [16].
In addition, the practical applications of finite modular

Published by the American Physical Society
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TABLE L.

The best-fit values and the 1 ¢ and 3 ¢ intervals, together with the values of ¢; being the symmetrized 1o uncertainties, for

three neutrino mixing angles {6),,63,6,3}, two neutrino mass-squared differences {Am3,, Am%, or Am3,}, and the Dirac CP-
violating phase § from a global-fit analysis of current experimental data [3].

Parameter Best fit lo range 30 range o;
Normal neutrino mass ordering (m; < m, < ms)
sin® 0, 0.304 0.292-0.317 0.269-0.343 0.0125
sin 0,5 0.02221 0.02159-0.02289 0.02034-0.02430 0.00065
sin® @3 0.570 0.546-0.588 0.407-0.618 0.021
5/° 195 170-246 107-403 38
Am3, /(1075 eV?) 7.42 7.22-7.63 6.82-8.04 0.205
Am3, /(1073 eV?) +2.514 +2.487—-+2.542 +2.431- +2.598 0.0275
Inverted neutrino mass ordering (m3 < m; < m;,)
sin® 6, 0.304 0.292-0.317 0.269-0.343 0.0125
sin” 6,5 0.02240 0.02178-0.02302 0.02053-0.02436 0.00062
sin® @3 0.575 0.554-0.592 0.411-0.621 0.019
5/° 286 254-313 192-360 29.5
Am3, /(1075 eV?) 7.42 7.22-7.63 6.82-8.04 0.205
Am3, /(1073 eV?) —2.497 —2.525—-—2.469 —2.583-—-2412 0.028

groups I'y (for N = 2,3,4,5, ...) to the model building of
neutrino masses and flavor mixing can be found in the vast
literature [17-74]. Meanwhile, the double covering of I'y
has also been discussed in Refs. [75-79]. In the present
paper, we investigate the double covering of the modular A5
symmetry group, i.e., I'; ~ AL, which has not yet been
explored in the previous works. For the finite modular
group I'%, the modular forms with both even and odd
weights are present. The explicit expressions of the
modular forms of weights up to six in the nontrivial
representations of I'; are derived for the first time.
Interestingly, there are two-dimensional irreducible repre-
sentations 2 and 2’ for the double-covering group Iy ~ AL,
which are, however, absent for the I's~As group.
Motivated by this observation, we further apply the I'j
group to the minimal seesaw model (MSM) [80-86] and
assign two right-handed neutrino singlets into the two-
dimensional representation of I';. Two concrete examples
in the MSM have been given to explain the observed
pattern of lepton flavor mixing.

The remaining part of this paper is structured as follows.
In Sec. II, the double-covering group I'; ~ AL of the
modular I's ~ A5 group is examined and the modular forms
of weights up to six are explicitly given. The applications of
the I'; group to the MSM are explored in Sec. III, and two
concrete models are built to account for lepton flavor
mixing as observed in neutrino oscillation experiments.
The exact numerical results of the allowed parameter space
are presented, while the approximate analytical results are
also derived in order to understand the flavor structures of
the charged-lepton and neutrino mass matrices. In Sec. IV,
we summarize our main results. Finally, the basic proper-
ties of the finite group A% are presented in Appendixes A
and B.

II. DOUBLE-COVERING GROUP

A. Double covering of the modular group

In this subsection, we introduce the double covering
of the modular group and explain why the modular group
I'~SL(2,Z) and its principal congruence subgroups
I'(N) (for N > 2 being positive integers) can accommodate
the modular forms with odd weights. Although the basic
properties of the modular group can be found in the existing
literature [16] and mathematical monographs [87-90], a
concise introduction will be helpful in establishing our
notations and conventions for the subsequent discussions.
First, let us recall the definition of the modular group
'~ SL(2, Z), namely,

=i )

which is generated by S, 7, and R satisfying $? = R,
(ST)> =1, R> =1, and RT = TR, respectively. More
explicitly, the matrix representations of these three gen-

erators are given by
1 ) < -1 0 )
, R= .
1 0 -1

(5 o) 0
(2.2)

Suppose that y is an element of the modular group I'. Then
the modular transformations of the complex parameter 7 in
the upper half of the complex plane H = {z € C|Imz > 0}
and the chiral supermultiplet /) can be defined as

a,b,c,deZ,ad—bc:l}, (2.1)
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atr+b
ﬁ

(1) A1 o0 () D)
ey T4 = (ct+d) ™ p(y)\,

yit (2.3)
where k; is the weight of the chiral supermultiplet and
pU(y) denotes the representation matrix of y. Obviously,
the transformations of 7z induced by y and —y are actually
identical; i.e., the modulus 7 does not transform under R.
Hence, one can define the so-called inhomogeneous modu-
lar group as T'~PSL(2,Z)=SL(2,2)/{I, -1} with I
being the identity element, for which two generators are
found to be S:7 - —1/7r and T:7 — 7+ 1. On the other
hand, the modular group has an important class of sub-
groups, i.e., the principal congruence subgroups, whose
exact definition is as follows:

r(zv):{(‘cl Z)eSL@,Z),(‘C’ Z)
—((1) (1)> (modN)},

for a given positive integer N. In a similar way, one can
introduce T'(N) =T(N)/{I,-I} and the quotient group
Iy =T/T(N), which are generated by S and T satisfying
the identities $* = (ST)* = TV = 1. However, as has been
pointed out in Refs. [53,77], matter fields in modular-
invariant theories are generally allowed to transform under
R. Therefore, we should consider T rather than T' as the
symmetry group in such theories. As a consequence,
the finite modular group I'y will be extended to its dou-
ble-covering group, defined as I'y, = I'/T'(N), which is
generated by S, 7, and R that obey the following identities:

(2.4)

S?2 =R, TN =1, R*=1, RT=TR.

(2.5)

(ST)? =1,

Then, we consider the modular forms. By definition, the
modular form f(z) of level N and weight k is a holomor-
phic function of 7, and it transforms under I'(N) as

flro) = (ct+d)!f(r).  yeTN). (26)
where k > 0 is an integer. Note that —I belongs to I'(N) for
N =1, 2, leading to f(z) = (=1)kf(z) if we substitute
y = —I into Eq. (2.6). Therefore, the nonzero modular
forms with odd weights can exist only in I'(N) with N > 2.
As has been proved in Ref. [75], for a given modular space
M, [T(N)], the modular forms can always be decomposed
into several multiplets that transform as irreducible unitary
representations of the finite modular group I'yy. To be more
precise, we can always find a proper basis for the modular

space M, [['(N)] such that a modular multiplet y® =
(f1(7), f2(2),...)T in the representation r satisfies the
following equation:

k k
o) = (et + dfpr @), yer. @7
where p.(y) denotes the representation matrix of y and
pe(y) =1 for y € [(N). In particular, for the generators

y =S and T, we get

Y (87) = (=2)pe(8) Y (2),

Now that two elements y and S?y correspond to the same
fractional linear transformation of z in Eq. (2.3), we can
substitute them into Eq. (2.7) and arrive at

Y (re) = (et + @) pe ()Y (2),

k k
YO (8y7) = (=D (er+ oo (S Y (2). (2.9)
which should be identical, leading to the relation
pr(527/) = (—l)kpr(]/). (210)

Since $? =1 in the finite modular group I'y, Eq. (2.10)
implies p,(y) = (=1)*p.(y), which is expected to hold
only for k being an even integer. However, in the double-
covering group Iy, we can see that the generator R = S?
fulfills the relations p.(R) = p.(I) =1 for an even k and
pe(R) = —p,(I) = —I for an odd k. Therefore, we demon-
strate that the modular group I" and its principal congruence
subgroup I'(N) with N > 2 have to be considered for the
modular forms of both even and odd weights.

