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New solutions for rotating boson stars
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It has been shown that scalar fields can form gravitationally bound compact objects called boson stars. In
this study, we analyze boson star configurations where the scalar fields contain a small amount of angular
momentum and find two new classes of solutions. In the first case all particles are in the same slowly
rotating state, and in the second case the majority of particles are in the nonrotating ground state and a small
number of particles are in an excited rotating state. In both cases, we solve the underlying Gross-Pitaevskii-
Poisson equations that describe the profile of these compact objects both numerically as well as analytically

through series expansions.
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I. INTRODUCTION

If light bosons, such as axions, form dark matter, it is
potentially possible for them to collapse into bound
compact objects, which are called boson stars [1-3] or
axion stars [4—6]. Considerable work has been done in
determining the wave functions for these compact objects,
either numerically or semianalytically in both nonrelativ-
istic and relativistic frameworks [7-22]. For a detailed
comparison of the approximation methods and ansatz used
in the literature see [23].

Rotating boson star configurations have also been
studied, but all known solutions (that we have found in
the literature) have the property that the total angular
momentum increases proportionally to the mass of the
star (e.g., [24-29]). In these solutions, the ratio of the
angular momentum to the number of particles has a
minimum value, and hence for a fixed number of particles,
these solutions do not include configurations of rotating
boson stars with an arbitrarily small angular momentum.

In this paper we remedy this gap by finding new
solutions which carry an arbitrarily small angular momen-
tum for a fixed number of particles. We in fact find rwo
different classes of such solutions.
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Our first approach is a generalization of the solutions
which exist in the literature, where all the particles are in the
same state. However, we impose that the total angular
momentum in the bosons is constrained to be fixed at a
small value. This produces a state dominated by a spherical
component, with a small admixture of a higher harmonic,
naturally leading to a star with a small rotation. Our second
approach is to take a small number of particles in the star to be
in a higher spherical harmonic, while most of the particles are
in the nonrotating state. Note that it is clear that such a
solution must exist; for instance, if a single particle is placed
in a # = 1 harmonic, there is no lower energy state with this
angular momentum. We shall call these two ansitze, respec-
tively, the one-state and two-state solutions. We show that
both these approaches successfully yield solutions for a
rotating star with a small angular momentum.

This paper is organized as follows: In order to set our
notation and to connect to previous work, we first review
our previous results for the case of nonrotating boson stars
in Sec. II. We then turn to the rotating star: we consider the
one-state ansatz in Sec. III and the two-state ansatz in
Sec. IV. In each case, we set up the perturbation expansion
around the nonrotating star, and solve the equations both
numerically and in a series expansion, thereby providing
strong numerical evidence that these solutions exist. We
conclude in Sec. V.

II. NONRELATIVISTIC BOSON STARS

A. Lagrangian and structure equations

Let us consider a real noninteracting scalar field ¢(r, 1)
which is coupled to gravity. This scenario is described by
the following Lagrangian:

Published by the American Physical Society
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The scalar field can form gravitational bound states, or
boson stars. In this study, we focus on the case of dilute
boson stars, which can be described by the Newtonian
nonrelativistic limit. For the case of QCD axions, it has
been shown that only dilute axion stars are stable over
astronomical timescales [30,31].

In the Newtonian limit, when the field ¢ couples only
weakly to gravity, the metric can be written as g,, =
diag(1 4 2®,-1,—1,-1), where ® is the Newtonian
gravitational potential. We are interested in stationary
solutions, in which case the gravitational potential is time
independent. In this case the Ricci scalar takes the simple
form R = —2(V®)?. Also in the nonrelativistic limit, we
can treat the energy as being close to the mass, and we have
(0,0)°® = m*>p>®. The Lagrangian in Eq. (1) then
becomes

1 (0,9) 1 (Vo)?
L=317 2c1>_§(v¢) 2" G
— 10,09~ mg?) - —(ng wpe. ()

Since the Lagrangian is quadratic in the scalar field, we
can quantize the scalar in the usual way. We first find a set
of wave functions satisfying

v2¢n - 2m2¢nq) = _ZmEn¢n (3)
and quantize by setting the scalar operator equal to
b= ahp, + a,p;. (4)

The Hamiltonian is then

H= Z \/2mE, + m*a}a,. (5)

The eigenstates are of the form
Y= azlaj;z e |O> (6)
The gravitational potential interacts with the scalar

through the term m?¢?®. This leads to the equation for
the potential

V2O = 42Gm(¥|p*|P). (7)
These field equations, often referred to as Gross-Pitaevskii-

Poisson equations, are the structure equations for the
boson star.

