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Acoustic holes are the hydrodynamic analog of standard black holes. Featuring an acoustic horizon,
these systems spontaneously emit phonons at the Hawking temperature. We derive the Hawking
temperature of the acoustic horizon by fully exploiting the analogy between black and acoustic holes
within a covariant kinetic theory approach. After deriving the phonon distribution function from the
covariant kinetic equations, we reproduce the expression of the Hawking temperature by equating the
entropy and energy losses of the acoustic horizon and the entropy and energy gains of the spontaneously
emitted phonons. Differently from previous calculations we do not need a microscopical treatment of
normal mode propagation. Our approach opens a different perspective on the meaning of Hawking
temperature and its connection with entropy, which may allow an easier study of nonstationary horizons
beyond thermodynamic equilibrium, including dissipative effects.
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I. INTRODUCTION

There exists a remarkable analogy between transonic
flow in hydrodynamics and black hole (BH) physics [1],
which allows one to define in both contexts an event
horizon. In acoustic holes (AHs), the analog of BHs, long-
wavelength sound waves cannot move against the fluid
flow beyond the surface (the acoustic horizon) where that
becomes supersonic. Intriguingly, in both cases one can
define the Hawking temperature characterizing the spec-
trum of the particles spontaneously emitted close to the
horizon [1,2]. As photons are spontaneously emitted at the
BH horizon, AHs can be viewed as a thermal reservoir at
fixed Hawking temperature TH, continuously emitting
phonons, corresponding to long-wavelength sonic vibra-
tions [2–8]. The first expression of the Hawking temper-
ature of an AH was derived by Unruh [1]: he presented an
expression of TH as a function of the gradient of the
velocity field for a transonic flow in a background with
spatially uniform sound speed. Afterward, this expression
was generalized to

TH ¼ 1

2π

∂jcs − vj
∂n

����
H
; ð1Þ

where v and cs are the space-dependent fluid velocity and
sound speed, respectively, and the normal derivative is
evaluated at the event horizon, as discussed for instance in
[7]. Remarkably, both numerical [9] and laboratory [10,11]
experiments recently verified that phonons spontaneously
emitted by an acoustic horizon in Bose-Einstein conden-
sates have a thermal spectrum with temperature TH.

The analogy between hydrodynamics and gravity resides
on the fact that the low-energy phonon action can be written
as that of a scalar boson propagating in an effective acoustic
metric [1,12,13], determined by the hydrodynamic flow.
For both black and acoustic horizons TH corresponds to the
surface gravity. Then, this analogy between quasiparticle
propagation and gravitational phenomena has been
exploited in a number of works using different media [7].
Though these analogies are quite rich, it is useful

reminding their limitations. Not all aspects of gravity
can be mimicked by an analog model: the matter stress-
energy tensor does not obey the Einstein equations; there-
fore, a link does not exist between matter energy density
and the analog metric. Nevertheless, analogies can inspire
unexplored perspectives and sprout new ideas. Here, we
establish that the intimate relation proven for BHs between
the Hawking emission and the horizon area [14] holds as
well for acoustic horizons. This provides further support to
the conjecture that, analogously to BHs, the entropy of AHs
is proportional to their horizon area as expected if it arises
by information loss [15] or by the entanglement of quantum
fluctuations on the two sides of the horizon [16]. Our
derivation fully exploits the analogy between hydrody-
namic flow and gravity yielding a covariant expression of
the phonon distribution function from the appropriate
kinetic equations [17,18], formally expressing the concept
that spontaneously emitted phonons can be viewed as
bosons in Unruh’s acoustic metric. The usual expression
of the Hawking temperature thus pops out as a simple and
straightforward consequence of the entropy area law which,
to our knowledge, remained unnoticed so far. Likewise, we
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establish a clear link between the entropy and the energy
variations of the fluid and the phonon entropy and energy
densities. Our results are analytically derived in the limit of
vanishing bulk temperature: in other words, the only
excitations of the fluid are generated by the acoustic
horizon, neglecting any thermal noise.
This paper is organized as follows. In Sec. II we present

the general theoretical setup to describe AHs by a kinetic
theory approach. In Sec. III we discuss the spherical AHs;
although unphysical this case displays a manifest analogy
with standard BHs. A more realistic geometry is discussed
in Sec. IV. We draw our conclusions in Sec. V. We include
two Appendixes containing details of the calculations. In
particular in Appendix Awe present a few technical details
regarding the dimensional reduction close to the acoustic
horizon, while in Appendix B we report the evaluation of
selected thermodynamic quantities.

