
 

Study on pure annihilation type B → Vγ decays

Hui Deng,1 Jing Gao,2,3 Lei-Yi Li ,4,2,* Cai-Dian Lü,2,3 Yue-Long Shen ,1,† and Chun-Xu Yu4
1College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

2Institute of High Energy Physics, CAS, P.O. Box 918(4), Beijing 100049, China
3School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China

4School of Physics, Nankai University, Weijin Road 94, Tianjin 300071, China

(Received 10 January 2021; accepted 16 March 2021; published 6 April 2021)

We investigate the pure annihilation type radiative B meson decays B0 → ϕγ and Bs → ρ0ðωÞγ in the
soft-collinear effective theory. We consider three types of contributions to the decay amplitudes, including
the direct annihilation topology, the contribution from the electromagnetic penguin operator, and the
contribution of the neutral vector meson mixing. The numerical analysis shows that the decay amplitudes
are dominated by the ω − ϕ mixing effect in the B0 → ϕγ and Bs → ωγ modes. The corresponding decay
branching ratios are enhanced about 3 orders of magnitude relative to the pure annihilation type
contribution in these two decay channels. The decay rate of Bs → ρ0γ is much smaller than that of Bs → ωγ

because of the smaller ρ0 − ϕ mixing. The predicted branching ratios hBðB0 → ϕγÞi ¼ ð3.96þ1.67
−1.45 Þ × 10−9

and hBðBs → ωγÞi ¼ ð1.99þ0.81
−0.70 Þ × 10−7 are to be tested by the Belle-II and LHCb experiments.

DOI: 10.1103/PhysRevD.103.076004

I. INTRODUCTION

The exclusive radiative B decay modes B → Vγ are very
interesting and valuable probes of flavor physics, since they
provide an excellent platform to constrain standard model
parameters, to test new physics models, and to understand
QCD factorization of the decay amplitudes [1]. Most B →
Vγ decays occur via the flavor-changing neutral-current
transitions b → sγ or b → dγ, and the quark-level transition
amplitudes are now approaching next-to-next-to-leading-
order accuracy [2,3]. It is more profound to evaluate the
exclusive decay modes B → Vγ, based on the effective
theory with the expansion in the inverse powers of the b
quark mass. At leading power in 1=mb, the QCD factori-
zation of B → Vγ decays has been established up to
next-to-leading order in αs [4–11]. The leading power
factorization formula was confirmed in a more elegant way
with soft-collinear effective theory (SCET) [12]. The
exclusive B → Vγ decays have also been investigated in
the alternative approach of perturbative QCD factorization
based on kT factorization [13].

In modern accelerators with high luminosity, more
accurate data have been accumulated; therefore, besides
the leading power contributions, we must consider power
corrections on the theoretical side to improve the theoretical
precision. Among the power suppressed corrections, the
weak annihilation diagrams are of great importance, as they
might be mediated by tree operators, and they play an
important role in the determination of the time-dependent
CP asymmetry in B → Vγ (see Refs. [14–17]) as well as
isospin asymmetries [18]. There exists a special type of
radiative decays where the decay amplitude contains
only annihilation type diagrams, including B0 → ϕγ and
Bs → ρ0ðωÞγ decays. Relatively less attention is paid to
them due to their tiny branching ratios [19]. The B0 → ϕγ
decay is mediated by penguin annihilation topology, with a
very small Wilson coefficient. In addition, this decay mode
is suppressed by Λ=mb, since the emitted vector meson
must be transversely polarized. In naive factorization, its
branching ratio is estimated to be at the order of 10−13, and
QCD corrections can enhance the result to about 10−12. In
Ref. [20], it was found that the electromagnetic penguin
operator O7γ contribution through B0 → γγ� with the
virtual photon connecting to the ϕ meson can increase
the branching ratio for B0 → ϕγ to the order of 10−11. The
predicted branching ratio within the framework of the
perturbative QCD factorization approach is also at this
order [21]. For the Bs → ρ0ðωÞγ mode, the contribution
from the electromagnetic penguin operator is also of great
importance, and the branching ratio is at the order of
10−10 − 10−9 [20].
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On the other hand, the radiative decays mediated by
tensor transition form factors have much larger branching
ratios. The measured branching fractions of B0 → ρ0ðωÞγ
and Bs → ϕγ read [22]

BðB0 → ρ0γÞ ¼ ð8.6� 1.5Þ × 10−7;

BðB0 → ωγÞ ¼ ð4.4þ1.8
−1.6Þ × 10−7;

