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We construct analytic (3þ 1)-dimensional inhomogeneous and topologically nontrivial pion systems
using chiral perturbation theory. We discuss the effect of isospin asymmetry with vanishing electromag-
netic interactions as well as some particular configurations with nonvanishing electromagnetic interactions.
The inhomogeneous configurations of the pion fields are characterized by a nonvanishing topological
charge that can be identified with baryons surrounded by a cloud of pions. This system supports a
topologically protected persistent superflow. When the electromagnetic field is turned on the superflow
corresponds to an electromagnetic supercurrent.
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I. INTRODUCTION

One of the main goals of the theoretical and experimental
investigations in quantum chromodynamics (QCD) is to
determine the phases of hadronic matter as a function of
temperature, baryonic density, and isospin asymmetry.
In the grand canonical ensemble this amounts to studying
the realization of the hadronic phases as a function of the
baryonic chemical potential, μB, which encodes the bar-
yonic density, and the isospin chemical potential, μI , which
determines the isospin asymmetry.
Since QCD is an asymptotically free theory we expect

that at some large energy scale hadrons melt, liberating
their quark and gluon content [1]. High temperature
deconfined hadronic matter has been realized in relativistic
heavy-ion colliders (see, for instance, [2–4]), and it can
possibly form in the core of compact stars [5,6]. In any
terrestrial heavy-ion experiment, as well as in the core of
compact stars, QCD is in the nonperturbative regime,
posing a number of challenging problems to the determi-
nation of the matter properties (see [7] for a review). In
order to get insight on the properties of hadronic matter,

many different methods have been developed. At vanish-
ing baryonic density the deconfined phase can be studied
by lattice QCD (LQCD) methods [8,9], but with increas-
ing baryonic density these numerical simulations become
problematic; they are hampered by the so-called sign
problem (see [10–14] for recent progress in this direction).
For vanishing baryonic density and up to μI ≃ 2mπ , LQCD
simulations are feasible [15–29] and their results can be
compared with those obtained by chiral perturbation
theory (χPT) [30–55], or by Nambu–Jona-Lasinio models
[56–81]. In this way, one can probe the robustness of the
obtained results. In particular, it is now well established
that when the isospin chemical potential exceeds the pion
mass there is a second order phase transition between the
normal phase and the pion condensed phase (see [82] for a
recent review).
Various regions of the QCD phase diagram may be

occupied by inhomogeneous phases (see, for instance,
[83–88]). The analysis of models in the (1þ 1) and
(3þ 1) dimensions has shown that at low temperatures
some crystalline structures can be thermodynamically
stable and energetically favored with respect to the homo-
geneous phase. A quite relevant result in this area has been
the construction of exact crystalline solutions of ordered
solitons (see [89–97]). Whether an ensemble of charged
pions may form an inhomogeneous Bose-Einstein con-
densate at sufficiently low temperature is an interesting
possibility [98,99]. An example of an inhomogeneous
phase is the chiral soliton lattice, which is an inhomo-
geneous pionic phase supported by strong external fields
[100,101]. In these works the order parameter depends on
only one spatial coordinate, allowing in this way the use of
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tools developed in Gross-Neveu models [102–105]. This
fact, however, prevents the condensate itself from having a
nontrivial topological charge.
Topological stability can be achieved in (3þ 1)-

dimensional inhomogeneous condensates. However, a
detailed analysis of the electromagnetic interactions of
(3þ 1)-dimensional spatially modulated condensates is
not easy; in these situations the only available numerical
results on crystals of solitons treat the electromagnetic field
as a fixed external field neglecting the back reaction of the
hadronic matter. It would be an extremely useful result to
achieve a sound analytic control on gauged solitons with
high topological charge and with crystalline order. Explicit
examples have been obtained either in lower dimensions or
when some extra symmetries (such as SUSY) are available
(see [106–114]).
In the present paper we use zero temperature gauged two-

flavor χPT to construct an analytic (3þ 1)-dimensional
pion inhomogeneous condensate characterized by a non-
vanishing topological charge. We achieve this result by an
appropriate choice of the condensate ansatz and of the gauge
field configuration. The presence of a topological charge
prevents the decay of the inhomogeneous condensate into a
homogeneous phase, but it is not a sufficient condition for
stability. A classical argument by Landau and Peierls is that
in three or fewer dimensions the thermal fluctuations destroy
the condensates depending on only one spatial coordinate
[115]. This is the reason why we consider a (3þ 1)-
dimensional modulation, thus corresponding to a crystal-
linelike phase. Regarding the stability of these kinds of
models, Skyrme and Derrick showed [116–119] that they
do not support static solitonic solutions in flat, topologi-
cally trivial (3þ 1)-dimensional space-time. We will cir-
cumvent this argument by considering a finite spatial
volume, as finite volume effects, together with nontrivial
boundary conditions at finite volume, break Derrick’s
scaling argument [119]. These ways to avoid the Derrick
no-go argument will be combined using the generalized
hedgehoglike ansatz introduced in [120–138] that we will
properly extend at nonvanishing isospin chemical poten-
tial. In order to construct topologically stable solitons,
the previous works [120–138] needed to consider a time
dependent modulation with time dependent boundary
conditions. Within the present work we show that for
the nonvanishing isospin chemical potential, it is possible
to obtain a topologically stable crystalline phase with a
static background field and with time independent boun-
dary conditions. This implies that the proposed crystalline
phase may be studied in LQCD simulations, which employ
static boundary conditions.
Regarding the use of χPT, we remark that it is quanti-

tatively under control for μI < Λc ∼ 1 GeV, corresponding
to the critical scale of χPT. This effective field theory is
based on two key ingredients: the global symmetries
of QCD and an appropriate low momentum expansion