II. THEORETICAL SETUP

The effective low-energy Lagrangian of a fluid depends
on the equation of state and on the space symmetries of the
system, as discussed in [19–22]. In this work, we use
the Minkowski metric ημν ¼ diagð1;−1;−1;−1Þ and natu-
ral units c ¼ ℏ ¼ kB ¼ 1. For simplicity, we consider a
barotropic equation of state P≡ PðμÞ, where P is the
pressure and μ is the chemical potential. Assuming irrota-
tional flow, the background velocity configuration can be
described by a scalar field φ, and defining Dρφ≡ ∂ρφ −
δρ0μ with δ the Kronecker symbol, the low-energy effective
Lagrangian for φ can be expressed as

Leff ½Dρφ� ¼ P½ðDρφDρφÞ1=2�; ð2Þ

where P has now to be understood as a functional of the
derivatives of the field φ that has the same form as the
pressure [21,22]. In this context, we interpret the classical
scalar field φ̄ as the potential field of the irrotational flow.
Since the Lagrangian explicitly depends only on field
derivatives, the classical equation of motion of φ̄ takes
the form of the hydrodynamic conservation law of the
fluid current

∂νðnvνÞ ¼ 0; ð3Þ

with

n ¼ dP
dμ

����
μ¼μ̄

ð4Þ

the number density [21], and vρ ¼ μ̄−1Dρφ̄, with
μ̄ ¼ ðDρφ̄Dρφ̄Þ1=2, the fluid velocity, so that the velocity
is properly normalized to one.
From (2) it is possible to derive the effective field theory

of the phonons moving in the background of the fluid [23].

Our discussion applies to both superfluid phonons and
ideal-fluid hydrodynamics: indeed, in both cases the irrota-
tional fluid motion can be described by the same scalar
field Lagrangian; see for instance [20]. The decomposi-
tion between the background fluid motion and the phonon
oscillations can be obtained by a scale separation between
the classical motion, described by φ̄, and the long-
wavelength fluctuations associated to the phonon field,
described by ϕ. Hence we write φðxÞ ¼ φ̄ðxÞ þ ϕðxÞ and
expand the system low-energy action

S½φ� ¼
Z

d4xLeff ½∂φ� ð5Þ

around the classical solution

S½φ� ¼ S½φ̄� þ 1

2

Z
d4x

∂2Leff

∂ð∂μφÞ∂ð∂νφÞ
����
φ̄

∂μϕ∂νϕþ � � � :

ð6Þ

Considering the Lagrangian in Eq. (2), one has that

∂2Leff

∂ð∂μφÞ∂ð∂νφÞ
����
φ̄

¼ n
μ̄

�
ημν þ

�
1

c2s
− 1

�
vμvν

�
: ð7Þ

This allows us to write

S½ϕ� ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕ; ð8Þ

corresponding to the action of a boson in a gravity
background [7] with the so-called acoustic metric tensor
[24,25]

gμν ¼ Ω
�
ημν þ

�
1

c2s
− 1

�
vμvν

�
; ð9Þ

with Ω a conformal factor. The inverse metric

gμν ¼ Ω−1½ημν þ ðc2s − 1Þvμvν� ð10Þ

is obtained assuming that vμ ¼ ημνvμ.
For simplicity we take Ω ¼ 1, although the presence of