B. The group I'; ~ A;

In this paper, we focus on the finite modular group I's ~
As and its double-covering group I'; ~ A%, corresponding
to the specific case of N = 5. The basic properties of the
finite group A% have already been studied in the existing
literature [91-94], so we just briefly summarize the key
points relevant for our later discussions. The AL group has
120 elements, which can be produced by three generators S,
T, and R satisfying the identities in Eq. (2.5) for N = 5. All
120 elements can be divided into nine conjugacy classes,
indicating that A% has nine distinct irreducible representa-
tions, which are normally denoted as 1, 2, 2 ,3,3.4, ZI, 5, and
6 by their dimensions. The conjugacy classes and character
table of A%, together with the representation matrices of all
three generators S, 7, and R in the irreducible representa-
tions, are explicitly given in Appendix A. Notice that the
representations 1, 3, 3/, 4, and 5 with R = I coincide with
those for A5, whereas Q, 2’, 21, and 6 are unique for A% with
R = —I. In addition, the decomposition rules of the
Kronecker products of any two nontrivial irreducible repre-
sentations can be found in Appendix B and will be frequently
used in the subsequent discussions.
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C. The modular space of I'(5)

To construct the modular forms that transform non-
trivially under I':, which is isomorphic to A%, we need
first to find out the modular space of I'(5). For a given
non-negative integer k, the modular space M;[['(5)] of
weight k for I'(5) contains 5k + 1 linearly independent
modular forms, which can be regarded as the basis
vectors of the modular space. According to Ref. [90],
we have

M,[T “@kc (?))w (5e)Ey(57).  (2.11)

0 9
5 5

wi—Q

where 7(7) is the Dedekind eta function

@ =a"T]0

with ¢ = *", and ¥, , (7) is the Klein form

(2.12)

15 T
a0 =R (s, a
oyr) = =0 e (5098, (5),
e O
o) =10 e sve s
este) = L0t sty 50),

r—1)/2
(n-1)/ (

fr],rz (T) =z - qz)

x H (1-q"q.)(1-q"gz")(1—¢")2.

n=1

(2.13)

with (ry,r,) being a pair of rational numbers in the
domain of Q? —Z2, z=1r| + r,, and ¢, = €*. Under
the transformations of S and 7, the eta function and the
Klein form change as follows:

o 1
7’](’[) - _iTn(T)7 fr],rz (T) - _;f—rz,rl (T)’
T:n(e) —» e/ Py(x), &, ()

More information about the properties of the Klein form
£, ., (z) can be found in Refs. [36,90] and, thus, will not
be further discussed here.

Then we take k = 1 and find out the modular forms of
the lowest weight. With the help of Eq. (2.11), it is
straightforward to obtain the basis vectors of the modular
space M, [['(5)], i.e.,

Eorin (7). (2.14)

n(57) ¢ s ves (s,
= B
eyl 7 :}715(51) 3 2 T
o(0) =75 Hg(50E(59),
1115(57,'>

%(Sr) (2.15)

1
5

Furthermore, making use of Eqgs. (2.12) and (2.13), we can derive the ¢ expansions of the above six basis vectors:

14+3¢+442 +2¢ + ¢* +3¢° +64° +4q" —¢° + -+,
éz q"P(1+29+2¢° + ¢ + 24" +2¢° +24° + ¢" +2¢° + 2" + - --),

é3

Q>

QA

From Eq. (2.15), one can immediately observe that ¢;¢

PA+q+¢+q¢ +2¢" +¢°+q" +2¢° + 4"+ ),
s=PU+ @+ + 4" = +2¢° +2¢° + 4" + ),
s=q"7(1-q+2¢° +2¢°-2¢" +2¢° + ¢° + ),
=q(1-2q9+4¢* -3¢+ ¢* +2¢° =2¢° + 34 —=2¢° + - - ).

(2.16)

j = ene, exactly holds for i + j = m + n. These relations are very

useful for the calculations of higher-weight modular forms, as we shall see in the next subsection. Under the transformation

of T, we have

él g @1, éz = a)éz, ég g Cl)zég,

with @ = ¢27/5

é4 - a)3é4, éS = 6()4é5, é6 g é67 (217)

, while under the transformation of S we obtain

2 _
e - (—IT)\\;? {%6’1 +¢62 +2€'; +2(¢— 1)é4+ (¢— 1)2é5 +2¢5 3é6:|7
VOI=T[* . V5. 25, 256, V3p. (p—1),
&, — (—ir) 75 ?el ?ez— 5 ey — 5 ey — 5 es — 5 AR
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63—>(—lf)£|:;él—\/§(q;_l)é2—\g§é +\/§(¢;_1)é4+\g§é5+(¢;1)86:|’
o101, V5, V5. V5p, V5. ¢,
&4 — (—it) 75 56075 Tt g et el e~ 56|,
—1)? - -
65—>(—1‘L')\4/_\/f|:(¢51) él_§é2 2\5/563—2\/5(? 1)é4—\/§(q; 1)é5+%é6:|a
—_ _1)2
66—>(—1T) i/g 1 |:(¢ 51) @1—(¢—1)é2+2é3—2¢é4+¢2é5—2¢5_|—1é6:|, (218)

with ¢p = (v/5 + 1)/2. The derivation of Eq. (2.17) is quite
straightforward, since one can simply use the 7' trans-
formation properties of #(z) and £, , (z) shown in
Eq. (2.14). However, the derivation of Eq. (2.18) would
be very tedious if one strictly followed the S transformation
properties of #7(z) and £, , (7). Our strategy for such a
derivation is as follows. First of all, we know that each
function ¢; will be transformed under S into a linear
combination of all six basis vectors with coefficients to
be determined. In each linear combination, the ¢ expan-
sions of &; given in Eq. (2.16) will be performed. On the
other hand, given the transformation rules for n(z) and
£, ,,(7) under S in Eq. (2.14), one can calculate ¢; after the
S transformation by using Eq. (2.15) and perform the ¢
expansions as well. Since the expressions derived in those
two different ways should be equivalent to each other, we
can extract the coefficients in the linear combinations by
comparing the first few terms in the g expansions. With
those coefficients, we can obtain the final results in
Eq. (2.18).

Now that the transformations of ¢&; under S and T are
known, we are ready to determine the transformation rule

for the modular form Yél)(r) of weight one in the

irreducible representation 6, which can be expressed in
terms of the basis vectors of the modular space M, ['(5)].

More explicitly, the components of Y él) (7) can be written as

6
1 o
(Yé ))l = Za,je], (219)
J=1
for i=1,2,...,6, where the coefficients a;; (for

i,j=1,2,...,6) need to be calculated. Then, after apply-
ing Eq. (2.8) in the case of k = 1 and r = 6 and taking the

transformation properties of ¢; in Eqgs. (2.17) and (2.18)
into consideration, we can find all the nonzero coefficients:

Ay = ds5 = 5\6’
(2.20)

a; =1, ajg = agy = =3,

a3z = Ayq = 10, g = —1.

As a consequence, the explicit expressions of all the
(1)
6
we denote six components of Yél)(r) as Y;(z) (for
i=1,2,...,6) and then have

components of Y’ can be obtained. For later convenience,

Y, &, — 3
Y, 5v/22,
yo | | 102, . (221)
6 Y, 102,
Y5 5v/285
Yo -3¢, — &

where the argument 7z has been suppressed for all the
relevant functions, and the exact formulas of ¢; and their ¢
expansions are given in Egs. (2.15) and (2.16), respectively.

D. Modular forms of higher weights

As usual, the modular forms of higher weights can be
constructed through the tensor products of those of lower
weights. We start with the modular forms of weight two
(i.e., k = 2), which can be generated by the tensor product

of two modular forms of weight one, namely, Y (61) ® Yél).

With the help of the decomposition rules of tensor products
in Appendix B, we get all the nonzero modular forms with
weight two as
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e} — 362,25 — &2 Y3 —3Y,Ys - Y2
vil = @), =-3| svaee -3e) | =3 v |,
5v/225(38 + &) —YsYs
2 1 1 \/6 2
)
—(83 + 142,84 — &%) V6(Y2 —2Y Ys - Y?)
1
o= e, =vVe| svae(e+2e) | =5 -VAn(n+ve .
5v224(22, - 2) V3Y4(Y) = Ye)
Q) _ iy oy _ 46 o)
V2(e7 + &) V2(Y7 + 13)
—2V/32,(2 + 72) 2V6Y,(2Y) + Ye)
2 1 1 A N N
Y;) = [Yé) ® Yé >]Ss =5 233426 -3¢)) | = 3 V3Y5(Ye-3Yy) |- (2.22)
—2v/32,(42 + 32) V3Y4 (Y +3Ye)
2V3e5(2 — 72y) 2V6Y5(2Ys — V)

Some comments on the above modular forms are in order. First, the dimensionality of the modular space M[['(5)] is

Sk + 1, implying 11 independent modular forms of k = 2, which we take as Y gz) = Ygfi), Y g%) = Yg%)l and Y 22). Second,
substituting the ¢ expansions of ¢; in Eq. (2.16) into the expressions of those three modular forms, we find that they are
consistent up to some overall factors with the results obtained in Ref. [36] for the modular A5 group. This should be the case,
as the modular forms of even weights for the modular A5 group coincide with those for the double-covering group A%.