[139–147]. The results obtained within χPT agree with
those of other methods for μI ≤ 2mπ (see the discussion in
[82]), corroborating the reliability of this effective field
theory. Remarkably, χPT can also be used to study a variety
of gauge theories with isospin asymmetry, including two
color QCD with different flavors [148–154].
It is worth emphasizing that, while we shall study

the inhomogeneous condensates in the context of χPT,
the results reported in [136–138] strongly suggest that the
existence of such condensates (as well as their explicit
functional forms) are very robust. In particular, the con-
struction is not spoiled either by subleading corrections in
the ’t Hooft expansion or by replacing the SUð2Þ internal
symmetry with an SUðNÞ internal symmetry group. Hence,
it is very natural to think that the results obtained in the
present manuscript could be valid even beyond χPT; we
hope to come back on this very interesting issue in a future
publication.
This paper is organized as follows. In Sec. II we briefly

review the application of χPT to meson condensation. In
Sec. III we discuss the inhomogeneous pion phase for
vanishing electromagnetic fields. In Sec. IV we consider
the gauged model with a particular configuration of the
gauge fields. We draw our conclusions in Sec. V.
We use the Minkowski metric ημν ¼ ð1;−1;−1;−1Þ and

the natural units c ¼ ℏ ¼ 1.

II. THE χPT DESCRIPTION OF MESON
CONDENSATION

The low-energy properties of pions can be described by
χPT [139–147], which is grounded on the global sym-
metries of QCD and uses an expansion in exchanged
momenta. In this approach the pion fields can be collected
in the unimodular field,

Σ ¼ ei·σ ¼ 12 cos α� iN sin α; ð1Þ

where N ¼ n · σ, with σ being the Pauli matrices, and
α ¼ αn; we shall call α the radial field while n is a
unimodular field in isospin space. This is a convenient
representation because it allows us to simplify the calcu-
lations; we shall see below how these fields are related to
the standard pion fields. The leading order SUð2Þ χPT
Lagrangian including the electromagnetic interaction can
be written as

L ¼ f2π
4
Tr½−ðΣμΣμÞ þm2

πðΣþ Σ†Þ� − 1

4
FμνFμν; ð2Þ

where the pion decay constant, fπ ≃ 93 MeV, and the
assumed degenerate pion masses, mπ ≃ 135 MeV, are
phenomenological constants. Also,

Σμ ¼ Σ−1DμΣ ¼ Σj
μσj: ð3Þ
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The field strength is Fμν ¼ ∂μAν − ∂νAμ, where Aμ is the
electromagnetic gauge field and the covariant derivative is
defined as

DμΣ ¼ ∂μΣþ iÃμ½σ3;Σ�; ð4Þ

where ∂μ is the usual partial derivative and

Ãμ ¼
�
μI
2
þ A0;A

�
; ð5Þ

where we have included the effect of the isospin chemical
potential, μI. Regarding the gauge field potential, we shall
assume that it is self-consistently generated by the pion
distribution. The classical field equations read

DμΣμ þm2
π

2
ðΣ − Σ†Þ ¼ 0; ð6Þ

∂μFμν ¼ Jν; ð7Þ

where

Jμ ¼ i
f2π
2
Tr½ΣμðΣ†σ3Σ − σ3Þ�; ð8Þ

is the pion current generated by the electromagnetic field.
To make contact with the usual pion representation we

expand Eq. (1), retaining the leading order in α. In this way,
Eq. (6) yields

ðDμDμ þm2
πÞα ¼ 0; ð9Þ

which is the Klein-Gordon equation for three scalar fields.
This equation can be diagonalized to

ð∂μ∂μ þm2
πÞα3 ¼ 0; ð10Þ

ð∂μ∂μ þ 4iÃμ∂μ þm2
π − 4ÃμÃμÞðα1 þ iα2Þ ¼ 0; ð11Þ

ð∂μ∂μ − 4iÃμ∂μ þm2
π − 4ÃμÃμÞðα1 − iα2Þ ¼ 0; ð12Þ

which explicitly shows that α3 is the neutral field, while
π� ∝ ðα1 � iα2Þ correspond to the two charged pion fields.
For vanishing electromagnetic potential, the charged scalar
fields have dispersion law

E� ¼ �μI �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

π

q
; ð13Þ

which manifestly shows that for jμIj ¼ mπ a massless mode
appears, signaling a transition to the homogeneous pion
condensed phase.

A. The homogeneous phase

Let us briefly recall the most important results of the
two-flavor homogeneous and time independent pion con-
densed phase. This phase is characterized by the conden-
sation of one of the two charged pion fields, which induces
the spontaneous symmetry breaking

Uð1ÞI ×Uð1ÞY|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
⊃Uð1ÞQ

×Uð1ÞB → Uð1ÞY ×Uð1ÞB|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
⊅Uð1ÞQ

; ð14Þ

where Uð1ÞI , Uð1ÞY , and Uð1ÞB are three unitary groups
associated with the third component of isospin, hyper-
charge, and baryonic number, respectively (see [82]),
whereas Uð1ÞQ is the gauge group of the electromagnetic
interaction. The condensation happens at jμIj ¼ mπ , where
one of the pionmodes becomesmassless [see Eq. (13)]. This
mode corresponds to the Nambu-Goldston boson (NGB)
associatedwith the spontaneousUð1ÞI breaking.Neglecting
the electromagnetic interaction, the broken phase is a
superfluid, while it is an electromagnetic superconductor
if the symmetry group is gauged.
In χPT the pion condensate can be introduced, assuming

that the unimodular field Σ in Eq. (1) takes a nontrivial
vev, Σ̄, which can be determined by treating α and N as
variational parameters. The most general ansatz for the unit
vector background field is

n1¼ sinΘcosΦ; n2¼ sinΘsinΦ; n3¼ cosΘ; ð15Þ

where Θ and Φ are two variational angles.
Upon substituting this vev in Eq. (2), one obtains [40]