any conformal factor can be easily taken into account [22];
thus, g≡ det gμν ¼ −c2s . If both the fluid and the sound
speed are much smaller than the speed of light, we recover
the standard nonrelativistic acoustic metric; see for instance
[23]. The acoustic horizon can be defined by the condition
that at the position xH of the horizon, the gtt component of
the metric vanishes, i.e., csðxHÞ − vðxHÞ ¼ 0.
An AH, like a BH, behaves as a thermal reservoir [2];

thus, phonons are spontaneously emitted with a thermal
distribution at the acoustic horizon fðx; pÞ, which in the
long-wavelength limit is independent of the phonon-
phonon interactions. Knowing fðx; pÞ, one can construct
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the phonon energy-momentum tensor and entropy density,
that using a covariant formalism are, respectively, given by

Tαβ
ph ¼

Z
pαpβfðx; pÞdP; ð11Þ

sαph ¼ −
Z

pα½f ln f − ð1þ fÞ ln ð1þ fÞ�dP; ð12Þ

with the covariant momentum measure [17]

dP ¼ ffiffiffiffiffiffi
−g

p
2HðpÞδðgμνpμpνÞ d4p

ð2πÞ3 ; ð13Þ

where HðpÞ ¼ 1 if p is future oriented for an observer
moving with velocity vμ and 0 otherwise. These expres-
sions turn to the standard ones in Minkowski space-
time. One important aspect is that the conserved quan-
tities should include the metric [22], in particular, for a
collisionless fluid with no source term ðsαphÞ;α ¼ 0 [also
ðnαphÞ;α ¼ 0], which is equivalent to ðsαphÞ;α ¼ −Γμ

μνsνph ¼
−cs−1ð∂νcsÞsνph. Thus an entropy (phonon) current, of
purely geometrical origin, arises in the presence of gra-
dients of cs.
The stationary phonon distribution function fðx; pÞ

should satisfy the covariant Liouville equation [17,18]

L½f�≡ pα ∂f
∂xα − Γα

βγp
βpγ ∂f

∂pα ¼ C½f�; ð14Þ

corresponding to the general relativistic version of the
Boltzmann equation, where the Christoffel symbols are
obtained using Eq. (13). In the covariant kinetic theory,
fðx; pÞpμnμdΣdP represents the number of particles
whose world lines intersect the hypersurface element
nμdΣ around x, having four-momenta in the range
ðp; pþ dpÞ, and nμ is a four lightlike vector. The sta-
tionary solutions of Eq. (14) correspond to the condition
L½f� ¼ 0, meaning that we are neglecting any dissipative
process (see Appendix B for a brief discussion of dis-
sipation processes). If we assume that

fðx; pÞ ¼ 1

exp ðpμβμÞ − 1
; ð15Þ

we obtain that the stationary configuration is characterized
by the 4-vector βμ that has to satisfy ðβλ;ρ−βαΓα

λρÞpλpρ¼0,
which is equivalent to the Killing’s equation [22]

βλ;ρ þ βρ;λ ¼ 0; ð16Þ

indicating how the equilibrium distribution function can be
determined for any configuration with a given acoustic
metric gμν.

III. THE SPHERICAL ACOUSTIC HOLE

We shall now exploit the analogy with the BH thermo-
dynamics to determine βμ. We consider a spherically sym-
metric stationary flow with velocity v ¼ vr̂ along the radial
direction r̂ and vðrÞ < 0 is the time-independent velocity of
the flow falling toward the center. This is not a physically
realizable system, due to a singularity at r ¼ 0; however, it
makes the analogy with standard BHs straightforward.
More realistic configurations are considered later. In
spherical coordinates the line element reads