Following a similar procedure, we can derive the modular forms of weights three, four, five, and six. For weight three,

there exist 16 independent modular forms, transforming as the irreducible representations 4, 6,, and 6, of the modular Aj
group, which can be expressed as

—\/§Y2
6) _ ) g p@7 _ _3V30 , NIREE
V) =Y @Yy, =-———(Y2—4YYs—Y :
4 {6®3]4 10(1 146 6) \/§Y4
V2Ys
5Y3 - 12Y3Ys — 11Y,Y: -2V}
=2Y,(Y? = 5Y Y —2Y2)
3 Y3(Y, + Ye) (Y, +2Y
Yg _ {Yél) ® Y;Z)]éz _ _£ 3(Yy 6)(¥1 6) ’
’ : 2 Yy(Y1 = Y6)(2Y) = Ys)
2Y5(2Y3 = 5Y,Ys - Y2)
2Y] = 11Y3Y6 + 12Y,YZ + 5Y7
3Y3-9YiYs - Y Y+ Y3
—2Y,(2Y? =2V, Y — Y2)
2
Gy oy _ V3 2175
Yo, =0y @Yy, =+ 2,2 (2.23)
2Y5(Y? =2V, Y — 2Y2)

—Y] - YiY+9Y,Y¢ + 37}

For weight four, we have
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vy = v @YD) = —V2(rt = 37iYe - Y32 4 3V, Y] 4 YY),
(Y34 Y2)(7Y7 —18Y,Ys —7Y?)

vy = [y<61> ® Yg]ssl = ? Y,(13Y] = 3Y3Ys —29Y, Y2 -9v3) |.
—Y5(9Y3 —29Y2Ys + 3Y Y2 + 13Y3)
V2(Y2 + Y2)(4Y2 = 11Y,Yq — 4Y2)

vy = e Yg]xl = —% —Y5(Y, = 2Y¢)(TY2 = 3Y, Y —2Y2) |,

Y4(2Y) + Ye)(2¥2 = 3Y, Y — TY2)
V2Y,(2Y + Ye)
Y3(2Y) +Ys)
—Y4(Y) = 2Y¢)
V2Y5(Y| = 2Ye)
V3(Y) =3Y6)(3Y + Ye)
=Y, (SY, + Yg)

4 3
v =l erl), = (i -4rv -1}

El

4 1 3 3v/30
Yé,z:[Y(g)®Y‘(1>]5‘2:—?(Y%—4Y1Y6—Y§) V2Y5(Y, = Ye) ,
V2Y, (Y, +Y)
—Y5(Y, —5Y¢)

11Y} — 60Y3Y4 + 58Y3Y2 + 60Y,Y; + 11Y¢
V3Y, (Y + Ye) (Y2 + 8Y Y + 3Y2)
vé = el = —V6Y5(Y3 +3Y2Ys — 9Y, Y2 — 3Y3) . (2.24)
V6Y,(3Y3 = 9Y2Ys —3Y,Y2 + Y})
—V3Y5(Y, = Y6)(3Y] = 8Y Y + Y3)

5 1 4 V6 Y3
Y;):[Yé’®Y(,)]i:T(Y%—4Y1Y6—Y§)2(Y4>,
v — iy @ ¥y =3 (v —ar,y _Y2)<Y2(7Y?—3Y1Y6—2Y%)>
y 6 B4 e Ty 2y — 3y, v - 7v2) )’

V2Y,(Y} - 6Y,Y6 - 2Y3)
V3Y3Y(2Y) + Y)
V3Y1Y4(Y) = 2Y5)

V2Y5(2Y7 - 6Y, Y6~ Y3)

Y,
Y,

(YT —4Y,Ys - Y3)

Y

= —V2(Y} = 3Y3Ys — Y2Y2 4+ 3Y, Y3 + ¥h Y3 ,
4

YS

Y¢

lg
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41Y] — 195Y1Ys + 214Y7YZ + 66Y1Y; — 127Y,Y¢ — 39773
2Y,(40Y1 — 81Y3Ys — 49Y3YZ2 + 33Y,Y; + 13Y})
V6 —Y3(Y]+6Y3Ys +20Y7Y2 - 114Y,Y] — 41Y¢)
ki =16 Y4 (4174 — 114Y3Ys — 20¥2Y2 + 6V, Y3 — ¥2)
2Y5(13Y} —33YYs — 49Y2Y2 + 81Y, Y3 + 40Y})
39Y] — 127Y1Y¢ — 66Y{YZ + 214Y1Y3 4 195Y,Y¢ + 4173
(3Y, —Y6)(3Y, + Y6)(3Ys — V)
2Y,(Y) + Yg)(2Y) + Ys)
Y3(5Y2 —6Y,Ys —3Y?)
Y4(3Y3 —6Y,Ys —5Y2)
—2Y5(Y1 —2Y6)(Y1 — Ye)
(3Y1 + Ye) (Y1 +3Y6)(3Ys — ¥))

215
:T(Y%—4Y1Y6—Y§)

For weight six, we have

3
v = e vy = —g (YD) (417 = 198Y¥, + 154Y]YG + 1987, V7 + 4177).
(Y} =3Y6)(3Y, + Y¢)(3Y2 — 2V, Y, — 3Y2)

W= erd) =22 m-anr-m|  merioorn-my |,
2Y5(3Y] —9Y3Ys + 2Y3)
Y2 = 3Y,Y, — Y2
vg = @) ’ =3V2(Y} = 3YiYs — Y3YZ + 3Y Y3 + Y¢) Y,Y, :
—YsY¥s
(3Y, + Ye) (Y, —3Ye)
Yg?,)l = [Yél) ® Yés)]y = _?<Y%_4Y1Y6_Yé)2 V2Y,Y; ,
V2Y4Yg
V2(Y7 =2YYs - Y¢)
ro = e ygf]y — —‘f (Y4 =3Y3Ys — Y2¥2 4+ 3Y, Y3 + v4) —Y5(Y, + V) ,
Yy(Y) - Ye)
—V2Y,(3Y, + ¥s)
Y4(Y, + 7,
=y o= Jo-an-ne | P

V2Y5(Y, = 3Y5)

V2Y, (Y3 + 11Y3Y ¢ + 19Y,Y2 + 5Y3)
Y3(13Y3 = 31Y3Y, — 17Y, Y2 - 13)
Y4(Y3 = 17Y3Y¢ + 31Y, Y2 + 13Y3)

V2Y5(5Y3 = 19Y3Ys + 11Y,Y2 - 1?})

=—— (YT —4Y,Ys—Yg)

076005-8



DOUBLE COVERING OF THE MODULAR A5 GROUP AND ...

PHYS. REV. D 103, 076005 (2021)

6 1 5 V10

v =1y @), = Y (-4 Y -
6 1 5 V2

Yy = [Yé) ® Y(g_l] = —T(Y?—3Y?Y6 -

Although only part of the above modular forms will be
implemented to build the concrete models of neutrino
masses and flavor mixing in the present paper, a complete
list of them up to the weight k = 6 should be useful for
future works.

II1. MINIMAL SEESAW MODEL

A. Simple viable scenarios

As a practical application of the modular Af group
explored in the previous section, we consider the MSM of
neutrino masses and lepton flavor mixing, in which two
right-handed neutrino singlets can be just assigned into the
two-dimensional irreducible representation of A%. As we
have mentioned, two-dimensional representations do not
exist for the original A5 group. Therefore, the MSM with two
right-handed neutrinos is a well-motivated and economical
scenario for the model building with the modular A% group.

Together with two right-handed neutrino singlets assigned
into 2’ of the modular A’ group, the charge assignments
of other chiral superfields under the SU(2); gauge symmetry
and the flavor A} symmetry in our model have been
summarized in Table I1. After the weights and representations

v, o), o
M= 0, o 0
e, o8, oF
i, o), N\
Mo =2 =0, =0, |
~0, ),
—V2((YY)), +A)),]
My = A, :
( (rgh), + Ay,

Yg)

YiYZ +3Y Y, +Y¢)

) )
V2IY), + AYE),) )

V3(Y1 =3Y6)(3Y) + Ye)(YT + 1)
—2Y,(2Y, + Y4)(2Y} = 3Y,Ys — Y2)
V2Y3(Y3 +2Y3Ys — 11Y,Y2 - 4Y}) |,
V2Y4(4Y3 — 11Y3Ys —2Y Y2 + Y3)
2Y5(Y —2Y¢)(Y2 = 3Y Y —2Y2)
V2(Y2 4 12)
21/6Y,(2Y, + Yy)
—V3Y3(3Y, = ¥s)
V3Y,4(Y, + 3Ys)
~2v/6Y5(Y| —2Y)

I
of all the superfields under A are fixed, it is easy to deter-
mine the Yukawa couplings that have to be the modular
forms of weights ky = k; + k;, +--- + k; , where k;_(for
i=1,2,...,n) are the weights of the superfields involved.
As for lepton masses and flavor mixing, the gauge- and
modular-invariant superpotentials read

Wy = 41 [(LES) Y Hy + ra[(LES)3 YY), Hy
+ 73 [(LES) YO Hy + ral(LES)3 Y] Ho,
Wp = [(LNC)AYE >] i,
1
W :5/\ VERC) Y], + 2A2[(NCNC)3/Y(6)2]1.