Lhom¼f2πm2
π cosαþ2f2πsin2αÃ

μÃμsin2Θ−
1

4
FμνFμν; ð16Þ

which has the following well known feature: The normal
phase is stable only for jμIj < mπ. In this case, cos α ¼ 1,
thus Σ̄ ¼ diagð1; 1Þ, while Θ and Φ are undetermined. The
associated vacuum pressure and energy density are, respec-
tively, given by

pN ¼ f2πm2
π; ϵN ¼ −pN; ð17Þ

while the number density is zero.
When jμIj > mπ , the system makes a second order phase

transition to the homogeneous charged pion condensed
phase. In this case the trivial vacuum is unstable and the
energetically favored phase is characterized by

cos α0 ¼
m2

π

μ2I
; Θ0 ¼

π

2
; ð18Þ

while Φ can take any arbitrary value. Since the static
Lagrangian in Eq. (16) does not depend on Φ, the potential
has a flat direction orthogonal to the 3-direction in isospin
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space which is spanned by the NGB. In the broken
phase, the normalized pressure and the energy density
(obtained by subtracting the vacuum values), are respec-
tively given by

p ¼ f2π
2μ2I

ðμ2I −m2
πÞ2; ð19Þ

ϵ ¼ f2π
2μ2I

ðμ2I −m2
πÞðμ2I þ 3m2

πÞ; ð20Þ

which are positive and vanish at the phase transition point.
The aspects of the homogeneous phase that will be

relevant in the discussion of the inhomogeneous phases are
the following: In the broken phase the value of the radial
angle α depends on μ2I by Eq. (18), while the normal phase
is characterized by α ¼ 2kπ, with k being an integer. For
k ¼ 1, α can only assume values in the intervals ½0; π=2�
and ½3π=2; 2π�; values outside these intervals cannot be
attained in the homogeneous phase. The angle Θ is not
specified in the unbroken phase, but equals π=2 in the
broken phase. The flat direction of the potential corre-
sponds to the one orthogonal to n3 and spanned by the
angle Φ. Finally, in the broken phase any electromagnetic
field is screened, as indicated by the second term on the
right-hand-side of Eq. (16), meaning that supercurrents can
circulate with vanishing resistance.

III. THE INHOMOGENEOUS TOPOLOGICAL
PHASES FOR VANISHING GAUGE FIELDS

We begin with studying the inhomogeneous phases with
vanishing gauge fields. For the appearance of the inho-
mogeneous topological phases, finite volume effects are of
crucial importance. We take them into account using the
following metric:

ds2 ¼ dt2 − l2ðdr2 þ dθ2 þ dϕ2Þ; ð21Þ

where

l ¼ b
mπ

; ð22Þ

where b is a real number and is the typical dimension of the
system. With this coordinate choice the derivative operator
turns to ∂μ ¼ ð ∂∂t ; 1l ∂

∂r ;
1
l

∂
∂θ ;

1
l

∂
∂ϕÞ. The adimensional coor-

dinates r, θ, and ϕ have the ranges

0 ≤ r ≤ 2π; 0 ≤ θ ≤ π; 0 ≤ ϕ ≤ 2π; ð23Þ

meaning that we are considering pions in a cell of volume
4π3l3. For the ground state solution we assume the
unimodular form of Eq. (1) that is now promoted to be
a classical field, meaning that α≡ αðxμÞ, Θ≡ ΘðxμÞ, and

Φ≡ΦðxμÞ, with appropriate Dirichlet boundary condi-
tions. In particular, we demand that

nðt; r; 0;ϕÞ ¼ −nðt; r; π;ϕÞ; nðt; r; θ; 0Þ ¼ nðt; r; θ; 2πÞ;
ð24Þ

and that

Σðt; 0; θ;ϕÞ ¼ �Σðt; 2π; θ;ϕÞ: ð25Þ

As we will see, these boundary conditions allow us to have
a nonvanishing topological charge. Different boundary
conditions can be accordingly implemented.
For vanishing electromagnetic fields, the matter effective

Lagrangian in Eq. (2) can be rewritten as

Lm ¼ f2π
2
½∂μα∂μαþ sin2α∂μΘ∂μΘþ 2m2

π cos α

þ sin2αsin2Θð∂μΦ − μIδμ0Þð∂μΦ − μIδ
μ0Þ�; ð26Þ

showing that the three classical fields α, Θ, and Φ are
nonlinearly interacting. Solving the classical problem
amounts to finding the solutions of Eqs. (6) and (7) with
a vanishing gauge field, which is equivalent to solving the
three coupled differential equations:

∂μ∂μΦ ¼ −ð∂μΦ − μIδμ0Þ∂μðlogðsin2αsin2ΘÞÞ; ð27Þ

∂μ∂μΘ ¼ −2 cot α∂μΘ∂μαþ sin 2Θ
2

K; ð28Þ

∂μ∂μα ¼ −m2
π sin αþ sinð2αÞ

2
ð∂μΘ∂μΘþ Ksin2ΘÞ; ð29Þ

where K ¼ ð∂μΦ − μIδμ0Þð∂μΦ − μIδ
μ0Þ, which is a non-

trivial task. From the discussion of the homogeneous phase,
we expect that the Φ field corresponds to an NGB. Indeed,
in the above equations Φ is the only field that is massless
and with derivative interactions, as appropriate for an NGB.
This is more evident assuming that Φ≡Φðt;ϕÞ and that α
and Θ depend only on r and θ. Then, Eq. (27) simplifies to
the free field equation of a massless scalar field,

∂μ∂μΦ ¼
� ∂2

∂t2 −
1

l2

∂2

∂ϕ2

�
Φ ¼ 0; ð30Þ

which has the standard free field propagating solution.
However, we are interested in solitonic solutions, and
therefore we shall consider the solution of Eq. (30) that
depends linearly on t and ϕ of the form

Φ ¼ a
l
t − pϕþΦ0; ð31Þ

where a and Φ0 are real numbers and p ∈ Z. In this way,
Eqs. (28) and (29) yield
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∇2Θ¼−2cotαð∂rΘ∂rαþ∂θΘ∂θαÞ−Kl2
sin2Θ
2