BðBs → ϕγÞ ¼ ð3.4� 0.4Þ × 10−5: ð1Þ

They are at least 4 orders larger than the predicted B0 → ϕγ
and Bs → ρ0ðωÞγ decays. Such a large discrepancy might
lead to a large contribution to B0 → ϕγ and Bs → ρ0ðωÞγ
decays through the mixing between the neutral vector
mesons ω, ρ0, and ϕ. The ω − ϕ mixing effect is regarded
to be large in many B meson and D meson decay modes
[23–25]. Thus, it is valuable to investigate the contribution
of this effect in purely annihilation type B → Vγ decays,
which may be the dominant contribution. If the branching
ratios of pure annihilation type B decays can be signifi-
cantly enhanced by the neutral meson mixing, the Super-B
factory and LHCb might have a chance to find the signals
of these processes.
This paper is arranged as follows: In the next section, we

will present the factorization formulas of B0 → ϕγ and
Bs → ρ0ðωÞγ decays, including the leading power contri-
bution, and the contributions from the annihilation top-
ology, the electromagnetic penguin operator, and the ω − ϕ
mixing effect. Numerical analysis will be presented in
Sec. III. The last section contains closing remarks.

II. THEORETICAL OVERVIEW OF PURE
ANNIHILATION TYPE RADIATIVE BðBsÞ DECAYS
The effective Hamiltonian for b → Dγ transitions, with

D ¼ s, d, reads

Heff ¼
GFffiffiffi
2

p
X
p¼u;c

λp

�
C1O

p
1 þ C2O

p
2 þ

X10
i¼3

CiOi

þ C7γO7γ þ C8gO8g

�
þ H:c:; ð2Þ

where λp ¼ V�
pDVpb and Vij are elements of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix, OðpÞ
i ðμÞ are the rel-

evant operators, and CiðμÞ are the corresponding Wilson
coefficients, which are shown in Refs. [26–28].
The B → Vγ decays contain several kinds of momentum

modes, for which it is convenient to work in the light-
cone coordinate system, where the collinear momentum
of the vector meson p can be expressed as p ¼
ðn · p; n̄ · p; p⊥Þ ∼ ðλ2; 1; λÞmb, with the null vector n
and n̄ satisfying n · n̄ ¼ 2. The anticollinear photon
momentum q scales as ð1; λ2; λÞmb. In addition, the

momentum of soft quark inside the B meson and inter-
mediate hard-collinear quark or gluon can be expressed as
ðλ; λ; λÞmb and ðλ; 1; ffiffiffi

λ
p Þmb, respectively. All these modes

are necessary to correctly reproduce the infrared behavior
of full QCD. SCET provides a more transparent language
of the factorization of multiscale problems than the dia-
grammatic approach. In SCET, the fields with a typical
momentum mode have definite power counting rules. The
power behaviors of the fields appear at B → Vγ decays are
as follows:

ξc∼λ; Aμ
c∼ðλ2;1;λÞ; ξhc∼λ1=2; Aμ

hc∼ðλ;1;λ1=2Þ;
ξc̄∼λ; Aμ

c̄∼ð1;λ2;λÞ; qs∼λ3=2; Aμ
s∼ðλ;λ;λÞ; hv∼λ3=2:

ð3Þ

Since SCET contains two kinds of collinear fields, i.e., hard-
collinear and collinear fields, an intermediate effective
theory, called SCETI, is introduced that contains soft,
collinear, and hard-collinear fields. The final effective theory,
called SCETII, contains only soft and collinear fields. To
obtain the amplitudes of radiative decays, one needs to do a
two-step matching from QCD → SCETI → SCETII. The
matching procedure of leading power amplitude has been
performed in Ref. [12]. In the following, we give a brief
review in order that we can conveniently express the
contribution of the neutral meson mixing.
In the first step, the hard scale mb is integrated out

by matching the operators Qi in the weak Hamiltonian
onto a set of operators in SCETI. Merely considering the
operators contributing at leading power, the matching takes
the form

Heff → CAQA þ CB ⊗ QB: ð4Þ

The ⊗ denotes a convolution over space-time or momen-
tum fractions. The momentum-space Wilson coefficients
depend only on quantities at the hard scalemb. The specific
form of the operators QðiÞ is written by

QA ¼ ðξ̄WhcÞðsn̄ÞAem
hc⊥ðtnÞð1 − γ5Þhv;

QB ¼ ðξ̄WhcÞðsn̄ÞAem
hc⊥ðtnÞAhc⊥ðrn̄Þð1þ γ5Þhv: ð5Þ

The definition of SCETI building block Ahc and Wilson
line Whc has been given in Ref. [12]. The B-type operators
are actually power suppressed in SCETI but contribute at
the same order as the A-type operator upon the transition
to SCETII.
The matrix element of the operator QA is proportional to

the SCET form factor ζV⊥, i.e.,

hV⊥ðε1Þjξ̄ΓhvjB̄vi¼ 2EζV⊥ðEÞTr
�
=n=̄n
4
=ε�1⊥Γ

1þ=v
2

γ5

�
: ð6Þ
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The operators QB can be further matched onto four-quark
operators in SCETII through time-ordered product with
SCETI Lagrangian [29]