(3.1)

Without loss of generality, it is always possible to render y;
(for i =1, 2, 3), g, and A, to be real by redefining the
unphysical phases of lepton fields. Hence, we are left with
two complex parameters y,/y; =7 = ye'? and Ay/A =
A = Aei?r. After implementing the Kronecker product rules
in Appendix B, we obtain the charged-lepton mass matrix
M,, the Dirac neutrino mass matrix Mp, and Majorana
neutrino mass matrix Mg, i.e.,

1 + 77( 3,2)] 71 O 0
~ 6
L+, 0 1 0],
~ (6 0 0
+7(YS)), 73

(Y9, + Ay
3,171 32/ (3'2)
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TABLE II. Summary of the charge assignments of the chiral
superfields under the SU(2), gauge symmetry and the modular
A% symmetry in our model, where the corresponding weights
have been listed in the last row.

P B A A A,
SU(2), 2 1 1 1 1 2
Al 3 1 1 1 3 1
k; -2 4 6 8 3 0

where the asterisk “x” indicates the complex conjugation,
(Yf.k))i denotes the ith component of v®, and v, and vy
stand for the VEVs of the up- and down-type Higgs fields,
respectively, in the minimal supersymmetric standard
model. Once M and My are known, we shall be able
to get the neutrino mass matrix M, via the seesaw formula
M, =-MpMz'M]. With both M; and M,, one can
diagonalize them and get lepton masses and flavor mixing
matrix.

First, we carry out a detailed numerical analysis of
our model, for which a parameter counting should be
helpful. In addition to the real and imaginary parts
{Rer,Imz} of the modulus z, there are five parameters
in the charged-lepton sector (i.e., p; = vqy3/ V2, b=
Y1/73> ba =72/73, and 7 = yel?) and three parameters
in the neutrino sector [i.e., u,=g*v2/(2A,) and
A = Ae'#r]. Totally, we have ten real model parameters.
The most general case, where all the ten parameters are
taken into account, will be numerically studied. Then,
we assume two of the free parameters to be zero and
investigate two such special scenarios. The strategy for
our numerical analysis is quite simple. Upon scanning
over the parameter space of the model parameters, we
can compute the low-energy observables, namely, two
neutrino mass-squared differences {Am3,,Am3, or Am3,}
and three flavor mixing angles {0, 0,3, 6,3}, which are
then confronted with their allowed ranges at the 1o or
30 level according to the global-fit results from NuFIT
5.0 [3,95] without including the atmospheric neutrino
data from SuperKamiokande, as summarized in Table I.
Then the CP-violating phases and effective neutrino
masses for beta decays and neutrinoless double-beta
decays are calculated as theoretical predictions. More
details of our numerical calculations and comments on
the final results can be found below.

(i) The values of 7 (i.e., both real and imaginary parts)

are randomly generated from the region

Gr ={r€C:Imr > 0,0 <Rer <0.5,|7] > 1},
(3.3)

which is the right-half part of the fundamental
domain G. As for the conjugate part with

—0.5 < Rer £0, the corresponding results can be
obtained by reversing the signs of all the phases.
Moreover, y and ¢, are chosen from the regions y €
[107,10%] and ¢, € [0,27), respectively. Then
three real parameters y;, by, and b, in the
charged-lepton sector can be numerically deter-
mined via the following identities:

Tr(MM]) = m? + m? + m2, (3.4)
Det(M;M}) = m>m2m?, (3.5)
1 ry2 _ 1 2
5 [Te(M M) = S Te[(M,M;)7]
= mZm} + mym? + mimg, (3.6)

where the running charged-lepton masses m, =
0.48307 MeV, m, =0.101766 GeV, and m, =
1.72856 GeV are evaluated at the electroweak scale
characterized by m, = 91.2 GeV [96].1 After so
doing, the charged-lepton mass matrix M; is also
fixed, and the unitary matrix U, used to diago-
nalize it via UJM;M|U,; = Diag{m2, m2, m?} can
be obtained.

(ii) In the neutrino sector, we randomly generate the
values of A and @, in the regions A € [1074,10%]
and ¢, € [0,2n), respectively. Given the modulus
parameter 7 in the previous step, the neutrino mass
matrix M, can be determined up to the overall factor

u,. Therefore, we can calculate the ratio r=

) T _ :
\/ Amj3, /Am3, = my/mj in the case of normal mass

ordering (NO) with m; =0<my, <m3 or r=
VAm3, /|Am3,| = \/1 —m?/m3 in the case of in-
verted mass ordering (I0) with mz = 0 < m; < m,.
This ratio is independent of the overall neutrino
mass scale p,, and so is the unitary matrix U,
diagonalizing the neutrino mass matrix M, via
UM MU, = Diag{m?,m3,m3}. The lepton fla-
vor mixing matrix U, or the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [97,98], is thus
givenby U = U ZT U,. In the standard parametrization
of the PMNS matrix [9], we have

lAlthough the modular symmetry is usually supposed to work
at some high-energy scale, the renormalization-group running
effects can be safely neglected in our model for two reasons. First,
neutrino masses cannot be nearly degenerate in the MSM, where
the lightest neutrino turns out to be massless. Second, a
sufficiently small value of tanf = v, /v, is assumed such that
the charged-lepton Yukawa couplings are highly suppressed.
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(iii)

FIG. 1.

C12€13

_ i
U= —s12023 — C12823513€"

is
$12823 — €C12€23813€

where ¢;; = cos 0;; and 5;; = sin 0;; (for ij = 12, 13,
23) have been defined. Note that, in the MSM, the
lightest neutrino is massless, and, thus, only one
Majorana CP-violating phase o is physical. Com-
paring the obtained values of r and {sin’#,,
sin? @,5,sin> @3} with their allowed 3¢ (or 1o)
ranges from global-fit results, we find out the
parameter space of our model that is compatible
with experimental data at the 3¢ (or 1o) level. The
overall factor u, can be pinned down by further
reproducing the correct values of Am3, or |Am3,],
but it is not relevant for our discussions about lepton
flavor mixing and CP violation.

In order to determine the best-fit values of free
parameters in our model, we construct the y?
function as the sum of one-dimensional functions
)(f namely,

(3.8)

X (pi) = Dﬁ(pi),

$12€13

i5
C12€23 — §12523513€

is
—C12823 — §12€23513€

Sl3e_i6 1
§23C13 . e’ s (37)

€23C13 1

where p; € {Rer,Imz,y,¢,, A, p,} stand for the
model parameters and j is summed over the ob-
servables {sin?@,,,sin’@,3,sin’> @3, r}. For sin® 6,5,
sin @5, and r, we simply take the Gaussian ap-
proximations and assume

q;(pi) - q?f)z’ (3.9)

x5 (pi) = ( -
where g;(p;) denote the model predictions for these
observables and q?f are their best-fit values from the
global analysis in Ref. [3]. The associated uncer-
tainties o; are derived by symmetrizing 1o uncer-
tainties from the global-fit analysis and have already
been given in Table I. For sin” 8,5, we use the one-
dimensional projection of the y? function provided
by Refs. [3,95]. By minimizing the overall y?
function in Eq. (3.8), we can determine the best-
fit values of our model parameters.

0.8t

0.0 0.1

0.2

Ret

0.3

0.4 0.5

The allowed parameter space of the model parameters {Rer, Imz} in the most general case with ten real parameters, where the
1o (yellow dots) and 3¢ (red dots) ranges of flavor mixing angles and neutrino mass-squared differences from the global-fit analysis of
neutrino oscillation data have been input [3]. The best-fit values of {Rer, Imz} from the y-fit analysis are denoted by the black star. In
addition, the lower boundary of Gy is plotted as the gray curve.
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In the most general case, where all ten real parameters
are included, our model is compatible with the global-fit
results of oscillation parameters at the 1o level in the NO
case, while the IO case is excluded at the 3¢ level. The
allowed parameter space of {Rez,Imz} in the NO case is
shown in Fig. 1, where one can observe that the whole
range [0, 0.5] of Rer is allowed, while Imz can vary from
0.98 to 1.44 at the 30 level. In Table III, we summarize the
best-fit values, as well as the 16 and 3¢ ranges, of the free
parameters and the allowed ranges of low-energy observ-
ables. Notice that the parameter y can vary in a broad range
from O to 1293. It is interesting to see that y53 could be much
smaller than y; and y,, so the contribution to the flavor
mixing from the third column of M, can be negligible when
compared to those from the first two columns. On the other
hand, Table III reveals that 7 or A could even be zero,
providing the possibility to reduce the number of free
model parameters from ten to eight.

Next, motivated by the above observations, we now
consider two special cases, namely, case A with A =0and
case B with 7 = 0.