; ð32Þ

∇2α ¼ 1

2
sinð2αÞðð∂θΘÞ2 þ ð∂rΘÞ2 − Kl2sin2ðΘÞÞ

þm2
πl2 sin α; ð33Þ

where ∇2 ¼ ð ∂2∂θ2 þ ∂2
∂r2Þ, and

K ¼
�
a
l
− μI

�
2

−
p2

l2
; ð34Þ

is now a constant. This system of equations is still
complicated, however we can obtain analytical solutions
in some particular cases.
If α is a constant then Eq. (32) becomes a sine-Gordon-

like equation with solution

Θðθ̄; r̄Þ ¼ 2 arctan

�
sinhðwθ̄=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ

w cosðr̄=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ
þ δ

�
; ð35Þ

where r̄ ¼ lrK=2 and θ̄ ¼ lθK=2, while w and δ are
two constants that depend on the boundary conditions.
Asking that Θð0; r̄Þ ¼ 0, we readily fix δ ¼ 0. Then,
according to Eq. (24), we should demand that for any r̄,
Θð0; r̄Þ ¼ ð2kþ 1Þπ, with k integer. However, this is not
compatible with Eq. (35). Moreover, the only solution with
αconstant of Eq. (33) is α ¼ nπ with n integer, correspond-
ing to the homogeneous normal phase. For these reasons
we shall not consider this solution anymore.
A different class of solutions can be obtained considering

Θ≡ ΘðθÞ and α≡ αðrÞ. In order to make Eq. (33) inde-
pendent of θ we have to assume that Θ depends linearly on
θ and that K ¼ 0. It follows that in this case, the unit vector
in Eq. (15) is modulated as

Φ ¼ a
l
t − pϕþΦ0; Θ ¼ qθ þ Θ0; ð36Þ

where a;Θ0, andΦ0 are real numbers, p; q ∈ Zwith odd q.
As remarked in [120–138], the time dependence of the unit
vector is sufficient to avoid the Derrick’s no-go theorem on
the existence of solitons in nonlinear scalar field theories. It
corresponds to a unit vector rotating at constant speed
around the 3-direction in isospin space, which is precisely
the flat potential direction discussed in the homogeneous
phase. However, this is not a necessary condition; indeed
the considered system is confined in a finite volume and
this suffices to avoid the scaling argument of Derrick’s
theorem. It remains to impose the condition K ¼ 0, which
can be written as

a ¼ lμI þ p; ð37Þ

where p can be a positive or a negative integer. This
condition relates the parameter of the classical field Φ with

the isospin chemical potential. Remarkably, it is possible to
eliminate any time dependence; imposing that a ¼ 0 it
follows that

p ¼ −μIl; ð38Þ

which relates in a clear way the finite volume size and the
isospin chemical potential. Notice that it is possible to
eliminate the time dependence only for nonvanishing
isospin chemical potentials. The advantage of this choice
is that the boundary conditions at ϕ ¼ 0 and ϕ ¼ 2π
become time independent and can be possibly implemented
in LQCD simulations. Finally, the θ dependence of the Θ
field allows us to span all its possible values, including the
one in Eq. (18), corresponding to the maximum of the
homogeneous Lagrangian. Upon substituting Eq. (36) in
the differential equation (29), one readily finds that it can be
written as [135]

∂2α

∂r2 ¼ m2
πl2 sin αþ q2

2
sinð2αÞ; ð39Þ

meaning that the modulation of the α field does not
explicitly depend on the isospin chemical potential. This
seems at odds with the result of the homogeneous broken
phase in Eq. (18). However, l and μI are related by
Eq. (38), therefore there is an implicit dependence on μI .
It is indeed possible to obtain the homogeneous solution
from Eq. (39), noticing that in this case it gives

cos ᾱ ¼ −
m2

π

μ2I

�
p
q

�
2

; ð40Þ

which is indeed similar to Eq. (18). Therefore, the homo-
geneous phase corresponds to the prescription

p ¼ �q; α0 ¼ ᾱþ π: ð41Þ

Regarding the general αðrÞ modulation, the radial field
second order differential equation (39) can be recast as the
first order differential equation

∂α
∂r ¼ ηðαÞ; ð42Þ

where we can determine the function ηðαÞ noticing that

∂2α

∂r2 ¼ ∂η
∂r ¼

1

2

∂η2
∂α : ð43Þ

Then from Eq. (39) we obtain

ηðαÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η20 þ 2m2

πl2ð1 − cos αÞ þ q2sin2ðαÞ
q

; ð44Þ

where η0 is an adimensional integration constant and the
positive (negative) sign corresponds to solutions with
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increasing (decreasing) values of αðrÞ in the interval
r ∈ ½0; 2π�. In the following we shall assume that η is
non-negative and that η0 is such that for a given q,

Z
nπ

0

dα
ηðαÞ ¼ 2π; ð45Þ

where we have assumed the boundary conditions

αð0Þ ¼ 0 and αð2πÞ ¼ nπ; ð46Þ

where n is an integer. Even (odd) values of n correspond to
periodic (antiperiodic) boundary conditions in the r direc-
tion [see Eq. (25)]. The above integral can be evaluated in
terms of elliptic functions; alternatively, one can fix η0 by

nπ ¼ αð2πÞ ¼
Z

2π

0

drηðαðrÞÞ; ð47Þ

which follows from Eq. (42). Therefore, for a given value of
q and l, the integration constant η0, determines the value of
the α field at the right boundary, which, as we shall see, is
linked to the topological charge [155,156]. We report in
Fig. 1 the plot of the radial field as a function of r for q ¼ 1
and l ¼ 1=mπ , corresponding to b ¼ 1 in Eq. (22) and five
different values of η0, corresponding to the boundary
condition in Eq. (46) with n ¼ 0, 1, 2, 3, 4. For η0 ¼ 0
(red dashed line), the α field identically vanishes. This
case corresponds to the homogeneous normal phase.
With increasing η0, the value of α at the right boundary
increases. The values n ¼ f1; 2; 3; 4g are respectively
obtained with η0 ≃ f0.002; 0.186; 0.74; 1.38g. With refer-
ence to the solid black line, we notice that the α field
assumes all the possible values in the ½0; 2π� interval, while