ds2 ¼ dt2ðc2s − v2Þγ2 þ 2γ2ð1 − c2sÞvdrdt
− ½ð1 − c2sÞγ2v2 þ 1�dr2 − r2dΩ2; ð17Þ

where γ is the Lorentz factor, then

gμν ¼

0
BBB@

ðc2s − v2Þγ2 ð1− c2sÞγ2v 0 0

ð1− c2sÞγ2v ðc2s − 1Þγ2v2 − 1 0 0

0 0 −r2 0

0 0 0 −r2sin2θ

1
CCCA

ð18Þ

and, since we assume stationary flow, gμν;t ¼ 0. We remark
that at the acoustic horizon, phonons can only be
emitted radially—otherwise, they would have a radial
velocity smaller than cs—hence, they cannot escape (see
Appendix A for more details). Thus we define the 2 × 2
metric tensor

g̃αβ ¼
� ðc2s − v2Þγ2 ð1 − c2sÞγ2v
ð1 − c2sÞγ2v ðc2s − 1Þγ2v2 − 1

�
; ð19Þ

where α; β ¼ t, r so that g̃ ¼ detðg̃αβÞ ¼ −c2s and
g ¼ detðgμνÞ ¼ g̃r4 sin2 θ.
It can be shown that βμ ¼ ðβt; βr; 0; 0Þ, meaning that the

system is effectively 1þ 1 dimensional; thus, phonons are
only sensitive to the g̃αβ metric. We shall assume βμ;t ¼ 0 as
well. The relevant Christoffel symbols are

Γt
tt ¼ −

1

2
gtrgtt;r Γr

tt ¼ −
1

2
grrgtt;r ð20Þ

Γt
rt ¼

1

2
gttgtt;r Γr

rt ¼
1

2
grtgtt;r; ð21Þ

substituting these expressions in Eq. (16) we obtain the
expression for βμ. For λ ¼ ρ ¼ t, Eq. (16) yields

gtrβt þ grrβr ¼ 0; ð22Þ

which implies βr ¼ 0. For λ ¼ r and ρ ¼ t we have

HAWKING TEMPERATURE AND PHONON EMISSION IN … PHYS. REV. D 103, 076001 (2021)

076001-3



0 ¼ βt;r − 2Γα
rtβα ¼ βt;r − 2Γt

rtβt − 2Γr
rtβr; ð23Þ

that using Eqs. (20) yields

βt;r − gtt;rðgttβt þ gtrβrÞ ¼ 0; ð24Þ

while from λ ¼ r and ρ ¼ r we have

βr;r − gtr;rðgttβt þ gtrβrÞ ¼ 0: ð25Þ

From the above equations we readily have that βt ¼ βgtt
and βr ¼ βgtr, with β a constant, implying that βμ ¼ ðβ; 0Þ;
i.e., the stationary condition implies that the phonon
distribution function is completely determined by only
one parameter β ¼ 1=T, that has no angular or radial
dependence.
To fix T we now need to link the phonon distribution

function to the acoustic horizon. Since the kinetic equations
describe on-mass shell particles, we first look at the phonon
dispersion law. Phonons follow null geodesics of the
acoustic metric, gμνpμpν ¼ 0: writing pμ ¼ ðE;−pr; 0; 0Þ
(see Appendix A) we obtain

gttE2 − 2gtrEpr þ grrp2
r ¼ 0; ð26Þ

with solution E� ¼ K�pr and K� ¼ ðv� csÞ=ð1� csvÞ
the effective phonon velocity. In the considered system
v < 0

K� ¼
8<
:

cs−jvj
1−csjvj ;

−cs−jvj
1þcsjvj ;

ð27Þ

meaning that outside the acoustic horizon, where jvj < cs,
the mode with pr > 0 has positive energy. Inside the
horizon, both modes propagating toward the center with
pr < 0 have positive energy, though only one mode is
relevant for our discussion. This is more evident in the fluid
rest frame (v ¼ 0) where the phonons have dispersion law
E� ¼ �cspr; therefore, there exist two radially emitted
modes with positive energy, one propagating outward and
one inward. The sum of the energies of the emitted phonons
is not zero; therefore, phonons carry away energy from the
acoustic horizon.
We now proceed to extend the entropy area law of BHs

to AHs, allowing us to relate β ¼ 1=T to the Hawking
temperature. As for BHs, we assume that it is possible to
associate to the acoustic horizon the entropy