Z
d4xhV⊥γjTfLð1Þ

ξq ðxÞ; QBð0ÞgjB̄vi

¼
Z

ds
Z

dtJ̃⊥ðs; tÞOBðs; tÞ: ð7Þ

with

OBðs; tÞ

¼ ½ξ̄Wc�ðsn̄Þð1þ γ5ÞAem
c̄⊥
=̄n
2
½W†

cξ�ð0Þ½q̄sYs�ðtnÞð1 − γ5Þ

×
=n
2
hvð0Þ: ð8Þ

When matching the operator QB onto SCETII, the hard-
collinear virtuality mbΛ is integrated out, and the matching
coefficient gives rise to the jet function

JB⊥ðω; uÞ ¼
Z

dte−iωt
Z

dse−2iEusJ̃B⊥ðs; tÞ: ð9Þ

The final low-energy theory SCETII contains only soft and
collinear fields. At leading power, the factorization theorem
is proved in an elegant way with SCET, since the soft and
collinear fields decouple. The soft fields are restricted to the
B-meson light-cone distribution amplitude (LCDA) and
collinear ones to the vector meson LCDA defined as

h0j½q̄sYs�ðtnÞ
=n
2
ΓY†

shvð0ÞjB̄vi

¼ −
iFðμÞ ffiffiffiffi

m
p

B

2
tr

�
=n
2
Γ
1þ =v
2

γ5

�Z
∞

0

dωe−iωtn·vϕþ
B ðω;μÞ;

hVðpÞj½ξ̄Wc�ðsn̄ÞΓ
=̄n
2
W†

cξð0Þj0i

¼ ifVn̄ ·p
4

tr

�
=n=̄n
4
=ε�Γ

=̄n
2

�Z
1

0

dωeiusn̄·pϕVðu;μÞ: ð10Þ

The final factorization formula is then written by

hVγjHeff jB̄ijLP
¼ 2mB

�
CAζV⊥ þ

ffiffiffiffiffiffiffi
mB

p
FðμÞfV⊥
4

ðCB ⊗ J⊥Þ⊗ϕV⊥⊗ϕBþ

�
:

ð11Þ

Up to the order of αs, the explicit expression of hard
functions CAðμÞ and CBðμÞ have been given in Ref. [12]
[here we use CB instead of CB

1 ðμÞ]. The leading power
contribution is dominant in the decays B0 → ρ0ðωÞγ and

Bs → ϕγ, which will be employed in our evaluation of the
contribution from mixing of neutral vector mesons.

A. Contribution from weak annihilation

Now we are ready to investigate the weak annihilation
contribution to the purely annihilation type operators. The
weak annihilation diagrams are shown in Fig. 1, all of
which are mediated by the four-quark operators. In order to
produce a transversely polarized vector meson, the four-
quark operators must be matched to the SCETI operators
which are suppressed by 1=mb. Among the four diagrams
in Fig. 1, diagram (c) is dominant, because it is enhanced by
a hard-collinear propagator compared with the other dia-
grams. Therefore, we neglect diagrams (a), (b), and (d),
which are highly suppressed in our calculation. Only
considering the contribution of the leading two-particle
Fock state of the vector meson, the physical SCETI
operator, which can contribute to purely annihilation type
decays, is written by

Q1¼½χ̄hcðtn̄Þð1þγ5Þγμ⊥ηhcþH:c:�ξ̄hcWhcðsn̄Þγ⊥μ ð1−γ5Þhv;
ð12Þ

with

ηhc ¼ −
1

in ·Dhc
iDhc⊥

=n
2
χhc: ð13Þ

Although this operator is suppressed relative to the leading
power SCETI four-quark operators, they share the same
matching coefficients, since the relevant QCD diagrams in
the matching procedure are the same. Therefore, the hard
function at one-loop level can be extracted from the
effective Wilson coefficients in the QCD factorization
approach of nonleptonic B decays [28]. Similar to the
nonleptonic B decays, the hard function is also convoluted
with the vector meson LCDAs defined below:

(a) (b)

(c) (d)

FIG. 1. Weak annihilation diagrams for B0 → ϕγ decay.
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hVðp; ϵ1Þj½χ̄ðsn̄Þγμ⊥ηþ H:c:�j0i

¼ fVmVε
�μ
1⊥

Z
dueiusn̄·pgðvÞ⊥ ðuÞ;

hVðp; ϵ1Þj½χ̄ðsn̄Þγμ⊥γ5ηþ H:c:�j0i

¼ i
4
fVmVϵ

μν
⊥ ε�1⊥ν

Z
dueiusn̄·pgðaÞ

0
⊥ ðuÞ; ð14Þ

with ϵ⊥μν ¼ ϵμνn̄n=2. As the hard-collinear part decouples
from the soft and collinear parts, the factorization for the
annihilation diagram also holds. We take B0 → ϕγ decay as
an example; the matrix element can be factorized as

hϕðε1Þγðε2ÞjHeff jB̄ijanni
¼ −

GFffiffiffi
2

p VtbV�
td

�
α3 −

1

2
α3EW

�
fϕmϕ

Eγ

× hγðε2ÞjCFFξ̄=ε�1ð1 − γ5ÞhvjB̄i; ð15Þ
where the anticollinear vector meson LCDA has been
convoluted with the hard function, and the effective
Wilson coefficients are written by [19]