in the homogeneous phase it can only assume values in the
intervals ½0; π=2� and ½3π=2; 2π�. With increasing values of
the lattice size, the shape of the α field changes. In Fig. 2 we
show the plot of the α field for n ¼ 2 and three different
values of b. With increasing values of b the modulation
tends to become steeper at r ¼ π and flattens at the
boundary. For large values of b the system tends to the
homogeneous normal phase: the integration constant η0
decreases with increasing system size and eventually
vanishes for asymptotic values of b. We have seen above
that for η0 ¼ 0 one obtains the homogeneous normal phase,
however, in this case we have imposed that αð2πÞ ¼ 2π,
therefore the α field discontinuously jumps from 0 to 2π at
r ¼ π. The fact that the large size case corresponds to the
homogeneous normal phase can be seen by combining
Eqs. (22) and (38) in

μI
mπ

¼ −
p
b
; ð48Þ

and therefore asymptotic values of b correspond to vanish-
ing μI. For numerical evaluations, we shall hereafter
assume the values

q ¼ 1; p ¼ 1; l ¼ 1=mπ; η0 ≃ 0.186; ð49Þ

where the last equation implies that αð2πÞ ¼ 2π.

A. The energy-momentum tensor

For a given Lagrangian density, L, the energy-
momentum tensor is

Tμν ¼ 2
∂L
∂gμν − gμνL; ð50Þ

and using the expression in Eq. (26) we obtain the matter
contribution

FIG. 1. Modulation of the radial mode, αðrÞ, obtained numeri-
cally by solving Eq. (42) for q ¼ 1 and l ¼ 1=mπ , assuming
αð0Þ ¼ 0. We report the results obtained with five different values
of the integration constant η0 [see Eq. (44)] to match the right
boundary condition αð2πÞ ¼ nπ. For η0 ¼ 0 (red dashed line),
the radial mode identically vanishes. With nonvanishing values of
η0 the radial field monotonically grows and the right boundary
value, αð2πÞ, increases with increasing values of η0.

FIG. 2. Modulation of the radial mode, αðrÞ, obtained numeri-
cally by solving Eq. (42) for three different values of the lattice
size [see Eq. (22)]. The solid black line corresponds to b ¼ 0.5,
the dashed red line to b ¼ 1, and the dotted blue line to b ¼ 2.5.
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Tm
μν ¼ −

f2π
2
TrðΣμΣνÞ þ

f2π
4
gμνTrðΣαΣαÞ

− gμνf2πm2
π cos α: ð51Þ

Upon substituting Eq. (36) in Eq. (51) and normalizing by
subtracting the vacuum energy density [see Eq. (17)], we
obtain the matter energy density

ϵm ¼ Tm
00 þ f2πm2

π ¼
f2π
2l2

ðη2 þ 2m2
πl2ð1 − cos αÞ

þ ð2p2sin2ðqθÞ þ q2Þsin2αÞ:
Taking into account the ranges in Eq. (23), the total energy
of the system is

Em ¼ l3

Z
drdθdϕϵm ¼ π2f2πl

Z
2π

0

ΩðαÞ dα; ð52Þ

where

ΩðαÞ¼ηðαÞþðq2þp2Þsin
2ðαÞ

ηðαÞ þ2m2
πl2

1−cosðαÞ
ηðαÞ ; ð53Þ

depends on the numerical values of the various constants.
For the particular choice in Eq. (49) we obtain

Em ¼ 20.5π2
f2π
mπ

: ð54Þ

The components of the pressure are instead given by

Prr ¼
f2π
2l2

ðη2 − q2sin2αþ 2m2
πl2 cos αÞ;

Pθθ ¼
f2π
2l2

ð−η2 þ q2sin2αþ 2m2
πl2 cos αÞ;

Pϕϕ ¼ f2π
2l2

ð2l2m2
π cos α − η2 − q2sin2α

þ 2sin2ðαÞsin2ðqθÞp2Þ; ð55Þ
which show that the pressure is not isotropic. This happens
because of the space modulation of the α and Θ fields.
When substituting Eq. (44) in Eq. (55), we obtain

Prr ¼
f2π
2l2

ðη20 þ 2m2
πl2Þ≃ f2πm2

π;

Pθθ ¼
f2π
2l2

ð2m2
πl2ð2 cosα− 1Þ− η20Þ

≃ f2πm2
πð2 cosα− 1.01Þ;

Pϕϕ ¼ f2π
2l2

ð2m2
πl2ð2 cosα− 1Þ

þ 2sin2ðαÞðp2sin2ðqθÞ− q2Þ;−η20Þ
≃ f2πm2

πð2 cosαþ sin2ðαÞðsin2ðθÞ− 1Þ− 1.01Þ; ð56Þ
where the last equalities are obtained using Eq. (49). The
fact that the pressure in a certain region of the ðθ;ϕÞ plane

becomes negative follows from the fact that the
system is not static, but stationary, and therefore cavitation-
like phenomena are possible. Finally, we note that

T0ϕ ¼ −
f2π
l2

sin2αsin2ðqθÞp2 ¼ −f2πm2
πsin2αsin2ðθÞ; ð57Þ

where the last equation holds for the values in Eq. (49). The
presence of a persistent current means that there is a
continuous steady energy transfer in the ϕ direction, which
is due to the presence of a stationary flow.