SH ¼ κ
A
L2
c
¼ 4κπr2H

L2
c

; ð28Þ

where Lc is the phonon cutoff length scale playing the same
role of the Planck length scale in general relativity [26] and
κ is a number to be fixed, while A and rH are the area and

radius of the acoustic horizon, respectively. We note that
this result can in principle be formally derived along the
same reasoning lines used to determine the information loss
[15] or the entanglement of quantum fluctuations on the
two sides of the horizon [16]. If the AH emits sound waves
by a radial fluctuation, then in the laboratory frame its
entropy variation is

dSH ¼ 8πκ
rH
L2
c
drH; ð29Þ

where drH is a small variation of the horizon radius. The
corresponding variation of the phonon entropy in the
volume around rH is instead

dSph ¼ 4πrHdgs̃phdrH; ð30Þ

where s̃ph is the conserved entropy density of phonons. The
number dg ¼ 3 × 2 takes into account the contributions of
the three phonon quasiparticles and of the modes propa-
gating outside and inside the AH. As discussed in [27,28]
for a superfluid (see [19,20] for ideal fluids), when
counting the number of modes in our three-dimensional
superfluid geometry, we need to account for three spatial
degrees of freedom and for the existence of Bogoliubov v
and u modes, propagating inside and outside the AH,
respectively. This mode counting is independent of the
details of phonon propagation.
In our base hypothesis, phonons are produced only by

geometry. Thus, upon equating dSH ¼ dSph we obtain

s̃ph ¼
κ

3rHL2
c
; ð31Þ

which relates the phonon entropy density to a geometric
property of the system. In evaluating s̃ph, we have now to
consider that the horizon can only emit phonons radially.
As shown in Appendix A, this fact, together with the
presence of the scale Lc, affects the momentum measure
which should be cast as [see Eq. (A6)]

dP ¼ cs2HðpÞδðg̃μνpμpνÞ dp
0dpr

2πL2
c

; ð32Þ

where g̃μν is the two-dimensional metric; see Eq. (19).
Using the results derived in Appendix B, we are now

ready to express the phonon entropy density Eq. (12) close
to the horizon, obtaining that it is directly proportional to
the temperature:

s̃0ph ¼ s̃ph ¼
πT

6KþL2
c
; ð33Þ

with Kþ given by Eq. (27). Substituting this expression in
Eq. (31), the cutoff length scale simplifies and the AH
temperature turns out to be
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T ¼ 2κKþ
πrH

: ð34Þ

After shifting the radial coordinate so that the acoustic
horizon corresponds to rH ¼ 0, and assuming that close to
the acoustic horizon vþ cs ¼ Cr, C ¼ ðvþ csÞ0H, Eq. (34)
yields

T ¼ 2κ

π

�
cs − jvj
1 − csjvj

�0����
H
; ð35Þ

in fact equivalent to Eq. (1) in the nonrelativistic limit for
κ ¼ 1=4. Remarkably this is the same value generally
adopted for BHs (see e.g., [15]).
Notice that the same result can be obtained in a similar

way by equating the energy loss of the AH and the energy
gain of the phonon gas. In this case, we assume that the
spontaneous phonon emission is associated to the energy
variation of an AH

dEH ∝
1

2

drH
L2
c
; ð36Þ

which is indeed the analog of the BH energy variation by
spontaneous photon emission. The corresponding energy
variation of the phonon gas is

dEph ¼ 4πr2HdgðT̃phÞ00drH; ð37Þ
where dg is the degeneracy introduced above and
ðT̃phÞ00 ¼

ffiffiffiffiffiffi
−g̃

p ðTphÞ00. Equating dEH ¼ dEph and using
(11) we obtain again the expression of the Hawking
temperature in (35).
These results indicate that spherical AHs, as ordinary

BHs, can be viewed as a thermodynamic system at fixed
temperature spontaneously emitting massless particles
carrying energy and entropy. In AHs, the emission can
be viewed as triggered by fluctuations of the acoustic
horizon that produces radially propagating sound waves.
Since the spherical acoustic horizon is exactly isothermal,
to make the analogy with BHs more stringent, one should
actually consider a BH that accretes matter by a rate exactly
equivalent to the energy loss by photon emission. This
difference is relevant for light BHs, possibly produced at
LHC [29–31]; however, in general the BH mass is much
larger than the radiated energy and the process can be
approximated as isothermal [32,33].