B. The nonrotating boson star

For the nonrotating star, we consider an ansatz where we
have N particles in the ground state y,, = ¢y, which has an
energy eigenvalue e, = E,,. The state is then

W = (a})0), Q

and the corresponding structure equations are given by a
Schrodinger-type equation for the ground state wave
function

vzl//nr - 2m2q)nrl//nr = —2mey Wy (9)
and a Poisson equation for the gravitational potential

V20, = 4xGNm|y . |*. (10)

To solve the structure equations for the boson stars, it is
convenient to introduce dimensionless variables. Following
Refs. [17,18], we define

2rG m
S = — Wars Vy = -1 +_chra
enr nr
G*M?*m?
7= /—2mey,,r, by = ————, (11)

25

where M = Nm is the star’s mass. Using these variables,
we can rewrite the Gross-Pitaevskii-Poisson equations as
2o

VZSO -

and VZu, = —|so]?, (12)

—SoVo
where the derivatives V, are now with respect to the
dimensionless coordinate z. In dimensionless variables,
we can write the normalization condition of the wave
function, f lw|?dV =1, as f séz2dz =2/ and associate
2/ with the mass of the star. Note that up to scalings, there
is only one ground state solution for noninteracting boson
stars.

In [17,18] we have solved the Gross-Pitaevskii-Poisson
equations and obtained a semianalytic solution for the
ground state of the boson star. In this approach, the profiles
at both small and large radii are separately described
through a series expansion of the wave function and
potential and matched at an intermediate point. At small
radii, the profile can be described by an even polynomial
around the center of the star (z = 0),

(o]
“ear*E 597" and Ugearfg 0z (13)
n=0

At large radii, we take
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0,0 e I\
shr = E 59 o z7™ and

n,m=0,0

0,00 =\ n
i = Z vg,mCﬁ) . (14)

n,m=0,0

The potential and wave function are fully specified by
knowing the parameters of the leading expansion

sgearzsg_i_.”’ s(f)arzae—zzﬂ—l_i_...’

2p

Ugearz1]8+...’ yg“‘fz—1+7+---. (15)

The remaining coefficients can be obtained using recursion
relations which can be derived from the Gross-Pitaevskii-
Poisson equations and have been presented in [17,18]. We
can determine the four expansion parameters either through
a fit to the numerical solution or by matching the small and
large radius wave functions and their derivatives at a
matching point z*. We have obtained the following sol-
utions [17]:

s = 1.02149303631 £ 1.4 x 10719,

v9 = 0.93832284019 + 1.3 x 10717,

a = 3.4951309897 + 5.1 x 1079,

B = 1.7526648513 + 1.3 x 10~°. (16)

C. Slowly rotating boson stars

We now turn to a study of rotating boson stars. In
particular, we look for a slowly rotating boson stars
solution, which can be treated as a perturbation around
the nonrotating solution. That is, the nonrotating solution
should admit a normalizable perturbation such that the
perturbation carries angular momentum. The existence of
such a perturbation would indicate that a slowly rotating
boson star can be found at least at the linearized level,
which is suggestive that the full solution should exist.

To look for these states, we impose a constraint on the
total angular momentum of the boson star

N / $L2pdV = L2, 0. (17)

where L? is the usual total angular momentum operator
L? = 95 + (sin§)~283. On astrophysically relevant time-
scales, the boson star’s angular momentum L, is a fixed
quantity. We implement this constraint by introducing a
Lagrange multiplier 4. The Lagrangian in Eq. (2) then
becomes

(Vo)?

1
L ==(0,p0"¢p — m*§*) —
—m$*® + mANPL* ¢ — Liug?).  (18)
We can repeat the quantization procedure and find

resulting equations of motion are the Poisson equation
given in Eq. (10) and a modified Schrodinger-type equation

1
2m

AL
N

v2¢n = (mCI) - En)(:bn - li‘zcﬁn + ¢n' (19)

In the following, we will present two possible solutions for
the slowly rotating boson star and obtain the corresponding
ground state wave function.