(i) In case A with A =0, only Y @1 is retained in the
right-handed neutrino mass matrix M. We find that
this scenario is consistent with the global-fit analysis
of neutrino oscillation data at the 3¢ level in the NO
case. The allowed parameter space and the constraint
on low-energy observables are shown in Fig. 2.
From Fig. 2, we observe that the allowed parameter
space of 7 is restricted to the region of 0.12 < Rer <
0.27 and 1.326 <Imz < 1.352. In addition, 1/y

varies from 0.045 to 0.33, or equivalently
3<r<22,and 115° < ¢, < 235%is obtained. There
exist strong correlations among the low-energy
observables. As can be seen from the top-right
panel, the allowed range of o decreases as the value
of 0,3 becomes smaller. In particular, when 6,5 is as
small as 8.2° the value of § is tightly restricted to be
around 257°. From the bottom-left panel, we see the
correlation between 0, and 0,3, indicating that
relatively large values of 6;, and small values of
0,5 are predicted in case A. Next-generation neutrino
oscillation experiments, e.g., JUNO [99], Hyper-
Kamiokande [100], and DUNE [101], will unam-
biguously pin down the neutrino mass ordering and
determine the octant of 6,3, so case A will be
hopefully confirmed or ruled out in the near future.
Notice that m; = 0 in the NO case, so the absolute
neutrino masses can be immediately determined
from neutrino mass-squared differences, namely,
my, = \/Am3, and ms = +/Am3,. The value of
m, cannot reach its upper bound of the 3¢ allowed
range from neutrino oscillation data. For the maxi-
mum m, = 8.81 meV, the effective mass for beta
decays my = /mi|U,[* + m3|Upl* + m3|U s is
constrained to be 9.45 meV. Meanwhile, the effec-
tive mass for neutrinoless double-beta decays m; =
|m U2, + myU%, + m3U%| is lying in the range
(1.35...3.86) meV, which will be a great challenge
for future neutrinoless double-beta decay experi-
ments [102,103].

TABLE III. Summary of the best-fit values with )(rzmn = 0.0153, together with the 1 ¢ and 3 o ranges, of all the free model parameters
in the NO case in our model with ten real parameters. The allowed ranges of the low-energy observables are also given.

Best fit lo range 30 range
Free model parameters Rer 0.2201 0-0.5 0-0.5
Imz 1.272 1.204-1.410 0.978-1.439
y 13.51 0-570 0-1293
0,/° 346.8 0-360 0-360
A 5.606 1.061-17.17 0-19.90
@n/° 209.3 82.47-317.0 0-360
u;/MeV 0.1369 0.1158-150.5 5.163 x 1072-1.789 x 102
b, 2413 9.243 x 1073-2.771 x 103 2.174 x 1073-5.301 x 10°
b, 85.60 1.235 x 1073-1.361 x 10? 5.210 x 1074-5.713 x 10?
u,/meV 26.60 24.11-48.93 23.68-87.16
Observables m,/meV 8.614 8.497-8.735 8.258-8.967
mz/meV 50.19 49.87-50.42 49.30-50.98
01,/° 33.51 32.70-34.21 31.27-35.86
013/° 8.582 8.45-8.70 8.20-8.97
023/° 49.02 47.6-50.1 39.6-51.8
o/° 359.6 0-360 0-360
c/° 128.2 0-180 0-180
my/meV 8.816 8.711-8.943 8.259-9.445
mgyp/meV 2.404 1.428-3.676 1.043-4.167
P 0.0153 .
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FIG. 2. The allowed parameter space of model parameters, as well as the constraints on the low-energy observables in case A with
A = 0, where the 36 ranges of flavor mixing angles and neutrino mass-squared differences from the global-fit analysis of neutrino
oscillation data have been input [3]. The best-fit values from the y>-fit analysis are denoted by the white stars.

Based on the y’-fit analysis, we find that the
minimum y2, = 15.99 is obtained in the NO case
with the following best-fit values of the model
parameters:

Rer = 0.2110,
y =17.294,

Imz = 1.341,

@, = 121.9°, (3.10)
which together with the charged-lepton masses
lead to u; = 0.03639 GeV, b; =0.04809, and
b, = 0.3528. The overall factor y, in the neutrino
sector turns out to be 27.11 meV. Given the best-fit
values of model parameters, we get the neutrino
mass spectrum m; = 0, m, = 8.340 meV, and m; =
50.65 meV, three mixing angles 6, = 35.17°,
013 =8.707°, and 6,3 =40.21°, and two CP-
violating phases &6 =1254.5° and o= 167.2°
Meanwhile, the model predictions for the effective
neutrino masses my and mg; are found to be 9.020
and 2.282 meV, respectively.

Furthermore, a brief illustration on why the 10
case is excluded in case A is helpful. In fact, the

(i)

076005-13

observed values of Am3, and Am3, impose strong
constraints on the parameter space of 7z in the 10
case. To be specific, if both Am3, and Am3, are
within their individual 3¢ ranges from global-fit
results, the allowed range of {Rez, Imz} is restricted
to be in a small ring centered on 7 = 1/2 + iv/3/2,
where the predicted values of #5 are found to be
around either 0 or 90°. Therefore, the IO case is not
compatible with the neutrino oscillation data.

In case B with 7 = 0, the total number of model
parameters is also reduced to be eight. Unlike
case A, we find that case B is compatible with
neutrino oscillation data even at the 1o level in the
NO case. The allowed ranges of model parameters as
well as the constrained ranges of low-energy ob-
servables are shown in Fig. 3. As one can see from
the top-left panel, there are two separated parts in the
30 allowed parameter space of {Rer,Imz}, corre-
sponding to two distinct allowed hierarchies with
by > b, > 1 and b; > 1 > b, in the charged-lepton
sector, respectively. While at the 1o level, only one
narrow region remains in the allowed parameter
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FIG. 3. The allowed parameter space of model parameters, as well as the constraints on the low-energy observables in case B with
7 = 0, where the 1o (yellow dots) and 3¢ (red dots) ranges of flavor mixing angles and neutrino mass-squared differences from the
global-fit analysis of neutrino oscillation data have been input [3]. The best-fit values from the y-fit analysis are denoted

by the

black stars.

space of {Rer,Imz}, where 0.1 <Rer <0.16 and
1.31 <Imr < 1.36. Similarly, there appear three
separated regions in the 30 allowed parameter space
of {A7!,¢,} in the top-middle panel in Fig. 3.
However, as has been mentioned before, under the
transformations Rer — —Rer and ¢, — 27 — ¢y,
the predictions for low-energy observables remain
unchanged, except that the signs of all CP-violating
phases are reversed. Therefore, the rightmost two
parts in the top-middle panel seem to be connected
to each other by the transformation ¢, — 27 — .
In the top-right panel, the allowed values of & are
lying in several separated regions, probably origi-
nating from different regions in the allowed param-
eter space of {A™!, @, }. In case B, the predicted
values of three mixing angles can essentially saturate
their individual 3¢ ranges allowed by neutrino
oscillation data, and there is no significant correla-
tion among them. The 3¢ allowed ranges of m; and
myy are larger than those in case A, which is mainly
due to the fact that the allowed range of 6;, becomes
larger in case B. Performing the y-fit analysis in
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case B, we find that the minimum y2. = 0.0741 is
achieved at

Rer = 0.1320,
A =7.362,

Imz = 1.331,

Pn = 223.4°, (3.11)

which together with the charged-lepton masses lead
to u; =1.853x107* GeV, b, =1.872x 10°,
b, =64.30, and u, =29.47 meV. Furthermore,
we get the neutrino mass spectrum m; =0,
m, = 8.625 meV, and m; = 50.18 meV, three mix-
ing angles 60,, =33.28°, 6,3 =8.567°, and
0,; = 48.88°, and two CP-violating phases & =
58.67° and ¢ = 176.1°. Meanwhile, the predictions
for two effective neutrino masses my and myg; are
8.827 and 2.404 meV, respectively. The remarkable
difference between case A and case B is their
predictions for the octant of 6,3. Case B shows
no clear preference for the octant of 6,3, while case
A prefers the first octant. If the present hint for the
second octant of 6,5 is confirmed by future neutrino
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oscillation data, case A will be definitely ruled out.
In addition, the precision measurement of ;, and
the determination of the CP-violating phase § will
also shed some light on the discrimination between
these two simple but viable scenarios.

In summary, by a detailed numerical analysis, we have
demonstrated that our model with ten real parameters is
well compatible with current neutrino oscillation data. Even
more, if the complex parameter A in case A or 7 in case B is
set to zero, the model is still allowed by experimental
observations.