α3 ¼ C3 þ
C4

Nc
þ C5 þ

C6

Nc
þ αs
4π

CF

NC

f⊥V
fV

ðC4V1 þ C6V2Þ;

α3EW ¼ C7 þ
C8

Nc
þ C9 þ

C10

Nc
þ αs
4π

CF

NC

f⊥V
fV

ðC8V2 þ C10V1Þ

ð16Þ
with the vertex correction term

V1 ¼
Z

1

0

duT1ðuÞ
�
1

4
gðaÞ

0
⊥ ðuÞ − gðvÞ⊥ ðuÞ

�
;

V2 ¼
Z

1

0

duT2ðuÞ
�
1

4
gðaÞ

0
⊥ ðuÞ þ gðvÞ⊥ ðuÞ

�
;

where [30]

T1ðuÞ ¼ 12 ln
mb

μ
− 18þ gðuÞ;

T2ðuÞ ¼ −12 ln
mb

μ
þ 6 − gðūÞ;

gðuÞ ¼ 4 − 6u
ū

ln u − 3iπ þ
�
2Li2ðuÞ − ln2u

þ 2 ln u
ū

− ð3þ 2πiÞ ln u − ½u → ū�
�
: ð17Þ

The hard function CFF arises from matching the weak
current ūγμ⊥ð1 − γ5Þb onto the corresponding SCET cur-
rent. The remaining B → γ transition matrix element
containing soft and collinear fields can be parameterized by

hγðε2; pÞjCFFξ̄γμð1 − γ5ÞhvjB̄vi
¼ Eγε

�
2νðgμν⊥FA þ iϵμν⊥ FVÞ: ð18Þ

The B → γ transition form factors FV;A also present in
the B → γlν decay, which have been extensively studied
[31–42]. At leading power FA ¼ FV due to the left-
handedness of the weak interaction current and helicity
conservation of the quark-gluon interaction in the high-
energy limit, and this symmetry relation is broken by power
suppressed local contributions. At leading power both the
hard function and the jet function have been calculated
up to two-loop level and next-to-leading logarithmic
resummation has been performed. The power suppressed
symmetry-breaking local contribution and symmetry-
conserving high-twist contribution and resolved photon
contribution are also considered. Utilizing the result of
Ref. [42] in our calculation, the transition amplitude of
B0 → ϕγ and Bs → ρ0ðωÞγ is then written by

AðB → ϕγÞjanni ¼ −
GFffiffiffi
2

p λt

�
α3 −

1

2
α3EW

�
efϕmϕðFAg⊥μν þ iFVϵ

⊥
μνÞϵ�μ2 ϵ�ν1 ;

ffiffiffi
2

p
AðBs → ρ0γÞjanni ¼

GFffiffiffi
2

p
�
λuα2 −

3

2
λtα3EW

�
efρmρðFAg⊥μν þ iFVϵ

⊥
μνÞϵ�μ2 ϵ�ν1 ;

ffiffiffi
2

p
AðBs → ωγÞjanni ¼

GFffiffiffi
2

p
�
λuα2 − λtα3 −

1

2
λtα3EW

�
efωmωðFAg⊥μν þ iFVϵ

⊥
μνÞϵ�μ2 ϵ�ν1 ; ð19Þ

where

α2 ¼ C2 þ
C1

Nc
þ αs
4π

CF

NC

f⊥V
fV

C2V1: ð20Þ

B. Contribution from electromagnetic penguin operator

The annihilation diagram is power suppressed, because
leading power four-quark operators cannot contribute to a

transversely polarized vector meson. However, if the power
suppressed operator χ̄γ⊥η ∼ λ3=2 is replaced by a photon
field Aem

c̄⊥ ∼ λ1=2, this will lead to a large enhancement
factor mb=Λ. Furthermore, for the pure annihilation type
decays such as the B0 → ϕγ, the rather small color sup-
pressed penguin operator Wilson coefficient will also be
replaced by C7γ, at the cost of an electromagnetic coupling
constant αem. The leading-order Feynman diagrams of
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the electromagnetic penguin operator contribution are
plotted in Fig. 2. They are corresponding to the matrix
element