B. Topological charge

The topological charge of the solitonic configuration can
be written as

Bm ¼ l3

24π2

Z
drdθdϕρm; ð58Þ

where

ρm ¼ ϵijkTrfðΣ−1∂iΣÞðΣ−1∂jΣÞðΣ−1∂kΣÞg; ð59Þ

is the topological density contribution of the matter fields.
The expression in Eq. (59) shows that when the SUð2Þ-
valued scalar field Σ depends on one or two coordinates,
the topological density identically vanishes. Upon substi-
tuting Eq. (1) in Eq. (59), the topological density can be
rewritten as

ρm ¼ −12
pq
l3

sinðqθÞsin2ðαÞη; ð60Þ

which can be readily integrated noticing that

Z
dr sin2ðαÞη ¼

Z
dα sin2 α: ð61Þ

Since we have imposed the boundary condition in Eq. (46),
the topological charge becomes

Bm ¼
�−np if q odd;

0 if q even;
ð62Þ

which clarifies the choice of the q parameter in Eq. (36).
We report in Fig. 3 the topological charge densities for the
cases with n ¼ 1 (left panel) and n ¼ 2 (right panel).
Physically, the topological charge represents the baryonic
charge of the system [155,156]. Therefore, the spatial
modulation of the fields is associated with the realization
of a nonvanishing baryonic density. With reference to the
q ¼ 1 and n ¼ 2 case, we see from Eqs. (60) and (61) that
the two maxima of the topological charge density corre-
spond to θ ¼ π=2, α ¼ π=2, and α ¼ 3π=2. The normal
and condensed phases correspond to values of α in the
intervals ½0; π=2� and ½3π=2; 2π� [see Eq. (18)]. These facts
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suggest that the spatial modulation of the α field in the
interval ½0; 2π� describes two (anti)baryons, approximately
realized in the interval ½π=2; 3π=2� and surrounded by a
cloud of pions forming a condensate that vanishes at the
boundary of the system and reaches its maxima at the
places where the baryonic density takes its maximal values.
Systems with a larger baryonic charge correspond to larger
values of n.

IV. INHOMOGENEOUS PHASE INCLUDING
THE GAUGE FIELD

By including the electromagnetic interaction the matter
Lagrangian turns to

Lm ¼ f2π
2
½∂μα∂μαþ sin2α∂μΘ∂μΘþ 2m2

π cos α

þ sin2αsin2Θð∂μΦ − 2ÃμÞð∂μΦ − 2ÃμÞ�; ð63Þ

where Ãμ is defined in Eq. (5). From this expression, it is
clear that only the Φ field is minimally coupled to the
electromagnetic field. In the following we shall work in the
Lorenz gauge, ∂μAμ ¼ 0; by using the particular classical
fields in Eq. (36) and

Aμ ¼ ðu; 0; 0; uÞ; ð64Þ

the αðrÞ field decouples and its classical solution satisfies
Eq. (39). This means that although the gauge field is
generated by the pions, for the particular choice in Eq. (64)
it does not back react on the classical fields.
Let us now comment on the particular ansatz in Eq. (64)

for the electromagnetic potential. It does not correspond to
a particular gauge, but to a particular configuration of the
electric and magnetic fields. With this ansatz we have that

E ¼ −
1

l
ð∂ru; ∂θu; 0Þ; B ¼ 1

l
ð∂θu;−∂ru; 0Þ; ð65Þ

thus the electric and magnetic fields have equal magnitude
jEj2 ¼ jBj2 ¼ ðð∂ruÞ2 þ ð∂θuÞ2Þ=l2 and they are in the
r − θ plane. The expression of u remains to be determined
using the Maxwell equations. From Eq. (8) or Eq. (26) we
obtain the electromagnetic current

Jμ ¼ −2f2πsin2αsin2ðqθÞð∂μΦ − 2ÃμÞ; ð66Þ

and therefore the nonvanishing components of the
current are

J0 ¼ −2
f2π
l
sin2ðαÞsin2ðqθÞðp − 2luÞ; ð67Þ

Jϕ ¼ −J0; ð68Þ

where we used Eqs. (22) and (38) with b ¼ 1. Hence,
Eq. (7) reduces to the single equation:

1

l2

� ∂2

∂r2 þ
∂2

∂θ2
�
u ¼ 2

f2π
l
sin2 αsin2Θðp − 2luÞ; ð69Þ

where we have used Eq. (64) and the Lorenz gauge
condition. This expression can be rewritten as a time
independent Schrödinger-like equation in a periodic two-
dimensional potential

� ∂2

∂r2 þ
∂2

∂θ2
�
Ψþ VΨ ¼ 0; ð70Þ

where

Ψ ¼ p
l
− 2u and V ¼ 4f2πl2sin2αsin2ðqθÞ; ð71Þ

are the wave function and the effective potential, respec-
tively. As a boundary condition we assume the simplest
one, that is, u ¼ 0 along the whole boundary. The resulting

FIG. 3. Modulation of the topological density contribution of the matter fields [see Eq. (60)] obtained for n ¼ 1 (left-hand-side) and
n ¼ 2 (right-hand-side). The topological density has been normalized to the value at the maximum.
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plot of the potential is in Fig. 4, where we have taken q ¼ 1
and p ¼ 1. We tried different boundary conditions with a
constant shift of the potential at different boundaries,
obtaining similar results.
The corresponding electric and magnetic fields are

reported in Fig. 5. The electric field is centered at the
maxima of the two solitons and decreases its intensity when
approaching the soliton centers. This shows that the electric
field is screened inside the solitons. Similarly, the magnetic
field in the right panel of Fig. 5 is screened inside the
solitons, where the electromagnetic current reaches its
maximum (see Fig. 6). Therefore, there is a form of
Meissner screening induced by the persistent electromag-
netic current Jϕ flowing perpendicularly to the r − θ plane.