IV. MORE REALISTIC GEOMETRIES

Although we have derived the above relations using a
spherically symmetric system, our results hold as well for
different geometries. As an example, in Fig. 1 we sche-
matically show the variation of the acoustic horizon for a
flow in a cylindrical tube of diameter 2d and axis in the z
direction. For a viscous fluid, the effective area of the
acoustic horizon can be approximated by A ¼ csαr2, where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ l2

p
; for an unviscous flow, the acoustic horizon

becomes flat corresponding to the l → 0 limit. Assuming
that the phonon emission happens by a horizon radial
fluctuation and that it is possible to associate to the acoustic
horizon an entropy as in BHs, the entropy change of the
fluid is

dSH ¼ 2καcsldl
L2
c

; ð38Þ

while the associated change in the phonon entropy is

dSph ¼ dVs̃ph ¼ csαl2dls̃ph: ð39Þ

Equating dSH ¼ dSph and using the phonon entropy

density in Eq. (33), we obtain T ¼ 2κKþ
πdgl

and

lim
l→0

T ¼ 2κ

π

∂
∂z

�
cs − jvj
1 − csjvj

�����
H
; ð40Þ

that is the same expression of the Hawking temperature
reported in Eq. (35). As for the spherical case, we obtain the
same expression of the Hawking temperature when equat-
ing the energy loss of the AH and the energy gain of the
phonon gas. The present derivation can be straightfor-
wardly extended to reduced space dimensions, e.g., in 2D,
by appropriately counting the corresponding number of
phonon modes.

V. CONCLUSIONS

We have shown how for AHs the Hawking temperature
comes with a conceptually simple covariant kinetic theory
approach. Under the hypothesis that the BH and AH
entropies have the analogous physical origin, we associate
to the latter the entropy A=4 in terms of the horizon surface
area A. Then, we determine the Hawking temperature by
equating the entropy loss of the fluid with the phonon
entropy gain. The same result can be obtained associating
to an AH a mass equal to half the Schwarzschild radius and
equating the energy loss of the fluid with the energy gain of

FIG. 1. Schematic representation of the section of a cylindrical
tube with transonic flow. The blue curves represent the acoustic
horizon during phonon emission, causing the horizon’s radial
fluctuation with its slight reduction between the blue lines,
followed by a corresponding increase of the phonon density in
the volume within the two.
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the phonon gas. These results hold if the horizon fluctuates
radially, which is appropriate for sonic wave emission.
Our findings elucidate the relationship between the fluid

fluctuations and the phonon (Hawking) emission gas varia-
tions, further clarifying the geometrical nature of the process.
Remarkably, our results do not depend on the phonon
emission mechanism and are truly shaped only by the
geometrical properties of the acoustic horizon, as clearly
emerges from our covariant description. However, the
proposed method works only in a region sufficiently close
to the acoustic horizon, where the system is effectively 1þ 1
dimensional, and for a fluid temperature much lower than
TH. In this case, it is possible to neglect phonon-phonon
interactions,meaning that the spontaneously emitted phonon
gas is in an out-of-equilibrium thermodynamic state [34].
Interestingly, we are also able to clarify an important

aspect of BH physics: the spontaneous emission of photons
at the event horizon should result in energy and entropy
gains of the photon gas equal to the mass and entropy losses
of the BH. In this case though, one complication arises
because of the long-range behavior of the gravitational
interaction, which may not allow one to separate the photon
energy density and entropy from the BH ones [2].
The physics described here can be probed in currently