B. Analytical results

It is worthwhile to notice that there are no additional free
parameters other than the complex modulus 7 in the
neutrino sector in case A with A =0. As a result, the
effective Majorana neutrino mass matrix M, in this case
turns out to be simple enough, rendering analytical
|

e ~1, ey ~ xev, ey~ x2e?,

eNxe

calculations under some reasonable approximations to be
possible. Analytical calculations, though approximate, will
be helpful for understanding the flavor structures of lepton
mass matrices.

First, as we have seen from the numerical calculations in
the previous section, the allowed values of Imz are located
in a very narrow region 1.326 < Imr < 1.352, for which
|g| = e2"I™* is small enough, and, thus, it is safe to retain
only the leading-order terms in the g expansions of all the
modular forms. For this purpose, we introduce two aux-
iliary real parameters

2 2
xzexp(—?lmr), y= ﬂRer, (3.12)

5
which are actually the modulus and argument of ¢'/° (i.e.,

g'> = xeY), and six basis vectors given in Eq. (2.16)
approximate to

3,31y 4 ,4iy P 5,51y
bl bl b

es~xte e~ X e (3.13)

where x serves as the expansion parameter. To have a ballpark feeling about the size of x, we take the best-fit value of
Imz = 1.341, as found in Eq. (3.10), and then obtain x ~ 0.185 from Eq. (3.12), which is not perfect but reasonably good for

perturbation calculations.

Then, applying the approximate expressions in Eq. (3.13) to Mp and My in Eq. (3.2), one can get the analytical form of

the effective neutrino mass matrix via M,

0 .
5v3 V3e

Moo |2 20 o —1 |24
v S 1796 RPTTE
0 -1 0

where p, denotes the absolute scale of neutrino masses
and only the terms up to O(x*) in the second matrix in the
square brackets are kept. Some comments on the general
structure of M, are helpful. In Eq. (3.14), we have inten-
tionally divided the neutrino mass matrix into two parts,
the first of which is constant. Considering the absolute
value of the ratio of the coefficient in front of the first
matrix on the right-hand side of Eq. (3.14) to that of the
second matrix, namely, 25x3 ~ 0.158, we can see that both
of these two parts make remarkable contributions to M,,.
However, one can observe from Eq. (3.14) that only the
(3,3) element of M, survives at the leading order, whose
absolute value is approximately the largest mass eigenvalue
my in the NO case. On the other hand, the lightest neutrino
must be massless in the MSM, i.e., m; = 0. Therefore, it is
straightforward to derive three neutrino mass eigenvalues:

= —-MpMx'M], ie.,

0 —5\/_)62 —2iy 80\/5)64 —4iy
—5v/2x%e72y xe v 0 . (3.14)
80v/2x* e~ 0 3
V3 V3
= ~ (1 2
my 0, my ( + 50x )480362#1” msy =~ 160)63 TZn3Hu
(3.15)

from which one can determine the neutrino mass ratio

nmy X
/’:4/_

(1 4 50x2). (3.16)

ms 3

When setting x=0.185 from the best-fit value of
Imz = 1.341, we find that the prediction from Eq. (3.16)
is r = 0.167, which is in excellent agreement with the best-
fit value r =~ 0.165.

As the symmetric and complex neutrino mass matrix is
diagonalized by the unitary matrix U, via UZM,, U, =
Diag{m, m,, m3}, we can also obtain
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e/ 0 0 cosd, —sindg, 0 eV2 0 0
U,~ 0 ™2 0 +sin@, cosd, O |- 0 1 0], (3.17)
0 0o 1 0 0 1 0 0 1

where the rotation angle 6, is determined by tan 6, = 5v/2x. Given x ~ 0.185, one can estimate 0, = arctan(5 \/Ex)z
52.60°, which is quite large. Furthermore, with the help of Eq. (3.16), we can immediately establish a rather simple relation
between the rotation angle and the neutrino mass ratio m,/ms ~ tan 8, sec’ 6, /(1 5\/5) We have numerically checked that
the approximate analytical result of U, in Eq. (3.17) agrees very well with the exact result, and the difference arises from the
omission of higher-order terms.

Next, we proceed with the charged-lepton sector. Up to the order of O(x?), the charged-lepton mass matrix M; in
Eq. (3.2) can be expressed as

=3 -5V3 3y 2ye i by 0 0
My~ 0 0 0 0 b 0], (3.18)
CsvEen SVaen 3064 geee) \o 0
while the corresponding Hermitian matrix H, = M,M| reads
75b% + 187/2 0 15\/5[6},(}, + 3e—i(p},) _ Sb%}xeiy
Hi ui 0 0 0 , (3.19)

15V2[6y(y + 3€'%r) — 5b3]xe™

where b7 has been set to be zero because of the strong
hierarchy b? < b3 < 1 as indicated by numerical calcu-
lations in the previous section. If b3 = 0 is further assumed,
then one can verify that the masses of the first two
generations of charged leptons are vanishing, i.e.,
m, = m, = 0. Therefore, the terms associated with b3 will

be retained. It is worth stressing that, even if b% 18 set to be
nonzero, the electron mass is still vanishing due to the
special structure of M; in Eq. (3.18). To generate a nonzero
electron mass, we have to keep higher-order terms of x in
M,. For illustration, we work with the accuracy of O(x?)
and, thus, focus on the charged-lepton mass matrix M; in
Eq. (3.18) and accordingly H, in Eq. (3.19), implying
m, = 0. As the Hermitian matrix H, is diagonalized by the
|

m2 ~ 75b3x%y~*(25 + 20y cos @, + 4y*)m?| cos 26|,

0 150x?[b3 + 6(y + 6y cos @, +9)]

[
unitary matrix U; via U, H,U; = Diag{m2, m’, m?}, we
can obtain

0 —sinf,e'9 cos 0,
U =11 0 0 . (3.20)
0 cos 6, sin ;e 10=¢)

where the rotation angle 6, is determined by tan’ 0, =
50x*(y* 4 6y cos @, +9)/y* and the phase by tané =
3sing,/(3cos ¢, + 7). Given the best-fit values of model
parameters, we have 6, ~48.17° and &~ 23.16°. Mean-
while, three charged-lepton mass eigenvalues are found to
be m, =0 and

m? ~ 18y*ussec?0,, (3.21)

where the rotation angle 6, has been defined below Eq. (3.20). Substituting the best-fit values of relevant parameters in
Eq. (3.21), one obtains m, =0, m,/u; =2.044, and m./p; = 47.862, while the exact numerical results are
(mg,m,,m.)/u; = (0.013,2.764,48.924). Bearing in mind that only the leading-order terms are kept in the charged-
lepton mass matrix, we can see a reasonably good agreement between analytical and numerical results.

Finally, with the unitary matrices U, in Eq. (3.17) and U, in Eq. (3.20), the PMNS matrix is thus given by

sing, coséd, 0 1 0 0
U=UjU,~ | —sincosf, sin@;sing, cosd, |-|0 /29 ¢ (3.22)
cosf;cosf, —cosf;sinf, sin6,; 0 0 1

076005-16



DOUBLE COVERING OF THE MODULAR A5 GROUP AND ... PHYS. REV. D 103, 076005 (2021)

where the unphysical phases have been eliminated by redefining the charged-lepton fields and the neutrino field with mass
my = 0. From the PMNS matrix in Eq. (3.22), we can extract three flavor mixing angles as below:

sinf,;3 = 0, sin@, ~ cosb,, sin 0,3 ~ cos 6, (3.23)

and the Majorana CP phase o ~ £ — 5y/2. Interestingly, the rotation angle 8, from the neutrino sector and 6, from the

charged-lepton sector are directly related to the mixing angle 6, and 6,3 via the simple relation 0, ~ z/2 — 6, and

0,3 ~ /2 — 0,, respectively. Substituting the best-fit values of model parameters shown in Eq. (3.10), we find that our

approximate analytical results lead to

913 ~ 0, 912 ~ 37.400, 923 ~ 41.830, O~ 165.80, (324)

where one can see that the values of 8, 6,3, and ¢ are in good agreement with their individual best-fit values shown in the

paragraph below Eq. (3.10). In addition, recalling the approximate analytical expressions of » and m, in Egs. (3.16) and

(3.21), we can see that the free model parameters x and yy; are directly related to the observables by, respectively,