III. ROTATING BOSON STARS: ONE-STATE
SOLUTION

A. The Ansatz

We first look for a solution where all the particles are in
the ground state. The state is then

po L
N!

(ap)0). (20)
This is formally similar to the nonrotating case, but because
of the constraints, we must take the ground state in this
sector to have nonzero angular momentum.

We take the ground state to be a perturbation around the
nonrotating spherically symmetric solution y,,,.(r) obtained
in Sec. II B. In particular, we choose an ansatz in which the
wave function and potential perturbation are expanded in
spherical harmonics Y,,, with £ > 1 and m = 0,

¢0(r’ 0, ¢) = Wnr(r) + ellll(r)yt’()(e)’
D(r.0.¢) = @, (r) + €@y (r)Y 20 (6). (1)

as well as —E = e, + €e;. The expansion parameter € is
taken to be parametrically small, which allows us to work in
linear order perturbation theory.

The angular momentum constraint in Eq. (17) relates the
value of € and the star’s angular momentum, such that
€ =Ly X [NE(¢+ 1) - [ |y|?dV]~"/2. We then find that
the last term in Eq. (19) is of order L2, ~¢*> and can
therefore be ignored at linear order in perturbation theory.

We now insert this ansatz into the field equations
Egs. (19) and (10). Collecting terms at zeroth order in e,
we recover the equations of motion for a nonrotating boson
star, whose solution we presented in Sec. I B. Matching the
terms proportional to €Y,y we find the structure equations
for the perturbation
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1
_V2W1 = mchWnr + (m(bnr - enr)llll

- 1

v2<I)1 = 4ﬂGNm(l//;F1rW1 + UITU/nr)' (22)

Finally, collecting the terms proportional to €Y, implies
e; = 0, meaning that the rotation does not induce a shift in
the binding energy at leading order in perturbation theory.
Such a shift first appears at order €.

We perform the change of variables in Eq. (11) and
further define

22GM 13
S]—|:T[G 2 (23)

m A(C+1
]1/11, Ul:e_q)h FZQ-

nr nr enr

The resulting structure equations for the dimensionless
field and potential perturbations s; and v; then read

stl —f(f"‘
ngl —f<f+

1)/1231
1)/22U1

= —v15o — VoS + sy,

= —2SOS1. (24)

B. Series expansion

We have seen in Sec. II B that we can describe the profile
of the nonrotating boson star through an infinite series for
the wave function and potential. We will follow the same
approach to obtain a solution for Eq. (24).

At small radii, the profiles for s; and v; can be described
via a polynomial around the center of the boson star z = 0,

o0 (]
shear — g siz" and 0T = E vhz".  (25)
n=0

n=0

By matching the coefficients in Eq. (24) we obtain the
recursion relations

[(n+2)(n+3) -
= 0+ 5],
m=0

x[(n+2)(n+3)-2(¢+

£ +1)s, n+2 =Ts,

n+2 = - Z Smsn —m-
(26)

Requiring the left-hand side of Eq. (24) to be defined at
z = 0 implies that the perturbation vanishes at the origin
and hence s, = v} =0. The profile at small radii can
therefore be fully parametrized in terms of the derivative of
the wave function and potential at the origin 9.5, = s}
and 0,v; = v].
At large radii,
expansion ansatz

we will once again use the series

0,00 e i\ "
shar = E Shom o z7™ and

n,m=0,0

0,0 e I\ n
= S () (27)

n,m=0,0

and obtain the recursion relations

nm+2n(n6+m 2) nm 1
+ [(en+m—2)(on+m—3)

n.m
_ 0 1 _
= § : Sp.qUn—p.m—q

= (€ + D]y s

n,m
E 1 0 1
Sp.qUn—-p.m—q + an,m

p,q=0,0 1.q=0,0
(28)
and
m+2n(ne+m—2)v) Uyt
+ [(na+m—2)(n0+m—3) 2+ D]ty s
— 2 sy (29)

r.4=0.0

Let us note the following properties of s and v
(i) Eq. (29) with n =0 implies that v, =0 unless
m = ¢ + 1. At large radius, the potential is then approx-
imately described by vf = v} /412 =(#+1) while all other
terms in the expansion are at least exponentially sup-
pressed. (ii) Normalizability of the wave function requires
st = 0. Equation (28) with n =0 then implies that all
coefficients s, vanish as well. This means that similar to
the nonrotating wave function s(f)ar, the wave function of the
rotating perturbation s{ar decays at least exponentially.
(iii) Equations (28) and (29) further imply that the potential
contains only nonvanishing components v} ,, for even n
while the wave function only has nonvanishing component
sb,, for odd n.