available experimental setups based on extremely accurate
control of tabletop quantum technologies, such as ultracold
gases platforms. In particular, we envisage that the 2D,
disk-shaped geometry setup experimented in [35,36] can be
especially promising in probing the behavior we describe.
In the experiment, a coherent Hawking radiation is simu-
lated in a 2D Bose-Einstein condensate after modulating
the scattering length driving the atomic interactions, and
thus the speed of sound, by a variable amount of time. The
measured probability distribution of the matter-wave emis-
sion is observed to be thermal. Adapting Eqs. (30) and (37)
to the desired geometry one can compute the rate of entropy
as well as of energy emitted by the AH. These quantities
could be measured by experimental strategy adopted in [37]
or via measurements of dynamical correlation functions
[38]. In this measurement one should take into account the
bulk temperature of the system, here neglected, as well as
the transport properties of the superfluid. Quite generally,
the theoretical framework here developed opens to new
formulations of the AH physics with unexplored perspec-
tive, shining a different light on the treatment dynamical
and dissipative effects.
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APPENDIX A: DIMENSIONAL REDUCTION
CLOSE TO THE ACOUSTIC HORIZON

The acoustic horizon is the region where the fluid
velocity equals the speed of sound [1,2,7]. Since phonons

propagate at the speed of sound, the only phonons that can
escape from the acoustic horizon are those having velocity
with vanishing azimuthal angle with respect to the fluid
motion, corresponding to vanishing values of θ in Fig. 2,
where the horizon is pictorially represented by the blue
contour. In fluids, the phonon momentum and velocity are
parallel; thus, only those phonons emitted with vanishing
px and py components can escape. We can interpret this
result assuming that the distribution function of phonons
close to the horizon of Fig. 2 is given by

fph ¼ f · ftðpx; pyÞ; ðA1Þ

where f is the standard Bose-Einstein distribution [see
Eq. (15)], while the ft distribution should in principle be
derived by the microscopic physics. However, sufficiently
close to the acoustic horizon ft can only depend on the
cutoff length scale Lc, which is the only relevant length
scale. For this reason we assume that sufficiently close to
the horizon of Fig. 2 the transverse distribution function is
given by

ftðpx; pyÞ ¼
2π

Lc
δðpxÞ

2π

Lc
δðpyÞ: ðA2Þ

This expression can be generalized as

ftðptÞ ¼
�
2π

Lc

�
2

δðp2
t Þ ðA3Þ

close to any acoustic horizon, where pt is the transverse
momentum with respect to the local orientation of v at the
horizon, while we will indicate with pr the momentum
parallel to v. Instead of the Dirac delta function, one may

FIG. 2. Schematic representation of the emission of a phonon
close to the acoustic horizon. The blue rectangle corresponds to
the local surface of the acoustic horizon orthogonal to the fluid
velocity v, which is along the z axis. The black line corresponds to
the emitted phonon with momentum p at a certain angle θ with
respect to the normal to the surface. Only phonons emitted with
vanishing px and py components can escape from the acoustic
horizon.
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consider a Gaussian distribution or any representation of
the Dirac delta function; the results would be qualitatively
the same. In any case, this would be still consistent with our
kinetic theory approach [see Eq. (14)]. When evaluating the
energy-momentum tensor (see for instance [22])

Tαβ
ph ¼

Z
pαpβfphðpÞdP; ðA4Þ

the momentum measure [17,18]

dP ¼ ffiffiffiffiffiffi
−g

p
2HðpÞδðgμνpμpνÞ dp

0dprdp2
t

ð2πÞ3 ðA5Þ

can be simplified by integrating out the transverse momen-
tum. Taking into account that

ffiffiffiffiffiffi−gp ¼ cs, the resulting
integration measure is

dP ¼ cs2HðpÞδðg̃μνpμpνÞ dp
0dpr

ð2πÞL2
c
; ðA6Þ

where g̃μν is the two-dimensional metric. This expression
can be rewritten as

dP ¼ cs
δðp0 − EþÞ

p0

dp0dpr

ð2πÞL2
c
; ðA7Þ

where Eþ is the dispersion law of phonons. The latter can
be obtained from gμνpμpν ¼ 0 and has the general expres-
sion