In summary, we have reduced the three coupled field
equations in Eq. (6) and the four coupled Maxwell
equations in Eq. (7) to the two differential equations in
Eqs. (39) and (70). This has been accomplished by the
particular ansatz for the angular classical fields in Eq. (36)
and the particular choice of the gauge field in Eq. (64). This
ansatz greatly simplifies the problem. The linear response
of the system to the gauge field, Eq. (66), shows that the
produced current has the same form of the energy-density
current in Eq. (57), with the additional gauge field
contribution.
Indeed, in the presence of the electromagnetic interac-

tion, there are two additional contributions to the energy-
momentum tensor: one is a contribution determined by the
minimal coupling with the Φ field and the other is the pure
gauge one. The minimal coupling can be taken into account
using Eq. (51), where now Σμ is defined in Eq. (3) and
includes the gauge field. The pure gauge contribution has
the standard expression

Tem
μν ¼ −FμαFν

α þ 1

4
FαβFαβgμν; ð72Þ

which turns into

Tem
μν ¼ jEj2

0
BBBBB@

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

1
CCCCCA
; ð73Þ

using the particular expression in Eq. (64) of the gauge
potential. The energy density now turns into

FIG. 4. Modulation of the electromagnetic potential as a
function of the r and θ coordinates obtained by solving the
differential equation (70), where Ψ ¼ 1=l − 2u, assuming that
u ¼ 0 at the boundary.

FIG. 5. Electric field (left) and magnetic field (right) obtained with the values in Eq. (49) and assuming that the electromagnetic
potential vanishes at the boundary.
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ϵ ¼ f2π
2l2

ðη2 þ ½q2 þ 2ðp − 2luÞ2sin2ðqθÞ�sin2α
þ 2m2

πl2ð1 − cos αÞÞ þ jEj2; ð74Þ

and taking into account the ranges in Eq. (23), the total
energy of the system is

E ¼ Em þ E1 þ Eg; ð75Þ

where Em is in Eq. (52) and

E1 ≃ 17.5
f2π
mπ

; Eg ≃ 2.2mπ; ð76Þ

are obtained considering l ¼ 1=mπ .
The Prr and Pθθ pressure components have the same

expressions that are reported in Eq. (55), while

Pϕϕ ¼ f2π
2l2

ð2l2m2
π cos α − η2 − q2sin2α

þ 2sin2ðqθÞsin2ðqθÞð−pþ 2luÞ2Þ þ jEj2: ð77Þ

Thus, there are additional gauge field contributions only to
the pressure in the ϕ direction. As before, the energy
density and the pressure are not time dependent; the system
is stationary with a constant energy transfer in the ϕ
direction given by

T0ϕ ¼ −
f2π
l
sin2αsin2ðqθÞðp − 2luÞ2 − jEj2; ð78Þ

where the last term on the right hand side is the electro-
magnetic Poynting vector.

For completeness, we notice that when gauging theUð1Þ
symmetry, one should include an additional contribution to
the topological charge [155,156], which now reads

B ¼ l3

24π2

Z
drdθdϕðρm þ ρgÞ ¼ Bm þ Bg; ð79Þ

where Bm is defined in Eq. (58). The gauge field con-
tribution,

ρg ¼ −iϵijkTrf∂i½3Ajσ3ðΣ−1∂kΣþ ð∂kΣÞΣ−1Þ�g; ð80Þ

is the Callan-Witten topological charge—it guarantees both
the conservation and the gauge invariance of the topologi-
cal charge for the considered potential Aj ¼ δj3u. Hence,
this topological density can be written as

ρg ¼ −3iϵi3k∂iuTk ¼
3i
l
½∂rðuT2Þ − ∂θðuT1Þ�; ð81Þ

where

Tk ¼ Tr½σ3ðΣ−1∂kΣþ ð∂kΣÞΣ−1Þ�; ð82Þ

dictates the dependence on the solitonic field. Then for the
considered solitonic configuration we have that

Bg ¼
il2

4π

�Z
π

0

dθuT2jr¼2π
r¼0 −

Z
2π

0

druT1jθ¼π
θ¼0

	
; ð83Þ

where

T1 ¼ 4i
η

l
cosΘ; T2 ¼ −2i

q
l
sin 2α sinΘ: ð84Þ

Since along the boundary the gauge field takes the
fixed value ū, and since sin2αðr¼ 2πÞ¼ sin2αðr¼ 0Þ¼ 0

[see Eq. (46)], we readily have that uT2jr¼2π
r¼0 ¼ 0. Then,

Bg ¼
l
π
ūðcosðqπÞ − 1Þ

Z
2π

0

drη: ð85Þ

For ū ¼ 0, corresponding to the boundary condition used to
obtain Fig. 2, we have that Bg ¼ 0, meaning that there is no
contribution of the gauge fields to the topological charge.
For different boundary conditions the topological charge

may give a nonvanishing contribution. For instance, for
ū ¼ p=2l, corresponding to vanishing currents at the
boundary, we have that

Bg ¼
�−np if q odd;

0 if q even;
ð86Þ

and comparing this with Eq. (62), we find that
B ¼ Bm þ Bg ¼ 2Bm ¼ −2np, where the last equality
holds for odd q.