The first nonvanishing terms for wave function s
appear for n = 1. Using the known n = 0 solutions of
the nonrotating case, we can simplify Eq. (28) and write

(ﬂ+6+m 2)slm 1+s1mf11)0f+l 1—‘Slm
~[(e+m=2)(c+m=3)=£(¢+1)]s},,,. (30)

Setting m = 0, Eq. (30) can be written as s} ,[" =0,
which implies either s{, =0 or I'= 0. Although both
possibilities will lead to a solution, we will mainly focus on
the I' = O solution. For m = 1, we find that 1 — o = p,
where the ¢ originates from the s expansion. This is the
same relation we found for the nonrotating boson star in
Ref. [17], justifying our ansatz to use the same ¢ for both
the sf expansion in Eq. (14) and the s expansion in
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Eq. (27). Finally, setting m = M + 1 we can use Eq. (30) to
obtain the recursion relation

Msiy =€+ 1) = (6 +M=1)(c+M=2)]s]
- ”(1)f+1s(1),M—f' (31)

This means that all coefficients can be determined recur-
sively from s{, and v),. More generally, we can use
Egs. (28) and (29) to recursively calculate all coefficients
si» and v}, in the expansion of s and v

We can now determine the expansion parameters by
matching the near and far field wave function and potential
and their derivatives at a matching point z*. We have
performed such a matching using the near field solution in
Eq. (25) truncated with n < 100 and the far field solution in
Eq. (27) truncated with n <5, m <5 and obtained

51 =0.91848 + 0.00061,
51y = 10.125 £ 0.052,
vh, = 10.111 % 0.056, (32)

where the perturbation is normalized such that v} = 1. To
estimate the uncertainty associated with the matching
procedure, we  performed multiple  matchings
for 3 <z" <3.5.

C. Leading order analytic far-field solution

Similar to the ground state, it is also possible to obtain an
approximate analytical solution for the far field at leading
order n=1. Using that vy~—1+28z"! and v~
vy s127""!, we can write the Schrodinger-like equation
in Eq. (24) as

£(¢+ 1 2 ’
stl _gsl = (1 _|_1"__ﬂ>sl _ Vo.r11 s (33)
Z

z 0-
22 74+l

After performing a change of variables to w = 2zsy,
wo = 2259, and y = 2z(1 +T')'/2, we can write

Ay,

A ”(1)£+1
’ (34)
4y ¥

w
/-1 .2 "0
y

aw? 1 LK
dy? y
withk = - (1 +T)~"/2and 1 = [2(1 +T')"/?]*~!. Looking
at the homogeneous part on the left-hand side, we rediscover
the Whittaker equation. Following the notation of Ref. [32],
the solution to Eq. (34) is given by a linear combination of the
Whittaker functions W, ,(y) and M, ,(y) as well as one

solution wy", (y) to the inhomogeneous Whittaker equation

W<y) = C'WK,/A(y) +C/.MK,M(y)+WIi<]TM<y)’ (35)

where y? =1+ (¢ +1)oru=2¢+14

For I = 0, and hence x = f, normalizability of the wave
function requires ¢’ = 0. For £ = 1, we also see that w =
v5,[€(€ +1)]7'wy is a solution of the inhomogeneous
Whittaker equation in Eq. (34). This then implies that

1
02 %y (22). (36)

fars=1 _ €
Slar = — W/)’,/t (22) + 72/—}2 ’%

27

Expanding the Whittaker function, we obtain s{ar =
(27! + avly/2)e 327 + - - -, which allows us to identify
c= (25}, —avly)27.