ALO
EMP ¼ −

GFffiffiffi
2

p λt

Z
d4xhϕðp; ϵ�1Þγðq; ϵ�2Þj

× TfQqeq̄=AqðxÞ; C7γO7γð0ÞgjB̄ðvÞi
þ ½p ↔ q�: ð21Þ

To evaluate this amplitude, one must have knowledge of the
matrix element of O7γ . When the photon field is sand-
wiched between the vector meson state and the vacuum, the
matrix element reads [43]

hVjeAem
c̄⊥μj0i ¼ −

2

3
iaV

e2fV
mV

ε�⊥μ ð22Þ

with aρ ¼ 3=2, aω ¼ 1=2, and aϕ ¼ −1=2. Taking advan-
tage of the above matrix element, the leading-order result
can be obtained, which has been given in Ref. [20].
In this work, we make the improvement by taking the QCD

correction of the Wilson coefficients of O7γ operator into
account. The complete OðαsÞ corrections including the con-
tribution from four-quark operators and chromomagnetic
operator are accomplished in Ref. [44]. Similar to the decay
amplitudeofB0→γγ [45] andB0→γllmode [46], the leading
power contribution of the electromagnetic dipole operator to
B0→ϕγ and Bs→ρ0ðωÞγ decay can be expressed as

AEMP ¼ i
4GFffiffiffi

2
p λt

αem
4π

�
−
2

3
iaV

�
efV
mV

ε�α1 ðpÞε�β2 ðqÞ½g⊥αβ þ iϵ⊥αβ�QqfBq
mBq

Eγm̄bVeff
7 ð0Þ

×

�
Veff
7 ðq2Þ
Veff
7 ð0Þ

mBq

2Eγ

Z
∞

0

dω
ω

Jð2Eγ; 0;ωÞϕBþðωÞ þ
Z

∞

0

dω
ω −m2

V=mBq

Jð2Eγ; m2
V;ωÞϕBþðωÞ

�
: ð23Þ

The explicit expression of effective Wilson coefficient
Veff
7 ðq2Þ and the jet function Jð2Eγ; q2;ωÞ at one-loop

level are given in Ref. [46], including the factorization scale
dependence obtained from renormalization group evolu-
tion. In our numerical analysis, the factorization scale is
chosen at an intermediate scale μhc ∼

ffiffiffiffiffiffiffiffiffi
Eγω

p
.

C. Contribution from mixing of neutral vector mesons

The mixing of the flavor-SU(3) singlet and octet states of
vector mesons to form mass eigenstates is of fundamental
importance in hadronic physics. It is commonly accepted
that the vector meson states satisfy the “ideal”mixing, close
to the value that would lead to the complete decoupling of
the light u and d quarks from the heavier s quark in the
resultant mass eigenstates ω and ϕ. Actually, ω and ϕ are
not pure states with definite isospin given by

jωIi ¼
1ffiffiffi
2

p ðjūui þ jd̄diÞ; jϕIi ¼ js̄si: ð24Þ

The mass eigenstates ω and ϕ deviate from the “ideal”
states ωI and ϕI through a mixing matrix

� jωi
jϕi

�
¼

�
cos δ sin δ

− sin δ cos δ

�� jωIi
jϕIi

�
; ð25Þ

where the mixing angle δ can be determined from the
experimental data or by model calculation. The isospin
triplet ρ0 can also mix with ω and ϕ through electromag-
netic interactions; however, the mixing angle is about one
order smaller than the ω − ϕ mixing, since the isospin
breaking is much smaller than the flavor SU(3) breaking
effect. Thus, we do not take this isospin-breaking mixing
effect into account in our analysis. After considering the
mixing between the ω and ϕ meson, the B0 → ϕγ and
Bs → ωγ decays can be expressed in terms of the decay
amplitude with the ideal mixing meson final state, i.e.,

AðB0 → ϕγÞjmixing ¼ − sin δAðB → ωIγÞ;
AðBs → ωγÞjmixing ¼ sin δAðBs → ϕIγÞ: ð26Þ

To show that the ω − ϕ meson mixing will dominate
the B0 → ϕγ and Bs → ωγ decays, we estimate the relative
size of different contributions to these decay modes.

FIG. 2. Production of a vector meson via electromagnetic penguin operator.
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For convenience, we investigate the proportion of the
absolute value of the amplitude of each contribution with
respect to the absolute value of the leading power amplitude
in B → ρ0γ decay in Table I. From this table, we can see
that the mixing effect can increase the branching ratio from
annihilation topology in QCD factorization approach over
2 orders of magnitude and is one order larger than the
contribution from electromagnetic operators. For Bs →
ρ0ðωÞγ decays, the tree operators with a large Wilson
coefficient can contribute, while they are suppressed by a
small suppression factor from CKM matrix elements, i.e.,
jVubV�

us=VtbV�
tsj; therefore, the relative size of different

types of contribution in Bs → ρ0ðωÞγ decays is similar
to B → ϕγ.