E� ¼ vprð1 − c2sÞ � csγ−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
t γ

2ð1 − c2sv2Þ þ p2
r

p
1 − c2sv2

; ðA8Þ

which for vanishing transverse momenta gives

E� ¼ v� cs
1� vcs

pr ¼ K�pr; ðA9Þ

with the þ sign corresponding to the positive energy states
relevant for the kinetic equations.

APPENDIX B: EVALUATION OF THE
THERMODYNAMIC QUANTITIES

From the expression of the energy-momentum tensor in
Eq. (A4) and using the integration measure in Eq. (A7) we
can extract the energy density

ϵ̃ph ¼
ffiffiffiffiffiffi
−g

p
T0

0 ¼
Z

Eþf
dpr

2πL2
c
; ðB1Þ

where

f ¼ 1

eKþpr=T − 1
ðB2Þ

is the phonon distribution function. Similarly, the pressure
can be evaluated by using

ffiffiffiffiffiffi
−g

p
Ti

j ¼ δirδjrP̃ph; ðB3Þ

showing that the pressure is radially oriented: it is locally
orthogonal to the acoustic horizon. We can derive the
entropy density by the thermodynamic relation

ϵ̃ph þ P̃ph ¼ Ts̃ph; ðB4Þ

which holds because phonons are emitted at the temper-
ature T and they have vanishing chemical potential. Since
P̃ph ¼ ϵ̃ph, we obtain that

Ts̃ph ¼ 2ϵ̃ph;

and upon changing the integration variable to x ¼ Kþp=T,
Eq. (B1) yields

ϵ̃ph ¼
T2

2πL2
cKþ

Z
∞

0

xfðxÞdx: ðB5Þ

Since

Z
∞

0

xfðxÞdx ¼ π2

6
; ðB6Þ

it follows that

s̃ph ¼
πT

6L2
cKþ

: ðB7Þ

Alternatively, the entropy density can be evaluated using
the expression

sph ¼ −cs
Z

½f ln f − ð1þ fÞ ln ð1þ fÞ�δðp0 − EþÞ

×
dp0dpr

ð2πÞL2
c
; ðB8Þ

and upon lowering the indices in the integration measure,
which amounts to dividing by c2s, and integrating over p0

we obtain

sph ¼ −
1

cs

Z
½f ln f − ð1þ fÞ ln ð1þ fÞ� dpr

ð2πÞL2
c
; ðB9Þ

where the distribution function is in Eq. (B2). Upon
changing the integration variable to x ¼ Kþpr=T, we get
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sph ¼ −
T

ð2πÞL2
cKþcs

Z
½f ln f − ð1þ fÞ ln ð1þ fÞ�dx;

ðB10Þ

where the integral can now be analytically evaluated to

Z
½f ln f − ð1þ fÞ ln ð1þ fÞ�dx ¼ −

π2

3
; ðB11Þ

meaning that the entropy density s̃ph ¼ ffiffiffiffiffiffi−gp
sph, takes the

expression in Eq. (B7). Noticeably, for r → rH, the factor
Kþ introduces a divergence in the energy and entropy

densities, meaning that we are approaching the phonon
source. However, the covariant entropy and energy density
in Eqs. (B1) and (B7) can be regularized by the short
distance cutoff Lc. This is evident from (A8), accounting
for the finite value of the transverse momentum pt ∼ 1=L2

c,
hence removing the divergence that appears in the energy
and entropy densities due to the vanishing of Kþ at the
acoustic horizon. The nonvanishing transverse momentum
can be related to dissipative effects, which transfer momen-
tum in the orthogonal direction with respect to the flow.
This shows that dissipation can effectively regularize the
behaviour close to the horizon. We shall come back on this
issue in a separate work.
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