For I # 0, additional normalizable solutions with ¢’ # 0
could exist. The Whittaker function M, ,(y) converges to
zero for large values of y if x is a natural number > 2, fixing
the corresponding values of I' = 2 /x> — 1.

D. Numerical analysis

In Sec. III B we have shown that the wave function and
potential profile of the rotating boson star can be described
by a series expansion, which is characterized by the
expansion parameters given in Eq. (32). In the following,
we will compare this result to the numerical solution of
Eq. (24), focusing on the case £ = 1.

As we have seen before, near z = 0 the solution takes the
forms; ~ siz+---and v; ~ v}z + - - -. To obtain a numeri-
cal solution, it is convenient to normalize the field s; and the
potential v, such that v} = 1, so that the solution is only
parametrized by s}. Using a Runge-Kutta four method, we
then perform the numerical integration of Eq. (24). For most
values of s}, the wave function profile will diverge to positive
or negative infinity at large radii z > 1. Using a shooting
point method analogous to those used by the authors of
Refs. [17,33], we adjust s} such that the wave function
converges and becomes square integrable.

The numerical solution for I' = 0 is shown in the left
panel of Fig. 1 as a solid gray line. Fitting the solution by
the far potential v} ~ v{,z™% and the far wave function
given in Eq. (36), we can extract the expansion parameters
of the series expansion

s1 = 0.91835 £ 0.00014,
sl =10.123 £0.018,
v), = 10.080089 + 0.000035, (37)

where the uncertainties were obtained by varying the fit
range. These results agree with our previous findings based
on the matching between the near and far solutions
obtained in Eq. (32).

The dashed curves show the wave function profile of the
truncated near solution in Eq. (25) with n <15 and n <
100 as well as the far solution of Eq. (27) with n < 1 and
m < 2. Here the truncated solution takes the simple form
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One-state solution. Left: The numerical solution (solid gray curve) and truncated series expansion at small radius (dotted blue

and dashed magenta curves) and large radii (dot-dashed red curve) as well as the analytic Whittaker approximation (dotted black curve)

FIG. 1.
for the wave function of a rotating perturbation with # = 1 and I' = 0. Right: Numerical solution for the wave function of a rotating
perturbation with £ = 1 and I" = 0 (black curve), I' = —0.667 (dashed red curve), I' = —0.812 (dotted blue curve), and I' = —0.877

(dot-dashed green curve). The nonrotating ground state wave function is shown for comparisons (gray solid curve).

0.918z — 0.1887% + 0.0247°

—0.262 x 107277 4+ 0.251 x 1073z°  for
—2.239 x 1079z 4 1.896 x 107613 7 < 3.45
§1 =< —1.547 x 1077713
10.1220752¢72 — 14.16770247¢~2 for
—1.93771247 =2 7> 3.45
(38)

We can see that already such few terms in the series
expansion are sufficient to describe the wave function well.
The dotted black curve shows the Whittaker function
solution of Eq. (36), which is already well described by
the first few terms of the far field expansion.

The right panel of Fig. 1 shows the numerical solution for
both I' =0 and I" # 0, alongside the nonrotating ground-
state solution s, discussed in Sec. I B. In particular, we
found that solutions exist for I' = —0.667, —0.812, —0.887.
These values are consistent with the relation I' = 2 /x> — 1

found in Sec. Il C for x = 3, 4, 5. Notably, x — 2 also
characterizes at how many radii the wave function vanishes

identically, s; = 0.
IV. ROTATING AXION STARS:

This leads to the Poisson-type equation for the potential

W = < (@) (@) (39)

V2@ = 4zGm(N|do|* + k| ). (40)

which should be solved along with the Schrodinger-type

equations

V2 — 2m*Ppo® = —2mEydy.

V2, — 2m2, @ + 2mAL> ¢,

We will assume k < N and perturb in the small parameter
€ = k/N. For this reason, we dropped the L2, term in
Eq. (41) which only contributes at subleading order in €.
Now, to zeroth order in ¢, @ will just be equal to the
potential for the nonrotating star ®,,, ¢, is equal to the
wave function for the nonrotating star y,,,, and Ey = e,,.