III. NUMERICAL ANALYSIS

A. Input parameters

The decay amplitudes for the B0 → ϕγ and Bs → ρ0ðωÞγ
decays have been obtained in the previous section; they will
be utilized to predict the branching ratios of these decay
modes. First, we specify the input parameters which will be
used in the numerical calculation. Among various param-
eters, the mixing angle δ is of unique importance, because it
will provide the major source of uncertainties in our
calculations. The mixing angle has been discussed in many
phenomenological methods such as the framework of the
hidden local symmetry Lagrangian [47,48], the chiral
perturbation theory [49,50], the light front quark model
[51] and the Nambu-Jona-Lasinio model [52,53], etc., with
the obtained values varying at the interval about 3°–5°
(most of the studies prefer [3°, 4°]). In this work, we adopt
the value of mixing angle as δ ¼ 3.5°� 0.5°.
To arrive at the result of the decay amplitudes from the

ω − ϕ mixing, the leading power contribution of B0 → ωγ
and Bs → ϕγ is necessary. The basic nonperturbative inputs
in these amplitudes are the soft form factor ζBV⊥ and the
light-cone distribution amplitude of B meson and ρ;ω;ϕ
meson. The soft factors ζBV⊥ defined in terms of the matrix
element of SCETI operators have been calculated using
SCET sum rules. The complete next-to-leading-order
corrections to the correlation function as well as the power
suppressed higher twist contribution have been calculated
in Ref. [54]. The result is adopted as ζBV⊥ ¼ 0.33� 0.10.

For the Bs → ϕ transition, the result is ζBsV⊥ ¼ 0.35� 0.10,
allowing a small SU(3) breaking effect.
For the leading twist two-particle B-meson distribution

amplitude, we will employ the following three-parameter
model:

ϕþ
B ðωÞ ¼

ΓðβÞ
ΓðαÞ

ω

ω2
0

e−ω=ω0U

�
β − α; 3 − α;

ω

ω0

�
; ð27Þ

where Uðα; γ; xÞ is the confluent hypergeometric function
of the second kind. A special case is the exponential model
when α ¼ β:

ϕþ
B ðωÞ ¼

ω

ω2
0

e−ω=ω0 : ð28Þ

To estimate the error from the models, we will let α − β
vary at the region −0.5 < α − β < 0.5, and then we employ
two models with α ¼ 2.0, β ¼ 1.5 and α ¼ 1.5, β ¼ 2.0.
The parameter ω0 is closely related to the first inverse
moment 1=λB, whose determination has been discussed
extensively in the context of exclusive B-meson decays
(see [54–57] for more discussions). Here we will employ
the result from a recent study [58], i.e., λB ¼ 0.383�
0.153 GeV and λBs

¼ 0.438� 0.150 GeV. For the light
vector meson, the leading twist LCDAs can be expanded in
terms of Gegenbauer polynomials due to the behavior of
scale evolution, i.e.,

ϕVðxÞ ¼ 6xð1 − xÞ½1þ aVC
3=2
2 ð2x − 1Þ�;

ϕV⊥ðxÞ ¼ 6xð1 − xÞ½1þ aV⊥C
3=2
2 ð2x − 1Þ�: ð29Þ

For the power suppressed vector meson LCDAs,
ignoring the three-parton LCDA, we have the following
expression [59]:

1

4
gðaÞ

0
⊥ ðuÞ − gðvÞ⊥ ðuÞ ¼ −

Z
u

0

ϕVðvÞ
v̄

;

1

4
gðaÞ

0
⊥ ðuÞ þ gðvÞ⊥ ðuÞ ¼

Z
1

u

ϕVðvÞ
v

: ð30Þ

In the annihilation topology, the BðsÞ → γ transition form
factors FV;A are required. We employ the computing for-
mulas of FV;A from a recent study [42], and the results
indicate that the SU(3) breaking effect is negligible. For

fixed λBðsÞ , we obtain F
BðsÞ
V ¼ 0.20þ0.06

−0.04 and F
BðsÞ
A ¼ 0.18þ0.06

−0.04 ,
where the uncertainties arise from the various parameters in
FV;A except for λBðsÞ. Besides the theoretical inputs discussed
in the above, the values of the other parameters are presented

inTable II. The first logarithmicmomentσð1ÞBðsÞ comes from the

convolution between the logarithmic term in the jet function
and the B-meson LCDA in Eq. (23) [46].

TABLE I. Estimation of the relative size from different con-
tributions to B0 → ϕγ.