FIG. 6. Intensity of the current T0ϕ defined in Eq. (57) and
flowing along the ϕ direction orthogonal to the r − θ plane. The
current is concentrated in the regions where the magnetic field
reaches its minimum and the topological matter density, as well as
the energy density, reach their maximum values.
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V. CONCLUSIONS AND PERSPECTIVES

We have derived the first analytic example of topologi-
cally nontrivial inhomogeneous pion condensates in low-
energy QCD in (3þ 1) dimensions at finite isospin
chemical potential. We have shown that for a particular
condensate ansatz, the complete set of field equations both
with and without the minimal coupling to the electromag-
netic field can be consistently reduced to integrable
equations, where the isospin chemical potential can be
related to the system size. In these configurations the
topological charge does not vanish and it is deeply related
to the stationary properties of the system. We find that the
energy density ϵm, the topological density ρm, and the
currents J0, Jϕ, and T0ϕ are constant in the ϕ direction
while they depend nontrivially on the two spatial coor-
dinates r and θ. The regions of maximal ρm are three-
dimensional tubes of length 2πl parallel to the ϕ direction
(the same is true for ϵ and for the currents), forming a
pastalike phase (see [157–159] and references therein for
pasta phases in nuclear physics). It is worth emphasizing
that the proposed inhomogeneous phase avoids the
Derrick’s scaling argument for the existence of solitonic
solutions because it is realized in a finite volume with
appropriate nontrivial boundary conditions. Moreover, it is
not static, because the J0, Jϕ, and T0ϕ currents do not
vanish even when the electromagnetic potential vanishes
(u ¼ 0), and are maximal where sin2ðαÞsin2ðqθÞ ¼ 1 [see
Eqs. (57) and (67)], rapidly decreasing far from the peaks.
Consequently, these currents cannot be turned off contin-
uously—they are topologically protected. Therefore, these
stationary currents are actually supercurrents. If the broken
Uð1Þ symmetry is global, they correspond to superfluid
currents. If the broken Uð1Þ symmetry is gauged, then they
correspond to superconducting currents. Indeed, the typical
expression of any supercurrent, see for instance [160], is

J ∼ κð∇φþ AÞ; ð87Þ

where κ is a constant, φ is a phase, and A is the Uð1Þ gauge
potential. In the standard settings [160] there is no
topological number associated with κ; the linear stability
of the configurations where κ ≠ 0 is established by direct
methods (such as linear perturbation theory) and is deter-
mined by a control parameter. In the present case, the factor
sin2ðαÞ sin2ðqθÞ in the currents [which plays the role of κ in
Eq. (87)] is instead topologically protected.
As far as we know, these are the first analytic examples

of gauged crystal-like structures in low-energy QCD. The
realized configuration can be interpreted as consisting of n
baryons embedded in an inhomogeneous pion gas, char-
acterized by the modulation of the α, Θ, and Φ fields. It
would be interesting to compare the inhomogeneous and
the homogeneous condensates in order to establish which
one is more convenient thermodynamically. At a first
glance, we could do this explicitly since we can compute

the free energy (in a grand canonical ensemble with a
chemical potential μT associated with the topological
charge) both for the homogeneous and for the inhomo-
geneous condensates. However, the two condensates seem
to be realized in different regimes. If we identify the
topological charge with the baryonic charge, the inhomo-
geneous system corresponds to baryons embedded in a
pion gas forming a condensate that reaches its maximum
values where the baryonic density is larger. On the other
hand, the homogeneous phases attainable within our
framework correspond to pure pionic systems. Therefore,
the two systems correspond to two different grand canoni-
cal ensembles. In principle, it is possible to extend chiral
perturbation theory including baryons (see for instance
[145–147]), however our procedure is different because we
have introduced baryons as topological objects in a cloud of
pions with a nonvanishing isospin asymmetry.
Remarkably, in the presence of a nonvanishing isospin

chemical potential it is possible to realize the solitonic
configuration eliminating any time dependence of the
condensate, thus the boundary conditions are time inde-
pendent, as well. This is a clear improvement with respect
to the case of vanishing μI , in which the solitonic
configuration has been realized with a time dependent Φ
field and then with time dependent boundary conditions
[120–138]. We have found that when the isospin asym-
metry is related to the system size by Eq. (38) any time
dependence is eliminated, and only in this case is the
topologically stable crystalline phase time independent. It
would be interesting to compare our results with those of
LQCD simulations, which should realize the condition in
Eq. (38) by properly modulating the ratio between the
lattice size and the isospin chemical potential. It may well
be that the LQCD simulations find that a different con-
figuration is energetically favored. Although stable, the
solution we obtained may not correspond to the energeti-
cally favored solitonic configuration; to derive our results
we have indeed employed a number of simplifying
assumptions.
We also notice that, in principle, one can use numerical

techniques to solve the set of differential equations (27),
(28), and (29). The comparison with the outcome of these
numerical simulations would be quite interesting, as well.
In any case, as we have shown, the analytic solutions are
not just of academic interest, as they disclose relevant
physical properties of complex structures that may some-
how be hidden in the numerical procedures.
Given the nontrivial crystalline structure of our system, it

would also be interesting to investigate the spectrum of its
low-energy excitations. While our configurations are pro-
tected by their topological charge against decay, the
presence of nontrivial pole structures at finite momentum
might signal strong fluctuation effects (see, e.g., [161] for a
discussion on how an inhomogeneous chiral phase is turned
into a quantum spin liquid by fluctuations). For the
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modulations considered in this work, we expect at least
some of the low-energy excitations to have a phononlike
linear dispersion relation (see [96] for a study in a similar
scenario), but a more detailed investigation would defi-
nitely be of interest, and we plan to come back to this issue
in a future work.
We note that we have derived our results employing

leading order χPT, however the results reported in
[136–138], where additional interaction terms have been
introduced, strongly suggest that the present construction
could be valid even beyond leading order χPT.
If the crystals discussed in this work are realized in dense

stellar objects, they may have various phenomenological
effects on their properties. Since a solitonic crystal supports
superfluid and/or superconductive flows, it would manifest
in a pastalike structure that influences the thermal transport
properties inside the star. Moreover, it should be charac-
terized by a certain rigidity, meaning that deforming the
structure should result in a certain energy cost. Thus, for
rotating compact stars, it could be relevant for vortex
pinning and may be associated with peculiar stellar

glitches. Finally, our results suggest that even pion stars,
completely made by pions and electrons [44,162,163],
could have a rigid crust made by a solitonic crystal. In this
case, this phase should manifest not only in peculiar stellar
glitches, but that it could also support quadrupolar mass
deformations associated with the continuous emission of
gravitational waves. We plan to come back on these very
interesting issues in a future publication.
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