As before, we will consider a single Y,y mode, i.e.,
$1(r,0,.¢) = w1 (r)Yr0(0. ). (42)

We again perform the change of variables in Eq. (11) and

further define

TWO-STATE SOLUTIONS
A. The Ansatz

We now consider a second approach to find rotating
boson star solutions. In this ansatz, we look for a state
where N particles are in the ground state a}|0), and k
particles are in the excited state a}|0). The state is then

(43)

_E1+M(f+1)_1

enr

2
€nr

27GM3
|: :| Vi, r

and obtain the structure equation
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Vis, —£€(€ +1)/z%s) = —vps; + sy (44)
The angular momentum of the boson star is equal to
Ly = [k-2(€+1) - [|y1]*dV]"/2. Note that unlike for

the one-state case, in this case the rotation does induce a

shift in the binding energy at leading order in perturbation

theory.

B. Series expansion

As before, we will parametrize the wave function via an
infinite series expansion. At small radii, the profile for s,
can be described via a polynomial around the center of the
boson star z = 0,

shear Z shzm, (45)

By matching the coefficients in Eq. (44) we obtain the
recursion relation

[(n42)(n+3) = £(£+1))sk,, =Tsh - Zs 0.
(46)

As in the one-state case, requiring the left-hand side of

Eq. (44) to be defined at z = 0 implies that the perturbation

vanishes at the origin and hence s{, = 0. The profile at small

radii can therefore be fully parametrized in terms of the

derivative of the wave function at the origin d.s; = s1.
At large radii, we will use the series expansion

—V1+Iz

RN s}m<64,) (VTTT2)™. (47)
l n,mz:().o . (V 1 +FZ)J

Note that the form of this ansatz is slightly different from
the nonrotating boson star in Eq. (14) and the one-state
solution in Eq. (27). As we will see later, two-state
solutions only exist for I" # 0, and the resulting far field
solution would approximately follow the Whittaker func-
tion W, ,(2zv/1 +T). In order to match the asymptotic
behavior of this Whittaker function solution, the additional
V1 +T factor as well as a new parameter ¢’ have been
included in the series expansion ansatz.

The coefficients of the expansion are related by the
recursion relation

(141)(n%s},, +2n(nd’ + m—2)s}

nml
+(n+m=2)(c'n+m—=3)-£(¢+1)]s),,_)
= s,',mv —V1+Ts),, 100, + sk (48)

Here we have used the approximate ground-state potential
) ~ =14 2p/z, such that the Cauchy product vys, is
well defined.

As before, requiring the wave function to be normal-
izable implies that all coefficients s, vanish. The first
nonvanishing terms appear for n = 1, in which case we can
simplify Eq. (48) and write

21 +T)7 2 40+ m =2,
=[f+1)-(6'+m=2)(c'+m- 3)]s}’m_2. (49)
By setting m = 1, we obtain ¢/ = 1 — (1 +T)~"/? and
note that ¢/ # o for I' # 0, where 6 = 1 — f§ appears in the
nonrotating boson star expansion in Eq. (14). Setting m =
M + 1 we find
_ / _ /
o= ZZ+1)— (6’ +M-2)(o
M 2M

+ M —1)]s}

(50)

Following the same procedure as in Sec. III B, we
determine the expansion coefficient s} , by matching the
near field solution in Eq. (45) truncated with n < 100 and
si = 1 and the far field solution in Eq. (47) truncated with
n <1 and m <5 at a matching point z* and obtain

51y = 4.910 £ 0.074. (51)

The uncertainty was estimated by performing multiple
matchings for 3.2 < z* <3.5.

C. Leading order analytic far-field solution

Similar to the ground-state and the one-state solutions,
we can obtain an approximate analytical solution for the far
field at leading order n = 1. Using vy~ —1 + 2pz~! and
performing a change of variables to w =2zs; and
y =2z(1 +T)"2, we can rewrite Eq. (44) in the familiar
Whittaker equation form

aw? 1 x (+1
0 (LAY,
where k = - (1 4+T)7'/2, Note that Eq. (52) is homo-
geneous, while the Whittaker equation for the one-state
ansatz in Eq. (34) contained an additional inhomogeneous
component (arising from the product syv;). The general
solution to Eq. (52) is given by a linear combination of
W, u(y) and M, (y),

w(y) =c W, (y) +c M, (y), (53)