Contributions Suppression Enhancement Typical value

jAðB→ϕγÞjanni
jAðB→ρ0γÞjLP

α3−1=2α3EW
C7γ

× mV
mb

� � � 0.004

jAðB→ϕγÞjEMP

jAðB→ρ0γÞjLP
αem × aϕ

mb
mV

0.01

jAðB→ϕγÞjmixing

jAðB→ρ0γÞjLP
sin δ � � � 0.06
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B. Phenomenological predictions

Collecting all the contributions to the factorization
amplitudes calculated in the previous section together,
we arrive at the final expression of the decay amplitudes
for the pure annihilation type B → Vγ decays:

AðB0→ϕγÞ¼ cosδ½AðB0→ϕIγÞjanniþAðB0 →ϕIγÞjEMP�
− sinδAðB→ωIγÞ;

AðBs →ωγÞ¼ cosδ½AðBs→ωIγÞjanniþAðBs→ωIγÞjEMP�
þ sinδAðBs→ϕIγÞ;

AðBs→ ρ0γÞ¼AðBs→ ρ0γÞjanniþAðBs→ ρ0γÞjEMP: ð31Þ

The results for the phenomenological observables in pure
annihilation type decays are then studied. As the decay
rates are relatively small and the observables such as
CP asymmetry are hard to detect, we concentrate on the
CP-averaged branching ratios defined below:

hBðB0 → VγÞi ¼ BðB̄0 → VγÞ þ BðB0 → VγÞ
2

; ð32Þ

where the specific expression of the branching ratio is
give by

BðB̄0 → VγÞ ¼ τB
16πmB

�
1 −

m2
V

m2
B

�
jAðB̄0 → VγÞj2: ð33Þ

To illustrate the contribution from various sources, we
first present the results of each individual contribution in

Table III. In the contribution from mixing of neutral vector
mesons, we consider only the leading power contribution to
the B0 → ωIγ and Bs → ϕIγ amplitudes, because the
mixing angle is already a small quantity. The QCD
factorization result of the pure annihilation contribution
is consistent with the result in Ref. [19]. The contribution
from electromagnetic penguin operator is a bit larger than
our previous predictions in Ref. [20], as the leading
logarithm resummation of effective Wilson coefficient
C7eff is employed and some parameters are updated. Our
results indicate that the branching ratio of B0 → ϕγ purely
from the ϕ − ω mixing is 3 orders larger than that from the
annihilation topology and also about 2 orders larger than
that from the electromagnetic penguin contribution in the
decays. Apparently, this result is consistent with our rough
estimation. Taking advantage of the central values in
Table I, the total branching ratio of B0 → ϕγ is obtained
as 3.96 × 10−9, which has the chance to be measured in
Belle-II with an ultimate integrated luminosity of 50 ab−1.
The Bs → ωγ decay with the branching ratio 1.99 × 10−7

can also be searched for at the LHCb data.
We define the following ratios of CP-averaged branch-

ing fractions, which can highlight the importance of the
vector meson mixing effects:

Rρω ¼ hBðB0
s → ρ0γÞi

hBðB0
s → ω0γÞi ; Rρϕ ¼ hBðB0

s → ρ0γÞi
hBðB0 → ϕγÞi : ð34Þ

Naively considering the first ratio, Rρω ∼ 1, since the
Feynman diagrams of the annihilation topology are the
same for Bs → ρ0γ and Bs → ωγ decays; furthermore,
the contribution from the electromagnetic penguin will
even enhance this ratio to 10, as jaρ=aωj ¼ 3. The second
ratio Rρϕ is expected to be large for the CKM enhancement
from the ratio jVtbV�

ts=VtbV�
tdj2. After the ϕ − ω mixing

effect is taken into account, the values of these ratios are
dramatically changed. Our result shows that Rρω ≃ 0.03,
which confirms the dominance of meson mixing effects,
and Rρϕ ≃ 1.3, which indicates that the contribution from
ω − ϕ mixing is larger than the electromagnetic penguin
amplitude by a factor of jVtbV�

ts=VtbV�
tdj approximately.

The predicted values of these ratios are expected to be
tested in the future experiments.
Now we investigate the theoretical uncertainties.

Inspecting the distinct sources of the yielding theory
uncertainties as collected in the following formula, we have

TABLE III. Branching fractions of different contributions.

Channels Aanni only AEMP only Amixing only Total

hBðB0 → ϕγÞi 2.96 × 10−12 1.91 × 10−11 3.59 × 10−9 3.96 × 10−9

hBðB0
s → ω0γÞi 5.13 × 10−11 3.67 × 10−10 1.79 × 10−7 1.99 × 10−7

hBðB0
s → ρ0γÞi 3.61 × 10−11 4.50 × 10−9 � � � 5.22 × 10−9

TABLE II. Input parameters.