2
Amj,

m. sin @
P _ e 23
—5sin“0,, Y = — (=

Am3, 3v2

Before closing this subsection, let us briefly discuss how to generate a nonzero ;3. Note that the unitary matrix U, in the
neutrino sector in Eq. (3.17) is kept only to O(x) and, thus, parametrized by a pure (1,2) rotation. If we improve our
calculations with the accuracy of O(x3), U, will be modified with an extra (2,3) rotation, which can be expressed as

x=3 (3.25)

e 0 0 1 0 0 cosd, —sing, 0O 1 0 0
U| 0 €3 0]-10 cosf, —sing, +sing, cosd, O |-|0 &2 0 (3.26)
0 0 1 0 +sin@, cosO, 0 0 1 0 o 1

where the rotation angle @/, is determined by sin#!, = 25x%/3. Adopting the best-fit value of x ~ 0.185, we obtain
0, = arcsin(25x%/3) ~ 3.023°, indicating @, is quite a small angle. Then the modified version of the PMNS matrix reads

sin @), cos 6, sin @, e~ 1(oy=¢+7) 1 0 0
U=UU,~ | —sinf;cos6, sin6,sin6, cos 6, 0 270 o (3.27)
cos@;cosf, —cos6;sinf, sin @, 0 0 1

where one can observe that the (1,3) element of U acquires
a small nonzero value proportional to sin @, while all the
other elements remain approximately unchanged. Thanks
to this small correction, we can obtain the approximate
expressions of 03 and ¢ as, respectively,

03~0,, oxS5y—¢+m. (3.28)
Substituting the best-fit values of model parameters shown
in Eq. (3.10) into Eq. (3.28), one can arrive at

0,3 =~ 3.023°, 6~231.6° (3.29)
where the value of 65 is still much smaller than its best-fit
value. However, if we retain the terms of O(x*) in M; in
Eq. (3.18) from the very beginning, then a nonzero value of
m, will be obtained and 63 will receive an additional

correction from the charged-lepton sector. In fact, we have
checked that 653 ~ 9.012° can indeed be generated at this
order of approximations if the best-fit values of model
parameters are taken.

IV. SUMMARY

The double covering of modular groups can accommo-
date the modular forms with odd weights and, thus, provide
us with new possibilities to account for tiny neutrino
masses, lepton flavor mixing, and CP violation. In this
paper, we investigate the basic properties of the double
covering of the modular I's ~ A5 group, i.e., the modular A%
group, which has not been studied in the previous literature.
As a practical application, we have considered the minimal
seesaw model with a modular A symmetry, in which we
numerically explore the allowed parameter space and
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analytically study the mass spectrum and flavor mixing in
the lepton sector with some reasonable assumptions.

The main results are summarized as follows. First of all,
we begin with the modular forms of weight one. With the
help of the Dedekind eta function and Klein form, we
obtain the basis vectors of the modular space M, [['(5)],

1

‘(A5 )
the linear combination of these basis vectors. Next, we
derive the modular forms of weights up to six using the
Kronecker product rules of A% and present their explicit
expressions. After the modular forms are determined, we
proceed to apply the double-covering group A% to the
concrete models. There exists a two-dimensional irreduc-
ible representation 2’ in the group A%, into which we assign
two right-handed neutrino singlets A€ in the minimal
seesaw model, and the charged-lepton doublets I and
three charged-lepton singlets {£S, ES, ES} are assumed to
transform as 3 and three one-dimensional representations
of A%, respectively. In the most general case, the model
contains ten real parameters, which are the modulus
parameter 7 = Rer + ilmz together with the parameters
# = vgr3/V2, by =71/13, by=72/73, and 7 =ye in
the charged-lepton sector and y, = ¢?v2/(2A;) and A =
Ae?r in the neutrino sector. We find that our model is
consistent with the global-fit results of neutrino oscillation
data at the 1o level only in the NO case. The best-fit values,
together with 16 and 3¢ allowed ranges of model param-
eters and low-energy observables, are also given.

In addition, we have investigated two simple but viable
cases, which are case A with A = 0 and case B with 7 = 0.
In these two cases, only eight real model parameters are
involved. Numerically, we find that case A is compatible
with the oscillation data at the 3¢ level in the NO case,
while case B can be consistent with the global-fit results
within the lo level in the NO case. In particular, the
effective Majorana neutrino mass matrix M, in case A turns
out to be phenomenologically appealing, since no addi-
tional parameters other than the modulus 7 are present. This
allows us to perform analytical calculations under some

and the modular forms Y3’ with weight one turn out to be

TABLE IV. The character table of the group A%.

reasonable approximations. Expanding lepton mass matri-
ces in terms of the parameter x = exp|—(2zImz)/5], which
is about 0.185 given the best-fit value of Imz ~ 1.341, we
show that the PMNS matrix up to the order of O(x?) can
be described by the combination of two rotations coming
from the neutrino sector with the rotation angle 6, =
arctan(5+v/2x) ~ 52.60° and the charged-lepton sector with

the angle 6, = arctan [Sﬂx\/}/z + 6y cos g, + 9/;/} ~

48.17°, respectively. As a consequence, we obtain simple
expressions of the mixing angles 6, and 6,3, namely, 6, ~
/2 =86, and 6,3 ~ /2 — 0, which agree well with their
individual numerical results. A nonzero 6,3 can be gen-
erated only if the higher-order corrections are taken into
account. At the order of O(x?), an additional rotation with
the rotation angle @, = arcsin(25x%/3) in the neutrino
sector will contribute to the PMNS matrix, leading to
0,3 ~ 0, ~ 3.023°. Furthermore, the approximate expres-
sions of two CP-violating phases ¢ and ¢ have also been
gained.

For further exploration along this direction, it will be
interesting to bring the modular A{ group into the model
building of both lepton and quark masses and give a unified
description of both quark and lepton masses, flavor mixing
patterns, and CP violation. We hope to come back to this
possibility in the near future.
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APPENDIX A: CONJUGACY CLASSES AND
REPRESENTATION MATRICES

As has been mentioned in Sec. I, the group A% has 120
elements, which can be divided into the following nine
conjugacy classes [93]:

Al 1 3 3 4 5 5 5 i 8
1C, 1 3 3 4 5 2 2 4 6
12C;s 1 p) 1-¢ -1 0 — $—1 -1 1
12¢ 1 1-¢ p) -1 0 $-1 — -1 1
20C; 1 0 0 1 -1 -1 -1 1 0
30C, 1 -1 -1 0 1 0 0 0 0
1C, 1 3 3 4 5 ) -2 —4 -6
12Cyo 1 P 1-¢ -1 0 ¢ 1-¢ 1 -1
12¢, 1 1-¢ P -1 0 1-¢ ¢ 1 -1
20C 1 0 0 1 -1 1 1 -1 0
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1Cy: 1
12Cs: T,T* ST?>R,T?SR, ST?, T3S, STSR, TSTR, TST?, T*>ST, T>ST*R, T*ST’R;
12C5: T2, T3, ST?SR, ST3SR, (ST?)?, (T?S)?, (ST3)?, (T3S)?, (T*S)*T*R, T*(ST?)*R,
T3ST?ST*, T*ST>ST?;
20C5: ST, TS,ST*R,T*SR, TST?R, T*>ST*R, T>ST*, T3STR, T>ST?, T*ST?, TST>SR,
T2ST3S, T3ST?S, ST>ST?, ST3STR, ST?ST?, (T*S)*T?R, T*(T?S)?R, (ST?)2S,
(ST?)’T*R,
30C,: ST*>ST?S,TST*, T*(ST*)?, T>ST?, (T*S)*T3S, ST*ST, S, T3ST?ST?,
T3ST?ST3S, T3ST?, T*ST?ST3S, TST?S, ST3ST?S, T*ST, (T?S)*T*,
ST?ST3SR, TST*R, T*(ST?)*R, T*ST?R, (T?>S)*T?SR, ST>STR, SR,
T3ST?ST3R, T>ST>ST?SR, T>ST?R, T*ST?>ST>SR, TST*SR, ST>ST*SR,
T*STR, (T?>S)>T*R;
1C,: R;
12Cyo: TR, T*R,ST?, T*S,ST>R, T*>SR, STS, TST, TST?>R, T>STR, T>ST*, T*ST?,
12C,: T?R,T3R, ST?S, ST3S, (ST?)?R, (T*S)*R, (ST?)’R, (T>S)?R, (T*S)*T?,
T3(ST?)?, T3ST?ST*R, T*ST*ST’R;
20Cq: STR, TSR, ST*, T*S, TST?, T*>ST?, T*>ST*R, T3ST, T>ST>R, T*ST"R,
TST3S, T*>ST3SR, T3ST?>SR, ST*>ST*R, ST?ST, ST>ST*R, (T*S)*T?,
T?(T%S)2, (ST?)*SR, (ST?)*T>. (A1)

The character table of A% has been shown in Table IV, where ¢ = (v/54 1)/2 has been defined. The irreducible
representation matrices of three generators S, 7, and R are summarized as below:

¥ p<s>—%< o _f_l), pm—(“g ;’) p(R) = o
1 1 V2 =2 1 0 0
3 p(S)=—5 V2 ¢ ¢-1]. P(T>(0 o 0],  pR) =+,
-2 -1 —¢ 0 0 of
X -1 V2 V2 1 0 0
3 ID(S)Z\—f5 V2 1-¢ ¢ |, pM)=]0 @ 0 [, p(R) =+,
V2 o 1-¢ 0 0 o
1 ¢-1 ¢ -1 o 0 0 0
2
R R | pm(g SO R
-1 ¢ -1 1 0 0 0 o
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-V2¢+1 3¢ 3(p-1) V2¢-3 w 0 0 0
. i V3h V20=3 2 +1 3(p—1) 0 o> 0 0
B8y -1 VZp+1 —V2p—-3 -3 M=o 0w o
VIE=3 \3@-1) 3§ VI 0 0 0 o
P(R):—H4x4,
-1 V6 V6 V6 V6 10 0 0 0
V6 (p-1?2 =2 20p-1) ¢ 0w 0 0 0
saS)=5| V6 -2 #  @-17 2= | pm=[0 0 w0 0 0|
Ve 20p-1) (p-172 ¢ ~2¢ 00 0 o 0
Ve @ 2p-1) =29 (p-1) 00 0 0 o
p(R) = +lsys.
) -V20@-1) V29=3 —V2pFT V2§ Vo=T
—V2-1) V-1 20p-1) V2P ) V26
P | IETEE 2(p-1) Ve —Ve-T V2 VT |
500 -v2p+1 V2 ~VP=1 Vg  J2p-1) V2p-3
V26 N ~V2¢ 20-1) Vo-1 20p-1)
P—1 V26 V26T V2p-3 \2p-1) -V
1 0 0 0 O O
0 w O 0 0 0
2
=l 0 0 e = (22
0O 0 O 0 o 0
0O 0 O 0 0 1

where w = €27/ and I,,,, denotes the n-dimensional identity matrix. Notice that the above representation matrices are
equivalent to those in Ref. [93] via unitary transformations.

APPENDIX B: THE KRONECKER PRODUCT RULES OF Aj

In this Appendix, we summarize the decomposition rules of the Kronecker products of any two nontrivial irreducible
representations of A%, namely,

A

202=1,03, 22 =103, 202 =4
- alﬂz ap) 1,: %(alﬂz —mp) aif

a1y + af aifr + af ap,

3§. 22 \/_aZﬂZ 32 \/TE _\/zalﬂl _alﬂl
V2a, 4, V2w, ap
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(e3=3a4 Y3y =20l
5. \/Tg (‘%/”1 + \/5052/7’3> 5. ? <a1ﬂ1 + \/5052%)
) V2a, 5, + ap V2a,5 — arpy
—V3a, 55 —V2a,8, + arps
i3 ( V2a, 8 + afps i- 3 ~V3a,ps
o —a1 By + V2, o ~V3a1,
V3w, ai1f3 + V2P
2@3=6 Y®3=6
a1fp3 — afs a1 p3
\/zazﬂ3 —a1f
6: -2 —V2ap 6: b
V2a,, —f3
—V2a,8, @)
af; + afr —ap;
l4=206 Y@4=206
5. _§<a1ﬂ4+azﬂ3> 5. \/§<0!1ﬂ1+052ﬂ3>
a1, — : a1y — afy
—ﬁa1ﬂ3 —a1fy — mp
—a1fy + axf —V2ap,
i ? V2,4 6 g a1y — apfs
—\/§a1ﬂ1 —aifr — axfy
ai1fy + amf V2a, ;5
V2,0, a1fy — aofy
24=3095 2®4=3@5
V2(ay 5 — axp) V2(aify + arpy)
3: =5 | —V3aifs + arps 3: 3| aB + V3P
a1fy + V3ap —V3a1p, — aps
V2(a1 5 + arf) V2(a1py — o)
1By + V3P —2m,/;
5: 3% 2a0p4 5: 5| =V3aifi + aps
—2a,/ a 1By — 3P4
—V3a1$, + ap 20105
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205=4

Y

(=%

. V10

® 6
afs + 2 p,
V2a, 51 + V3aps
\ﬁalﬂz - \/§a2ﬂ1
20105 — axf
—a1fy + 3af;
\/i(zalﬂs — mpy)
—V6a, ) + 2,5

_V5
5

0 =201, — \/gazﬁl
—V2(a1 B3 + 2a/8,)
3184 + axf3

26=3@4®5

R

2

2%

V2(a1fy + arfp3)
—a, By + a1 fs + V25
\/§a1ﬁ2 —af — aps
—aifs — ﬂazm
—V2a,6 + s
-y — \/Eazﬁl
_\/zalﬂB - mp
\/g(alﬂ4 — aff3)

2(\/§a1ﬁ5 — fy)
=3a1fpy — a1 fs — \/iazﬁs
V2a,15, — axfpy + 3arfs

—2(a1 33 = \/zazﬂz)

YR5=4®6

=
oS

o
IS

V2a, 8, = V3ap;
2010, + oy
—a1 5 + 2 fs
V3a1y + V2P

—a1fs + 2mp,
V3a11 + V25
a1y —2mp,
=213 — axfs
=284 + V3ap
=2a,p5 — axf,

YR6=30405

3:%

oy
£

—a1fs — aofr
ai1fs — afs
ai1fy + afy
—a1f1 — a1 ffs — axf3
—V2a,5, + axfps
—aiff3 — \/iazﬁs
—a1fy + affy — afs
—ﬁ(mﬁs — af)
=201 + a1 + afs
—V2(1 B + V2ap4)
ﬁ(\/ialﬂ_% — afs)
a1fy — afy — 206

1:

3,

3R3=1,83,05; IRI=1,83,85 33 =405
@ (1f) + a3 + asfr) 1i: ? (1) + axfps + asfpy) V2a,p1 + asp
mf3 — a3fy nf3 — a3 4: 3 ~V2a,5, — asfy
% a1fr — axfy 3, % a1fy — af) e —V2a, 3 — axpa
afy — aif3 af —aifs \/50!3,31 + mfs
201 — mf; — a3 200, — mf; — a3 \/§a1/31
V3,4, = V3ap V6o 3 afy — V2,
\/?6 V65, St \/76 —V3(af + @) 5: @ afr — V235
V6as s —V3(a1 5 + a3py) B3 — V2P,
—V3(af3 + a3py) Voayp, a:fy — V2P,
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34=3®4D5

34=

2:

=

N>

¥Q4=30405

—V2(aps + azpy) —V2(af5 + asfpr)
¥: 3 (\/Ealﬂz—azﬁl +0’3ﬂ3> 3: 3 (\/Ea]ﬂl +azﬁ4—a3ﬂ3>
V2a,55 + afpy — azfy V2a,54 — by + asfpy
iy — V2w, iy + V2
4: 3 —a1fy = V2P 4: 3 aify = V2a34
s+ V2, P s + V2
—aify + V2 —a1f4 = V2mp,
\/6(a2ﬁ4 - ) \/6(0’2,33 )
2(V2a,1 + a32) V2a,5) =3 — asfs
5 \/Tg V21, + i + 3asf3 5: \/T§ 2(V2a, 5, + a3ps)
V2a,3 = 3w — aafy —2(v2, B3 + arfp)
—2(V2a14 + afp3) V20,4 + @y + 33 fy
lpdoe IR4=2®d06
NG (‘ﬂalﬂz +V3mp + 0‘3ﬂ3> 5. /6 ( V2a,8y — afy + V3asps )
*\ V2 s — arf + V3ash, * \ =V2a ;s + V3arp — aspy
3a18) + Voasp, a1y — 2V 24 — V603
Vs a1fr + Voar i — 2V 2355 4 V5 =31, — Voasfs
e —a1f3 — 2V2a,, — V6as o 315 = V6,
—3a1 84 — Vo s —a 14 — Voar s — 220533
—3mfs + a3y —V2(axf5 — 2a33,)
214 — V63, V6a151 + 3y — a3
V10 —Voa1py = arppy = V3P 6: VIO 20, — V6384
0 —V6a,83 + V3ap, — aspy S 20,5 + V6
20,54 + V65 —V6a,8, — arfpr + V33
—mfy — 33 p, V22,5 + as )
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35=303 0405

(—2alﬂ1 + V3,5 + ﬂasﬂz)

3:@

V3a1, + arfpy — V6as B
V3aps — Voaypy + asp
V3a1pi + axfs + azp
3 \/Tg af; — \/zazﬁz - \/Easﬂ4)
afy — \/5012,53 - \/5013,35
2V2a, 8, = Vo By + aspy
—V2a, 5 4 20, — 3384
V2a, 84 4 3ay3 — 235
—2V2a,5 — axpy + V63
V3 (s — azfp,)
—aify — \/gazﬁl - \/§a3ﬁ3
S: % —V2(V2: 83 + arp5)
V2(V2a, B4 + a3s)
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