where +2(¢+1).
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FIG. 2. Two-state solution. Left: The numerical solution (solid gray curve) and truncated series expansion at small radius (dotted blue
and dashed magenta curves) and large radii (dot-dashed red curve) as well as the analytic Whittaker approximation (dotted black curve)
for the wave function of a rotating perturbation with # = 1 and I' = —0.415 in the two-state ansatz. Right: Numerical solution for the
wave function of a rotating perturbation with £ = 1 and I" = —0.415 (black curve), I' = —0.715 (dashed red curve), I' = —0.833 (dotted

blue curve), and I' = —0.889 (dot-dashed green curve). The nonrotating ground state wave function is shown for comparisons (gray

solid curve).

The function M, ,(y) diverges at large y unless
I' = f2/k* — 1 with « being a natural number > 2. We
will see in the next section that the solutions and corre-
sponding values of I' do not fulfill this condition.
Normalizability of the wave function then requires
¢’ = 0. The solution must therefore be solely described

by W, ,(y) which allows us to write

which agrees with our previous finding in Eq. (51). We also
show the wave function profile using the truncated near
solution in Eq. (45) with n <15 and n < 100, the far
solution of Eq. (47) with n <1 and m <2, and the
Whittaker solution of Eq. (54). The truncated solution

takes the form

z—0.13523 +0.0132°

o = Sy (2/THT). (54)

S =
1 27

Expanding this function leads to the ansatz in Eq. (47) and
matching the coefficients of the leading terms allows us to

identify ¢ = s} o271+ 1] with o/ =1 —«.

D. Numerical results
As for the one state solution, we also obtain a numerical
solution of Eq. (44), focusing on the case £ = 1. The
equation is linear in s; which allows is to choose s{ =1
without loss of generality. We then use a Runge-Kutta four
method to perform the numerical integration of Eq. (44)
and apply a shooting point method to find the values of I"
for which the wave function converges at large radii.

The lowest energy solution is obtained for I' = —0.415,
and the corresponding wave function is shown in the left
panel of Fig. 1 as a solid gray line. As before, we can fit the
numerical solution with the far wave function given in

Eq. (54) and obtain
Sio=4.894£0.013,

(55)

—0.106 x 107277 4+ 8.253 x 107°z°  for
—6.207 x 1070711 +4.551 x 1077713 7z < 3.45
s; =< —3.275 x 1078213
(3.461 = 2174771 = 1.153772) for
XZ1.2926—O.765Z 7> 3.45
(56)

Again, with only a few terms in the expansion the wave

function is described fairly well.
The right panel of Fig. 2 shows additional numerical

solutions for I' = —0.415, —0.715, —0.833, and —0.889.
Note that these values of I" do not coincide with I' =
p?/k> —1 for x>2 similar to those of the one-state
solutions. As argued before, this implies that the far field
solution is solely described by the Whittaker W function.

V. CONCLUSIONS

Light scalar fields can form gravitationally bound
compact objects, called boson stars. In the Newtonian
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limit, the profiles of boson stars are described by the Gross-
Pitaevskii-Poisson equations.

In previous works, we presented a semianalytic solution
to these equations describing the profile of boson stars
formed by scalar fields [17,18]. The solution was based on
a series expansion which is parametrized by four expansion
parameters that were obtained from numerical simulations
at high accuracy. In this paper we have extended our
methods to find new solutions which allow for slowly
rotating boson stars; specifically, we have found solutions
for boson stars where the ratio of the angular momentum to
the number of particles can be made arbitrarily small.

We considered two possibilities: in one case, all the
particles are in the same state, and in the second case the
majority of the particles are in the zero angular momentum
ground state and a small number of particles are in an
excited state containing angular momentum. In each case,
we obtained accurate numerical and semianalytic profiles
(about 1% precision), thereby establishing the existence of
these slowly rotating boson stars.

The results and methods presented in this paper allow
for systematic studies of the properties of boson stars in

an analytic way without further relying on numerical
simulations. There are several directions for further
research; in particular, it would be interesting to extend
these solutions to interacting scalars and to relativistic
stars. It would also be interesting to see how the
profiles are modified in the presence of other astro-
physical objects such as planets. We hope to return to
these questions in future work.
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