τB0 1.52 ps GF 1.116637 × 10−5

τBs
1.51 ps λ 0.22650

fB 0.192 ρ̄ 0.141
fBs

0.230 A 0.790

σð1ÞB
1.63� 0.15 η̄ 0.357

σð1ÞBs
1.49� 0.15

fρð1 GeVÞ 0.216� 0.003 a2ρð1 GeVÞ 0.15� 0.07
fωð1 GeVÞ 0.187� 0.005 a2ωð1 GeVÞ 0.15� 0.07
fϕð1 GeVÞ 0.215� 0.005 a2ϕð1 GeVÞ 0.18� 0.08
fρ⊥ð1 GeVÞ 0.165� 0.009 a2ρ⊥ð1 GeVÞ 0.14� 0.06
fω⊥ð1 GeVÞ 0.151� 0.009 a2ω⊥ð1 GeVÞ 0.14� 0.06
fϕ⊥ð1 GeVÞ 0.186� 0.009 a2ϕ⊥ð1 GeVÞ 0.14� 0.07
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hBðB0 → ϕγÞi ¼ 3.96þ1.19−1.03jζ⊥ þ1.15−1.00 jδ þ0.02−0.02 jfV;ϕV

þ0.23−0.09 jλB þ0.06−0.15jϕB

þ0.01−0.01 jFV

þ0.01−0.01jFA
× 10−9;

hBðBs → ωγÞi ¼ 1.99þ0.56−0.49jζ⊥ þ0.57−0.50 jδ þ0.01−0.01 jfV;ϕV

þ0.12−0.06 jλB þ0.00−0.02jϕB

þ0.01−0.00 jFV

þ0.01−0.00 jFA
× 10−7;

hBðBs → ρ0γÞi ¼ 5.22þ0.15−0.14jfV;ϕV

þ2.57−1.05 jλB þ1.54−1.64 jϕB

þ0.04−0.04 jσð1ÞBs

þ0.12−0.08 jFV

þ0.12−0.08 jFA
× 10−9: ð35Þ

Among various sources of uncertainties in Eq. (35), ϕV
stands for the Gegenbauer moments in the light meson
LCDAs, ϕB denotes the shape of the B meson, i.e., the
parameters α and β, and the uncertainties from FV;A do not
contain the part that arises from λBðsÞ . The uncertainty from

σð1ÞBðsÞ is not included in the B → ϕγ and Bs → ωγ decays,

because it is negligible compared with the other uncer-
tainties. It is obvious that the soft form factors which play
the dominant role in the B → ωγ and Bs → ϕγ decays
provide an important source of uncertainties. The mixing
angle between ϕ and ω mesons is another major source of
uncertainty as expected. As the decay amplitudes of
B → ϕγ and Bs → ωγ are very sensitive to the vector
meson mixing effect, these channels can serve as a good
platform to determine the mixing angle; i.e., the mixing
angle between ω and ϕ meson can be determined by

sin δ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hBðB0 → ϕγÞi
hBðB0 → ωγÞi

s
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hBðB0

s → ωγÞi
hBðB0

s → ϕγÞi

s
; ð36Þ

if the related decay modes are measured. For the BðBs →
ρ0γÞ decay which is dominated by the electromagnetic
penguin operator, the major source of uncertainty is from
the shape and the first inversemoment of the LCDAof theBs
meson. Therefore, it is of great importance to improve the
study ofBðsÞmesonLCDA.A recent effort is the introduction
of the quasiparton distribution amplitude of Bmeson [60] so
that it can be calculated by lattice QCD simulation.

IV. CLOSING REMARKS

The pure annihilation type radiative B meson decays,
including B0 → ϕγ and Bs → ρ0ðωÞγ decays, are very rare
in the standard model, which make them very sensitive to
the new physics signals beyond the standard model. We
reviewed factorization of B → Vγ decays at leading power
using SCET and derived the factorization formula for
annihilation topology. The electromagnetic penguin

contribution to the pure annihilation radiative decays,
which is power enhanced, is also revisited with leading
logarithm resummation of the effective Wilson coefficients
taken into account. As the major subject of this work, we
studied the contribution of the neutral vector meson ω − ϕ
mixing to the decay amplitudes. Although the mixing angle
of the ϕ − ω is only a few percent, this contribution owns
larger Wilson coefficients as well as power enhancement
compared with annihilation topology. A rough estimate
indicates that the contribution from ϕ − ω mixing is dom-
inant in the pure annihilation radiative decays. The numeri-
cal calculation shows that the branching ratio of B0 → ϕγ
purely from the ϕ − ω mixing is 3 orders larger than that
from the annihilation topology and also 2 orders larger than
that from the electromagnetic penguin contribution in the
decays. The similar hierarchy between the different con-
tributions holds for B0 → ωγ. The decay rate of Bs → ρ0γ is
much smaller than that of Bs → ωγ, for the suppressed
mixing effect is not considered. The new defined ratios
Rρω ≃ 0.03 and Rρϕ ≃ 1.3 further highlight the importance
of the mixing effect. The predicted branching ratios ofB0 →
ϕγ and Bs → ρ0ðωÞγ decays are given below:

BðB0 → ϕγÞ ¼ 3.96þ1.67
−1.45 × 10−9;

BðBs → ωγÞ ¼ 1.99þ0.81
−0.70 × 10−7;

BðBs → ρ0γÞ ¼ 5.22þ3.00
−1.96 × 10−9: ð37Þ

These results are to be tested by the Belle-II and LHCb
experiments.
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